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ABSTRACT 
 

NOVEL BIOINFORMATIC APPROACHES FOR ANALYZING 
 

NEXT-GENERATION SEQUENCING DATA 
 

by Yan Peng 
 

May 2015 
 

 In general, DNA reconstruction is deemed as the key of molecular biology 

since it makes people realize how genotype affects phenotypes. The DNA 

sequencing technology emerged exactly towards this and has greatly promoted 

molecular biology’s development. The traditional method, “Sanger,” is effective 

but extremely expensive on a cost-per-base basis. This shortcoming of Sanger 

method leads to the rapid development of next-generation sequencing 

technologies. The NGS technologies are widely used by virtue of their low-cost, 

high-throughput, and fast nature. However, they still face major drawbacks such 

as huge amounts of data as well as relatively short read length compared with 

traditional methods. The scope of the research mainly focuses upon a quick 

preliminary analysis of NGS data, identification of genome-wide structural 

variations (SVs), and microRNA prediction. In terms of preliminary NGS data 

analysis, the author developed a toolkit named “SeqAssist” to evaluate genomic 

library coverage and estimate the redundancy between different sequencing 

runs. Regarding the genome-wide SV detection, a one-stop pipeline was 

proposed to identify SVs, which integrates the components of preprocessing, 

alignment, SV detection, breakpoints revision, and annotation. This pipeline not 

only detects SVs at the individual sample level, but also identifies consensus SVs 
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at the population and cross-population levels. At last, miRDisc, a pipeline for 

microRNA discovery, was developed for the identification of three categories of 

miRNAs, i.e., known, conserved, and novel microRNAs. 
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CHAPTER I 

INTRODUCTION 

DNA Sequencing Technologies 

Deoxyribonucleic acid (DNA) is the carrier of genetic materials for all living 

organisms and many viruses. It is the most essential component of 

chromosomes and plays an important role in developing and functioning 

organisms. It consists of four kinds of nucleotides: Adenine (A), Cytosine (C), 

Guanine (G), and Thymine (T). The important role of DNA leads people to 

explore and research on DNA. This gives rise to the rapid development of DNA 

sequencing technology. DNA sequencing is a process for determining the exact 

type and order of nucleotides for a fragment of genome or the whole genome. 

Evolving from the traditional sequencing technology, sanger method (Sanger & 

Coulson, 1975) to the currently widely used next-generation technologies (NGS) 

(Metzker, 2010; Mardis, 2013) and the next next-generation sequencing 

technologies (next-NGS), DNA sequencing technologies are rapidly developing 

and moving towards to the direction with low-cost, high-speed and high-accuracy.  

Traditional Approach 

Sanger sequencing, the earliest or the first generation sequencing 

technology, was invented by Sanger, Nicklen, and Coulson (1977) (Sanger, 

Nicklen, & Coulson, 1977). The basic principle is: polyacrylamide gel 

electrophoresis can distinguish the single-stranded DNA molecules with only one 

base difference. Materials used in the first generation sequencing experiments 

are homogeneous single-stranded DNA molecules, called the template DNA. The 
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first step is to anneal the short oligonucleotide molecule in the same position on 

each template strand. The short oligonucleotide molecule is then treated as 

oligonucleotide primers to synthesize of new DNA stand, which is complementary 

to the template DNA. After sequencing, primers bind with single-stranded DNA 

template molecule, and DNA polymerase extends the primers with 

deoxynucleosidetriphosphates (dNTP). Extension reaction proceeds into four 

groups, and each group uses one of the four standard deoxynucleotides (dATP, 

dGTP, dCTP and dTTP) to terminate the process. Then PAGE analysis is 

applied, and the desired sequence can be read from the resulting PAGE gel. 

Figure 1 shows the whole procedure of Sanger sequencing. 

 
 
Figure 1. Procedure of Sanger Sequencing. 
http://www.eisenlab.org/FunFly/wp-content/uploads/2012/06/science-creative-
quarterly-seq.gif 
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Next-generation Sequencing (NGS) 

The Emergence of a massively parallel sequencing platform not only 

decreases the cost of DNA sequencing dramatically, but also allows many 

researchers able to sequence genomes, which was the privilege of the large 

DNA sequencing center before. Next-generation sequencing technology helps 

people with more comprehensive and in-depth analysis of genome, 

transcriptome, and protein interactions among various groups of data in relatively 

low cost. There are a number of next-generation sequencing products on the 

market, such as 454 (Margulies et al., 2005) genome sequencer produced by 

Roche Applied Science company, Illumine sequencing machine developed by 

illumine company in United States and Solexa technology company in United 

Kingdom, and SOLiD (htt) sequencing machine from Applied Biosystems 

company, etc. The basic principle for Illumine/Solexa Genome Analyzer 

sequencing is sequencing by synthesis. Based on Sanger sequencing 

technology, next-generation sequencing uses four different colors of fluorescent 

to label four types of dNTP, dATP, dCTP, dGTP, and dTDP. When the DNA 

polymerase synthesizes the complementary chain, the addition of different 

dNTPs will result in different fluorescence. The testing DNA sequence can be 

obtained by capturing the fluorescence signal through a specific software. Figure 

2 shows the general flow for Illumina sequencing: (1) library preparation: DNA 

sequence is cut into fragments with several hundred nucleotides or less by 

ultrasonic wave or atomizing machine. DNA fragments are cut into blunt ends 

using polymerase and exonuclease, followed by the addition of a sticky 
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nucleotide to the end. Then, DNA fragments are ligated with adaptors. (2) cluster 

generation: Template molecules are put into chips for generating cloning clusters 

and sequencing of cluster cycle. 

 

Figure 2. Illumina Genome Analyzer workflow. 
https://ccrod.cancer.gov/confluence/download/attachments/35947398/SimpleAut
omatedWorkflow1.jpg?version=1&modificationDate=1239738295510&api=v2 
 
Each chip has eight longitudinal silicon lanes. The inner surface of each lane has 

numeric fix single-strand adaptors. DNA fragments with adaptors denature into 

single-strand DNA fragment and then form bridge-like structures by connecting to 

the primers in the sequencing channels. A huge amount of DNA testing 
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fragments can be obtained by repeating the above procedures. (3) sequencing: 

There are three parts in this step, DNA polymerase combining with fluorescent 

terminator, fluorescent label cluster imaging and cutting the combined nucleotide 

and decomposition before next cycle begins. 

Next-NGS Sequencing 

Helicos single molecule sequencing, known as the next next-generation 

sequencing technologies, is SMRT technology (Osherovich, 2010) from 

PacificBioscience (Eid et al., 2009) and single-molecule nanopore sequencing 

technology from Oxford Nanopore Technologies Company. This sequencing 

technology is in the direction of high-throughput, low cost, and long read length. 

Unlike next-generation sequencing technology depending on the combination of 

solid surface and DNA template and sequencing by synthesis, the next next-

generation sequencing technology is for single molecule DNA sequencing, and it 

does not require the PCR amplification process (Mayer, Farinelli, & Kawashima, 

2013; Williams et al., 2006). The principles for different technologies are quite 

different. The workflow of Helico BioScience single molecule sequencing 

technology shows as Figure 3. It is based on the idea of sequencing by synthesis 

in the next-generation sequencing technology. First, the DNA sequence is 

randomly cut into small fragments with less than 1000nt, optimally between 100nt 

and 200nt. Each fragment is added by poly(A) tail at the 3’ by terminal 

transferase, and the poly(A) tail is labeled with fluorescence and resistance. The 

labeled fragments with poly(A) tail are hybridized with small fragments with 

poly(T) in the glass slide. The location for each hybridized template is obtained 
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by an imaging procedure. Polymerase and deoxynucleotides labeled with Cys 

fluorescence are added to synthesize DNA. Only one type of deoxynucleotides is 

added for each time. After removing non-synthesized dNTP and DNA 

polymerase, a template locus is observed to check whether there is fluoresced 

signal by imaging Cys. Then, add another type of deoxynucleotide and 

polymerase to build the next reaction. Through repeating the above steps, the 

DNA can be sequenced one base by one base.  

 
 
Figure 3. Helicos BioSciences workflow. 
http://www.nature.com/scibx/journal/v3/n11/images/scibx.2010.331-F1.jpg 
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NGS Technologies Comparison 

 The first section of Chapter I introduces various technologies for 

sequencing DNA. Although the basic idea is similar for each technology, the 

methods are significantly different. Table 1 shows some statistics for three types 

of next-generation sequencing technology: Roche 454, Illumina GA, and AB 

SOLiD. In comparison with all three different methods, Roche 454 makes the 

longest read and also the fastest method with high accuracy; Illumina GA also 

has a wide range of read length from 50bp to 250bp and high throughput with 

median running speed, while AB SOLiD utilizes a shortest read.  

Table 1 

Comparison of Next-generation Sequencing Method (Liu et al., 2012) 

Sequencing 

technology 
454 Illumina SOLiD 

Sequencer 454 GS FLX HiSeq 2000 SOLiDv4 

Read length 700bp 50-250bp 50+35 or 50+50bp 

Accuracy 99.9% 98% 99.94% 

Reads per run 1 million up to 3 billion 1.2-1.4 billion 

Time per run 24 hours 3~10 days 
7 days for SE  

14days for PE 

Output data 0.7 Gb 600 Gb 120 Gb 
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length and lowest running time with highest accuracy. However, Roche 454 can 

only produce single-end read, while the other two, Illumina GA and AB SOLiD, 

can generate both single-end and paired-end read. In summary, Illumina GA is 

most widely applied due to its high throughput, low cost, and its capability of 

generating paired-end read with relatively high accuracy and speed. 

NGS Sequence Analysis 

NGS Sequence Read Type 

In DNA sequencing technology, there are three types of reads: single-end 

reads, paired-end reads, and mate pair reads. Single-end reads are the result of 

sequencing one end of the fragments, while paired-end reads and mate pair 

reads obtain both ends of the DNA fragments while sequencing. The difference 

between paired-end and mate pair refers to how they make the sequencing 

library and how the DNA fragment is sequenced.  

FASTA File Format 

FASTA is a standard text-based format for sequencing. Each sequence 

contains two lines. The first line starts with a ‘>’ character and is followed by the 

sequence 

 

identifier and/or description. The second line is the sequence containing A, C, G, 

T, or N (unknown base). 

 

@sequence_id 

GATTCCTGTAAGCTTAAAGCTCCATTGTACCCG
ATATACGCCTTT 



 

 

9 

 

FASTQ File Format 

Although the nucleotide is determined by collecting the fluorescence 

signal, the final sequence output is in another widely used file format called 

FASTQ (Cock et al., 2010). FASTQ format is a text-based file format. It contains 

all of the nucleotide sequences and its corresponding quality scores. Next follows 

an example of the FASTQ format. 

 

 FASTQ format adopts four lines to represent a sequence. The first line 

starts with “@” character and is followed by the sequence identifier. The second 

line is nucleotide sequences letters. The third line begins with a “+” character and 

optional description. The fourth line is the quality score. Each score represents 

the quality of its corresponding base in the first line. Therefore, the number of 

qualities should be the same as the number of letters in the sequence. The 

quality score for the Illumina GA platform can be calculated by the following 

formula: 

Qsolexa-prior to v.1.3=-10log
10

p

1-p
 , 

where 𝑝 is the probability that the corresponding base is incorrect. 

The quality score calculated by the above formula will be then encoded 

into a single ASCII character by some strategies: Phred+33 for Sanger (0, 40), 

@sequence_id 

GATTCCTGTAAGCTTAAAGCTCCATTGTACCCG
ATATACGCCTTT 

+ 

&??#55CCFF%%>>>>>6615%%+++***09@??=><
<=++@@AB 



 

 

10 

 

Solexa+64 for Solexa (-5, 40), Phred+64 for Illumina 1.3+ (0, 40), Phred+64 for 

Illumina 1.5+ (3, 40), and Phred+33 for Illumina 1.8+ (0, 41), etc. 

NGS Sequence Assembly 

Sequence assembly is to merge some short DNA sequence reads with 

certain overlapping bases into a longer DNA sequence in order to reconstruct the 

original structure of DNA. This process is vital because current sequencing 

technologies are unable to sequence the whole genome at one time. The whole 

genome needs to be cut into small fragments and then sequenced. There are 

two different types of assembly: de novo assembly and mapping assembly. De 

novo assembly is assembling short reads to create longer sequences, while 

mapping assembly is assembling reads to an existing backbone sequence 

template and then building a similar sequence as the backbone. A simple 

process of de novo assembly can be explained in Figure 4. 

 

Figure 4. Example of de novo assembly. 

R1, R2, R3, and R4 are four short sequence reads with overlapping. The longer 

sequence, namely “contig,” can be obtained by assembling these four reads.  

R1  ACCTGTTA 

R2          TGTTACCA 

R3          ACCAGATA 

R4             ATACGCGG 

Contig   ACCTGTTACCAGATACGCGG 
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The emergence of next-generation sequencing technology greatly promotes the 

development of sequence assembly technology (Miller, Koren, & Sutton, 2010; Li 

et al., 2012). There are a number of assembly tools that are free of charge: MIRA 

(Chevreus et al., 2004) is a general purpose assembler which can accept 

multiple platforms sequencing data and integrate them together. However, due to 

its speed limitation, MIRA is not suitable for assembling larger genomes. 

SOAPdenovo (Li et al., 2010) is an all-purpose genome assembler, which runs 

extremely fast using a medium amount of RAM and works well with short reads. 

Other free software include ABySS (Simpson et al., 2009), EULER (Chaisson, 

Brinza, & Pevzner, 2009), Ray (Boisvert, Laviolette, & Corbeil, 2010), and 

commercial software package, such as CLC and Newbler, etc. 

NGS Sequence Alignment 

Simply speaking, sequence alignment is to compare the similarity of two 

sequences. The theoretical basis of sequence alignment is Darwin’s theory of 

evolution. If two sequences share high similarity, they are speculated to evolve 

from the same ancestor through the process of nucleotide replacement, 

sequence fragments, and missing and genetic variations. In sequence alignment, 

two or more sequences are put together in a way that the same nucleotide bases 

are aligned in the same column. Occasionally, gaps are inserted into the 

sequence in order to obtain the best alignment result. 

There are a number of alignment tools, most of which utilize one of the 

alignment algorithms: Needleman-Wunsch algorithm (Needleman & Wunsch, 

1970) and Smith-Waterman algorithm (Smith & Waterman, 1981). These two 
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algorithms are both based on dynamic programming with the difference that 

Needleman-Wunsch algorithm is a global alignment technique, whereas Smith-

Waterman algorithm is a general local alignment method. 

Widely used alignment software includes BLAST (Altschul, Gish, Miller, 

Myers, & Lipman, 1990), BWA (Li & Durbin, 2009a), MOSAIK (htt1), BFAST 

(Homer et al., 2009), Bowtie (Langmead, Trapnell, Pop & Salzbeng, 2009), 

SOAP (Li, Li, Kristiansen, & Wang, 2008), and SSAHA (Ning, Cox, & Mullikin, 

2001), etc. 

NGS Limitation 

Next-generation sequencing techniques provide higher throughput and a 

cheaper way of sequencing DNA than the traditional Sanger method. A high-

throughput sequencing technique enables the genome to be sequenced in a day 

or less, or to sequence large genomes, such as the human genome. Another 

advantage is that RNA-seq is able to provide information about the entire 

transcriptome of a sample without knowing the genetic sequences of the 

organism in advance. However, NGS still has a lot of limitations: 

 Accuracy: although the accuracy for NGS is relatively high, it is lower than 

traditional Sanger method due to its technique error and sequencing 

principle. 

 Hard sequencing region: short sequencing length leads that some regions 

in genome are hard to be sequenced by next-generation sequencing. 

 Storage: next-generation sequencing generates large amount of data, 

which gives rise to a big storage problem. 
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 Further analysis: data analysis can be time-consuming and may require 

special knowledge of bioinformatics to gain accurate information from 

sequence data. 

Dissertation Organization 

This dissertation is organized as follows: in Chapter I, the author 

introduces biological background, including different types of sequencing 

technologies, comparison for those technologies, basic analysis for NGS data, 

and NGS method limitations.  

Chapter II introduces the SeqAssist, which consists of three parts:  

SA_RunStats, SA_Run2Run, and SA_Run2Ref. The SA_RunStats workflow 

generates basic statistics about an NGS dataset, including numbers of raw, 

cleaned, redundant and unique reads, redundancy rate, and a list of unique 

sequneces with length and read count. The SA_Run2Ref workflow estimates the 

breadth, depth, and evenness of genome-wide coverage of the NGS dataset at a 

nucleotide resolution. The SA_Run2Run workflow compares two NGS datasets 

to determine the redundancy (overlapping rate) between the two NGS runs. 

Chapter III presents a novel and integrative SV discovery (SVDisc) 

pipeline that provides an all-in-one toolkit for investigators who are interested in 

identifying SVs in their studied species from genome re-sequencing data. 

Chapter IV presents a new developed tool miRDisc, which is a new 

miRAN discovery algorithm to predict known and putative conserved/novel 

miRNAs from small RNA deep sequencing reads using assembled 

transcriptomes as the guidance for miRNA precursors. 
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Chapter V applies the developed tools to the experimental biological data 

and shows the results. And the last chapter, Chapter VI, is the conclusion and 

recommendations for future work.  
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CHAPTER II 

SEQASSIST: A NOVEL TOOLKIT FOR PRELIMINARY ANALYSIS OF NEXT-

GENERATION SEQUENCING DATA 

Motivation 

High throughput next-generation sequencing (NGS) technologies are 

capable of generating massive amounts of data in the form of paired-end or 

single-end reads with either fixed or variable lengths. The size of data files is 

often in the magnitude of mega- or giga-bytes (up to 1000 giga base pairs or Gb 

in a single sequencing run) and is likely to further increase in the coming years. 

While sequencing costs have dropped precipitously and sequencing speed and 

efficiency have raised exponentially, the development of computational tools for 

preliminary analysis of these gigantic datasets have lagged compared to the data 

generation. Hence, there is an increasing demand for efficient and user-friendly 

programs for preliminary sequencing data analysis. 

At present, there are four commercially predominant NGS platforms, 

including Illumina/Solexa, Roche/454, ABI/SOLiD, and ABI/Ion Torrent (Mardis, 

2013; Mardis, 2008). These massively parallel DNA sequencing technologies 

have been applied to transcriptome sequencing (RNA-Seq), de novo genome 

sequencing, and genome re-sequencing. RNA-Seq is a widely used approach to 

transcriptomic profiling (Martin & Wang, 2011; Wang, Gerstein, & Snyder, 2009b). 

Two representative efforts using de novo genome sequencing are the Genome 

10K project to obtain the whole genome sequences for 10,000 vertebrate species  

(Bernardi et al., 2012; Scientists 10K Community of Scientists, 2009; Wong et al., 



 

 

16 

 

2012), and the 5K Insect Genome Initiative (i5K) to sequence the genomes of 

5,000 arthropod species (i5K Consortium, 2013; Levine, 2011). Genome re-

sequencing is an experimental procedure that involves sequencing individual 

organisms whose genome is already known (Stratton, 2008). As a new genomics 

approach, genome re-sequencing has been applied to a wide range of 

fundamental and applied biological research including genetics, evolution, 

biomedicine, human diseases, and environmental health, etc., with good 

examples of the 1000 Genomes Project (Abecasis et al., 2012) and the Cancer 

Genomes project (Stephens et al., 2012). 

Prior to the in-depth analysis of NGS deep sequencing data (differential 

gene expression and alternative splicing analysis for RNA-Seq studies, structural 

variants identification for genome re-sequencing studies, and genome assembly 

for de nove genome sequencing studies), investigators were often concerned 

about the following issues: (1) basic statistics of a sequencing run such as total 

numbers of raw, cleaned, and unique reads as well as the degree of reads 

redundancy; (2) sequencing library quality, i.e., whether the library truly 

represents the genome of the re-sequencing organism, and (3) the number of 

sequencing runs required, i.e., how many runs are necessary to attain a full 

representation of the sequencing library or to suffice a de novo genome 

assembly. To my best knowledge, there are currently no available tools that 

address these issues. Motivated by filling this gap and also driven by the demand 

for accelerating data-to-results turnaround, the author has developed a novel 

toolkit named SeqAssist (short for “Sequencing Assistant,” acronym: SA). 
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SeqAssist specifically addresses the aforementioned three issues and provides 

investigators who conduct RNA-Seq, de novo genome sequencing or genome re-

sequencing experiments with a quick overview and preliminary analysis of their 

NGS data. 

Current Method 

There are a number of sequencers for next-generation sequencing 

technologies. The sequencers provide not only sequencing function, but also 

some basic data analysis tools, which mostly provide some statistics information 

for the generated sequence data. Take MiSeq as an example, it is developed by 

illumine company in 2011. It only needs 50ng DNA for the library preparation and 

takes several hours to finish sequencing and further analysis. Table 2 shows an 

output from the MiSeq analysis tool, which describes the depth of sequencing 

data. In this table, each column represents a chromosome or scaffold in the 

reference genome and each row stands for the depth. Therefore, each cell in the 

table means how many bases in a certain scaffold have the corresponding depth. 

Column two shows the total number with the depth of the whole chromosomes. 

For example, the second row shows the number of bases with depth 0. The total 

number shows in the second columns, and the number distributed into each 

scaffold shows from third column to the end. Such a summarized table is able to 

show the big picture as to how good the sequencing data is. However, 

sometimes researchers would like to know the exact depth for each specific 

position, average depth for each scaffold or a specific region, and the coverage 

breadth for each scaffold and the whole reference genome.  
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Table 2 

Depth of Sequencing Data from MiSeq   

Depth Overall scaffold_1 scaffold_2 scaffold_3 scaffold_4 scaffold_5 

0 118075225 2048506 2010402 2125713 1984638 1388510 

1 17849685 571008 470901 478648 299777 308718 

2 11610660 404741 308756 299312 200604 201896 

3 8387256 297577 233380 218970 144965 142161 

4 6204350 228538 176372 163405 112646 103582 

5 4618357 164393 132202 124325 90147 83751 

6 3464223 124996 99472 93318 63783 65010 

7 2577102 93685 74771 72695 47006 49029 

8 1918093 68535 57973 52406 34634 38525 

9 1438849 49300 42015 38406 26638 28452 

10 1077096 34949 32037 27143 20317 22736 

11 811467 25904 23336 20450 13631 17402 

12 619723 19588 18206 16147 9778 12699 

13 479845 15066 14494 11606 7877 10552 

14 367114 10784 12057 9262 4942 7215 

15 288928 7963 8781 6466 3254 5907 

16 228195 5943 6244 4378 2608 5423 

17 179629 4361 4831 2974 1861 3943 

18 142854 3170 3412 2301 1041 3005 

19 119515 3089 2393 1696 974 2293 
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Table 2 (continued). 

Depth Overall scaffold_1 scaffold_2 scaffold_3 scaffold_4 scaffold_5 

20 96707 2375 2174 1259 891 1645 

21 83427 1783 1690 1124 605 1515 

22 70665 1296 1206 705 413 980 

23 60673 935 828 475 286 849 

24 51998 681 549 353 181 603 

25 44900 440 651 245 156 348 

26 39665 246 509 309 201 253 

27 35062 267 269 308 189 150 

28 29680 201 105 250 179 113 

 

SeqAssist Toolkit 

Overview of SeqAssist Pipeline 

SeqAssist consists of three separate workflows: SA_RunStates, 

SA_Run2Ref, and SA_Run2Run. SA_RunStates generates the basic statistics 

such as the total number of raw and cleaned reads, length and copy number of 

unique sequences, and reads redundancy in a single sequencing run or a pooled 

dataset of several runs (see Figure 5a). SA_Run2Ref analyzes the breadth, 

depth, and evenness of genome-wide coverage of an individual or pooled 

sequencing dataset at a nucleotide resolution (see Figure 5b). Outputs from 

SA_Run2Ref can demonstrate what genomic loci are covered and how a 

genomic locus (gene), scaffold, or the entire genome is covered. SA_Run2Run 
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compares two separate sequencing datasets generated from the same DNA 

libraries, computes the basic statistics for each individual dataset, and estimates 

the redundancy rate between the two datasets (see Figure 5c). SA_Run2Run 

informs the user about the redundancy level both within each individual run and 

between two sequencing runs.   
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Figure 5. Workflow of SeqAssist pipeline:  (a) SA_RunStats, (b) SA_Run2Ref, 
and (c) SA_Run2Run. 
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Dependency 

BWA-MEM algorithm 

BWA-MEM is alignment software which uses the maximal exact matches 

(MEM) as seed and extends the seed with gaps using Smith-Waterman algorithm. 

Smith-Waterman algorithm is a local sequence alignment algorithm, which 

compares all the possible common sequences and adopts the optimal solutions. 

An example of Smith-Waterman algorithm is shown in Figure 6.  

 

Figure 6. An example of Smith-Waterman algorithm. 

sequence 1= ATCACA 

sequence 2= ACACCA 

match=+2, mismatch=-1 

 - A T C A C A 

- 0 0 0 0 0 0 0 

A 0 2 1 0 2 1 3 

C 0 1 1 3 2 4 3 

A 0 3 2 2 5 4 6 

C 0 2 2 4 4 7 6 

C 0 1 1 6 5 9 8 

A 0 3 2 5 8 8 11 

 

sequence 1= ATCAC_A 

sequence 2= A_CACCA 
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SAM format 

SAM (Sequence Alignment/Map format) (Li et al., 2009b) is a tab-

delimited text format to store alignment or mapping results. There are two 

sections for SAM format: the header section (optional) and the alignment section. 

In the alignment section, each line represents one alignment result, which 

consists of eleven mandatory and some optional fields. Table 3 shows the eleven 

mandatory columns, such as query name, alignment flag, aligned reference 

name, alignment start position, mapping quality, CIGAR information, reference 

sequence name of the primary alignment of the NEXT read in template, position 

of primary alignment of NEXT read in the template, signed observed template 

length, sequence segment, and its associated quality score. CIGAR string 

explains how the sequence aligns to the reference genome. 

Table 3 

SAM Format 

Col Field Type Regexp/Range Brief description 

1 QNAME String [!-?A-~]{1,255} Query template NAME 

2 FLAG Int [0,2
16

-1] Bitwise FLAG 

3 RNAME String \*|[!-()+-<>-~][!-~]* 
Reference sequence 

NAME 

4 POS Int [0,2
31

-1] 

1-based leftmost 

mapping POSition 

5 MAPQ Int [0,2
8
-1] MAPping Quality 
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Table 3 (continued). 

Col Field Type Regexp/Range Brief description 

6 CIGAR String [\*|([0-9]+[MIDNSHPX=])+ CIGAR string 

7 RNEXT String \*|=[!-()+-<>-~][!-~]* 
Ref. name of the 

mate/next read 

8 PNEXT Int [0,2
31

-1] 

Position of the 

mate/next read 

9 TLEN Int [-2
31

+1,2
31

-1] 

Observed Template 

LENgth 

10 SEQ String [\*|[A-Za-z=.]+ Segment SEQuence 

11 QUAL String [!-~]+ 
ASCII of Phred-scaled 

base QUALity+33 

 

SA_RunStats Pipeline 

SA_RunStats generates the basic statistics such as the total number of 

raw and cleaned reads, length and copy number of unique sequences, and reads 

redundancy in a single sequencing run or a pooled dataset of several runs. The 

input of this workflow is a FASTQ-formatted sequencing data file. The data file is 

preprocessed by first trimming off the adaptors and low quality read ends with a 

default cutoff of base-calling quality score (Q) of 20, followed by the removal of 

N-containing reads. Then, the cleaned reads are aligned with each other using 

BWA-MEM (acronym for Burrow-Wheeler Aligner-Maximal Exact Match) 

algorithm, one of the three Burrows-Wheeler Transform-based algorithms in the 
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BWA software package. Based on the alignment information in the BWA-MEM-

generated SAM (acronym for Sequence Alignment/Map format) file (Li et al., 

2009b), the number of unique reads is counted in which both identical and 

inclusive (i.e., redundant) reads are removed. Two reads are considered identical 

if they are a 100% match and are of equal length, while inclusive reads are 

defined as the sub-sequencing of a longer read and only the longest read is kept 

as the unique read. The redundancy rate is calculated as the percentage of 

redundant reads in the total number of unique cleaned reads (see Equation 2.1 

for formula). The output of this workflow includes the total numbers of raw, 

cleaned, redundant and unique reads, and the redundancy rate. Also included in 

the output is a tab-delimited text file that lists all unique sequences along with 

their length and read count (copy number). This file can be used to further infer 

gene expression levels if the run data is produced for an RNA-Seq experiment. 

Redundancy rate (%)=
number of redundant reads

total number of unique cleaned reads
×100%        (2.1) 

SA_Run2Ref Pipeline 

SA_Run2Ref analyzes the breadth, depth, and evenness of genome-wide 

coverage of an individual or pooled sequencing dataset at a nucleotide resolution. 

Coverage breadth is defined as the percentage of a reference sequence (i.e., 

gene, scaffold/chromosome, or entire genome) that is covered by sequencing 

reads (see Equation 2.2 for formula); coverage depth is defined as the average 

times a reference sequence is covered (see Equation 2.3 for formula); and 

coverage evenness is defined as the coefficient of variance of scaffold coverage 

breadth (see Equation 2.4 for formula). Therefore, outputs from SA_Run2Ref can 
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inform what genomic loci are covered and how a genomic locus (gene), scaffold, 

or the entire genome is covered. 

Coverage breadth (%)= 

number of reference bases mapped by sequencing reads

length of the reference sequence in bases
×100%                   (2.2) 

Coverage depth=
total number of bases mapped to the reference

length of the reference sequence in bases
                   (2.3) 

Coverage evenness=
standard deviation of scaffold coverage breadth

average scaffold coverage breadth
            (2.4) 

In the SA_Run2Ref workflow, cleaned reads are aligned against the 

reference genome sequence, generating an SAM file. Information stored in 

columns 3, 4, and 6 for each alignment in the SAM file represents mandatory 

fields RNAME (reference sequence name), POS (1-based leftmost mapping 

position), and CIGAR (CIGAR string), respectively (Li et al., 2009b). This 

information is extracted along with the length of each scaffold of the reference 

genome to compute scaffold coverage breadth and depth and genome coverage 

evenness. These statistics are provided in the output files, which also include a 

plain-text file that records the coverage depth of each individual base in the entire 

genome. This file can be used as an input for genome browser tools to visualize 

the coverage depth of any genomic regions. In the case that users conduct an 

RNA-Seq experiment and provide gene model sequences (instead of scaffold or 

chromosome sequences) as the input, the workflow will calculate the coverage 

breadth and depth for each gene model. This information can be readily 

transformed into a gene expression measurement. 
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SA_Run2Run Pipeline 

SA_Run2Run compares two separate sequencing datasets generated for 

the same or different DNA libraries, computes the basic statistics for each 

individual dataset, and estimates the redundancy rate between the two datasets. 

SA_Run2Run informs the user about the redundancy level both within each 

individual run and between two sequencing runs. 

Preprocessing 

The inputs of SA_Run2Run are two experiment sequencing data called 

two runs that are both in fastq format. The following data pre-treatment steps as 

the preprocessing steps for the other two pipelines are applied prior to further 

analysis: (1) trim off adaptors; (2) remove low-quality bases from each end with 

the default base-calling quality score Q of 20; (3) trim off adaptors again in case 

the low-quality based cause mismatch with the adaptors; (4) remove N-

containing reads. Besides the above four reads cleaning steps, the input files are 

converted from fastq format into fasta format (remove lines of additional 

information and sequence quality scores), which is the required format type for 

the use of BWA-MEM algorithm.  

Repeat removal 

For each dataset, the repeat reads are removed. The redundant reads 

have different definitions depending on whether the dataset shared the same 

length reads. For fixed length reads, the redundancy is considered as two or 

more reads sharing the same sequence. In terms of variable length reads, 

redundancy is the subsequence compared to their super sequences. Only the 



 

 

28 

 

super sequences (the longest sequence) are kept for further analysis. In this step, 

each run aligns itself when the identical and inclusive redundancy are removed 

using the alignment output SAM files. 

Alignment 

After cleaning the data and removing redundancy, the pipeline moves to 

the alignment phase. BWA-MEM is used in this step to align the two runs against 

each other. The standard output format for BWA-MEM is in the SAM format. 

Then, the 100% aligned reads are extracted from the BWA-MEM output by 

filtering out alignment with full-length match in CIGAR column and examining no-

mismatch in the optional column. For the two runs, two alignment results are 

obtained for both directions: one is treated as reference, the other one is 

sequence, and vice-versa. Then, the alignment reads from the two alignment 

results are combined as the candidate of unique super sequences. 

Repeat removal 

All the alignment reads are extracted in the last step. However, there are 

redundant reads due to the same read aligned in multiple positions, the same 

sequences with different read names or super reads aligned in a different dataset. 

Hence in this step, self-alignment is executed by BWA-MEM again. During self-

alignment, all the repeats are able to align with each other. Redundancy can be 

removed by the following strategy: databases are created to store all of the 

reference name so that the corresponding query name is already outputted but 

not in the database; if the query is neither in the database nor in the output, this 

alignment is outputed; if the query is not in the database but in the output, it is 
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pushed into database; if the query is in the database, the alignment is simple 

skipped. For example, suppose there are a1, a2, and a3 as three different reads 

with the same sequence. After aligning to each other, the result should be:  

 

Then the outputs are searched line by line. In the first line a1->a1, a1 is not in the 

database and thus it is outputted and is stored in the database. In the second line 

a1->a2, a2 will be stored in the database since a1 is already outputted. In the 

third line a1->a3, a3 will be also stored in the database since a1 is already in the 

output. From the fourth line to the end, a2 and a3 are both in the database and 

thus all these alignments would be skipped.  

After all the steps, a tab-delimited text file is outputted without any redundancy. 

Each line is an alignment with a read aligned to itself. The number of lines is 

equal to the unique number of overlapping reads for the two input runs. 

The output statistics from SA_Run2Run include the total numbers of raw 

reads, cleaned reads, and unique reads (after removing identical reads and 

inclusive reads), and numbers of total and unique overlapping reads. The 

redundancy rates within each dataset and between the two datasets can be 

query  -> reference 

a1       -> a1 

a1       -> a2 

a1       -> a3  

a2       -> a1 

a2       -> a2  

a2       -> a3 

a3       -> a1  

a3       -> a2 

a3       -> a3 
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further derived from these statistics. Similar to the SA_RunStats output, a list of 

unique sequences along with their length and count number is provided for each 

run. However, different from the SA_RunStats output, the list generated by 

SA_Run2Run is broken into two files: one for overlapping reads and the other for 

non-overlapping reads. The SA_Run2Run workflow intends to guide the user in 

deciding whether to perform more runs on a sequencing library by looking at the 

percentage of reads in a new run covered by the reads in a previous run or the 

pooled reads of multiple previous runs. 

Pipeline Testing 

Testing Dataset 

To test all SeqAssist workflows, a synthetic dataset was generated by the 

following steps:  

 Clipping 10 distinct fragments with a length of 150 bp at different loci of 

the Escherichia coli str. K-12 substr. MG16551 genome (NCBI Reference 

Sequence Accession No. NC_000913.3, available at 

http://www.ncbi.nlm.nih.gov/nuccore/556503834?report=fasta) to construct 

10 artificial chromosomes; 

 Clipping 10 sequences of 75-100 bp in length from each artificial 

chromosome; 

 Repeating each sequence 10 times. These steps result in a dataset of 

1,000 reads and a reference genome consisting of 10 short artificial 

chromosomes, both of which are used to test the SA_RunStats and 

SA_Run2Ref workflows. The synthetic dataset is further split into two 

http://www.ncbi.nlm.nih.gov/nuccore/556503834?report=fasta


 

 

31 

 

halves to create Run1 and Run 2 that were used to test the SA_Run2Run 

workflow. 

Testing Result 

Table 4 illustrates the result for testing the dataset using SA_RunStats. 

Column C lists the expected result for the testing dataset, and column D shows 

the actual result obtained from the output files. From this table, it can be seen 

that the result from the workflow is exactly the same as the expected result. 

Table 4 

SA_RunStats Testing Result 

 
A 

Output statistics 

B 

Synthetic 

data 

C 

Expected 

result 

D 

Result from 

workflow 

1 Total number of reads 1000 1000 1000 

2 Number of reads containing N 0   

3 Number of cleaned reads B1-B2 1000 1000 

4 Number of repeats/identical read (copy number) 10   

5 
Number of inclusive reads (shorter reads that 

are part of longer ones) 
40   

6 
Unique number of reads (after removing 

identical repeats) 
B1/B4 100 100 

7 
Unique number of reads (after removing 

identical & inclusive repeats) 

B1/B4-

B5 
60 60 
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Table 5 and Table 6 list all the result outputs from SA_Run2Ref. Table 5 

shows the length and coverage breadth for the 100 synthetic reads (10 

chromosomes and 10 reads for each chromosome). According to the coverage 

breadth for each read in each chromosome, the coverage depth for each 

chromosome and for the whole dataset can be calculated. Finally, coverage 

depth for the 100 unique reads is about 58.54. Then based on coverage breadth 

and depth for each chromosome, the coverage breadth, coverage depth, and 

coverage evenness for the whole dataset can be obtained as shown in Table 6. 

Note that the expected result (column C) and the result from workflow (column D) 

are consistent. 

Table 5 

Length and Coverage Breadth of 100 Synthetic Reads (10 chr *10 unique reads) 

 
A 

Synthetic reads 

B 

Chr1 

C 

Chr2 

D 

Chr3 

E 

Chr4 

F 

Chr5 

G 

Chr6 

H 

Chr7 

I 

Chr8 

J 

Chr9 

K 

Chr1

0 

L 

All 

chr 

8 Read1 76 99 88 95 83 91 87 92 75 91 877 

9 Read2 80 77 91 100 86 100 98 76 98 98 904 

10 Read3 82 77 91 100 81 94 100 86 100 85 896 

11 Read4 96 77 98 98 94 84 86 80 89 99 901 

12 Read5 86 96 100 93 97 81 78 85 81 100 897 

13 Read6 100 100 100 87 93 79 80 99 91 95 924 

14 Read7 75 79 76 79 100 88 87 80 93 83 840 

15 Read8 77 95 76 88 78 92 79 81 76 81 823 
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Table 5 (continued). 

 
A 

Synthetic reads 

B 

Chr1 

C 

Chr2 

D 

Chr3 

E 

Chr4 

F 

Chr5 

G 

Chr6 

H 

Chr7 

I 

Chr8 

J 

Chr9 

K 

Chr1

0 

L 

All 

chr 

16 Read9 86 96 79 88 90 87 77 84 78 81 846 

17 Read10 100 88 90 75 98 83 96 80 83 80 873 

18 Sum of 10 reads 858 884 889 903 900 879 868 843 864 893 
878

1 

19 
Chromosome 

coverage depth 

57.2

0 

58.9

3 

59.2

7 

60.2

0 

60.0

0 

58.6

0 

57.8

7 

56.2

0 

57.6

0 

59.5

3 

58.5

4 

20 Length of chromosome 150 150 150 150 150 150 150 150 150 150 
150

0 

21 

Length of chromosome 

covered by synthetic 

reads 

150 150 150 150 150 150 150 149 148 148 
149

5 

22 

Breadth of 

chromosome coverage 

by synthetic reads 

1 1 1 1 1 1 1 
0.99

33 

0.98

7 

0.98

67 

0.99

666

7 
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Table 6 

SA_Run2Ref Testing Result 

 
A 

Ouput statistics 

B 

Synthetic data 

C 

Expected 

result 

D 

Result from 

workflow 

23 
Number of synthetic 

chromosomes 
10   

24 
Length of each synthetic 

chromosome 
150   

25 

Sum of length of 100 

synthetic reads (10 chr X 

10 unique reads) 

8781   

26 Genome coverage depth (B25*B4)/(B23*B24) 58.54 58.54 

27 
Genome coverage 

breadth 
L21/(B23*B24) 0.996666667 0.996666667 

28 
Genome coverage 

evenness 

standard deviation 

(B19:K19)/L19 
0.021038647 0.021038647 

 

The results for SA_Run2Run are shown in Table 7. Since the sequencing 

dataset are evenly split into two smaller runs, the two smaller ones are 

completely identical. Then the result of basic statistics for each run should be half 

of the whole sequencing dataset, and when comparing the two runs, the 

overlapping part should be equal to each smaller run. 
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Table 7 

SA_Run2Run Testing Result 

 
A 

Output statistics 

B 

Synthetic data 

C 

Expected 

result 

D 

Result from 

workflow 

29 Total number of reads in run1 500 500 500 

30 Number of reads with N in run1 0   

31 Number of cleaned reads in run1 B29-B30 500 500 

32 Identical repeats/chromosome in run1 5   

33 Inclusive repeats in run1 40   

34 
Unique number of reads (after 

removing identical repeats) in run1 
B29/B32 100 100 

35 
Unique number of reads (after 

removing inclusive repeats) in run1 
B56/B32-B33 60 60 

36 Total number of reads in run2 500 500 500 

37 Number of reads with N in run2 0   

38 Number of cleaned reads in run2 B36-B37 500 500 

39 Identical repeats/chromosome in run2 5   

40 Inclusive repeats in run2 40   

41 
Unique number of reads (after 

removing identical repeats) in run2 
B36/B39 100 100 

42 
Unique number of reads (after 

removing inclusive repeats) in run2 
B36/B39-B40 60 60 
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Table 7 (continued). 

 
A 

Output statistics 

B 

Synthetic data 

C 

Expected 

result 

D 

Result from 

workflow 

43 Total overlapping reads in run1 run1=run2 500 500 

44 Unique overlapping reads in run1 run1=run2 60 60 

45 Total overlapping reads in run2 run1=run2 500 500 

46 Unique overlapping reads in run2 run1=run2 60 60 

47 Unique overlapping reads in two runs run1=run2 60 60 

 

All the results from three pipelines show the consistency of expected 

results from the pipeline and real data. Thus, the SeqAssist pipeline can be used 

to show the basic statistical information for the biological data based on different 

pipelines. 
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CHAPTER III  

SVDISC: A NOVEL AND INTEGRATIVE PIPELINE FOR STRUCTURAL 

VARIANTS DISCOVERY USING GENOME RE-SEQUENCING DATA 

Introduction 

Genomic structural variation (SV) is the variation in DNA sequence 

structure within an organism’s chromosome. SVs can be divided into two 

categories: (1) balanced rearrangements including inversions and translocations, 

and (2) unbalanced rearrangements or copy number variants (CNVs) including 

insertions, deletions, and duplications (Mills et al., 2011). Unlike point mutations, 

SVs vary widely from a few bp to as large as a few Mbp in size. Mounting 

evidence suggests that SVs are abundant in human genome and account for a 

much larger fraction of genetic variation than single nucleotide polymorphism 

(SNP), implying significant consequences of SVs on phenotypes (Abecasis et al., 

2010; Abecasis et al., 2012; Feuk, Carson, & Scherer, 2006; Mills et al., 2011). 

For instance, recent studies have revealed the association of micro deletions with 

a number of genomic disorders such as learning disability (Shaw-Smith et al., 

2006), Autism (Weiss et al., 2008), and mental retardation (Sharp et al., 2008). 

The two SV repository databases, Database of genomic structural variation (db 

Var) and Database of Genomic Variants archive (DGVa), have recorded over 7.7 

million variant calls as of September 2012 (Lappalainen et al., 2013). 

Researchers employing the sequencing approach make variant calls by 

either de novo assembling sequence reads (‘AS’) or aligning sequencing reads to 

a reference genome (“re-sequencing”) (Mills et al., 2011). Due to the high depth 
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of genome coverage required by the AS strategy, the re-sequencing strategy has 

been more widely adopted, which consists of two main steps: (1) alignment of 

reads, and (2) prediction of SVs from alignment. Although the re-sequencing 

strategy is straightforward in principle, sensitive and specific SV deletion is 

actually difficult in practice (Alkan, Coe, & Eichler, 2011; Medvedev, Stanciu, & 

Brudno, 2009). 

Algorithms that is used to predict a full spectrum of SV events from 

sequence alignment/mapping (SAM/BAM) (Li et al., 2009b) files have been fast 

growing. These algorithms can be generally classified into four categories (Mills 

et al., 2011; Suzuki, Yasuda, Shiraishi, Miyano, & Nagasaki, 2011): (1) 

discordant pair or read pair (“RP”) analysis, (2) depth of coverage or read depth 

(“RD”) analysis, (3) split read (“SR”) analysis, and (4) integrated analysis such as 

DELLY (Rausch et al., 2012), a method integrating RP mapping with SR 

refinement, and Genome STRiP (Handsaker, Korn, Nemesh, & McCarroll, 2011) 

and GASVPro (Sindi, Onal, Peng, Wu, & Raphael, 2012), both combining 

information from RP and RD analyses (called “PD”). Briefly, the RP algorithms, 

e.g., VariationHunter (Hormozdiari et al., 2010), PEMer (Korbel et al., 2009), and 

BreakDancer (Chen et al., 2009), are based on analysis of abnormally mapping 

NGS read pairs; the RD algorithms, e.g., CNVnator (Abyzon, Urban, Snyder, & 

Gerstein, 2011a), SegSeq (Chiang et al., 2009), and Event-Wise Testing (Yoon, 

Xuan, Makaron, Ye, & Sebat, 2009), detect SV events by statistically analyzing 

the difference in the number of reads aligned to intervals of the reference 

genome; and the SR algorithms, e.g., Pindel (Ye, Schulz, Long, Apweiler, & Ning, 
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2009), SLOPE (Abel et al., 2010), and ClipCrop (Suzuki et al., 2011), identify SV 

breakpoints by anchoring the mapped read mate in the reference genome and 

split-aligning the prefix and suffix of the unmapped read mate independently to 

different locations. 

In view of the current state of the art development of SV discovery tools, it 

has been realized that now is the time to integrate existing tools and develop a 

comprehensive pipeline that serves as a one-stop shop for SV identification. 

Meanwhile, there also exist increasing demands for such comprehensive tools 

from researchers who investigate SV contributions to phenotypic variations in a 

broad range of fields such as biomedicine, cancer genetics or genomics, 

toxicology, and ecology, as bioinformatics infrastructure often constitutes one of 

the biggest bottleneck factors, especially for research groups that a lack of 

bioinformatics support personnel. 

Here, the author presents a novel and integrative SV discovery (SVDisc) 

pipeline that provides an all-in-one toolkit for investigators who are interested in 

identifying SVs in their studied species from genome re-sequencing data. The 

novelty of SVDisc lies in the fact that there is no similar pipeline or infrastructure 

available in the SV research community. It can detect all the common types of 

SVs with user-defined sizes (default size=50 bp), including insertions, deletions, 

duplications, inversions, intra-chromosomal, and inter-chromosomal 

translocations. Currently, SVDisc is a stand-alone downloadable package. The 

output includes: (1) a list of all identified SVs that are categorized into 6 different 
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SV types, (2) associated evidence of supporting sequences reads, and (3) 

functional annotation of identifies SVs. 

Alignment Methods: BWA and MOSAIK 

BWA Aligner 

BWA (Burrows-Wheeler Alignment tool) is a new read alignment package 

based on a backward search with Burrows-Wheeler Transform (BWT). The 

Burrows-Wheeler Transform, invented by Michael Burrow and David Wheeler in 

1994, is an algorithm used in data compression techniques, which permutes the 

order of the characters. Suppose there is a string X=a0a1…an-1, it is always 

ended with symbol $, and this symbol only appears at the end. Let 

X[i]=ai,i=0,1,…,n-1, be the i-th symbol of X, X[i,j]=ai…aj a substring and 

Xi=X[i,n-1] a suffix of X. Suffix array S of X is a permutation of the integer 0…n-1 

such that S(i) is the start position of the i-th smallest suffix. The BWT of X is 

defined as B[i]=$ when S(i)=0 and B[i]=X[S(i)-1] otherwise. The length of string 

X is defined as X∨ and therefore |X|=|B|=n. According to the principle of the 

Burrow-Wheeler Transform, the same substring or substring with the same prefix 

will be together since they will be sorted together. If string W is a substring of X, 

the following equations are defined: 

R(W)=min{k:WistheprefixofXs(k)} 

R(W)= max { k :WistheprefixofXs(k)} 
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Thus, the position region of all occurrences of W in X as prefix is 

S(k):R(W)≤k≤R(W). There is a backward search followed by the Burrow-

Wheeler Transform. Ferragina and Manzini proved that if W is a substring of X: 

R(aW)=C(a)+O(a,R(W)-1)+1 

R(aW)=C(a)+O (a,R(W)) 

and that R(aW)≤R(aW) if and only if aW is a substring of X, where C(a) is the 

number of symbols in X[0,n-2] that are lexicographically smaller than the 

alphabet, and O(a,i) is the number of occurrences of a  in B[0,1]. This result 

makes it possible to test whether W is a substring of X. 

MOSAIK Aligner 

MOSAIK is a reference-guided assembler/aligner. It consists of four 

programs: MosaikBuild, MosaikAligner, MosaikSort, and MosaikAssembler. For 

our usage of alignment, only the first two programs are employed. MosaikBuild is 

able to convert multiple file formats, such as FASTA, FASTQ, Illumina Bustard, 

Illumina Gerald, and SRF files, into the compressed binary file formats. To speed 

up the whole process, Mosaik not only compresses the read files but also 

converts the reference sequences FASTA file to a binary format. After file 

transformation, MOSAIK perform alignment using MosaikAligner. Figure 7 shows 

the workflow of MosaikAligner. 
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Figure 7. Workflow of MosaikAligner. 
 

First of all, MosaikAligner hashes the reference genome. When searching 

a read, the read is hashed in similar jump databases. Then, MosaikAligner 

retrieves the reference position for each hash in the hash table. All of the hash 

positions are clustered together and evaluated with the Smith-Waterman 

algorithm. 

Structural Variation Detection Methods: Pindel, BreakDancer, and CNVnator 

Pindel 

Pindel (Ye et al., 2009) is a split-read structural variation identification 

method for detecting large deletions and medium sized insertion by using a 

pattern growth approach. This method uses the one-end mapped paired-end 

reads. The mapped end is treated as anchor, and then the algorithm searches 

the minimum and maximum unique substrings of the unmapped end for both 5
'
 

and 3
'
 in the setting region around the anchor position. The final break points are 
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identified after comparing all the unique substrings. The algorithm uses the 

pattern growth approach to detect the minimum and maximum unique substrings. 

This approach works as follows: Suppose there is a string P and a is a substring 

that starting from the leftmost of it and Sa is the projected database, which 

contains all locations of sequences that have the substring a. Then, another 

projected database Sa' is calculated from Sa, which for each location of a, checks 

whether or not the base on its right-hand equals the newly appended character b. 

Any location without an appending item b is removed from the projected 

database. The algorithm checks one base by one until the unique minimum and 

maximum substrings are identified. Figure 8 shows an example of how the 

pattern growth approach works. 

 
 
Figure 8. Pattern growth algorithms. 
 

Suppose there is a short read “TACGT” and a sequence 

“TAGTTVATACGAATCT”. The purpose is to find out the unique minimum and 

maximum substring of the short read in the sequence. From the leftmost letter T, 

all of the positions of T in sequence are marked. Then, move to the next letter A 

and keep the positions where there is A following T. When moving to the third 

pattern:  TACGT 

sequence:   TAGTTCATACGAATCT 

pattern growth:  

 T  TAGTTCATACGAATCT 

 TA  TAGTTCATACGAATCT 

 TAC  TAGTTCATACGAATCT 

 TACG  TAGTTCATACGAATCT 
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letter C, only one position can be matched to TAC. TAC is called the unique 

minimum substring. Repeating the above process, TACG is matched and no 

longer substring can be matched. Then, TACG is the unique maximum substring. 

BreakDancer 

BreakDancer (BreakDancerMax) (Chen et al., 2009) is a typical read-pair 

method with a detection range from 100 basepair to 1 mega basepair. It provides 

five types of structural variations, including deletion, insertion, inversion, intra-

chromosomal translocation, and inter-chromosome translocation. 

 
 
Figure 9. (a) workflow of BreakDancer and (b) anomalous read pair recognized 
by BreakDancer. 
 

Figure 9a shows the workflow of BreakDancer. The algorithm first uses 

the mapped paired-end read to identify the anomalous read pairs according to 
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mapped distance and alignment orientation. All of the types of anomalous read 

pairs are shown in Figure 9b. Take deletion as an example; when the mapped 

paired-end is in the same orientation as the original sequence reads and the 

mapped distance is larger than insert size, a deletion is identified. Then, the 

algorithm searches for anomalous region and produces putative structural variant 

by combining two or more interconnected anomalous read pairs. Finally, a 

confidence score is estimated for each variant based on a Poisson model that 

takes into consideration the number of supporting anomalous read pairs, the size 

of the anchoring regions, and the coverage of the genome.  

CNVnator 

CNVnator (Abyzon et al., 2011a) is a read depth approach. This method 

first divides the entire reference genome into consecutive nonoverlapping bins of 

equal size. For each bin, the read depth (RD) signal is calculated as a number of 

placed reads with centers in bin boundaries and is corrected by the following 

formula to remove bias, 

RDcorrected
i

=
RDglobal

RDgc

RDraw
i

 

where i is bin index, RDraw
i

 is raw RD signal for a bin, RDcorrected
i

 is corrected RD 

signal for the bin, RDglobal is average RD signal over all bins, and RDgc is the 

average RD signal over all bins with the same GC content as in the bin. Then, 

the algorithm uses PDF (probability density function) to calculate mean-shift 

vector, which is used to determine the directions of the RD signal for each bin. 
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Finally, the break points are determined where two neighboring vectors have 

opposite directions but do not point to each other. 

SVDisc Pipeline 

Overview 

Figure 10 shows the flow chart of SVDisc. There are four main 

components in this pipeline: (1) preprocessing, including four steps: remove N-

containing reads, trim adaptors, remove low quality bases and trim adaptors 

again, (2) structural variation detection, including sequence alignment and SV 

identification, (3) breakpoints revision, precise determine the locus of breakpoints, 

and (4) SV integration: obtain consensus SVs from outputs of multiple SV 

detection tools. 
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Figure 10. SVDisc workflow. 
 
Preprocessing 

The input of the pipeline is genome re-sequencing data. As discussed in 

Chapter I, during sequencing process, the fragments of sequence are appended 

with adaptors at both ends in order to fix them to the sequencer channel surface. 

Besides, the sequence reads contain ambiguous base calling (i.e., N or non-
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A/C/T/G bases), which is hard to confirm the exact type of nucleotide during the 

sequencing procedure, and some low quality bases, which have low probability 

that the base captures the correct type of nucleotide. All of these will affect 

further analysis. So a four-step preprocessing procedure is designed to remove 

these bias: (1) remove N-containing reads in pairs; (2) trim adaptors, cutadapt is 

used to remove full or partial adaptors from both 5
'
 and 3

'
; (3) remove low quality 

bases, contiguous low quality bases are remove from both ends; and (4) trim 

adaptors again, low quality may lead to the mismatch of adaptors to the reads, so 

adaptors are trimmed again after removing low quality bases.  

Alignment 

In this step, the cleaned reads are aligned to a reference genome. Two 

aligners, the Burrows-Wheeler aligner’s Smith-Waterman Alignment (BWA-SW) 

and MOSAIK (see more detailed at https://code.google.com/p/mosaik-aligner/), 

are chosen regarding their compatibility to NGS read formats, alignment speed, 

memory footprint, accuracy, and output SAM/BAM format that are acceptable by 

subsequent SV discovery programs. 

Structural Variation Detection 

In this step, the complementary algorithms for SV detection are 

implemented, including Pindel (an SR method), BreakDancer (a RP method), 

and CNVnator (a RP method). These three methods were selected because of 

their relatively higher maturity, availability, and feasibility to be implemented, in 

comparison with other algorithms. As a prototype pipeline, the SVDisc does not 

include integrative algorithms because it was the author’s belief that the 
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combination of selected algorithms representing different categories mentioned 

above would outperform any single integrative algorithms. For future upgrades, 

more methods will be added and will further look into the integrative algorithms 

such as Genome STRiP. 

Breakpoints Revision 

SOAPdenovo 

SOAPdenovo (short for Oligounucleotide Analysis Package de novo 

assembly) (Li et al., 2009a) is a short-read assembly method, which adopts De 

Bruijn Graph (Li et al., 2012) to assemble short reads. An n-dimensional De 

Bruijn graph of m symbols is a directed graph, which represents overlaps 

between sequences of symbols. Considering all possible combinations of length 

n  sequences, the graph totally has mn vertices. If there is a set of m symbols 

S≔{s1,…,sm} then the set of vertices is: 

V=S
n
={(s1,…,s1,s1),(s1,…,s1,s2),…,(s1,…,s1,sm),(s1,…,s2,s1),…,(sm,…,sm,sm)}. 

If one of the vertices can be expressed as another vertex by shifting all of its 

symbols by one place to the left and adding a new symbol at the end of this 

vertex, then the latter has a directed edge to the former vertex. Thus, the set of 

arcs is: 

 E={((v1,v2,…,vn),(v2,…,vn,si)):i=1,…,m}. 

Figure 11 shows the basic principle of the De Bruijn Graph.  
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Figure 11. De Bruiijn graph. 
http://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/DeBruijn-as-line-
digraph.svg/954px-DeBruijn-as-line-digraph.svg.png 
 
SOAPdenovo firstly cuts all the reads into the length of K-mer. Then, it generates 

the De Bruijn graph based on the cut reads and finds out the longest pathway, 

which shifts one base between two nodes. The contig is obtained by routing the 

pathway. Then, the raw contigs from graph perform four steps: remove tips, solve 

the tiny repeats, merge bubbles, and finally link to generate the scaffolds. 

AGE 

AGE (Abyzov & Gerstein, 2011b) is a dynamic-programming algorithm for 

defining the precise location of structural variations. It finds the optimal solution 

by aligning the 5
'
 and 3

'
 ends of two given sequencing at the same time and 

introducing a “large-gap jump” between the local end alignments to maximize the 

total alignment score. Suppose there are two given sequences: N and M. The 
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maximum M
L
(n,m) in the leading submatrix [0,n]x[0,m] of S

L
, where n≤N and 

m≤M, anchors the best local alignment for n and m nucleotides at the 5
'
 ends. 

Similarly, the maximum M
R

(n+1,m+1) in the trailing submatrix 

[n+1,N+1]x[m+1,M+1] of S
R
, anchors the best local alignment for N-n and M-m 

nucleotides at the 3
'
 ends: 

M
L(n,m)= max (S

L
(n',m')) , n'≤n,m'≤m 

M
R(n,m)= max (S

R
(n',m')) , n'≥n,m'≥m. 

The total score of aligning 𝑛 and 𝑚 nucleotides at the 5
'
 ends and N-n and 

M-m nucleotides at the 3
'
 ends is M

L(n,m)+M
R
(n+1,m+1). The optimal alignment 

has the highest score, and thus it maximizes the sum: 

BS=max (ML(n,m)+M
R(n+1,m+1)). 

Breakpoint revision 

After preprocessing, alignment, and structural variation detection, the raw 

structural variations are obtained. However, due to the limitation of algorithm or 

the allowed error of the method strategy, the breakpoints obtained may not be 

the extract location of SV, but the location near the actual breakpoints. Thus, 

another step is added to precisely confirm the locus of breakpoints. 

First, the two breakpoints of candidate SV are extended with upstream and 

downstream of average insert size. Then, all of the supporting reads that fall into 

the extended region are extracted. All of the supporting reads are assembled into 

contig using SOAPdenovo. At last, AGE is used to explore SV in the contig 

compared to the same region of reference genome. For the AGE output, different 
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strategies are set for different types of SV due to their characters that filter out 

the optimal breakpoint.  

For deletion structural variation, the following conditions are used to filter 

out results: 

 contig length is greater than or equal to single reads length; 

 mismatch ratio is less than 10% 

mismatch ratio=
identical aligned bases

contig length-unaligned bases
; 

 if there are still more than one results, keep the one with highest age 

score. 

For insertion structural variation, the following conditions are used to filter 

out the result: 

 contig length is greater than or equal to single reads length; 

 aligned bases for the upstream and downstream of the SV are greater 

than or equal to 5 bases; 

 length changed ratio is less than or equal to 50% 

length changed ratio=
length changed in reference genome

length changed in contig
; 

 if there are still more than one result, keep the one with highest age score. 

For inversion and duplication, the following strategies are used: 

 contig length is greater than or equal to single reads length; 

 aligned bases for the upstream and downstream of the SV are greater 

than or equal to 5 bases; 

 if there are still more than one results, keep the one with highest age 

score. 
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SV Integration 

In SV detection phase, two alignment tools and three SV identification 

tools are used. So for a single sample sequence input, six different SV outputs 

are obtained. Each detection method outputs multiple types of SV results. So this 

step is to integrate all the output to get a consensus SV with strong evidences. 

 

Figure 12. Workflow for consensus SV of deletion. 

 

Figure 13. Callset integration. 

The workflow of deletion consensus SV is shown in Figure 12. There are 

three levels in the integration phase: sample level, population level, and cross-

population level. First, for the six revised results from three different detection 
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methods of each sample, identical, inclusive and overlapping SVs are explored. 

Figure 13 shows the strategy of callset integration. Identical structural variation is 

two or more SVs that share the same region. For those identical SVs, only one is 

kept. Inclusive structural variation is one or more small regions that is fully 

covered by a larger region. For those inclusive SVs, the small region is kept. 

Overlapping structural variation is when two or more regions have certain length 

of overlap, but each of them still has its own region. For those overlapping SVs, 

the overlapped region is kept. Then, the consensus SVs for each sample are 

obtained. In the population level and cross-population level, the same strategy as 

the sample level is used. The consensuses SVs from sample level are the inputs 

of population level integration, while the consensus SVs from population level are 

the inputs of cross-population level integration. The threshold for the population 

level and cross-population level are set as half of the input callsets. The 

population level consensus SVs are from at least half of the number of total 

samples, and the cross-population level consensus SVs are from at least half of 

the number of total populations. Finally, consensus SVs from different detection 

methods, different samples, and different populations are obtained.  

For the other three types of SVs, insertion, inversion, and duplication, the 

consensus SVs are those that shared the same break points in each level based 

on their characters of structural variation. Then, the SVs with the same regions 

are combined, and only the SVs from at least half of their resource are kept. 

From the population level, the consensus SVs, which arefrom at least half of the 
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total number of samples, are kept. While those from at least half of total number 

of populations are kept for cross-populaiton level. 

Annotation 

BLAST(short for Basic Local Alignment Search Tool) is an algorithm to 

compare two sequences. Due to the type of the compared sequence, there are 

different types of BLAST. 

Table 8 

Different BLAST Programs 

BLAST Program Description 

Nucleotide blast Search a nucleotide database using a nucleotide query 

Protein blast Search protein database using a protein query 

Blastx 
Search protein database using a translated nucleotide 

query 

Tblastn 
Search translated nucleotide database using a protein 

query 

Tblastx 
Search translated nucleotide database using a translated 

nucleotide query 

 

In the pipeline, the annotation phase uses BLASTX to execute function 

annotation, which searches the protein database and detects functions using a 

translated nucleotide query. Each candidate SV is annotated using its function 

from the BLASTX search. 
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Experimental Validation 

For all candidate SVs, a biological experiment is designed to validate 

whether the SV is a true SV. Researchers are interested in those which have a 

function annotation, since such SV has a high probability that will affect the 

phenotype of an organism. 

After all of the steps, structural variation candidates with function 

annotation are identified from the input experimental biological dataset. Through 

the experimental validation, true structural variations are determined. 
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CHAPTER IV  

MIRDISC: A NOVEL COMPUTATIONAL PROGRAM FOR MICRORNA 

DISCOVERY FROM SHORT DEEP SEQUENCING READS 

Introduction 

MicroRNAs (miRNA) are a large family of small, non-coding RNAs with an 

average length of 22 nucleotides that regulate gene expression through near-

perfect Watson-Crick pairing to the 3
'
-untranslated or coding regions (plants only) 

of target mRNAs (Ambros, 2004; Bartel, 2004; He & Hannon, 2004). 

Figure 14 depicts the procedure of miRNA formation. miRNA is not directly 

transcribed from DNA, but encoded by DNA in nuclear first transcribed under the 

action of RNA polymerase II. The polymerase often binds a promoter found near 

the DNA sequence encoding that will become the hairpin loop of the pre-miRNA. 

The transcript is capped with a specially modified nucleotide at the 5
'
 end and 

polyadenylated with a pol(A) tail (multiple adenosines). Then, double-stranded 

pri-miRNA is cut into 70 nt stem-loop intermediate with phosphate group at 5
'
 end 

and two-nucleotide overhang at the end of 3
'
 through RNA polymerase III 

Drosha-DGCR complex. Such a resulting sequence is called precursor miRNA 

(pre-miRNA). Then, the pre-miRNA combines with the transporter protein 

Exportin-5 and is exported to the cytoplasm by Ran-GTP. Last, polymerase Dicer 

recognition 5
'
 of terminal phosphate and 3

'
 of overhang from pre-miRNA and cut 

the double-helix strands at two nucleotides away from the stem loop, resulting in 

a dimer miRNA: miRNA, whose structure is similar to a dimer siRNA.  
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Figure 14. miRNA generation. 
http://upload.wikimedia.org/wikipedia/commons/9/95/MiRNA-biogenesis.jpg 
 

In association with miRNA protein effector components, they mediate 

sequence-specific posttranscriptional and transcriptional gene regulation, and 

hence control mRNA translation, stability, and localization and feed into a 

process that controls transposons and heterochromatin structures (Bartel, 2004; 

He & Hannon, 2004). The discovery and characterization of miRNAs have led to 
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a rapid expansion of research directed at elucidating their expression patterns 

and regulatory functions (Maroney, Chamnongpol. Souret, & Nilsen, 2007). It is 

now clear that miRNAs play important roles in almost all biological processes in 

eukaryotic organisms, including normal development, cellular response to 

toxicants and human diseases such as cancer, heart disease, and 

neurodegenerative disorders (Jiang et al., 2009; Taylor & Gant, 2008; Weinberg 

& Wood, 2009). 

Current Methods 

A key part of research involving miRNAs is to identify novel or unknown 

miRNA in the organism of interest. Since the discovery of the two founding 

miRNAs lie-4 (Lee, Feinbaum, & Ambros, 1993) and let-7 (Pasquinelli et al., 

2000) in Caenorhabditis elegans in the 1990s, 21264 hairpin miRNA precursors 

expressing 25141 mature miRNA products in 193 species have been registered 

as of August 2012 in Release 19 of miRBase (http://www.mirbase.org/), an online 

repository of miRNA nomenclature, sequence data, annotation, and target 

prediction (Griffiths-Jones, 2004; Griffiths-Jones, Grocock, van Dongen, Bateman, 

& Enright, 2006; Griffiths-Jones, Saini, van Dongen, & Enright, 2008). The 

exponential growth of miRBase entries in the past decade (starting in 2002 with 

Release 1.0 hosting 218 miRNA precursors in 5 species) has been, to a large 

degree, attributed to the computational identification of conserved and novel 

miRNAs. In general, these in silico miRNA discovery methods can be divided into 

two categories. 

http://www.mirbase.org/
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The first category includes tools that predict mature miRNAs and/or 

miRNA precursors (pre-miRNA) from genome sequences or cloned sequences of 

model organisms based on evolutionary sequence conservation and machine 

learning algorithms (Wu, Wei, Liu, Li, & Rayner, 2011; Yousef, Showe, & Showe, 

2009). Examples are phylogenetic shadowing (Berezikov et al., 2005), MiRscan 

(Lim et al., 2003b; Lim, Glasner, Yekta, Burge, & Bartel, 2003a), MiRseeker (Lai, 

Tomancak, Williams, & Rubin, 2003), miRAlign (Wang et al., 2005), MirEval 

(Ritchie, Theodule, & Gautheret, 2008), miRPara (Wu et al., 2011), miRank (Xue 

et al., 2005), miPred (Jiang et al., 2007) and proMiR II (Nam, Kim, Kim, & Zhang, 

2006). The main drawbacks of these tools are either that they are limited to 

conserved miRNAs and organisms with completed genome sequences, or  they 

tend to have a high rate of false positive and false negative predictions 

(Hackenberg, Stum, Langenberger, Falcon-Perez, & Aransay, 2009; Hendrix, 

Levine, & Shi, 2010). 

The second category includes programs for miRNA prediction from 

massive amounts of small RNA reads generated by next-generation deep 

sequencing technologies such as Illumina/Solexa, 454, SOLiD, and Ion Torrent. 

Unlike the conventional time-consuming approach of cloning and Sanger 

sequencing (Bentwich et al., 2005), high throughput sequencing data allows for 

the detection of more lowly abundant miRNAs with unprecedented sensitivity 

(Friedlander, Mackowiak, Li, Chen, & Rajewsky, 2012). Methods in this category 

take miRNA biogenesis into consideration, including miRanalyzer (Hackenberg et 

al., 2009), miRTRAP (Hendrix et al., 2010), MIReNA (Mathelier & Carbone, 
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2010), miREAP (Zhai et al., 2011), mirTool (Zhu et al., 2010), miRDeep 

(Friedlander et al., 2008), and its variants such as miRDeep2 (Friedlaender, 

Mackowiak, Li, Chen, & Rajewsky, 2012), miRDeep* (An, Lai, Lehman, & Nelson, 

2013), miRDeep-P (Yang & Li, 2011), and miRDeepFinder (Xie, Xiao, Chen, Xu, 

& Zhang, 2012). The core algorithm developed in miRDeep was based on a 

probabilistic model of miRNA biogenesis to score the compatibility of the position 

and frequency of sequenced RNA with the secondary structure of the miRNA 

precursor (Friedlander et al., 2008). This algorithm has been not only inherited by 

all miRDeep variants but applied to other comprehensive tools such as mirTool 

(Zhu et al., 2010), MIReNA (Mathelier & Carbone, 2010), and deepBase (Yang, 

Shao, Zhou, Chen, & Qu, 2010) with or without modifications. 

Despite the existence of such a large variety of computational programs, 

accurately identifying miRNAs from deep sequenced RNAs remains challenging. 

The existing algorithms for identification or prediction of miRNAs all rely on the 

availability of a reference genome, which severely limits their applicability. Given 

the facts that miRNAs have been reported in fewer than 200 organisms and even 

fewer animals and plants have had their genomes fully sequenced, there exists a 

gap in computational tools that detect miRNAs in eukaryotic organisms that only 

have transcriptomic and small RNA data generated from NGS. In this study, a 

new tool, called miRDisc (microRNA Discovery) is developed to fill this gap. 

Based on the miRNA biogenesis principle, a transcriptome provides a better 

guidance than genome for miRNA discovery. 
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miRDeep2 is a completely overhauled tool which discovers miRNA genes 

by analyzing sequenced RNAs and especially identifies both novel and 

conserved miRNAs with high accuracy in seven specials (Griffiths-Jones, 2004). 

MIREAP is a tool which can be used to identify both known and novel 

microRNAs form small RNA libraries deeply sequenced by Solexa/454/Solid 

technology. The MIREAP algorithm is employed to obtain all candidate 

precursors with hairpin-like structures that were perfectly mapped by sequencing 

tags (Berezikov et al., 2005; Yousef et al., 2009). miRanalyzer is a tool for 

detecting known and predicting novel miRNAs in high-throughput sequencing 

experiments. The miRanalyzer, including both the web-based interface and the 

stand alone package works for detecting known miRNAs from miRBase and 

predicting new miRNAs, especially in 31 species. Although widely used, all these 

methods have crucial shortcomings. The reference files for the query sequences 

mapping against to extract the precursors are genomes, which are composed of 

not only exons but also introns. Since introns are removed by RNA splicing while 

the final RNA sequences and part of the query sequences may be mapped to the 

intros sections in the genomes, the precursors extracted from the genomes are 

not exactly the correct ones, which leads to a low level of performance for 

identifying miRNAs. Additionally, miRDeep2 and miRanalyzer are explicitly 

designed for certain species only, without good performance for other species. 

For all these aforementioned reasons, new software which is capable of 

overcoming these shortages needs to be developed. 
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MiRDisc Package 

 miRDisc is a new method developed to identify miRNAs, especially to 

identify the miRNAs in transcriptome enriching species. 

The workflow of miRDisc which is presented in Figure 15 includes two 

pipelines for identifying both novel and conserved miRNAs. The steps in the 

green boxes specify the future experiment work and are excluded from the 

miRDisc flowchart. The left pipeline without color marked is developed to 

discover novel and conserved miRNA, respectively, whereas the gray-marked 

right pipeline disclosures only conserved miRNAs. The results in both pipelines 

are merged for the experimental validation. 

 
 
Figure 15. Workflow of miRDisc: the pipeline for discovering both novel and 
conserved miRNAs. 



 

 

64 

 

Generating Transcriptome and Short Sequences 

The high throughput sequences are detected by Solexa, 454, and Sanger 

technologies, and pre-cleaned off the introns. The sequences are then 

assembled to form transcriptome with widely used assembly tools, MIRA (Lim et 

al., 2003b), PTA, or iAssembler (Lim et al., 2003a). Since a miRNA molecule has 

22 nucleotides in average (Ambros, 2004; He & Hannon, 2004), sequences with 

length in range of 15~26 are extracted out as candidates for identifying the 

miRNAs. 

Mapping to Extract Precursors and Folding for the Hairpin Structures 

Based on the formation process of the miRNA, the short sequences are 

mapped to the trancriptome and extended up-stream and down-stream for a 

certain number of nucleotides, respectively, or extended to the end of the 

transcriptome if not having enough number of nucleotides in transcriptome for 

extending, and therefore, to extract the precursors (Lai et al., 2003; Wang et al., 

2005). Without introns in the transcriptome, the correctness of the precursors 

extracted from it is guaranteed. Of course, genomes can be also taken as the 

reference file for query sequences mapping against, but the miRDisc package is 

emphatically designed to identify the miRNA candidates especially in 

trancriptome enriching species. According to the precursor data in miRBase, all 

species can be distributed to five classifications; Metazoa (Ritchie et al., 2008), 

Chromalveolata, Mycetozoa, Viridiplantae, and Virus, in which the length range 

varies. According to the statistical result, for instance, the precursors after 
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extended 60 nucleotide up-stream and down-streams will be in the range which 

covers 99% of precursors of Metazoa. 

Unifies Nucleic Acid Folding (abbreviated as UNAFold) software package 

integrates a number of programs to simulate the folding process for one or two 

single-stranded nucleic acid sequences and form a hairpin structures which is 

composed of two arms and a steam-loop between both arms (Xue et al., 2005). 

One precursor may be folded in multiple ways and, thus, generates more than 

one hairpin structures. 

Extracting Mature and Star Sequences 

After the precursors are folded into the hairpin structures, a 

complementary sequence of the original query sequence can be found in the 

hairpin structure. Since mature sequence and the star sequence exist in pair and 

are located on two arms of the hairpin structure, respectively (Jiang et al., 2007), 

the complementary sequence located on the steam-loop or broken at some place 

is out of consideration. In order to avoid finding the complementary for some 

sequences which actually does not exist by chance, mismatches are restricted. 

12 accumulation mismatches and 6 continuous mismatches are preferred as the 

upper bounds for mismatches between the query sequence and its 

complementary sequence. Furthermore, for both ends of the query sequences, at 

least one of the two nucleotides at each end must be complemented. 

Not only located on the opposite arms with the query, the complementary 

should also exist in the original sequence file such that the complementary 

sequences can be considered as existing in pair with the query sequences. In 
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order to verify the existence, complementary sequences are mapped back to the 

query sequence file with no mismatch allowed. Once existence is verified in the 

original sequence data, the sequences which include or are equal to the 

complementary sequences are extracted out from the original sequence data. 

And then, the extracted sequences are mapped back to the precursors to double 

check whether these extracted sequences are still complementary to the query 

sequences or not. 

Based on the verification results above, the mature sequences and the 

star sequences have been found out (Jiang et al., 2007; Nam et al., 2006), but 

the star sequences which have lower level stability than those of the mature 

sequences are preferentially degraded. Therefore, the mature sequences in the 

original sequences data have a greater copy number than that of the star 

sequences. Again, in order to avoid mistaking the sequences existing in pair by 

chance in the original sequences data as the mature and star sequences, the 

ratio between the paired sequences with copy number are restricted in a certain 

range, such as less than or equal to 1/6 or greater than or equal to 6 are 

discarded. The sequences with greater copy number in the remaining paired 

sequences are the mature sequences. 

Eliminating Coding RNAs and Distinguishing the Novel and Conserved miRNAs 

BLASTX (Hackenberg et al., 2009; Hendrix et al., 2010) is introduced for 

aligning the mature sequences to the NCBI database. The sequences with high 

possibilities translated to protein are eliminated, and the E-value here are 

restricted as 10e-6. 
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After applying the BLASTX, the remaining sequences are miRNA 

candidates, including both the novel and the conserved miRNA candidates. The 

miRBase (Bentwich et al., 2005) database provides the latest released miRNAs 

in various species. To separate the novel and conserved miRNA candidates, the 

non-coding sequences after the BLASTX process are mapped to the published 

miRNA in the miRBase database. In order to increase the accuracy of novel and 

conserved miRNA identification, the perfect match in seed region of the 

remaining sequences and the published miRNA sequences are required 

(Friedlander et al., 2012; Mathelier & Carbone, 2010; Zhai et al., 2011). For 

animal species, the seed region encompasses the 5′ bases 2-7 of the miRNA, 

including 7 nucleotides. Besides, the number of total mismatches between the 

query sequence and known miRNAs are restricted to a certain range, say 3 for 

instance. The sequences with seed region perfectly matched with the published 

miRNAs and with E-value less than or equal to 10 are considered as the 

conserved miRNA candidates, whereas other sequences are considered as the 

novel miRNA candidates. 

The Pipeline for Discovering Only Conserved miRNAs 

This pipeline is shown as the right part of the flow chart in Figure 15 and 

some procedures are similar as the left pipeline. 

Align Sequences to the miRBase Database 

The input query sequences are selected from the Solex, 454, and Sanger 

detected sequences, with length range of 15~26. The miRBase database is 

introduced again here to map the query sequences to the published miRNAs, 
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and the seed region and total mismatch are restricted to ensure the accuracy of 

mapping. The sequences with mismatches exceeding the restriction and with 

imperfect match are explicitly not taken as the conserved sequences and 

therefore discarded. 

Mapping to Extract Precursors and Folder for the Hairpin Structure 

As specified in the left pipeline, the short sequence are mapped to the 

transcriptome and extended up-stream and down-stream to extract the 

precursors, and the extending length is also taken into consideration inevitably 

here. After folded to the hairpin structure with UNAFold software package, the 

location of the sequences in the hairpin structure should be checked to ensure 

that they are located on either arm but not the stem-loop. The sequences 

locating on the stem-loop or complementing with themselves are excluded. 

Rejecting the Coding Sequences 

The BLASTX is also applied in the right pipeline to reject the coding 

sequences with E-value of 10e-6. The remaining sequences after BLASTX 

process are considered as the conserved miRNA candidates. 

The results from both pipelines are then merged together to two files: one 

for novel miRNA candidates and the other for conserved miRNA candidates. 

Both the novel and conserved miRNA candidates identified by miRDisc need to 

be further validated by the experiments, for example, RT_aPCR (Friedlander et 

al., 2008; Zhu et al., 2010), as green-marked in the work flow in Figure 15. 
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CHAPTER V 

NGS DATA ANALYSIS: CASE STUDY 

Data Analysis Using SeqAssist 

The crustacean genus Daphnia, a sentinel sensitive to many toxicants, is 

used for monitoring and assessing the ecological impact and for establishing 

regulatory criteria by government agencies, such as the U.S. Environmental 

Protection Agency, that regulates Army sites. Numerous studies have 

demonstrated significant variation in chemical sensitivity among natural and 

laboratory-raised populations. Moreover, various researchers have observed 

temporal sensitivity drifting to heavy metals in laboratory strains where genetic 

impoverishment is caused by isolation, inbreeding, and artificial selection. These 

two types of variations cause a problematic interpretation of the chemical effect 

levels measured in inter- or intra- laboratory comparisons and require the 

introduction of uncertainty factors in evaluation of Army sites. The researchers 

are interested in identifying and discovering how the genotype affects the 

phenotype for the Daphnia species. Understanding this fact is helpful to clarify 

differences in chemical sensitivity between populations of a single model species 

to explain variability in toxicological experiments and reduce uncertainty in 

evaluation of contaminated Army sites. 

The genus Daphnia is ideal for use as a biological model to study 

phenotypic plasticity as it is able to adapt physiologically to wide ranges of pH, 

toxins, oxygen concentrations, food, and temperature. It has a short life cycle 

(30~100 days), short generation time (>= 6 days), and a unique reproductive 
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strategy which add to the strengths of this model to investigate phenotypic 

plasticity across many generations. 

 
 
Figure 16. Changes in genetic variation in the phenotype using 8 different 
populations of varying chemical sensitivity. 
 

In order to investigate the relationship between genotype and phenotype, 

the author choose several Daphnia populations from different locations and 

several individuals for each population to analyze the structural variations (shows 

in Figure 16). First, the dataset set of sequences is analyzed by SeqAssist to 

discover the basic statistical information, which can be used to measure the 

quality of the dataset. Then, the SVDisc pipeline is applied to the dataset to 

discover structural variations for each individual, each population, and different 

populations. Last, the genetic information, structural variations, phenotypic 

information, and the chemical sensitivity are integrated together to determine the 

relationship.  
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Experimental Design and Dataset Generation 

The following experiment is designed by Dr. Ping Gong at the 

Environmental Laboratory of U.S. Army Engineer Research and Development 

Center. Daphnia pulex is obtained from multiple sources. Table 9 shows basic 

information for all the experimental populations, including their experimental 

population code, type (lab or field), source, acquisition time, and whether it is a 

selected population. Sources include sustained laboratory cultures and recently 

collected natural populations to acquire a diversity of clones. Gravid females will 

be cultured at ERDC, and neonates obtained from each culture (but not each 

cultures themselves) are subjected to acute and chronic chemical exposures to 

determine their relative sensitivity, by an initial assessment of intra-treatment 

variability using multiple clones within each population. Then 8 cultures with a 

gradient of sensitivities measured by endpoints for genome re-sequencing are 

selected. A clone from each of the 8 populations is used for further analysis. 

Table 9 

Basic Information for All Testing Population 

# Population Code Type Source Acquisition Selected? 

1 ECT Lab EPA-ORD Mar-12 Y 

2 TCO Lab Canada Aug-12 Y 

3 HSL Field Missouri Sep-12 Y 

4 STL Field St. Louis, MO Mar-12 Y 

5 CA2 Field UK Dec-12 Y 

6 W3.6A Field UK Dec-12 Y 
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Table 9 (continued). 

# Population Code Type Source Acquisition Selected? 

7 ABS Lab Colorado Dec-11 Y 

8 BEL Field Belgium Dec-11 Y 

9 SRL Field Canada Aug-12 N 

10 BEL Field Belgium Oct-11 N 

11 IL Field Champaign, IL Jun-12 N 

12 ABS Lab EPA-ORD Dec-11 N 

13 MI Field Houghton, MI Nov-11 N 

14 NY Field New York Oct-11 N 

15 LD3.24 Field UK Dec-12 N 

16 LD3.2 Field UK Dec-12 N 

17 D8.7A Field UK Dec-12 N 

18 D8.4A Field UK Dec-12 N 

19 W1.7A Field UK Dec-12 N 

 

Daphnia Culturing and Sensitivity Screening 

Daphnia pulex is cultured under ideal (Culture A) and stressful (Culture B) 

conditions as summarized in Figure 17. Universal conditions include the use of 

reconstituted hard water as the culture medium, a 16-h light: 8-h dark 

photoperiod at 23±1℃ and a feeding ration of 1:1 green algae (Selenastrum 

capricornutum), and yeast-cereal leaves-trout chow (YCT). In the “ideal” 

laboratory culture condition, females from each population will be maintained 
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under optimized conditions to sustain parthenogenesis, or asexually reproducing 

female clones (sexual reproduction will not be allowed). Such conditions include 

maintaining algae at 2.3×10
5
 cells/ml and a density of adult female clones of less 

than 15 individuals per liter culture medium. In the “stressful” condition, females 

originating from the same population will be subjected to overcrowding stress 

(e.g., >30 adult females per liter of culture medium) which will induce brooding of 

males, sexual reproduction, and ephippium.  

 
 
Figure 17. Overview of the procedure to initiate cultures from different Daphnia 
pulex  populations and the conduct of toxicity screening for determining 
differences in chemical sensitivity to support the proposed objectives. 
 

Ephippia are allowed to settle to the bottom of the culture vessel and 

hatch sexually reproduced Daphnia pulex to contribute to the further generations 
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of the population. Other stresses such as lower food rations and temperature 

alterations are not employed as they are known by this research group to reduce 

reproductive output and change sensitivity to chemicals, respectively. For each D. 

pulex culture, quarterly acute lethality (48-hour) and chronic reproduction and 

growth (21-days) experiments will be conducted by exposing the neonates 

obtained from cultures to five concentrations of munitions compound (DANA and 

Pb) in accordance with nationally recommended guidance, with consideration to 

munitions handling. Figure 18 shows the effect of DANA to the reproduction of 

several populations. From those two figures, it can be seen that different 

populations show different sensitivities to the DANA. Some populations have a 

weak tolerance to the chemical, and half of individuals are killed at very low 

concentration (CA2 and W3.6A). While other populations show good tolerance to 

the DNAN, e.g., for HSL, all the individuals are alive when the concentration is as 

high as 25.2mg/l in the LC50 test. 
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(a) 

 
(b) 
 
Figure 18. Chemical sensitivity test. 
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Genome Re-sequencing 

The isoclinal animals from each of the 8 starter strains are reared to large 

numbers in filtered cultures medium, and then treated with 500mg/L of 

Tetracycline to reduce bacterial contamination and with 4.5 micron copolymer 

microsphere beads (Duke Scientific cat# 7505A) to clear the gut. High molecular 

weight DNA is isolated by Genomic-tips using the manufacturer’s protocol for 

animal tissues (Qiagen). The genomic DNA is further sheared using the TruSeq 

DNA Sample Prep Kits (Illumina) to prepare DNA libraries with insert sizes from 

300-500 bp for paired-end sequencing on the Illumina/Solexa MiSeq system. 

Dataset Generation 

In the genome re-sequencing process, some runs just cover one 

population, while some runs contain several populations. Furthermore, in order to 

obtain higher coverage depth and coverage breadth, the same library of one 

population are sequenced for multiple times in different runs. Table 10 lists all the 

sequenced populations and all samples for each population. Table 11 describes 

all the sequencing runs with samples in each run and the average insert size for 

each run. 

Table 10 

Daphnia pulex Populations and Samples 

Population Samples 

ABS=A 
A3, A7, A13(non-pooled), A14,  

A28(non-pooled) 

BEL=B B1, B2(non-pooled), B9, B13, B16(non-pooled) 
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Table 10 (continued). 

Population Samples 

ECT=E 
ECT1, ECT2, ECT3, ECT4, ECT5,  

E7(non-pooled), E7_rerun(non-pooled), E12(non-pooled) 

STL=SL SL1, SL2, SL3, SL4, SL5 

TCO TCO1, TCO2, TCO3, TCO4, TCO5 

HSL HSL1, HSL2, HSL3, HSL4, HSL5 

CA2 CA2_1, CA2_2, CA2_3, CA2_4, CA2_5 

W3.6A=W W1, W2, W3, W4, W5 

 

Table 11 

Daphnia pulex Sequence Runs 

MiSeq 

Run 
Type Library/Sample Insert Size 

1 Single A28 2×148 

2 Single A13 2×151 

3 Single E12 2×151 

4 Single B16 2×151 

5 Single B2 2×151 

6 Single E7 2×151 

7 Single E7(rerun) 2×151 

8 Pooled(36) all pooled samples 2×151 
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Table 11 (continued). 

MiSeq 

Run 
Type Library/Sample 

Insert 

Size 

9 Pooled(36) all pooled samples 2×151 

10 Pooled(36) all pooled samples 2×151 

11 Pooled(36) all pooled samples 2×251 

12 Pooled(36) all pooled samples 2×251 

13 Pooled(36) all pooled samples 2×251 

14 Pooled(6) SL1,ECT2,TCO2,TCO5,W3,CA2_5 2×251 

15 Pooled(6) SL2,ECT3,TCO3,TCO4,HSL1,A14 2×251 

16 Pooled(6) SL3,ECT4,W4,W5,HSL2,A7 2×251 

17 Pooled(6) SL4,ECT5,W2,CA2_1,B1,B9 2×251 

18 Pooled(6) SL5,HSL3,HSL5,CA2_4,B13,A3 2×251 

19 Pooled(6) ECT1,TCO1,HSL4,W1,CA2_2,CA2_3 2×251 

20 Pooled(36) all pooled samples 2×151 

21 Pooled(36) all pooled samples 2×151 

22 Pooled(36) all pooled samples 2×151 

 

As shown in Table 11, there are total 22 runs, including 8 populations and 

42 individual samples. Among these runs, 7 runs are sequenced only one 

individual sample, 6 runs are sequenced pooled sample, which contain 6 

individual samples, and 9 runs are sequenced pooled sample, which contain 36 
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individual samples. Here, E7 is sequenced twice (E7 and E7_rerun) using the 

same library in order to validate the quality of the experimental design. 

Statistical Analysis 

Preprocessing 

Prior to the data analysis, first N-containing reads are removed in pairs. In 

other words, the paired-end reads are discarded as long as there is N in any end. 

Table 12 shows the number of reads before and after cleaning N-containing 

reads, and the cleaned percentage based on different populations. From the 

table, it can be seen that the N-containing reads occupy a small portion of the 

dataset. All of the cleaned percentages are in the range between 1% and 2%. 

Table 12 

Summary of Preprocessing Result for Different Population 

Population Raw Reads Cleaned Reads Cleaned Percentage 

ABE 32,560,089 31,991,979 1.745% 

BEL 31,598,909 31,147,005 1.430% 

CA2 31,302,336 30,852,836 1.436% 

ECT 49,194,373 48,566,971 1.275% 

HSL 32,222,297 31,798,828 1.314% 

SL 27,829,938 27,462,408 1.321% 

TCO 36,354,251 35,821,735 1.465% 

W3.6A 31,833,885 31,402,360 1.356% 
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Analysis of coverage depth, coverage breadth, and evenness 

After preprocessing, SeqAssist Run2Ref is applied to all the dataset, 

including 8 populations and multiple individuals for each population. The 

SeqAssist Run2Ref first aligns the reads to reference genome, and then 

calculates the coverage depth, coverage breadth, and evenness based on the 

alignment result. Since there are multiple runs for each individual, reseachers 

would like to see how the additional run affects the statistical result for the 

individual. Then, the following strategy is set to each individual: first time, the 

Run2Ref is applied to the first run, then the second run is added to the dataset 

and Run2Ref is performed to the combined dataset of the first run and second 

run. The following process follows the same strategy. Each time, one additional 

run is added to the dataset to test the statistical status for the combined dataset. 

All of the results are collected together and for each individual; a plot is drawn to 

depict the changing trend of coverage depth, coverage breadth, and evenness as 

different runs, separately. All of  the statistical results and plots are shown in 

Figure 19 - 26. 

 

     
 

Run Depth

lfr1-1 0.15

lfr1-2 0.65

lfr1-3 1.12

lfr1-4 1.98

lfr1-5 7.11

lfr1-5sfr1-1 7.33

lfr1-5sfr1-2 7.72

lfr1-5sfr1-3 8.08

lfr1-5sfr1-4 8.38

lfr1-5sfr1-5 8.80
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Run Breadth

lfr1-1 0.07

lfr1-2 0.23

lfr1-3 0.33

lfr1-4 0.43

lfr1-5 0.60

lfr1-5sfr1-1 0.61

lfr1-5sfr1-2 0.61

lfr1-5sfr1-3 0.62

lfr1-5sfr1-4 0.62

lfr1-5sfr1-5 0.62

Run Evenness

lfr1-1 15.34

lfr1-2 16.39

lfr1-3 16.51

lfr1-4 17.01

lfr1-5 16.57

lfr1-5sfr1-1 16.30

lfr1-5sfr1-2 15.89

lfr1-5sfr1-3 15.54

lfr1-5sfr1-4 15.24

lfr1-5sfr1-5 14.88

Run Depth

lfr1-1 0.25

lfr1-2 1.03

lfr1-3 1.76

lfr1-4 2.72

lfr1-5 6.85

lfr1-5sfr1-1 7.12

lfr1-5sfr1-2 7.72

lfr1-5sfr1-3 8.20

lfr1-5sfr1-4 8.61

lfr1-5sfr1-5 9.15

Run Breadth

lfr1-1 0.12

lfr1-2 0.30

lfr1-3 0.40

lfr1-4 0.48

lfr1-5 0.59

lfr1-5sfr1-1 0.60

lfr1-5sfr1-2 0.61

lfr1-5sfr1-3 0.61

lfr1-5sfr1-4 0.62

lfr1-5sfr1-5 0.62

Run Evenness

lfr1-1 13.32

lfr1-2 14.61

lfr1-3 14.74

lfr1-4 15.16

lfr1-5 15.06

lfr1-5sfr1-1 14.76

lfr1-5sfr1-2 14.19

lfr1-5sfr1-3 13.78

lfr1-5sfr1-4 13.48

lfr1-5sfr1-5 13.12
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Figure 19. Distribution of coverage depth, coverage breadth, and evenness for 
population ABE. 
 

     
 

     

Run Depth

lfr1-1 0.19

lfr1-2 0.83

lfr1-3 1.42

lfr1-4 2.39

lfr1-5 7.47

lfr1-5sfr1-1 7.81

lfr1-5sfr1-2 8.49

lfr1-5sfr1-3 8.94

lfr1-5sfr1-4 9.32

lfr1-5sfr1-5 9.85

Run Breadth

lfr1-1 0.11

lfr1-2 0.31

lfr1-3 0.41

lfr1-4 0.51

lfr1-5 0.62

lfr1-5sfr1-1 0.62

lfr1-5sfr1-2 0.63

lfr1-5sfr1-3 0.63

lfr1-5sfr1-4 0.64

lfr1-5sfr1-5 0.64

Run Evenness

lfr1-1 12.24

lfr1-2 12.78

lfr1-3 12.91

lfr1-4 13.29

lfr1-5 13.29

lfr1-5sfr1-1 13.00

lfr1-5sfr1-2 12.51

lfr1-5sfr1-3 12.24

lfr1-5sfr1-4 12.03

lfr1-5sfr1-5 11.75

Run Depth

lfr1-1 0.22

lfr1-2 0.94

lfr1-3 1.62

lfr1-4 1.80

lfr1-5 3.70

lfr1-5sfr1-1 3.82

lfr1-5sfr1-2 4.09

lfr1-5sfr1-3 4.35

lfr1-5sfr1-4 4.59

lfr1-5sfr1-5 4.88

Run Breadth

lfr1-1 0.13

lfr1-2 0.28

lfr1-3 0.34

lfr1-4 0.35

lfr1-5 0.40

lfr1-5sfr1-1 0.40

lfr1-5sfr1-2 0.41

lfr1-5sfr1-3 0.41

lfr1-5sfr1-4 0.41

lfr1-5sfr1-5 0.42
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Run Evenness

lfr1-1 9.51

lfr1-2 9.91

lfr1-3 10.00

lfr1-4 9.95

lfr1-5 10.01

lfr1-5sfr1-1 9.99

lfr1-5sfr1-2 9.92

lfr1-5sfr1-3 9.87

lfr1-5sfr1-4 9.83

lfr1-5sfr1-5 9.77

Run Depth

lfr1-1 0.13

lfr1-2 0.52

lfr1-3 0.89

lfr1-4 1.33

lfr1-5 3.44

lfr1-5sfr1-1 3.62

lfr1-5sfr1-2 3.97

lfr1-5sfr1-3 4.23

lfr1-5sfr1-4 4.47

lfr1-5sfr1-5 4.76

Run Breadth

lfr1-1 0.08

lfr1-2 0.21

lfr1-3 0.27

lfr1-4 0.31

lfr1-5 0.38

lfr1-5sfr1-1 0.39

lfr1-5sfr1-2 0.39

lfr1-5sfr1-3 0.40

lfr1-5sfr1-4 0.40

lfr1-5sfr1-5 0.40

Run Evenness

lfr1-1 9.45

lfr1-2 10.04

lfr1-3 10.10

lfr1-4 10.17

lfr1-5 10.08

lfr1-5sfr1-1 10.04

lfr1-5sfr1-2 9.94

lfr1-5sfr1-3 9.89

lfr1-5sfr1-4 9.84

lfr1-5sfr1-5 9.79

Run Depth

lfr1-1 0.10

lfr1-2 0.39

lfr1-3 0.67

lfr1-4 1.20

lfr1-5 3.85

lfr1-5sfr1-1 3.99

lfr1-5sfr1-2 4.25

lfr1-5sfr1-3 4.50

lfr1-5sfr1-4 4.74

lfr1-5sfr1-5 5.03
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Figure20. Distribution of coverage depth, coverage breadth, and evenness for 
population BEL. 
 

      
 

      
 

     

Run Breadth

lfr1-1 0.06

lfr1-2 0.18

lfr1-3 0.24

lfr1-4 0.30

lfr1-5 0.39

lfr1-5sfr1-1 0.39

lfr1-5sfr1-2 0.39

lfr1-5sfr1-3 0.40

lfr1-5sfr1-4 0.40

lfr1-5sfr1-5 0.40

Run Evenness

lfr1-1 9.31

lfr1-2 9.65

lfr1-3 9.80

lfr1-4 9.85

lfr1-5 9.95

lfr1-5sfr1-1 9.90

lfr1-5sfr1-2 9.80

lfr1-5sfr1-3 9.76

lfr1-5sfr1-4 9.70

lfr1-5sfr1-5 9.65

Run Depth

lfr1-1 0.30

lfr1-2 1.18

lfr1-3 2.00

lfr1-4 2.97

lfr1-5 6.76

lfr1-5sfr1-1 7.08

lfr1-5sfr1-2 7.71

lfr1-5sfr1-3 8.27

lfr1-5sfr1-4 8.75

lfr1-5sfr1-5 9.37

Run Breadth

lfr1-1 0.08

lfr1-2 0.23

lfr1-3 0.32

lfr1-4 0.39

lfr1-5 0.50

lfr1-5sfr1-1 0.51

lfr1-5sfr1-2 0.52

lfr1-5sfr1-3 0.53

lfr1-5sfr1-4 0.53

lfr1-5sfr1-5 0.54

Run Evenness

lfr1-1 13.65

lfr1-2 14.23

lfr1-3 14.51

lfr1-4 14.81

lfr1-5 14.38

lfr1-5sfr1-1 14.08

lfr1-5sfr1-2 13.63

lfr1-5sfr1-3 13.26

lfr1-5sfr1-4 13.02

lfr1-5sfr1-5 12.75
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Run Depth

lfr1-1 0.19
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Figure 21. Distribution of coverage depth, coverage breadth, and evenness for 
population CA2. 
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Figure 22. Distribution of coverage depth, coverage breadth, and evenness for 
population ECT. 
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Figure 23. Distribution of coverage depth, coverage breadth, and evenness for 
population HSL. 
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Figure 24. Distribution of coverage depth, coverage breadth, and evenness for 
population SL. 
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lfr1-5sfr1-5 0.62

Run Evenness

lfr1-1 13.19

lfr1-2 14.19

lfr1-3 14.30

lfr1-4 14.39

lfr1-5 14.39

lfr1-5sfr1-1 14.06

lfr1-5sfr1-2 13.57

lfr1-5sfr1-3 13.24

lfr1-5sfr1-4 12.96

lfr1-5sfr1-5 12.64
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Run Depth

lfr1-1 0.28

lfr1-2 1.22

lfr1-3 2.10

lfr1-4 3.07

lfr1-5 9.12

lfr1-5sfr1-1 9.34

lfr1-5sfr1-2 9.74

lfr1-5sfr1-3 10.19

lfr1-5sfr1-4 10.57

lfr1-5sfr1-5 11.10

Run Breadth

lfr1-1 0.12

lfr1-2 0.33

lfr1-3 0.43

lfr1-4 0.49

lfr1-5 0.61

lfr1-5sfr1-1 0.61

lfr1-5sfr1-2 0.62

lfr1-5sfr1-3 0.62

lfr1-5sfr1-4 0.62

lfr1-5sfr1-5 0.63

Run Evenness

lfr1-1 17.90

lfr1-2 18.71

lfr1-3 18.85

lfr1-4 19.22

lfr1-5 19.55

lfr1-5sfr1-1 19.32

lfr1-5sfr1-2 18.93

lfr1-5sfr1-3 18.48

lfr1-5sfr1-4 18.16

lfr1-5sfr1-5 17.72

Run Depth

lfr1-1 0.40

lfr1-2 1.64

lfr1-3 2.81

lfr1-4 3.51

lfr1-5 7.77

lfr1-5sfr1-1 8.05

lfr1-5sfr1-2 8.62

lfr1-5sfr1-3 9.14

lfr1-5sfr1-4 9.60

lfr1-5sfr1-5 10.20

Run Breadth

lfr1-1 0.17

lfr1-2 0.40

lfr1-3 0.50

lfr1-4 0.53

lfr1-5 0.60

lfr1-5sfr1-1 0.61

lfr1-5sfr1-2 0.62

lfr1-5sfr1-3 0.62

lfr1-5sfr1-4 0.62

lfr1-5sfr1-5 0.63



 

 

98 

 

      
 

      
 

      
 

      
 

      
 

Run Evenness

lfr1-1 16.12

lfr1-2 16.89

lfr1-3 17.19

lfr1-4 17.30

lfr1-5 17.58

lfr1-5sfr1-1 17.24

lfr1-5sfr1-2 16.68

lfr1-5sfr1-3 16.22

lfr1-5sfr1-4 15.84

lfr1-5sfr1-5 15.39

Run Depth

lfr1-1 0.39

lfr1-2 1.61

lfr1-3 2.75

lfr1-4 3.45

lfr1-5 8.49

lfr1-5sfr1-1 8.77

lfr1-5sfr1-2 9.36

lfr1-5sfr1-3 9.93

lfr1-5sfr1-4 10.42

lfr1-5sfr1-5 11.05

Run Breadth

lfr1-1 0.14

lfr1-2 0.34

lfr1-3 0.43

lfr1-4 0.47

lfr1-5 0.59

lfr1-5sfr1-1 0.59

lfr1-5sfr1-2 0.60

lfr1-5sfr1-3 0.61

lfr1-5sfr1-4 0.61

lfr1-5sfr1-5 0.62

Run Evenness

lfr1-1 16.44

lfr1-2 17.74

lfr1-3 17.98

lfr1-4 18.19

lfr1-5 18.50

lfr1-5sfr1-1 18.15

lfr1-5sfr1-2 17.58

lfr1-5sfr1-3 17.08

lfr1-5sfr1-4 16.68

lfr1-5sfr1-5 16.21

Run Depth

lfr1-1 0.25

lfr1-2 1.05

lfr1-3 1.79

lfr1-4 2.75

lfr1-5 8.05

lfr1-5sfr1-1 8.28

lfr1-5sfr1-2 8.74

lfr1-5sfr1-3 9.37

lfr1-5sfr1-4 9.91

lfr1-5sfr1-5 10.62
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Figure 25. Distribution of coverage depth, coverage breadth, and evenness for 
population TCO. 
 

      
 

      
 

      

Run Breadth

lfr1-1 0.12

lfr1-2 0.31

lfr1-3 0.41

lfr1-4 0.49

lfr1-5 0.60

lfr1-5sfr1-1 0.61

lfr1-5sfr1-2 0.61

lfr1-5sfr1-3 0.62

lfr1-5sfr1-4 0.62

lfr1-5sfr1-5 0.63

Run Evenness

lfr1-1 15.12

lfr1-2 16.27

lfr1-3 16.33

lfr1-4 16.66

lfr1-5 17.06

lfr1-5sfr1-1 16.82

lfr1-5sfr1-2 16.38

lfr1-5sfr1-3 15.83

lfr1-5sfr1-4 15.41

lfr1-5sfr1-5 14.93

Run Depth

lfr1-1 0.21

lfr1-2 0.89

lfr1-3 1.51

lfr1-4 2.43

lfr1-5 5.98

lfr1-5sfr1-1 6.20

lfr1-5sfr1-2 6.59

lfr1-5sfr1-3 7.11

lfr1-5sfr1-4 7.54

lfr1-5sfr1-5 8.14

Run Breadth

lfr1-1 0.09

lfr1-2 0.24

lfr1-3 0.32

lfr1-4 0.40

lfr1-5 0.51

lfr1-5sfr1-1 0.51

lfr1-5sfr1-2 0.52

lfr1-5sfr1-3 0.53

lfr1-5sfr1-4 0.54

lfr1-5sfr1-5 0.54

Run Evenness

lfr1-1 13.05

lfr1-2 16.06

lfr1-3 16.51

lfr1-4 17.04

lfr1-5 16.95

lfr1-5sfr1-1 16.54

lfr1-5sfr1-2 15.98

lfr1-5sfr1-3 15.31

lfr1-5sfr1-4 14.84

lfr1-5sfr1-5 14.25
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Run Depth

lfr1-1 0.34

lfr1-2 1.37

lfr1-3 2.34

lfr1-4 2.96

lfr1-5 5.85

lfr1-5sfr1-1 6.13

lfr1-5sfr1-2 6.67

lfr1-5sfr1-3 7.25

lfr1-5sfr1-4 7.75

lfr1-5sfr1-5 8.39

Run Breadth

lfr1-1 0.09

lfr1-2 0.25

lfr1-3 0.34

lfr1-4 0.38

lfr1-5 0.47

lfr1-5sfr1-1 0.49

lfr1-5sfr1-2 0.50

lfr1-5sfr1-3 0.51

lfr1-5sfr1-4 0.52

lfr1-5sfr1-5 0.53

Run Evenness

lfr1-1 16.59

lfr1-2 19.88

lfr1-3 20.37

lfr1-4 20.87

lfr1-5 20.77

lfr1-5sfr1-1 20.24

lfr1-5sfr1-2 19.31

lfr1-5sfr1-3 18.45

lfr1-5sfr1-4 17.84

lfr1-5sfr1-5 17.17

Run Depth

lfr1-1 0.30

lfr1-2 1.22

lfr1-3 2.08

lfr1-4 2.90

lfr1-5 8.16

lfr1-5sfr1-1 8.52

lfr1-5sfr1-2 9.24

lfr1-5sfr1-3 9.81

lfr1-5sfr1-4 10.31

lfr1-5sfr1-5 10.93

Run Breadth

lfr1-1 0.09

lfr1-2 0.25

lfr1-3 0.33

lfr1-4 0.39

lfr1-5 0.52

lfr1-5sfr1-1 0.52

lfr1-5sfr1-2 0.53

lfr1-5sfr1-3 0.54

lfr1-5sfr1-4 0.55

lfr1-5sfr1-5 0.55
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Run Evenness

lfr1-1 16.25

lfr1-2 17.86

lfr1-3 18.31

lfr1-4 18.74

lfr1-5 18.50

lfr1-5sfr1-1 18.05

lfr1-5sfr1-2 17.26

lfr1-5sfr1-3 16.73

lfr1-5sfr1-4 16.33

lfr1-5sfr1-5 15.93

Run Depth

lfr1-1 0.18

lfr1-2 0.73

lfr1-3 1.25

lfr1-4 2.15

lfr1-5 8.18

lfr1-5sfr1-1 8.51

lfr1-5sfr1-2 9.15

lfr1-5sfr1-3 9.62

lfr1-5sfr1-4 10.03

lfr1-5sfr1-5 10.54

Run Breadth

lfr1-1 0.06

lfr1-2 0.18

lfr1-3 0.26

lfr1-4 0.36

lfr1-5 0.52

lfr1-5sfr1-1 0.53

lfr1-5sfr1-2 0.54

lfr1-5sfr1-3 0.54

lfr1-5sfr1-4 0.55

lfr1-5sfr1-5 0.55

Run Evenness

lfr1-1 16.34

lfr1-2 21.80

lfr1-3 22.45

lfr1-4 23.24

lfr1-5 23.67

lfr1-5sfr1-1 23.06

lfr1-5sfr1-2 22.01

lfr1-5sfr1-3 21.32

lfr1-5sfr1-4 20.77

lfr1-5sfr1-5 20.16

Run Depth

lfr1-1 0.29

lfr1-2 1.19

lfr1-3 2.03

lfr1-4 2.94

lfr1-5 8.04

lfr1-5sfr1-1 8.32

lfr1-5sfr1-2 8.89

lfr1-5sfr1-3 9.42

lfr1-5sfr1-4 9.88

lfr1-5sfr1-5 10.45
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Figure 26. Distribution of coverage depth, coverage breadth, and evenness for 
population W3.6A. 
 

Analysis of sequencing reruns 

The ECT D.pulex gDNA library was sequenced twice without multiplexing 

and generating two paired-end sequencing datasets, ECT and ECT_rerun. 

These two datasets as well as their combined dataset was run through the 

SA_Run2Ref workflow, producing statistics presented in Table 13. Approximately 

88% of the cleaned reads from the ECT or the ECT_rerun dataset were mapped 

to the referenced genome, covering 76% of the 5,191 scaffolds or 64% of the 

entire genome at a 9-fold depth. The combined dataset covered less than 1% or 

more scaffolds than individual datasets, and it also had similar genome coverage 

breadth and evenness as the two separate datasets, even though it doubled the 

genome coverage depth. The distribution of scaffold coverage breadth showed a 

very similar pattern with ca. 1200 scaffolds uncovered for all three datasets 

(Figure 27). In comparison with the two separate datasets, the combined dataset 

Run Breadth

lfr1-1 0.09

lfr1-2 0.27

lfr1-3 0.36

lfr1-4 0.42

lfr1-5 0.53

lfr1-5sfr1-1 0.53

lfr1-5sfr1-2 0.54

lfr1-5sfr1-3 0.55

lfr1-5sfr1-4 0.55

lfr1-5sfr1-5 0.55

Run Evenness

lfr1-1 14.05

lfr1-2 18.10

lfr1-3 18.71

lfr1-4 19.18

lfr1-5 19.47

lfr1-5sfr1-1 19.03

lfr1-5sfr1-2 18.26

lfr1-5sfr1-3 17.62

lfr1-5sfr1-4 17.16

lfr1-5sfr1-5 16.67
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covered 830 and 895 more scaffolds at > 4-fold depth or 700 and 774 more at > 

10-fold depth than the ECT and the ECT_rerun datasets, respectively (Figure 27). 

The number of scaffolds with a coverage breadth of 50% or less in the two 

separate datasets was 188 (ECT) or 218 (ECT_rerun) more than that in the 

combined dataset. These results indicate that the additional sequencing run 

(ECT_rerun) did not improve much coverage breadth or evenness, and that the 

two runs covered almost the same scaffolds. 

 

Figure 27. Distribution of scaffold coverage breadth and depth generated in the 
output files of the SA_Run2Ref workflow for two generated re-sequencing 
datasets produced for the same ECT gDNA library and their combination: (a) 
ECT, (b) ECT_rerun, and (c) ECT+ECT_rerun. See Table 13 for more 
information about the sequencing runs. Breadth and depth bins are open at the 
lower end and closed at the higher end, and breadth is expressed as percentage. 
For instance, 
(0.3, 0.4] stands for 30%<breadth≤40%, and (0,1]stands for 0<depth≤1. 
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Table 13 

Basic Statistics Produced by SA_Run2Ref for Two Sequencing Run Datasets. 

The two datasets of paired-end reads were generated using Illumina MiSeq by 

sequencing the same genomic DNA (gDNA) library prepared for a water flea 

(Daphnia pulex) from an ECT population. Library preparation involved shearing 

of extracted gDNA using a Covaris M220 focused-ultrasomicator (Woburn, MA). 

The average of library insert size distribution was 301 bp. 

Illumina MiSeq runs (read length = 2 x 151 bp)  ECT ECT_rerun ECT + ECT_rerun 

Total number of raw paired-end reads 7,575,822 7,064,035 14,639,857 

Total number of cleaned reads 7,524,261 7,041,454 14,565,715 

Total number of reads mapped to reference 

genome 
6,573,572 6,193,164 12,766,736 

Mapped/Cleaned reads (%) 87.37 87.95 87.65 

Total number of scaffolds in reference genome 5,191 5,191 5,191 

Number of covered reference scaffolds 3,960 3,948 3,998 

Covered/Total scaffolds (%) 76.29 76.05 77.02 

Genome coverage breadth (%) 64.48 64.32 66.12 

Genome coverage depth 9.24 8.67 17.91 

   standard deviation of scaffold coverage depth 96.11 91.88 186.95 

   average scaffold coverage depth 16.27 15.41 31.33 

Genome coverage evenness 6.79 6.86 6.82 

Run time (min) 44.6 42.0 81.9 

 

The TCO D.pulex library was split into two fractions: a large fraction (LF, 

insert size = 572 bp) and a small fraction (SF, 269 bp). Each fraction was 

sequenced five times along with 35 other indexed libraries in a multiplexing 
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fashion using Illumina Miseq, except for the fifth runs of LF (LF5) which was 

pooled with 5 other indexed libraries (Table 14). Hence, the quantity of reads in 

each LF or SF dataset was equivalent to 1/36 (or 1/6 for LF5) of a MiSeq run. As 

more datasets were pooled to form new reads collections as input to 

SA_Run2Ref, the ratio of mapped to cleaned reads remained stable at 82% to 85% 

(Table 14), and the scaffold coverage evenness had little change (Figure 28). 

Although the genome coverage depth steadily increased as more runs were 

added to the reads collection, the genome coverage breadth increased 

simultaneously until LF5 was added and then reached a plateau (Figure 28). The 

addition of 2.2 million SF reads raised coverage breadth by only 3% (Table 14 

and Figure 28). The change in the distributions of scaffold coverage depth and 

breadth also supports this conclusion. Except the bin for non-covered scaffolds, 

the number of scaffolds in every bin increased continuously for both coverage 

breadth and depth from collection LF1 (Figure 29a) to LF1-5 (Figure 29b), but 

little difference was observed in the scaffold numbers for coverage breadth 

between LF1-5 and LF1-5SF1-5 collection (Figure 29c). 
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Table 14 

Sequencing Datasets and Genome Mapping of the Daphnia pulex TCO Library. 

All of the NGS run datasets were generated by sequencing the TCO gDNA 

library which was split into two fractions: a large fraction (LF) with an average 

insert size of 572 bp and a small fraction (SF) with an average insert size of 269 

bp. An Illumina MiSeq was used for sequencing, and both fractions were each 

sequenced five times in a 36× or 6×multiplexing fashion, resulting in datasets 

LF1 to LF5 and SF1 to SF5. The reads collection were mapped to a D.pulex 

reference genome by running the SA_Run2Ref workflow. 

Reads 

collection 

Sequencing 

runs/collection 

Library 

fraction 

Raw 

reads 

Cleaned 

reads 

Mappe

d reads 

Mapped/

cleaned 

reads 

(%) 

Run 

time 

(min) 

Added 

run 

(multiplex

, read 

length) 

LF1 LF1 
Large 

only 

383,5

75 
381,612 

311,91

9 
81.74 7.1 

LF1 

(36X,2X1

51) 

LF1-2 LF1+ LF2 
Large 

only 

1,083

,738 

1,076,6

71 

907,60

1 
84.30 13.8 

LF2 

(36X,2X2

51) 

LF1-3 LF1+ LF2+ LF3 
Large 

only 

1,782

,006 

1,743,5

23 

1,478,1

40 
84.78 21.7 

LF3 

(36X,2X2

51) 
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Table 14 (continued). 

Reads 

collection 

Sequencing 

runs/collection 

Library 

fraction 

Raw 

reads 

Cleaned 

reads 

Mappe

d reads 

Mapped/

cleaned 

reads 

(%) 

Run 

time 

(min) 

Added 

run 

(multiplex

, read 

length) 

LF1-4 
LF1+ LF2+ 

LF3+LF4 

Large 

only 

2,218

,000 

2,177,2

65 

1,848,9

79 
84.92 26.1 

LF4 

(36X,2X2

51) 

LF1-5 
LF1+ LF2+ 

LF3+LF4+LF5 

Large 

only 

4,242

,048 

4,178,8

56 

3,524,5

28 
84.34 45.9 

LF5 

(6X,2X25

1) 

LF1-5SF1 

LF1+ LF2+ 

LF3+LF4+LF5+

SF1 

Large+

Small 

4,542

,917 

4,478,6

75 

3,766,7

87 
84.10 48.1 

SF1 

(36X,2X1

51) 

LF1-5 

SF1-2 

LF1+ LF2+ 

LF3+LF4+LF5_

SF1+SF2 

Large+

Small 

5,084

,493 

5,014,9

33 

4,204,6

92 
83.84 50.6 

SF2 

(36X,2X1

51) 

LF1-5 

SF1-3 

LF1+ LF2+ 

LF3+LF4+LF5+

SF1+SF2+SF3 

Large+

Small 

5,530

,560 

5,457,8

78 

4,561,6

48 
83.58 52.7 

SF3 

(36X,2X1

51) 
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Table 14 (continued). 

LF1-5 

SF1-4 

LF1+ LF2+ 

LF3+LF4+LF5+

SF1+SF2+SF3

+SF4 

Large+

Small 

5,920

,185 

5,845,8

27 

4,872,8

85 
83.36 54.8 

SF4 

(36X,2X1

51) 

LF1-5 

SF1-5 

LF1+ LF2+ 

LF3+LF4+LF5+

SF1+SF2+SF3

+SF4+SF5 

Large+

Small 

6,411

,123 

6,333,0

54 

5,270,6

16 
83.22 56.5 

SF5 

(36X,2X1

51) 

 

 

Figure 28. Change in genome coverage breadth, depth, and evenness as more 
sequencing runs for the same TCO library were pooled and used as the input of 
SA_Run2Ref. See Table 14 for the sequencing runs pooled to form reads 
collections. 
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Figure 29. Change in the distribution of scaffold coverage breadth and depth as 
more sequencing runs for the same TCO library were pooled and used as the 
input of SA_Run2Ref. Shown are distributions for three reads collections: (a) LF1, 
(b) LF1-5, and (c) LF1-5SF1-5. See Table 14 for the sequencing runs pooled to 
form reads collections. Breadth and depth bins are open at the lower end and 
closed at the higher end, and breadth is expressed as percentage. For instance, 
(0.3, 0.4] stands for 30%<breadth≤40%, and (0,1]stands for 0<depth≤1. 

MicroRNA Detection Using miRDisc 

A microRNA is an endogenous small non-coding ribonucleic acid RNA 

that regulates gene expression at the post-transcriptional level. The different 

gene expression levels are shown in the form of genotype. Thus, microRNA is 

able to impact on the phenotype without the change of genotype. In this case 

study, the author explore microRNA for Drosophila melanogaster, Caenorhabditis 

elegans and earthworm E. fetida using miRExpress (Wang et al., 2009a), 

miRDeep2 (Friedlanender et al., 2012), sRNAbench (Hackenberg, 2013), and 

our developed software miRDisc. 
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Dataset Generation 

Download dataset 

Data for the Drosophila melanogaster and Caenorhabditis elegans are 

downloaded from the GEO (Gene Expression Omnibus) database: 

 GSM322219: small RNAs were extracted from 2-4 days old Drosophila 

melanogaster (fruit fly) pupae and sequenced by the Illumina Genome 

Analyzer. Total number of unique reads is 385451; Maximum length is 36 

nt; Minimum length is 18 nt; Average length is 22.22 nt; and Median 

length = 21 nt. 

 GSM139137: small (~18-26 nt) RNAs were isolated using PAGE from 

total RNA extracted from mixed-stage, wild-type Caenorhabditis elegans 

(nematode worm, N2, 20 deg C) and sequenced by the 454 Genome 

Sequencer. Total number of unique reads is 181668; Maximum length is 

85 nt; Minimum length is 1 nt; Average length is 22.25 nt; and Median 

length is 22 nt. 

Experimental dataset 

For earthworm E. fetida, two sequencing runs using a Solexa/Illumina 

Genome Analyzer I generated millions of short sequences from ERDC (U.S. 

Army Engineer Research and Development Center) and ECU (East Carolina 

University). 

The following protocol in brief used by LC Sciences for the small RNA 

library preparation is based on the manufacturer’s instructions: the 
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Illumina/Solexa’s manual for preparing samples for analysis of small RNA by 

ERDC. 

 Small RNA isolation by denaturing PAGE gel: 

For each sample, ~10 µg of RNA sample was size-fractionated on a 15% 

tris-borate-EDTA (TBE) urea polyacrylamide gel, and a 15-50 base pair 

fraction was excised. A small RNA fraction was eluted in 500 µL of 0.3 M 

NaC1 from the polyacrylamide gel slice. After elution, the small RNA 

fraction was precipitated by the addition of ethanol. 

 Adapter ligation to the isolated small RNA: 

Based on the Illumina/Solexa’s manual, the 5’ RNA adapter and 3’ RNA 

adapters were subsequently ligated to the precipitated RNA with T4 RNA 

ligase. Ligated RNA was size-fractionated on a 15% TBE urea 

polyacrylamide gel, and a 65-100 base pair fraction was excised and 

eluted and precipitated from the gel. 

 Reverse transcript and PCR-amplification: 

The RNA was converted to single-stranded cDNA using M-MLV 

(lnvitrogen) with the Illumina/Solexa’s RT-primer. The cDNA was amplified 

with pfx DNA polymerase (Invitrogen) in 20 cycles PCR using 

Illumina/Solexa’s small RNA primers set. 

 Purification of amplified cDNA constructs: 

PCR products were purified on a 12% TBE polyacrylamide gel, and an 80-

150 base pair fraction was excised. The excised fraction was eluted and 

precipitated from the gel. The purified PCR products were quantified on 
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the TBS-380 mini-fluorometer (Turner Biosystems) using Picogreen 

dsDNA quantitation reagent (Invitrogen) and diluted to 10 nM. For barcode 

samples, the amount of each sample was mixed equally. For example, 10 

µL of 10 nM of sample A and 10 µL of 10 nM of sample B were mixed 

together and delivered for sequencing on the Illumina/Solexa G1 

sequencer. 

Then the data is cleaned using the workflow shown in Figure 30. It 

consists of eight steps: 

 Get unique seq family: Many sequenced sequences from Solexa are 

exactly identical. So the identical sequences were put together into a 

unique seq (family), including the index, sequence, and frequency (or 

count, or copy#) as follows: 

23->TGGAGTGTGACAATGGTGTTTGTCGTATGCCGTCTT->18560 

 A, C, G, T composition filter: If sequences of 80% A, or C, or G, or T, or 

3N (it is not necessary to be consecutive), the sequence will be filtered out. 

 Filter sequence data using the Adapter (ADT) dimmer filter: ADT dimmer 

is 5’ ADT, 3’ ADT & 5’ ADT and 3’ ADT hooked together without insertion. 

Unique seqs are blasted against 3’ ADT and 3DIM (3’ ADT-3’ADT). The 

blast data is filtered using specified parameters. Then the unique seqs 

containing the 3ADT or 3DIM at the beginning of unique seqs were picked 

up. The 3ADT part at the non-beginning position was kept after removing 

the 3ADT part. 
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 Filter sequence data using the length filter: If the length of the remained 

part after removing 3ADT part is >=15, the unique sequence was kept. 

 Junk filter: The sequence is filtered out with the following conditions: 

o If a sequence of 7 consecutive A, 8 consecutive C, 6 consecutive 

G ,or 7 consecutive T, the sequence is filtered out. The number of 7, 

8, 6, or 7 is from the study of miRBase. All miR sequences at 

miRBase do not have homo stretch AAAAAAA (7A), but do have 

AAAAAA (6A); all miR sequences at miRBase don’t have homo 

stretch CCCCCCCC (8C), but do have CCCCCCC (7C). Only one 

miR sequence (has-miR-1225-5p) at miRBase has homo stretch 

GGGGGG (6G). The tolerance is one; only one miR sequence 

(oan-miR-1422e) at miRBase has homo stretch TTTTTTT (7T). 

o If a sequence of 10 repeat of dimmer, 6 repeat of trimer, or 5 repeat 

of tetramer, the sequence is filtered out. 

o If a sequence contains only A & C without G&T, the sequence is 

filtered out and vice versa. 

 Filter sequence data using the low-copy filter: If the copy number 

(frequency) of a unique seq is less than 3, it is filtered out. 

 Filtered sequence data using the mRNA, RFam, & repbase filter: The 

remained unique seqs are blasted against mRNA, RFam, & repbase. If a 

unique seq hits any of the mRNA, or RFam & repbase with 1 error allowed, 

it is filtered out. 
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Figure 30. Clean solexa data. 
 

After performing the above filters, the remained unique sequence data is 

cleaned data. For data from the ECU, similar processes for experimental design 

and data processing are provided. The only difference is that the sequences are 

filtered out with length of less than or equal to 26 in the data cleaning phase. 

After cleaning, there are 11591 sequences for the ERDC dataset and 96987 

sequences for the ECU dataset. Then totally 108578 sequences are obtained. 

Maximum length is 36 nt; minimum length is 15 nt; average length is 21.8 nt; the 

median length is 20 nt.  

Micro-RNA Identification 

In this section, three datasets, including two downloaded datasets 

(Drosophila melanogaster and Caenorhabditis elegans) and earthworm E. fetida, 

are used to detect microRNA. Four microRNA identification software are used, 

including miRExpress, miRDeep2, sRNAbench and our developed software 
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miRDisc. Two different versions of miRBase, miRBase v14 

(ftp://mirbase.org/pub/mirbase/14/), and miRBase v20 

(ftp://mirbase.org/pub/mirbase/20/) are applied to all the dataset in order to 

compare the capability to detect known and conserved miRNA for different tools 

and also to measure the detection accuracy of novel miRNA for different tools. 

The results for three species, four softwares among two different versions of 

miRBase are shown below: 

Caenorhabditis Elegans dataset 

The original RNA sequences are filtered out by limiting copy number 

greater than or equal to 3, which means that any reads with a copy number less 

than 3 will be discarded, and reads with copy number greater than or equal to 3 

will be kept for future use. The unique number of raw reads for C.elegans is 

23,842, and the total number of raw reads (unique reads * count for each unique 

reads) is 674,456. Then the four methods mentioned above (miRExpress, 

miRDeep2, sRNAbench and miRDisc) are applied to this dataset. The 

standalone versions of tools are adopted in order to change the version of 

miRBase. 

MiRDeep2 consists of three steps to identify known, conserved, and novel 

miRNAs. The first step is to obtain the index of the reference genome. In this 

project, the bowtie is used to index the reference genome. Then the second step 

is to process reads and map them to the reference genome. In the miRDeep2 

package, ‘mapper.pl’ is used to finish this mapping task. Among all the 

parameters, parameter –c, -m, and –j are used besides other mandatory input 
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parameters. The last step is the miRNA detection phase, and the package uses 

‘miRDeep2.pl’ to perform this function. In this step, all the C.elegans miRNAs in 

miRBase are used as the species database, and miRNAs other than C.elegans 

are used as the homolog database. After all three steps, the package generates 

a csv file and an html table containing all the known, conserved, and novel 

miRNAs. The strategy of miRExpress is to align the raw RNA sequence to the 

miRNA sequence in miRBase without a reference mapping procedure. It consists 

of four steps. First, the raw input is converted into the miRExpress file format, 

which contains two columns, count number, and a corresponding RNA sequence 

with each line separated by tab. The second step is the adaptor trimming, which 

can be skipped if the input file is already cleaned. The next two steps are 

alignment and miRNA detection. Both steps use the default parameter settings 

except the miRBase database. The entire miRBase is used, including all the 

species in the database rather than only the C.elegans. sRNAbench is a java-

based package, which has a lot of functions. It is a replacement for miRanalyzer 

(Hackenberg, Rodriguez-Ezpeleta, & Aransay, 2011). Here,only the microRAN 

detection part is used. The first step is database preparation. Bowtie-build is 

used to get the reference index files, and makeSeqObi.jar in the package is used 

to compress the input short sequence file. All of the obtained files are put into the 

default database folder. The C.elegans miRNAs are used as the species 

database, and all other miRNAs are used as the homolog database. The Mature 

microRNA mismatch (matureMM) is set into 1 other than the default 0. The novel 
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microRNA detection function is activated. All of the other parameters use the 

default value. 

After obtaining the candidates from different tools, two validation steps are 

applied to the known and conserved candidates, and one step is applied to the 

novel candidates. For some tools, they generate the known and conserved 

microRNA candidates based on an analysis of multiple short RNA reads, so the 

final candidate microRNA sequence may change a little from the input short RNA 

reads. Then, the first validation step for known and conserved microRNA is to 

map the candidates sequence back to the input short RNA reads to check 

whether the candidate sequence actually exists in the short RNA reads. If the 

candidate sequences do exist, they are kept, and they are discarded if the 

candidate sequences do not exist in short RNA sequence. Blastn is used in the 

mapping phase. The second validation step is to remove the dead microRNA 

from the results. The dead microRNAs are microRNAs that are detected as 

miRNAs in the old version of miRBase; however these are proven as false 

miRNAs afterward. The results are mapped to the latest version of dead miRNAs 

and the dead miRNAs are removed. For novel microRNA candidates, in order to 

validate them, the novel candidates with miRBase v14 are compared to the 

miRBase v20 to check how many of them exist in miRBase v20, in other words, 

to check how many of them are true microRNAs. 

 Tables 15 and 16 list all of the results from miRDeep2, miRExpress, 

sRNAbench, and miRDisc for miRBase v14 and v20, respectively. They contain 

the output directly from the tools and also the results after validation steps. 
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Table 15 

Result of miRDeep2, miRExpress, sRNAbench, and miRDisc for C.elegans with 

miRBase v14: (a) known microRNA, (b) conserved microRNA, and (c) novel 

microRNA. 

 

total number 

of aligned 

reads 

(unique*count) 

unique 

number of 

aligned reads 

number of 

identified 

microRNA 

number of 

candidates 

after 

validation 

step1 

number of 

candidates 

after 

validation 

step2 

miRDeep2 385489 133 114 113 113 

miRExpress 312968 474 122 120 120 

miRDisc 41462 105 46 46 46 

sRNAbench 350543 2703 121 120 120 

(a) 

 

total number 

of aligned 

reads 

(unique*count) 

unique 

number of 

aligned reads 

number of 

identified 

microRNA 

number of 

candidates 

after 

validation 

step1 

number of 

candidates 

after 

validation 

step2 

miRDeep2 0 0 0 0 0 

miRExpress 204014 261 378 373 373 

miRDisc 77990 93 63 52 52 

sRNAbench 213848 1581 282 261 261 

(b) 
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Table 15 (continued). 

 

total number 

of aligned 

reads 

(unique*count) 

unique number 

of aligned 

reads 

# of candidate 

aligned to 

miRBase 20 

prediction 

accuracy 

miRDeep2 353 8 1 12.50% 

miRExpress X X X X 

miRDisc 2298 32 13 40.63% 

sRNAbench 0 0 0 0 

(c) 

Table 16 

Result of miRDeep2, miRExpress, sRNAbench, and miRDisc for C.elegans with 

miRBase v20: (a) known microRNA, (b) conserved microRNA, and (c) novel 

microRNA. 

 

total number of 

aligned reads 

(unique*count) 

unique 

number of 

aligned reads 

number of 

identified 

microRNA 

number of 

candidates 

after validation 

step1 

mirdeep2 385509 135 131 93 

mirexpress 318225 624 191 173 

miRDisc 38740 143 78 69 

sRNAbench 354143 2914 192 173 

(a) 
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Table 16 (continued). 

 

total number of 

aligned reads 

(unique*count) 

unique number 

of aligned 

reads 

number of 

identified 

microRNA 

number of 

candidates 

after 

validation 

step1 

mirdeep2 0 0 0 0 

mirexpress 241586 384 697 693 

miRDisc 83211 135 128 101 

sRNAbench 243708 1842 576 535 

(b) 

 

total number of aligned reads 

(unique*count) 
unique number of aligned reads 

mirdeep2 428 14 

mirexpress X X 

miRDisc 1420 19 

sRNAbench 
 

23 

(c) 

In miRBase, the miRNAs that share the same seed region are grouped 

together into families. For known and conserved candidates the detected 

microRNAs are grouped into families to check how many families are detected by 

each method. However, not every miRNA belongs to a certain family. So for 

those do not belong to any family, their precursors are used to stand for their 

temperate family name. The grouped results are shown in Tables 17 and Table 

18 for miRBase v14 and v20, respectively. 

 



 

 

121 

 

Table 17 

Grouped Results of Candidate microRNA for C.elegans with miRBase v14: (a) 

known microRNA and (b) conserved microRNA. 

 

number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without family 

number of 

precursor for 

microRNA 

without family 

miRDeep2 114 82 73 32 32 

miRExpress 122 87 74 35 34 

miRDisc 46 32 26 14 14 

sRNAbench 121 87 74 34 34 

(a) 

 

number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without family 

number of 

precursor for 

microRNA 

without family 

miRDeep2 0 0 0 0 0 

miRExpress 378 373 49 5 5 

miRDisc 63 54 26 9 9 

sRNAbench 282 269 52 13 13 

(b) 
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Table 18 

Grouped Results of Candidate microRNA for C.elegans with miRBase v20: (a) 

known microRNA and (b) conserved microRNA. 

 

number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without family 

number of 

precursor for 

microRNA 

without family 

miRDeep2 131 106 84 25 23 

miRExpress 191 162 86 29 25 

miRDisc 78 64 36 14 14 

sRNAbench 192 162 86 30 25 

(a) 

 

number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without family 

number of 

precursor for 

microRNA 

without family 

miRDeep2 0 0 0 0 0 

miRExpress 697 682 67 15 15 

miRDisc 128 109 36 19 19 

sRNAbench 576 549 69 27 27 

(b) 

Drosophila melanogaster dataset 

The basic steps and parameter settings for the Drosophila dataset are 

similar to the process of C.elegans dataset. The unique number of raw reads for 

C.elegans is 54,078, and the total number of raw reads (unique reads * count for 
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each unique reads) is 1,750,122. Original results and grouped results are shown 

in Tables19 - 22. 

Table 19 

Result of miRDeep2, miRExpress, sRNAbench, and miRDisc for Drosophila with 

miRBase v14: (a) known microRNA, (b) conserved microRNA, and (c) novel 

microRNA. 

 

total number 

of aligned 

reads 

(unique*count) 

unique 

number of 

aligned reads 

number of 

identified 

microRNA 

number of 

candidates 

after 

validation 

step1 

number of 

candidates 

after 

validation 

step2 

miRDeep2 172908 51 47 45 45 

miRExpress 305034 605 131 115 115 

miRDisc 86606 54 19 19 19 

sRNAbench 160574 1331 60 55 55 

(a) 

 

total number 

of aligned 

reads 

(unique*count

) 

unique 

number of 

aligned reads 

number of 

identified 

microRNA 

number of 

candidates 

after 

validation 

step1 

number of 

candidates 

after 

validation 

step2 

miRDeep2 0 0 0 0 0 

miRExpress 296803 620 1240 1158 1158 

miRDisc 89908 87 313 292 292 

sRNAbench 125665 989 600 561 561 

(b) 
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Table 19 (continued). 

 

total number of 

aligned reads 

(unique*count) 

unique number 

of aligned 

reads 

# of candidate 

aligned to 

miRBase 20 

prediction 

accuracy 

miRDeep2 1436 4 0 0 

miRExpress X X X X 

miRDisc 6452 48 20 41.67% 

sRNAbench 
 

14   

(c) 

Table 20 

Result of miRDeep2, miRExpress, sRNAbench, and miRDisc for Drosophila with 

miRBase v20: (a) known microRNA, (b) conserved microRNA, and (c) novel 

microRNA. 

 

total number of 

aligned reads 

(unique*count) 

unique 

number of 

aligned reads 

number of 

identified 

microRNA 

number of 

candidates after 

validation step1 

miRDeep2 172913 52 50 42 

miRExpress 351694 857 215 119 

miRDisc 90370 77 31 30 

sRNAbench 172705 1573 105 95 

(a) 
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Table 20 (continued). 

 

total number of 

aligned reads 

(unique*count) 

unique 

number of 

aligned reads 

number of 

identified 

microRNA 

number of 

candidates after 

validation step1 

miRDeep2 0 0 0 0 

miRExpress 335602 930 1907 1862 

miRDisc 93017 116 503 470 

sRNAbench 150831 1307 1023 945 

(b) 

 

total number of aligned reads 

(unique*count) 
unique number of aligned reads 

miRDeep2 253 7 

miRExpress X X 

miRDisc 1257 27 

sRNAbench 
 

10 

(c) 

Table 21 

Grouped Results of Candidate microRNA for Drosophila with miRBase v14: (a) 

known microRNA and (b) conserved microRNA. 

 

number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without family 

number of 

precursor for 

microRNA 

without family 

miRDeep2 47 32 26 15 15 

miRExpress 131 84 63 47 45 
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Table 21 (continued). 

 

number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without family 

number of 

precursor for 

microRNA 

without family 

miRDisc 19 11 10 8 8 

sRNAbench 60 37 29 23 22 

(a) 

 

number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without family 

number of 

precursor for 

microRNA 

without family 

miRDeep2 0 0 0 0 0 

miRExpress 1240 1221 70 19 19 

miRDisc 313 301 20 12 12 

sRNAbench 600 584 27 16 16 

(b) 

Table 22 

Grouped Results of Candidate microRNA for Drosophila with miRBase v20: (a) 

known microRNA and (b) conserved microRNA.  

 

number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without family 

number of 

precursor for 

microRNA 

without family 

miRDeep2 50 50 40 0 0 

miRExpress 215 197 96 18 16 
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Table 22 (continued). 

 

number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without family 

number of 

precursor for 

microRNA 

without family 

miRDisc 31 30 19 1 1 

sRNAbench 105 99 45 6 5 

(a) 

 

number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without family 

number of 

precursor for 

microRNA 

without family 

miRDeep2 0 0 0 0 0 

miRExpress 1907 1856 101 51 43 

miRDisc 503 488 29 15 15 

sRNAbench 1023 999 45 24 24 

(b) 

Earthworm dataset 

The basic steps and parameter settings for the earthworm dataset are 

similar to the process of the above two datasets. The unique number of raw 

reads for the earthworm is 40,696, and the total number of raw reads (unique 

reads * count for each unique reads) is 1,809,040. The difference is the miRBase 

database. Since earthworm does not exist in miRBase, the species database for 

earthworm should be set as none or empty, and the homolog database is the 

entire miRBase. Thus, the results only contain conserved microRNA and novel 
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microRNA candidates. Original results and grouped results are shown in Tables 

23-26. 

Table 23 

Result of miRDeep2, miRExpress, sRNAbench, and miRDisc for earthworm with 

miRBase v14: (a) conserved microRNA and (b) novel microRNA. 

 

total number of aligned 

reads (unique*count) 

unique number of 

aligned reads 

number of identified 

microRNA 

miRDeep2 0 0 0 

miRExpress 43535 298 741 

miRDisc 539 30 10 

sRNAbench 985607 1419 220 

(a) 

 

total number of 

aligned reads 

(unique*count) 

unique 

number of 

aligned 

reads 

# of candidate aligned 

to miRBase 20 

prediction 

accuracy 

miRDeep2 238415 13 3 23.08% 

miRExpress X X X X 

miRDisc 56608 35 0 0 

sRNAbench 
 

5   

(b) 
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Table 24 

Result of miRDeep2, miRExpress, sRNAbench, and miRDisc for earthworm with 

miRBase v20: (a) conserved microRNA and (b) novel microRNA. 

 

total number of aligned 

reads (unique*count) 

unique number of 

aligned reads 

number of identified 

microRNA 

miRDeep2 0 0 0 

miRExpress 122836 364 1166 

miRDisc 2890 25 11 

sRNAbench 990041 1504 324 

(a) 

 

total number of aligned reads 

(unique*count) 
unique number of aligned reads 

miRDeep2 238942 17 

miRExpress X X 

miRDisc 54509 34 

sRNAbench 
 

6 

(b) 

Table 25 

Grouped Results of Candidate Conserved microRNA for earthwrom with 

miRBase v14. 

 

number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without 

family 

number of 

precursor for 

microRNA 

without family 

miRDeep2 0 0 0 0 0 
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Table 25 (continued). 

 
number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without 

family 

number of 
precursor for 

microRNA 
without family 

miRExpress 741 725 40 16 16 

miRDisc 10 7 6 3 3 

sRNAbench 220 210 10 10 10 

 

Table 26 

Grouped Results of Candidate Conserved microRNA for earthwrom with 

miRBase v20. 

 

number of 

identified 

microRNA 

number of 

identified 

microRNA 

has family 

number of 

identified 

family 

number of 

identified 

microRNA 

without 

family 

number of 

precursor for 

microRNA 

without family 

miRDeep2 0 0 0 0 0 

miRExpress 1166 1149 40 17 17 

miRDisc 11 6 5 5 5 

sRNAbench 324 311 14 13 13 

 

Summary 

The miRDsic shows pretty good performance on novel miRNA detection, 

not good on known and conserved miRNA detection for all the three species. 

There are several reasons that cause this situation. The most important one is 
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that the design for miRDisc is based on the biosynthesis principle, while other 

existing methods are mostly based on sequence comparison. Such logic is good 

for novel miRNA discovery. However, the strict filtering conditions decrease the 

number of candidates for known and conserved miRNA. Furthermore, mapping 

procedure and folding process are two significant steps in the pipeline. Then the 

accuracy for mapping algorithm and Unafold greatly affects the results.  
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CHAPTER VI 

CONCLUSIONS 

Summary and Conclusions 

High-throughput next-generation sequencing (NGS) technologies are 

capable of generating massive amounts of data in the form of paired-end or 

single-end reads with either fixed or variable lengths. This prompts the 

development of analysis software or tools for next-generation sequencing data. 

Here, the author has developed SeqAssist, SVDisc, and miRDisc to analyze 

next-generation DNA/RNA sequencing data. 

SeqAssist is a useful and informative tool that can serve as a valuable 

“assistant” to a broad range of investigators who conduct genome re-sequencing, 

RNA-Seq, or de novo genome sequencing and assembly experiments. It consists 

of three separate workflows: (1) the SA_RunState workflow generates basic 

statistics about an NGS dataset, including numbers of raw, cleaned, redundant 

and unique reads, redundancy rate, and a list of unique sequences with length 

and read count; (2) the SA_Run2Ref workflow estimates the breadth, depth, and 

evenness of genome-wide coverage of the NGS dataset at ta nucleotide 

resolution; and (3) the SA_Run2Run workflow compares two NGS datasets to 

determine the redundancy between the two NGS runs. 

SVDisc is a novel and integrative SV discovery pipeline that provides an 

all-in-one toolkit for investigators who are interested in identifying SVs in their 

studied species from genome re-sequencing data. The novelty of SVDisc lies in 

the fact that there is no similar pipeline or infrastructure available in the SV 
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research community. It can detect all of the common types of SVs with user-

defined sizes, including insertion, deletion, duplications, inversion, intra-

chromosomal, and inter-chromosomal translocations. 

miRDisc was developed as a novel method to predict known, conserved, 

and novel miRNAs, especially to predict the miRNAs in transcriptome enriching 

species. 

Future Work 

All of the three tools described in this dissertation are very useful for 

analyzing biological dataset and provide important information, which will help 

researchers with further analysis. However, these tools can be improved for 

better performance. Visualization features can be added to the output of 

SeqAssist, such as the distribution figure of depth. This figure uses different 

colors to present different depth levels and marks the position of depth. With this 

figure, users are able to read the results more easily. Then for miRDisc, in order 

to improve the number of known and conserved candidates, the logic of the right 

pipeline can be replaced by simplifying the strategy with sequence comparisons 

of mature and precursor sequence.  
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