
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Dissertations

Spring 5-2014

Reducing Ambiguities in Customer Requirements Through Reducing Ambiguities in Customer Requirements Through

Historical Rule-Based Knowledge in a Small Organization Historical Rule-Based Knowledge in a Small Organization

Silvia Brum Preston
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

 Part of the Computational Engineering Commons, and the Computer Engineering Commons

Recommended Citation Recommended Citation
Preston, Silvia Brum, "Reducing Ambiguities in Customer Requirements Through Historical Rule-Based
Knowledge in a Small Organization" (2014). Dissertations. 251.
https://aquila.usm.edu/dissertations/251

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more
information, please contact Joshua.Cromwell@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=aquila.usm.edu%2Fdissertations%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=aquila.usm.edu%2Fdissertations%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/251?utm_source=aquila.usm.edu%2Fdissertations%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu

The University of Southern Mississippi

REDUCING AMBIGUITIES IN CUSTOMER REQUIREMENTS

THROUGH HISTORICAL RULE-BASED KNOWLEDGE

IN A SMALL ORGANIZATION

by

Silvia Brum Preston

Abstract of a Dissertation

Submitted to the Graduate School

of The University of Southern Mississippi

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

May 2014

ii

ABSTRACT

REDUCING AMBIGUITIES IN CUSTOMER REQUIREMENTS

THROUGH HISTORICAL RULE-BASED KNOWLEDGE

IN A SMALL ORGANIZATION

by Silvia Brum Preston

May 2014

During the elicitation process the requirements for a software application are

obtained from the customer. Customers often do not know how to clearly express the

requirements of the application to be built, causing requirements to be ambiguous. Many

studies have been found to cover different characteristics of the requirements elicitation

process including methods for reducing ambiguities in requirements. The methods and

findings of these studies were found to be too general when it comes to the specific

domain of the requirements and knowledge about the requirements. In addition, some

studies did not take into consideration the level of expertise of those users performing

the process. The focus of this study is to reduce ambiguities in customer requirements

for a specific domain through the use of a historical rule-based knowledge and a

scripted process. Using a case study scenario, this study explores how ambiguities in

customer requirements can be reduced using knowledge about specific requirements

for Web-based forms. The scripted process is a step-by-step procedure utilized to

guide a novice developer in reducing the ambiguities in customer requirements.

The proposed rule-based knowledge encompasses requirements of previously

implemented Web-based applications.

iii

The results of this study intend to improve domain knowledge sharing between

novice and expert developers and domain experts while reducing ambiguities in

customer requirements. The existence of ambiguities in requirements and the lack of

knowledge about the domain, between customers and the development team, provide

the context in this qualitative case study. The outcome of this study demonstrates how

ambiguities in requirements can be reduced and easily understood by the development

team while lessening the communication gap between all people involved. The impact

of this study is relatively associated with the effort and time that goes into understanding

requirements and reducing ambiguities.

COPYRIGHT BY

SILVIA BRUM PRESTON

MAY 2014

Maureen A. Ryan

Chaoyang Zhang

Bikramjit Banerjee

Dia Ali

Tulio Sulbaran

Ray Seyfarth

The University of Southern Mississippi

REDUCING AMBIGUITIES IN CUSTOMER REQUIREMENTS

THROUGH HISTORICAL RULE-BASED KNOWLEDGE

IN A SMALL ORGANIZATION

by

Silvia Brum Preston

A Dissertation

Submitted to the Graduate School

of The University of Southern Mississippi

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

 Approved:

 Director

 Dean of the Graduate School

May 2014

iv

ACKNOWLEDGMENTS

First and foremost, I am grateful to God the Father Almighty for giving me the

patience and strength I needed to carry on this study. Without his love, I would not have

accomplished this work.

I would like to express my appreciation and to thank my advisor and committee

chair, Dr. Joe Zhang, for giving me guidance and encouragement when I needed it

 the most. You were constantly pursuing me to complete this work and your

enthusiasm was extremely helpful. Without his persistent help, this dissertation would

not have been possible.

I would also like to thank my committee members Drs. Dia Ali, Tulio Sulbaran,

Ray Seyfarth, and Bikramjit Banerjee for their support and assistance throughout this

dissertation. Their collaboration was vital for the completion of this dissertation. Without

their input and valuable feedback, this dissertation would have no significance.

My appreciation also goes to the users who tested this study. I don’t know what I

would do if it was not for their input during the case study of my dissertation. Thank you

very much for all of your help. You know who you are.

I cannot forget to put into words my deepest admiration for the staff of the School

of Computing. Especially, I would like to thank Crystal McCaffrey for her support and

encouragement to conclude this dissertation. She was a great stimulus in my journey

toward obtaining this degree.

Last but not least, I want to thank my husband, my family, and my in-laws for all

the support, incentive, and love they have given me during this time. I love you all!

v

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES ... vii

LIST OF ILLUSTRATIONS .. viii

CHAPTER

I. INTRODUCTION ... 1

Background

Statement of the Problem

Research Questions

Significance of the Study

Summary of Remaining Chapters

II. REVIEW OF RELATED LITERATURE ... 9

 Requirements Elicitation

 Requirements Improvement and Reuse

 Ontology Based Requirements

III. RESEARCH METHODOLOGY... 23

 Phases

 Methodology Details

IV. HISTORICAL RULE-BASED KNOWLEDGE 48

 Knowledge Base Implementation

 Sample Selection

 Parsing

 Code Execution

 Rules for New Requirements

V. CASE STUDY AND RESULTS ... 83

 Selected Case Study

 Experiment and Results

 Impact of Results

vi

VI. SUMMARY AND FUTURE WORK ... 105

 Summary

 Limitations and Future Work

APPENDIXES ... 112

REFERENCES .. 138

vii

LIST OF TABLES

Table

1. Related Research and Dissertation Characteristics ..20

2. Deductive Analysis Steps as they Relate to the Phases in this

Dissertation ..25

3. Definition of Each Slot and Corresponding Type in MapObject

Class ...35

4. Definition of Slots and Corresponding Type for the Apps Class37

5. HTMLObjects Class as Jess Template ..51

6. Department, Apps and MapObjects Classes as Templates52

7. Dictionary Jess Rules for Validating HTML and SQL Instances53

8. Rules Defined for Updating or Asserting Facts ...69

9. Results of First Test of 27 Requirements and No Historical

Knowledge ...86

10. Results of Second Test of 27 Requirements With Historical

Knowledge ...91

11. Requirements in the Set Mapped to the Newly Produced

Requirements ...94

12. Results of Second Test of 15 Requirements With Historical

Knowledge ...97

13. Requirements in the Set Mapped To the Newly Produced

Requirements ...99

14. The Effect of the Proposed Conceptual Model in Processing

Requirements ...102

15. Characteristics Approached in This Study ...106

viii

LIST OF ILLUSTRATIONS

Figure

1. Proposed Framework ...5

2. Capturing Requirements for a Proposed System ...9

3. Qualitative Content Analysis Process Phases ..24

4. SQLObjects Class ..29

5. FormTagsType Concept Represents the HTML Form Tags Definition32

6. MapObjects, Apps, FormTagsType, and SQLColumns Concepts and their

Relationships ..35

7. Department Class ...36

8. Relationship Between All Classes in the Ontology ...38

9. The Three Stages of the Proposed Process for Processing and Reducing

Ambiguities in Requirements ..39

10. Preliminary Customer Requirement Form ...41

11. Requirement Sentence Format for Web-Based Forms43

12. Terms in the Proposed Requirements Sentence ...44

13. The Three-Stage Process as it is Applied to the Proposed Tool for Reducing

Ambiguities in Customer Requirement ...46

14. Template Definition for SQLObjects, SQLDatatype, SQLTable, and

SQLColumns Classes...50

15. Selected Web-Based Forms to be Parsed and Incorporated into the

Knowledge-Base ..56

16. Form Tag and Input Tag for Text Input Field..57

17. SQL Create Table ..58

18. Web-Based Forms and Corresponding HTML and Database Items59

ix

19. Assert Statements for Creating Facts of SQLTable and SQLColumns

Templates ...59

20. Assert Statements for Department, Apps, Input, and MapObjects

Templates ...61

21. Jess Rules are Fired upon Jess Facts in the Jess Rule Engine63

22. (a) Output of the Execution of Assert Statements for SQLDatatype,

InputType, Category, SQLTable, and SQLColumns64

 (b) Output of the Execution of Assert Statements for Department, Apps,

Input, and MapObjects ...65

23. ColCat Fact Creation Process ..68

24. Template Definition for Temp and its Slots ..72

25. Process Flow for Handling New Requirement ..73

26. SQLColumns and Input Facts and the Values that go into each Slot upon the

Execution of the createNewEntry4Req Rule ...75

27. MapObjects Fact and Slot Values after CreateMapObjSelected2 Rule

Execution ...76

28. FuncReq Template Definition and its Slots ...77

29. Rule for the CreateReq Process ...78

30. Default Requirement Sentence for any Requirement Processed79

31. The LHS of the refineRequirement Rule ...80

32. Flow of the RHS of the refineRequirement Rule ...81

33. Planning Phase of the Step-by-Step Scripted Process85

34. Processing Phase of the Scripted Process ..86

35. Percentage of Ambiguous Terms in All Produced Sentences87

36. FuncReq Facts Created for the First Five Requirements of the

27-Requirement Set. ..88

x

37. Evaluation Phase of the Proposed Scripted Process ..89

38. Results of Refining the First Five Requirements ...90

39. Percentage of Ambiguous Terms in All Produced Sentences92

40. Percentage of Requirements Improvement with History92

41. Comparison Charts Showing the Percentage Difference between Test 1

and Test 2 Results ..95

42. Percentage of Ambiguities per Term for the Second Set of Requirements

when History is Present ...97

43. Improvement in Requirements when History is Available for the Set of

15 Requirements ..98

1

CHAPTER I

INTRODUCTION

Background

Requirement Engineering (RE) is one of the most important disciplines in the

development of software products. Successful and effective RE can improve risk

management, quality, reusability, and productivity during the software development

process. One of the main practices in RE is the elicitation process of software

requirements. According to the Software Engineering Body of Knowledge (SWEBOK),

software requirements can be defined as “a property which must be exhibited in order to

solve some problem in the real world” (Committee, 2004). Requirements basically fall

into two categories: 1) Functional requirements – describe the functions of the software

i.e., what the software will actually do and; 2) Non-functional requirements – describe the

constraints of the software or the quality requirements of the software. Software

requirements are English like terms that describe the behavior of a desired object or entity

and the functional aspects that are performed to modify the condition or the

characteristics of an object. Requirements do not describe how a system is to be

developed. They are mainly focused on the “what” and not on the “how”. Requirements

main objective is to describe the needs and problems of the customer and not the solution

or the development of the system.

The requirements that meet customer needs are often specified in the software

requirements specifications. These specifications are derived from the requirements

elicitation process. It is during the requirements elicitation process that customers

describe and specify their needs to solve a problem. Customers often do not know how to

2

express their needs of what they want implemented. It is a fact that during this early stage

of the elicitation process that customer requirements are often malformed and not

understood by the people involved in the process. Although customers understand their

business, they are not always good in expressing what their business needs are. Many

times the requirements produced fall short in quality, and in satisfying users’ needs.

Often customers do not have the knowledge to use existing methodologies for expressing

requirements. The lack of knowledge causes poor and ambiguous requirements to be

elicited. History has shown and it is a well-known fact that bad requirements lead to bad

products.

When customers are not able to address the requirements needed for the software

to be developed, developers and analysts can become beneficial in helping customers

with this process. For example, a customer may suggest searching the database for a

given student name. The developer knows searching a database may take a long time and

that additional parameters are required. With a suggestion from the developer, the

customer agrees to a change in their requirements. In order to understand customer needs

and determine the requirements for the intended project, requirements analyst or a

developer meets with the customer to elicit the requirements. The analyst’s job is to ask

the customer questions about the project and to examine the current behavior of the

proposed project. Analysts may also suggest demonstrating similar projects in order to

capture the requirements.

The focus of this dissertation is to provide a method for reducing ambiguities in

customer requirements through the use of a collection of existing knowledge about

specific requirements in a specific domain. The process of supplying similar requirements

3

of existing projects as a method for capturing customer requirements can be beneficial in

reducing ambiguities and valuable during reusability. The process can also reduce the

communication gap among all people involved in the process by improving

customer, analysts, and developers’ communication. Often, it is the intensions or

perceptions of each of these players that must be properly explored to determine

the exact constraints of the system. For successful requirements engineering, it is

important for the stakeholders to have a good bridge in communication. Each stakeholder

has his/her own but very different perception of what is needed to build an effective

product (Pfleeger & Atlee, 2006).

Statement of the Problem

For requirements to be of quality, it is necessary that the requirements be correct,

complete, precise, consistent, verifiable, modifiable, and traceable (Toval, Nicolás,

Moros, & García, 2002). Requirements that are not of good quality often cause problems

during the software development process. Interpreting requirements correctly is a major

problem in RE. Studies show that only about 42%-67% of requirements are delivered in a

given project (Jacobs, 2007). Many industries cannot afford the consequences of not

doing RE effectively and correctly, and ambiguous and inaccurate requirements can cost

a company time, money, resources, and lost opportunities (Jacobs, 2007).

Requirements are often written in natural language even though notations, e.g.,

formal notations, diagrams, tables, patterns, and pseudo-code are available (Denger,

Berry, & Kamsties, 2003). The process of eliciting software requirements involves

different techniques that analysts and engineers use to collect the requirements. In his

study, Coulin conducted and analyzed existing processes, methods, approaches and tools

4

for eliciting requirements (Coulin, 2007). However, these techniques might not be

intuitive to novice customers due to their lack of technical knowledge. Also, most

methods for eliciting requirements do not support a scripted process for recording the

activities in requirements elicitation and what needs to be done and by whom during the

process. The overall process can also be affected when there is no analyst available and a

novice developer is assigned to work with the customer. The elicitation process must be

supported by a step-by-step procedure that fully describes the role of each person

involved in the process and the steps for reducing ambiguities in requirements. The

Software Engineering Institute (SEI) at Carnegie Mellon University addresses a scripted

process, the step-by-step process for each area in the software life cycle (Humphrey,

2000, 2005). This cycle covers from the requirements, design, code, and test to

acceptance. Although the process gives insights into requirement generation and a

process for the overall software development life cycle, it lacks the details and provides

no method to help in reducing ambiguities in customer requirements.

The objective of this dissertation is to explore, implement, and analyze a rule-

based framework for reducing ambiguities in customer requirements during the elicitation

process. The proposed framework aims to help the less experienced domain expert and

novice developers to write functional requirements with fewer ambiguities. The

framework incorporates a scripted process and a conceptual method to aid the users when

obtaining requirements. The scripted process defines in details the steps for operating the

conceptual method and supported materials for reducing ambiguities. The conceptual

method incorporates a collection of similar requirements of previously implemented

projects in a specific domain.

5

Research Questions

The overall goal of this study is to demonstrate that requirements can be improved

through reducing ambiguities with the use of a rule-based framework while also

improving the communication between novice customers, novice developers, and expert

personnel. This is specifically accomplished when novice customers and personnel work

together in the process of acquiring the requirements.

The proposed framework, as shown in Figure 1, supports an ontology

representing the requirements for a specific domain and a knowledge-base containing

requirements instances of existing application projects. How the framework is used and

how to incorporate its results is described in the proposed scripted process.

Figure 1. Proposed Framework. A framework supported by a step-by-step scripted

process. Existing projects are parsed through a Java parser. A rule-based system using the

Jess Rules language utilizes the parsed information for its requirement ontology and

domain knowledge.

The technique proposed in this study supports both a scripted process and a

conceptual method that supports ambiguities reduction in new customer requirements and

the reusability of requirements while improving the communication and understanding of

the people involved in the process. The use of an ontology provides specification of

6

conceptualization of the specific domain of Web-based forms. The ontology developed in

this study allows the modeling representation of the concepts, attributes, and relations

among HTML form concepts and SQL table concepts. The ontology includes information

about each concept and allows for reasoning rules to operate on the knowledge

representation. During the requirements elicitation process, an inexperienced developer is

able to use the ontology as a guide for reducing ambiguities in customer requirements

before the formal requirements specifications can be stated. In order to accomplish these

objectives, the following research questions were established:

Research question 1. How can ambiguities be reduced from customer

requirements and converted to a clearer set of functional requirements that is understood

by all stakeholders?

Research question 2. What can be done to reduce the cognitive distance between

the following two groups: (1) the inexperienced and experienced developers and (2) the

customers and developers when it comes to eliciting functional requirements?

Significance of the Study

Although many requirement elicitation methods are present in the literature, not

all processes fit the specific needs of a customer. Methods are often used in conjunction

with other methods to better describe customer needs. Customers are the people who

often write the requirements of what they want built. The requirements written are

specified in terms that might not always be understood by the developers. Requirement

analysts are often the ones to represent the customer when writing requirements. When

analysts are not present, the customer interacts directly with the developer. This

7

interaction between customer and developer can become a problem if the developer

and/or the customer are beginners in eliciting requirements.

In this dissertation, the proposed process aims to address the issues in customer

requirements and the issues in the interaction between developers and between customer

and developers. The conceptual model seeks to reduce ambiguities in customer

requirements during the elicitation of requirements. The step-by-step scripted process

strives for directing developers on how to utilize the conceptual model for reducing

ambiguities in customer requirements. The significance of this study will be

demonstrated through a case study, and the results of this study will have a direct impact

on the structure of requirements for Web-based forms. The results of this study will also

have an effect on the communication between all people involved in the process. The

idea is to bridge the communication gap between all persons involved by providing

knowledge about the domain. Both customer and developers will benefit from the results

of the proposed method when eliciting requirements and when reducing ambiguities in

those requirements. Customers and developers will become more knowledgeable

about the domain under discussion as they apply the proposed concept and scripted

process to new requirements.

Summary of Remaining Chapters

In Chapter I, the problem was introduced. Also introduced were statement of the

problem, research questions, and significance of the study.

Chapter II provides a review of the current literature related to the study

presented here. It mainly discusses two areas that motivated most of this work,

8

requirements improvement and reuse and the use of ontology and domain knowledge

for processing requirements.

Chapter III provides the details of the methodology utilized in this research. In

this section, the details of each phase of the methodology and the proposed ontology are

explained. The step-by-step process for aiding in the proposed conceptual model is also

described in this section.

Chapter IV covers the creation of the rules for populating the knowledge-base.

This section also gives details about the selected sample and the additional rules for

processing new requirements.

In Chapter V, a case study is developed, and the test results are presented. This

section provides evidence that customer requirements ambiguities can be reduced and

better requirements can be produced through the use of a historical knowledge-base

and a scripted process.

Chapter VI provides a summary of the contribution of this research. It also

provides the limitations of this study and suggestions for future research.

Four appendixes are provided and contain detailed information that

supports this research.

9

CHAPTER II

REVIEW OF RELATED LITERATURE

Requirements Elicitation

The process for obtaining the requirements for a projected system involves

requirements to be retrieved and detailed in the requirements specification document. The

retrieval process is an interactive process that involves customers, analysts, developers,

and anyone else familiar with the system to be implemented. These are known as the

stakeholders. Each stakeholder has a contribution in the process for capturing

requirements for a new system. Once requirements are elicited, as shown in Figure 2, the

requirements are analyzed, specified, validated, and finally detailed in the Software

Requirements Specification (SRS) document. This document represents a contract

between customers and developers with specifics about the system to be built.

Figure 2. Capturing Requirements for a Proposed System (Pfleeger & Atlee, 2006).

Collecting the user requirements is the main step in capturing requirements from all

stakeholders involved. When requirements are not well understood, the analysis process

takes place. It is in this process that requirements are analyzed and modeled. Ambiguities

in requirements may require several meetings among developer, analysts, and customers

10

in order to better comprehend the requirement. These meetings require another step

in the elicitation process. When customer requirements are clear and well understood,

customer requirements for the proposed system or application is documented.

Each requirement is validated to make sure it meets a customer’s needs before the

final specification is fulfilled.

Different methods are used during the elicitation process to retrieve and

document customer needs. The method selection affects the development of requirements

due to the fact that a single method may not be appropriate for retrieving users’ needs.

A comparison of different techniques for requirements elicitation was elaborated. In

the presented study, Zhang compared several methods for requirements development

and recognized the “common factors that affect the method selection” (Zhang, 2007, p.

225). Zhang also discussed common guidelines for selecting a method for requirements

elicitation “on which engineers can gain more experience on method selection in

practice” (Zhang, 2007, p. 238).

Another study on existing processes, methods, and approaches on the state of the

art of requirements elicitation was conducted. In his study, Coulin (Coulin, 2007)

performed a paramount study on the different techniques in requirements elicitation.

Using this study, Coulin proposed a tool and a procedure for requirements elicitation

in a workshop with the collaboration of customers and analysts. The suggested

approach takes into consideration novice users, and through a combination of processes

and methods, users and analysts come together to elicit requirements. Though the

proposed approach shows it can be implemented in a situational method, the

approach lacks guidance on how to reduce ambiguous requirements once the

11

workshop is completed and requirements are obtained. Also, the study does not give

details on how the requirements can be stored and reused for the elicitation of

requirements of future systems (Coulin, 2007).

During the requirements elicitation process customers, analysts, and developers

perceptions must be taken into consideration. Often customers do not know how to

interpret what they want without causing requirements to be misunderstood by the

developers. In addition, multiple developers working on a single project have different

perspectives of what the requirement entails. The impact of these subjects in

requirements elicitation have been studied and evaluated in an experimental research

(Arikoglu, 2011). Arikoglu (2011) concludes an experiment using two groups: users and

“design actors” (p. 25). The study proposed uses scenario based design and persona

approach to effectively evaluate the experiment. The experimental research is evaluated

in order to understand the needs of the users and to guarantee there is understanding

between the actors involved in the design of requirements (Arikoglu, 2011). The results

of Arikoglu’s investigation demonstrated that understanding users’ needs is an important

factor in requirements elicitation.

Requirements Improvement and Reuse

Currently in the literature there is a wealth of studies that focuses on the

improvement of requirements specifications through a variety of methodology. It is

known that requirements specification is the foundation for the whole software

development process. It is essential that requirements be of quality and satisfy users’

needs. For requirements of quality, it is necessary that the requirements be correct,

complete, precise, consistent, verifiable, modifiable, and traceable (Toval et al., 2002).

12

Denger, Dörr, and Kamsties performed a survey on different studies that

implemented methods and techniques in identifying problems in requirements

(Denger, Dörr, & Kamsties, 2001). These studies provided guidelines on how to use

natural language and sentence patterns processing for requirements written in natural

language. The authors of this survey divided their focus into two categories. The first

category describes specific language patterns for modeling requirements written in

natural language (Lopez, Moreno, & Juristo, 2000; Ohnishi, 1994; Rolland & Proix,

1992). The second category characterizes the focus into linguistic rules and analytical

keywords (Fabrini, Fusani, Gnesi, & Lami, 2000; Wilson, n.d.). Although these

studies offer guidelines for improving and processing requirements written in natural

language, there are some restrictions that need to be taken into consideration. For

example, many of these studies offer no guidance in the correction of deficiencies

found in requirements. In addition, these studies offer little to no support for the

reusability of existing requirements.

In a more recent study (Kamalrudin, Hosking, & Grundy, 2011) on improving the

quality of requirements, Essential Use Cases (EUCs) interaction patterns are used to link

natural language requirements elements to each corresponding abstraction pattern. The

tool provides a library of acceptable EUC patterns for matching against EUCs in order to

determine if the use case model is correct, complete, and consistent. While this approach

shows improvement in requirements written in natural language, the presented process

does not fit in the work presented in this dissertation. The idea of using EUCs interaction

patterns may be a suitable procedure for the projected set of requirements produced from

the study employed in this dissertation.

13

When it comes to reusing requirements, different studies show methods for

reusing requirements in different ways. In one study about reusability of software the

authors described software reuse to be the only practical approach that can produce the

productivity increase and the quality that the software industry needs (Mili, Mili, & Mili,

1995). The advantages of reusability are better when the abstraction level is raised and

not only through requirement reusability, but also through designs and specifications

reusability (Cybulsky & Reed, 2000). There are several approaches to requirements

reusability, but the most successful method of requirements reusability should address the

three major approaches: text processing, knowledge management and process

improvement (Cybulsky & Reed, 2000).

One prominent way to address requirements knowledge reuse is to use pattern-

based requirements (Franch, Palomares, Quer, Renault, & Tudor, 2010). As previous

studies suggest, patterns can be employed to process requirements written in natural

language during the analysis stage of software requirements. Barreto, Benitti, and Cezario

(Benitti & da Silva, 2013) proposed a requirement reuse approach for eliciting and

specifying requirements. The proposed approach utilized patterns catalogs for structuring

knowledge for requirement writing while allowing traceability for the identification of

new requirements from reused requirements. In the process, a pattern from the catalog is

chosen for each system requirement and added to the requirements specification

document. It has been suggested that without the use of a pattern, there is no reusability.

The studies presented so far seem too general or too specific in scope and are particularly

devoted to the requirements specified in the Software Requirements Specification (SRS).

14

This dissertation focuses on the actual customer requirement during the initial phase of

requirements elicitation before the specification document is drawn.

Another way for reusing software takes into consideration the cognitive distance

between all stakeholders. In Krueger (1992), the author produced a major survey of the

software reuse literature where various approaches to software reuse was described.

Krueger evaluated the effectiveness of reuse techniques in terms of cognitive distance.

He determined the most effective technique in software reuse was automation of the

abstractions in a reuse technique to an executable implementation (Krueger, 1992).

According to him, for an efficient technique of software reuse there must be a common

understanding “between the initial concept of a system and its final executable

implementation” (Krueger, 1992, p. 136). This statement can also be applied to

requirement elicitation and reuse. The efficiency in requirements elicitation and reuse is

dependent on the common understanding between the initial process of eliciting the

requirements and the implementation of the requirements specification document, which

is also known as the SRS (Software Requirements Specifications).

Comparable to requirement reuse, other approaches encompass the use of

methodologies for recycling requirements by analyzing and processing existing

requirements of similar systems (Heumesser & Houdek, 2003; Knethen, Paech,

Kiedaisch, & Houdek, 2002). One approach includes the construction of a tool for

analysts to define requirements of similar systems (Kitazawa, Osada, Kamijo, & Kaiya,

2008). The tool in this study provides a list of requirements of existing systems allowing

analysts to choose candidates of constraints in order to build a skeleton of requirements

specification for a new system. While the tool provides a list of existing requirements to

15

be chosen, there is no reasoning about the data. Analysts are assumed to be able to define

requirements completely, correctly, and efficiently.

In another study related to reusability, Di Stefano and Menzies (2002) performed

three machine learner’s tests on a reusable data set (Di Stefano & Menzies, 2002). The

goal in this study was to improve software reusability programs by using a combination

of learning techniques. The data set was tested using the following learners: association

rule, decision tree induction, classification rule, and treatment learners. The authors

concluded that the major factor for success is “Human Factors” (Di Stefano & Menzies,

2002, p. 249). In addition, the authors found that multiple learners are necessary to

identify necessary patterns in their data sets.

Evidently the reusability of requirements has an enormous impact on improving

requirements in addition to leading to a better understanding of their details. The overall

process of requirements involves a large amount of work by all parties

involved from the elicitation of the constraints of the system all the way to producing the

requirements specification document. The process of reusing requirements is beneficial

to processing requirements which allows for the reuse of models, code, and other

artifacts while reducing development time and improving the quality of the

requirements (Benitti & da Silva, 2013).

Ontology Based Requirements

In the literature, there are studies that propose the use of ontology for the

elicitation, analysis, specification and validation of requirements. The use of ontology has

been especially useful during the requirements elicitation process. Domain ontologies are

often built to represent knowledge about certain domains. In (Omoronyia, Sindre, &

16

Stålhane, 2010) the authors experiment the construction of a domain ontology for

guiding users during requirements elicitation. Domain ontologies are built as per

“existing technical standards which the specified requirements need to be compliant

with” (Omoronyia et al., 2010, p. 189). The study presents an organized method for

building domain ontology through text extraction in technical documents and the

semantic process in the domain of transport. The method proposed by the authors

improves the efficiency of building ontologies via technical documents, but

experiments show effectiveness problems in addition to lacking techniques for

reducing ambiguities in the proposed requirements.

The applicability of domain knowledge for requirements elicitation has also been

studied. In (Kaiya & Saeki, 2006), requirements are elicited from requirements

specifications written in natural language. The ontology built in this study represents a set

of new requirements as concepts and relationships that are mapped through rules of

inference. The technique proposed provides quality estimation for requirements, but the

system lacks keyword matching, which could improve the meaning of requirements

written in natural language.

A tool for converting requirements in UML model to ontology is described in

Kroha, Janetzko, and Labra (2009). The proposed tool TESSI aids the analyst to write

UML model for the requirements in addition to improving and reducing confusions in the

requirements. The tool converts the UML model into the corresponding ontology model

“that can be verified and compared with the domain ontology model to find

contradictions” (Kroha et al., 2009, p. 34). The presented work and tool assert

requirement specifications can be improved using ontologies by transforming the

17

structural parts of UML models into ontologies to find “contradictions and

inconsistencies in UML models” (Kroha et al., 2009, p. 36). Although the use

of ontology has been presented to be useful in the area of supporting consistency in

requirements specifications modeled in the UML model, the study proposed in

this dissertation is concentrated on the initial set of functional requirements

during the elicitation phase of RE.

The use of a knowledge-base allows for requirements reusability. It is a known

fact that reusable requirements improve significantly the productivity and the quality of

the final software product (Cybulsky & Reed, 2000). In one study, Zong-yong, Zhi-xue,

Ying-ying, Yue, and Ying demonstrate the use of multiple ontologies as being essential

in the elicitation and reusability of requirements (Zong-yong, Zhi-xue, Ying-ying, Yue, &

Ying, 2007). The multiple ontology proposed includes a task ontology which combined

with the domain knowledge helps obtain requirements that are relevant to the domain.

These ontologies used together have the potential to allow requirements reuse. These

approaches have so far been restricted by complicated frameworks that have limited

scopes and the inability to coordinate and cooperate with other approaches.

In a different study, Dzung and Ohnishi (2009) discuss an ontology-based

requirements checking tool (Dzung & Ohnishi, 2009). This tool maps initial requirements

to functions in a domain ontology as input in a reasoning cycle. This cycle goes on until

no new mandatory, redundant, or inconsistent requirement is found. Requirements

sentences are parsed into verbs and nouns and then compared to a node in the ontology.

Rules are used to reason about requirements using ontology, and if there is an error, the

rules determine if the requirement should be added or not added to the list. Questions are

18

generated to customers when one of the issues is found in the requirements. Although this

is a good approach, the tool requires experienced users. It is assumed the user has

experience in requirements elicitation. The authors provide no further details about the

possibility of reusing the ontology. Also, the reasoning about requirements is based on

new requirements. Historical requirements are not mentioned in the process. Finally, the

questions generated to the customer are not specific as they relate to the data.

Another study in the area of ontology is proposed for describing business

requirements and software attributes in terms of ontologies (Kluge, Hering, Belter, &

Franczyk, 2008). In this study, ontologies are used in a semi-automated reasoning about

the suitability of a certain software product. The approach proposed in this study

does not provide algorithms to support the matching between the ontologies. The

ontologies are built dynamically as new business requirements are specified. The

authors profess that as of yet, no prior research has been done in the area of developing

ontologies for existing software applications.

Most studies presented so far lack the presence of a guided process for the

creation of an ontology. Another issue, is the lack of instructions about how to use the

ontology to build the knowledge representation of the domain under discussion when

defining requirements. Novice developers and customers often do not have the expertise

of a requirements analyst to clearly define the requirements for a given application. At

times, even analysts are in fact poorly trained or are not present in a limited budget

organization. To address the problem of the absence of a guided process during

requirements definition, Souag (2012) proposes a guided process for eliciting and

defining requirements in the security domain. Once the requirements are elicited, the

19

requirements are analyzed through the domain ontology for mapping and reasoning about

the requirements. Although the study presented is focused on requirements for the

domain of security, only a brief introduction is given on how the ontologies were built,

and there are no results on the efficiency of the proposed work. The author suggests

additional work is being explored to validate the results of the case.

In summary, the studies found in the related literature presented different

approaches to requirements elicitation and processing. Each proposed work was short of

one or more important factors characterized in this dissertation. The proposed work in

this dissertation encompasses five characteristics: user experience, the definition of a

static ontology for a specific domain, use a rule-based language for reasoning about

knowledge to allow reuse of existing requirements, implement a step-by-step procedure

for requirements elicitation process for both novice and expert domain users and analysts

and finally, extend a historical knowledge-base for requirements through keyword

matching. Table 1 summarizes some of the related work described in this section based

on the characteristics of this dissertation.

20

Table 1

Related research and dissertation characteristics

 User

Experience
Ontology

Rules for

Reasoning

about

Knowledge

Scripted

Process

and

supported

forms

Historical

Knowledge

Base
Related

Literature

Kaiya and

Saeki (2006)

Analysts do

not have

domain

knowledge

Concepts and

relationships

domain

ontology;

lightweight

semantic

processing

Rules of

inference for

semantic

processing

Procedure for improving and

extending requirements; no

related historical knowledge

was presented

Zong-yong

et al. (2007)

Experienced

developers

and analysts

Multiple

ontology

definition for

requirement

processing,

allow

reusability of

requirements

Scripted process exists for defining the ontologies

and how to use the proposed ontologies during

requirements elicitation; there are no rules defined

and no related historical knowledge was presented

Kluge et al.

(2008)

Experienced

business

requirements

analysts

Rudimentary

matching

between

business

requirements

and software

functionality

ontologies

Semi-automated reasoning; no supported process

was presented and no related historical knowledge

Kitazawa et

al. (2008)

Experienced

analysts

Tool contains a mode for each step in the process;

no ontology is proposed and no rules for reasoning

about knowledge is presented

Tool contains

functions of

existing similar

systems;

Selection of

common and

related

requirements of

existing

systems for

new system

21

Table 1 (continued).

Related

Literature

User

Experience
Ontology

Rules for

Reasoning

about

Knowledge

Scripted

Process and

supported

forms

Historical

Knowledge

Base

Dzung and

Ohnishi (2009)

User has

experience in

requirements

elicitation

Ontology

includes

inheritance

and

aggregation

relationships

between

verbs and

nouns

(semantic

processing)

Reasoning about requirements is based on new

requirements; no supported process was presented

and no related historical knowledge

Kroha and

Labra

(2009)

Experienced

analysts

Ontology-

based

component

for

requirements

specification;

converts

UML models

into

ontologies

Jess rules to check consistency; Pellet reasoner to

check class hierarchy; no supported process was

presented and no related historical knowledge

Omoronyia,

Sindre, &

Stålhane

(2010)

Domain experts

to describe and

document

knowledge

Domain

ontology

based on

technical

documents;

built using

NL parsers

Rule-based approach using NLP techniques for

capturing initial domain ontology from existing text;

no available process and no historical knowledge

A. Souag

(2012)

Both novice

and

experienced

analysts

Security

ontology for

processing

textual

security

requirements

and

corresponding

models

Rules for

reasoning

about

knowledge

of security

requirements

Guided approach for supporting the

development of requirements adapted

to the definition of security

requirements; no related historical

knowledge was presented

22

Table 1 (continued).

Related

Literature

User

Experience
Ontology

Rules for

Reasoning

about

Knowledge

Scripted

Process and

supported

forms

Historical

Knowledge

Base

This

dissertation

Novice

developer,

inexperienced

customer, no

analyst

available;

limited budget

organization

Ontology

based on

requirement

s definition

for Web-

based form;

conceptualiz

ation of

HTML form

elements

and SQL

table

definition

Jess rules for

reasoning

about

knowledge,

keyword

matching, and

syntax

processing

Step-by-step

scripted

process with

supported

forms for

aiding in

processing

requirements

Historical

knowledge

related to Web-

based form

requirements is

proposed for

improving

requirement

definition and for

allowing

unambiguous

formation of

requirement

sentences

As presented in Table 1, each related work listed on the far left column lacks one

or more characteristics presented in this dissertation as shown in the first row in bold.

The last row in Table 1 summarizes the work presented in this dissertation based on

each aspect named.

23

CHAPTER III

RESEARCH METHODOLOGY

This research purpose is to describe and explore the use of ontology and

reasoning to create a historical knowledge-base of existing application requirements. In

order to achieve the desired results of this study, there was a need to develop a research

methodology. According to Paul Leedy and Jeanne Ormrod, the methodology

implemented in this study falls in the “Qualitative Case Study” research design category

(Leedy & Ormrod, 2009). In a case study research methodology, “a particular individual,

program, or event is studied in depth for a defined period of time” (Leedy & Ormrod,

2009, p. 137). In the case of this research, the construction of an ontology and historical

knowledge-base for reducing ambiguities in customer requirements and possible

reusability were produced, and a scripted process was provided.

In a case study scenario, it is possible to apply qualitative content analysis as “a

method of examination of data material” (Kohlbacher, 2006, p. 1). Kohlbacher explores

and argues “that qualitative content analysis could prove to be a useful tool for analyzing

data material in case study research” (Kohlbacher, 2006, p. 18). Mayring defines content

analysis as “an approach of empirical, methodological controlled analysis of texts within

their context of communication, following content analytical rules and step-by-step

models, without rash quantification” (Mayring, 2000, p. 1). When applying qualitative

content analysis to analyze the data in a case study, there are basic steps that must be

completed, as summarized in Figure 3.

24

Figure 3. Qualitative Content Analysis Process Phases. The phases of the process for the

deductive approach include: preparation, organizing, and reporting (Mayring, 2008).

The process for analyzing content has two approaches: inductive approach and

deductive approach. The inductive approach is recommended when the purpose of the

study is new and there is not enough prior knowledge about the event being studied. In a

deductive approach, the analysis is based on existing knowledge, and the focus

of the study is on concept testing (Mayring, 2008). The methodology used in this

dissertation meets the requirements of a deductive approach when it comes to applying

content analysis methodology.

25

Phases

The focus of this dissertation is to analyze prior knowledge in requirements

elicitation techniques and to test the concept of using ontology and a step-by-step

procedure to reduce ambiguities in customer requirements. The methodology used in this

research comprises of three phases summarized as follow:

Phase 1: Implementation of domain ontology and scripted process

Phase 2: Construction of knowledge-base

Phase 3: Testing of the proposed concept is conducted using a case study

Table 2 shows the steps in deductive analysis and the activities of this dissertation

phases as they relate to the deductive analysis approach shown in Figure 3. Each step

in the content analysis corresponds to an accomplished phase in this dissertation. This

relationship between the steps and the phases of the presented study was necessary

in order to achieve the goals of this dissertation. The details of each phase of this

dissertation were established.

Table 2

Deductive Analysis Step (shown on the left side of the table) as they Relate to the Phases

in this Dissertation (shown on the right side of the table)

Deductive Analysis Steps Tasks

Preparation Phase

1. Selecting the unit(s) of analysis

2. Making sense of the data and whole

(Who is involved? Where is this

happening? When did it happen? What is

happening? Why?)

Requirements Engineering, Ontology, Reasoning Rules,

HTML forms, SQL tables

Determine the people and environment involved in the study:

customers and software developers

Analyze the domain and its structure: HTML forms and SQL

table concepts (Phase 1)

Analyze and select a sample for the implementation of the

knowledge-base (Phase 2)

26

Table 2 (continued).

Deductive Analysis Steps Accomplished in this Dissertation

Organizing Phase

1. Developing structured ontology

2. Creating knowledge-base and reasoning

rules

3. Test and compare results using case study

HTML and SQL elements are parsed, structured and

categorized to form the ontology; construction of the step-by-

step procedure for handling conceptual system (Phase 1).

Historical knowledge-base created in Jess rules using

requirements of existing applications chosen for the sample

(Phase 2).

Test requirements ambiguities reduction (Phase 3).

Reporting the analyzing process and

results

1. Model conceptual system

Selection of a concrete case study for the conceptual system.

Report results of reduced ambiguities in requirements through

the use of a historical knowledge-base and the step-by-step

procedure (Phase 3).

Methodology Details

The study conducted in this dissertation is focused in the area of requirements

elicitation and analysis of the Requirement Engineering field. The implementation of a

framework for reducing ambiguities in customer requirements encompasses an ontology,

a knowledge-base, and a scripted process. The ontology comprises of classes representing

Web-based form domain. The knowledge-base holds knowledge about instances of

elements in a Web-based form. Each element in a Web-based form represents a

requirement in the customer requirement list. The proposed scripted process aims in

guiding the novice developers in operating the knowledge-base in eliciting and reducing

ambiguities in requirements. The basic idea of the framework is to establish a practice

that represents Web-based form requirements and the usability of these requirements

through the practice of a scripted process. The supported structure allows for novice

developers to process, analyze, and elicit requirements using a pool of knowledge about

specific requirements for Web-based forms. Working together with the customer and

making use of the scripted process, the novice developer, and the assistance of an expert

27

developer, are able to inspect the suggested customer requirements and determine the

requirements that are ambiguous and need refinement.

A summary of the methodological steps have been presented. The detailed

description of each phase of the methodology is described.

Phase 1: Implementation of Domain Ontology and Scripted Process

The first step towards the investigation of a framework for reducing ambiguities

in customer requirements is the process of learning about the knowledge domain and

analyzing the data of the case being studied. From experience in the software

development industry, it is a well-known fact that customer requirements have often been

the target for ambiguities. The common ambiguity between customer requirements for

different Web-based applications motivated the creation of an ontology to represent the

knowledge about the domain for which the requirements represent. The knowledge

domain under investigation encompasses customer requirements for the development of

Web-based forms and applications. Research in the area of ontology was conducted, and

no ontology has been found representing requirements for Web-based forms and database

table structures as the study presented in this dissertation.

The motivation for creating an ontology is based on the fact that an ontology

allows sharing of “common understanding of the structure of information among people

and software agents” and “enables reuse of domain knowledge” (Noy & McGuiness,

2001, p. 1). In order to build the ontology, there was a need to understand the

requirements. Requirements submitted to the software development unit being

investigated are mostly for the creation of Web-based forms. Web-based forms are

created using HTML tags and supported by a table structure or many tables in a database.

28

The ontology created establishes the foundation of domain knowledge for HTML tags

and SQL table structures. The ontology was built in the Protégé ontology editor.

Protégé is a knowledge modeling tool that allows for the creation of classes, slots, facets,

and instances. The detailed description of Protégé is not the focus of this dissertation and

can be found in a prior study (Noy, Fergerson, Musen, & Informatics, 2000). The

domain ontology establishes the concepts of HTML and SQL tables and the

relationships among these concepts.

The ontology contains properties and attributes of applications that contain only

HTML items and also the properties and attributes of applications that contain both

HTML items and SQL table items. An important part of Web-based applications

includes the database in which an application uses to hold data entered in the form.

As mentioned earlier, not all Web-based applications have a database for data storage. In

this study, two types of Web-based applications are considered: 1) Applications that

have a database backend, and 2) Applications that do not have a database backend.

SQL Class

SQLObjects. The tables that are part of applications are broken down in parts for

requirement representation. Each column in a table represents a requirement and may or

may not represent a field in a form. The following are the elements considered in a table

for representing a requirement: table name, column name, column data type, and column

size. The data type of a column represents by one of the following types: varchar2, char,

date, number, integer, decimal, and smallint. As database tables of future applications are

parsed, additional data types may be added to the knowledge-base. Figure 4 shows the

SQLObjects class as it is related to SQL tables.

29

Figure 4. SQLObjects Class. The class representing the SQL table structure.

The SQL table properties are represented by the SQLObjects class and its children, the

SQLColumns, SQLTable, and SQLDatatype subclasses. These classes represent the

structure of a table in a database. In this study, the focus was on Oracle and MySQL

databases. A table in a database has a name and one or more columns. Each column in a

table has a type and a size. Tables and columns in a database contain other properties

that are beyond the scope of this study. Only elements that represent data of an

application were considered.

Each class in the SQL table concept contains slots or fields and a type. Slots and

fields are used interchangeably. The type of the slot was represented by the data type

available in the ontology editor. In case of the Protégé ontology editor, the types available

are: Any, Boolean, Class, Float, Instance, Integer, String, and Symbol. Due to the scope

of this study, not all types are discussed.

SQLDatatype. The SQLDatatype class contains a single slot of type Symbol. In a

frame based ontology, such as one created using the Protégé ontology editor, the type

30

Symbol refers to a list of constants a slot can have. In this case, the slot “datatype_name”

can only have one of the following symbol constants: varchar2, char, date, number,

integer, decimal, smallint, and timestamp. These constants values are based on the data

type allowed when defining the columns of a table. Other data types are available, but

these are the most used.

SQLTable. The SQLTable class contains one field. The “table_name” field was of

type String and holds the name of the SQL table.

SQLColumns. The SQLColumns class contains several slots. Each slot represents

the properties of a column in a SQL table. The slot “colType” represents the type of the

column. It was an instance of the SQLDatatype class. The “size” slot is of type Integer

and represents the size of the column. Not all types have a size and therefore, a default

value of -1 was used. The slot “colName” is of type String and represents the name of a

column. The “table_column_name” slot represents the name of the table. This slot is an

instance of the SQLTable class and may contain one or more tables. If the table does not

exist, this field is left blank. The “description” slot is of type String. It represents a

description of what this column represents in an application. Finally, the “weight” slot is

of type Integer and represents the weight of the column. The weight of the column is

increased as often as it is chosen to be used in new applications.

HTML Class. Web-based applications contain HTML fields for data entry. Each field

may or may not represent a field in a database table. Some applications store data in a

database, and some retrieve the information entered via email.

For the HTML items, only items that are part of the form are relevant. This

means, only those HTML items that are between the <form> and </form> tags of an

31

HTML page are considered. Furthermore, form elements that do not require user input

are not to be considered. However, for the purpose of building the ontology, all

elements in a form are included. These elements include the <label>, <button>,

<fieldset>, and <legend> tags. The <label> tag is for defining a label for an input

element with the <input /> tag. The <button> tag represents a button that can have text

and image, but in a form it is preferred to use the <input> tag for buttons that require

user input. The <fieldset> tag is for organizing similar elements in a form. The <legend>

tag is for defining the caption for a fieldset element. As for the elements that are part

of the form, the following items are considered: <input />, <textarea>, <select>,

<optgroup>, and <option>.

HTMLObjects. The HTMLObjects class is another important class in the ontology.

This class contains two subclasses, the InputType class and the FormTagsType class. The

InputType class contains a single slot called “type”, which is of type Symbol. The

constant values of “type” slot are: button, checkbox, file, hidden, image, password, radio,

reset, submit, and text. The InputType class was used as an instance type for a slot in the

Input subclass of FormTagsType. The FormTagsType class contains three slots:

“hasSQLObjects”, “description”, and “inApp”, which are all of type String. These three

slots are common properties of subclasses of the FormTagsType class.

The description of each subclass and corresponding slots, as shown in Figure 5,

were derived from the HTML form tags definition as characterized on the w3schools

website (“HTML Forms and Input,” n.d.).

32

Figure 5. FormTagsType Concept Represents the HTML Form Tags Definition.

The subclasses of the FormTagsType class are described as follow.

Textarea. The Textarea class represents the textarea tag in a HTML form. In a

HTML form this tag defines a multi-line text input control. This class contains 8 slots:

“disabled” of type String, “classname” of type String, “rows” of type Integer, “readonly”

of type String, “cols” of type Integer, “name” of type String, “unique_id” of type String,

and “accesskey” of type String.

Select. The Select class represents the select tag in a HTML form. It is basically a

dropdown list with options. This class contains 11 slots: “disabled” of type String,

“classname” of type String, “tabindex” of type String, “size” of type Integer, “dir” of type

String, “title” of type String, “style” of type String, “name” of type String, “multiple” of

type String”, “lang” of type String, and “unique_id” of type String.

33

Optgroup. The Optgroup class represents an optgroup tag in a select field. When

a select field has more than 10 items, it is recommended that related options in a select

list be grouped together using the optgroup tag. This class contains 2 slots: “label” of

type String, and “hasSelect”, an instance of the Select class. An Optgroup instance can

only exist if there is a Select instance associated with it.

Option. The Option class represents the option tag in a select field in a HTML

form. An instance of Option represents an option in a select list. This class contains 6

slots: “disabled” of type String, “label” of type String, “value” of type String,

“hasSelect”, an instance of the Select class, “hasOptgroup”, an instance of the Optgroup

class, and “selected” of type String. An Option instance must be part of a Select instance.

An Option instance may or may not have an Optgroup object.

Input. The Input class represents the input tag in a HTML form. In a HTML form,

the input filed can vary and be of different types. This class contains 12 slots: “src” of

type String, “disabled” of type String, “value” of type String, “alt” of type String, “size”

of type Integer, “maxlength” of type Integer, “readonly” of type String, “input_name” of

type String, “accept” of type String, “is_of_type”, an instance of InputType class,

“checked” of type String, and “unique_id” of type String.

Label. The Label class represents the label tag in a HTML form. It defines a label

for an Input instance object. This class contains the “for” slot of type String.

Fieldset. The Fieldset class represents the fieldset tag in a HTML form. It is used

to group related fields in a form by surrounding the fields with a border. This class has 5

slots in which all are of type String: “classname”, “dir”, “title”, “lang”, and “unique_id”.

34

Button. The Button class represents the button tag in a HTML form. This is just a

push button on a form which can have text and image. The button created with the Input

class is recommended for form processing. This class contains 4 slots: “disabled” of type

String, “value” of type Integer, “button_type” of type Symbol, and “name” of type

String. The “button_type” slot can only contain one of the following constant values:

button, reset, and submit.

Legend. The Legend class represents the legend tag in a HTML form. An instance

of this class is used as a caption of an instance of the Fieldset class. This class contains 7

slots in which all are of type String: “classname”, “dir”, “title”, “style”, “lang”,

“unique_id”, and “access_key”.

Due to the scope of this study, the Label, Fieldset, Button, and Legend classes are

not implemented in details in the case study scenarios. These classes are discussed here

for future research purposes.

Complementary Classes

MapObjects. The MapObjects class is the mapping class which associates SQL

objects and HTML objects that are part of an application. The conceptual graph,

as shown in Figure 6 presents the relationship between the MapObjects, Apps,

FormTagsType and SQLColumns.

35

Figure 6. MapObjects, Apps, FormTagsType, and SQLColumns Concepts and their

Relationships. Instances of SQLColumns objects are linked to MapObjects and

FormTagsType instances.

The MapObjects class is applied to link HTML objects and SQL Objects. The definition

of each slot and corresponding type of the MapObjects slots are shown in Table 3.

Table 3

Definition of Each Slot and Corresponding Type in MapObject Class

Slot Type Definition

value String

hasSQLObjects Instance of

SQLColumns

This object is a column

htmlFactID Integer The id of the corresponding HTML object

colFact Integer The id of the corresponding column object

isPartOf Instance of Apps The name of the application it is part of

hasHTMLObj Instance of

FormsTagsType

This object has a HTML element

36

Table 3 (continued).

Slot Type Definition

objName String This object’s name. If this object has a column and a HTML

object, then the name is the same. If this object has a column

only, then the name will match the column name. If this

object has only an HTML object, then the name will match

the label of the field on the form.

htmlName String This is the same name as the name of the HTML object

mapName String If object does not have HTML, it represents the name of a

SQL column, otherwise, it represents the unique ID of the

HTML instance

Each slot in the MapObject class has a type, and it may or may not be associated

to a SQL object it may or may not be associated to a HTML object. The slots

“hasSQLObjects” and “colFact” contains the name of the corresponding SQL column

and the fact ID for that column, respectively if the instance of this MapObject has an

equivalent SQL column. The “htmlFactID” and “hasHTMLObj” slots have the

corresponding HTML fact ID and HTML object type, respectively if this MapObject has

an equivalent HTML instance. The “isPartOf” slot refers to the name of the application

being defined. The “objName” slot contains the name of the requirement being defined.

The “htmlName” slot refers to the name of the HTML object. The “mapName” slot

represents the name of the corresponding column or the unique ID of the HTML instance.

Apps. The Apps class represents the applications that have been developed and

each corresponding form object. As shown in Table 4, each slot in the Apps class is

associated to another slot in another class in the ontology. The “hasPart” slot refers to the

“isPartOf” slot in the MapObject class. The “hasSQLTables” slot refers the “table_name”

slot in the SQLTables class. The “appName” slot contains the name of the application the

requirements represent. Finally, the “hasDepartment” slot refers to the “deptName” slot

in the Department class.

37

Table 4

Definition of Slots and Corresponding Type for the Apps Class

Slot Type Definition

hasPart Instance of

MapObjects

The MapObject object in this application

hasSQLTables Instance of

SQLTable

The SQL tables in this application

appname String The name/title of this application

hasDepartment Instance of

Department

The Department object this application belongs to

Department. The Department class contains only the “deptName” slot which is of

type String. This is just a class to hold the different department names within the domain

of discussion. Each department defined may have one or more applications. The

relationship between the departments, applications, map objects, columns, and HTML

objects are shown in the conceptual graph shown in Figure 7.

Figure 7. Department Class. The class department has a relationship between Apps,

MapObjects, FormTagsType, SQLColumns, and SQLTable classes.

38

The relationship between all classes in the ontology is depicted in the conceptual

graph show in Figure 8. Each class has a relationship with another class. Departments

may have one or more Web-based forms. Each form contains elements that have HTML

associations, and some elements may also be associated to a SQLobject.

Figure 8. Relationship Between All Classes in the Ontology.

Once the ontology was built, reasoning rules and functions were implemented to

support the relationships between HTML and SQL table concepts. Jess was the language

chosen for reasoning about the concepts. Jess is a rule engine environment for the Java

platform (Friedman-Hill, 2003). Jess is capable of reasoning data using knowledge

supplied in the form of declarative rules. The reason behind using Jess is because it is a

“small, light and one of the fastest rule engines available” (Friedman-Hill, n.d. para. 1).

Jess is a powerful scripting language with full access to all Java’s APIs. Each class in the

ontology is represented as a template in Jess. Assert statements allow for instances of

templates to be created.

Scripted process. The implementation of an ontology and the rules for reasoning

the relationship between the concepts led to the implementation of a step-by-step process.

39

This process is designed to aid in the use of the knowledge-base for reducing ambiguities

in customer requirements. The process presented must be followed with the aid of

organizational communication between two or more subjects. It is substantial that this

process be applied during the beginning phases of requirements gathering. The process

suggested is divided into three separate stages as shown in Figure 9.

Figure 9. The Three Stages of the Proposed Process for Processing and Reducing

Ambiguities in Requirements.

Prior to the planning phase, the entry criteria for following the process are identified. In

this pre-planning phase, customer name, customer department, application name, and

details are acknowledged. The planning, processing, and evaluation stages were

derived from PSP (Personal Software Process), a well-known process in Software

Engineering employed in software process improvement. Software engineers use PSP to

track their performance during software development. The scripts associated to PSP

allow engineers to log their time spent on each phase of software development

and to make improvements in any stage of the process while consistently producing

quality products (Humphrey, 2000).

40

In this dissertation, the planning, processing, and evaluation stages are also

associated with scripts and a time recording log. These scripts are employed to guide

novice developers in using the process to reduce ambiguities in requirements. The forms

and instructions accompanying the three-stage process allow developers to record

customer requirements, the results coordinated through the conceptual model upon

processing each requirement, and the time spent processing the requirements. The scripts

and associated forms and instructions can be found in Appendix A.

Planning. In this phase, the customer produces the initial requirements and

stipulates the purpose of the Web-based form to be built. The customer here is assumed

to have no prior knowledge in specifying requirements. Requirements are specified in

one or more words in natural language, and no additional information is provided for

each requirement. Novice developer enters the time spent in the Requirement Processing

Time Recording Log form and input customer requirements into the Preliminary

Customer Requirement form using the instructions provided with the form. The proposed

log form was adapted from the Time Recording Log form provided in a previous study

(Williams, 2000). In the Requirement Processing Time Recording Log form the

developer will enter the time spent reviewing the set of requirements, time meeting with

the customer, and time processing the requirements until a draft of the requirement is

produced. The specifics about the new requirements for the new Web-based form to be

created will be entered in the Preliminary Customer Requirement form. The functionality

of each requirement is briefly covered in this study. Data entered in each field of the

Web-based form can be saved to a database or it can be submitted to the customer’s

email. There are security issues that may rise when private data is submitted via email.

41

This topic is beyond the scope of this study, but it must be considered when requirements

are finalized. However, it is a good candidate as an extended part to this study.

The main form accompanying the three-stage process, as shown in Figure 10

allow novice developer to record customer requirements and the results coordinated

through the use of the proposed process upon handling each requirement.

Figure 10. Preliminary Customer Requirement Form.

The Preliminary Customer Requirement form is utilized in all three stages of the scripted

process. In each phase of the process, a newer version of this form is applied in order to

allow requirement changes to be recorded. Changes to each requirement are recorded as

occurrence of the ambiguity factor. Each requirement the customer provides is listed in a

42

separate row of the Customer Requirements column of the form. After handling each

requirement through the process, the proposed result is recorded on the Coordination

Results between User and Process column for each requirement. Each field in this

column includes the suggested outcomes for the specific requirement. The functionality

and dependency of each requirement is included here for textual matching purpose only.

The actual functionality of a requirement in terms of how it is handled on the form is not

covered in this study as it goes beyond of the original idea of this research. The fields in

the shaded area of the Preliminary Customer Requirement form are filled out by both the

customer and the developer at different phases of the process as follows. Instructions on

how to complete this form can be found in Appendix A.

Processing. In this phase, a novice developer uses the proposed conceptual model

to process each requirement in the Preliminary Customer Requirement form. If the novice

developer cannot process a requirement, expert developer may become part of the

processing phase if necessary. The proposed conceptual model suggests the correct

way of writing the requirement based on existing knowledge about the requirement

structure. Requirements for Web-based forms are required to be in a format that is

understood by the development team. The proposed basic format of a requirement

statement is shown in Figure 11.

43

Figure 11. Requirement Sentence Format for Web-Based Forms.

The requirement term item is the actual customer requirement. The database field

description and HTML form field description items are not dependent on each other. A

requirement term may be a database field and exist in a HTML form. It can also be a

HTML form item and not exist in a database field. Or it can be a database field and not a

HTML field. The default value property describes the default value for this requirement

in case there is no value entered in the form. The visibility property is concerned with the

visibility of the requirement term on the form. The required database field property, and

the required form field property items mean that the requirement is a required field on the

form and must contain a value. These are only implemented when the requirement term is

a database field and a form field or one or the other. The functionality property item

describes the functional aspect of the requirement term. The dependency property is not

always a required property. The format proposed here is the result of the coordination

between the novice developer (also known as the user) and the conceptual model of the

framework implemented in this dissertation.

 When there is knowledge present, the conceptual model also allows for

requirements to be matched against existing requirements. Using a collection of existing

requirements is the ideal when proposing requirements for similar Web-based forms.

Requirements that match to an existing requirement are added to the requirements

44

specification draft document. Requirements that do not have a match or have one or more

matches are considered ambiguous. A suggested description for an ambiguous

requirement is produced using the same requirement sentence format seen in Figure 11.

In the requirement sentence proposed, there are 24 terms that need to be taken into

consideration when determining if a requirement is or is not ambiguous. Figure 12

summarizes these terms and the equivalent weight of each one in the sentence.

Figure 12. Terms in the Proposed Requirements Sentence.

As seen in Figure 12, there is a possibility of 24 terms in a requirement sentence. Each

term is categorized based on the template it belongs. The actual requirement sentence

terms are part of the requirement fact that is produced at the end of the process. The

SQLColumns terms are part of the SQLColumns template. The FormTagsType terms are

part of the FormTagsType template with the HTMLObjects template as the parent. The

weight of each term is 4.17% and each group a total weight. The ambiguity characteristic

of a requirement is calculated based on the number of terms in the sentence that are

missing or incomplete. Therefore, in order to determine if a requirement is ambiguous or

not the following formula must be used.

Ambiguity = (Total # of vague terms in requirement sentence > 0)

 (Total # of terms in a sentence)

Unambiguity = (Total # of vague terms in requirement sentence = 0)

45

In the above definitions, the number of total terms in the produced requirement sentence

that contain discrepancies must be greater than zero to be considered ambiguous. If each

term is matched against an exact single term or each term is complete, the requirement is

considered unambiguous. The collaboration between novice and expert developer

determines which terms in the requirement sentence affect the ambiguity of the

requirement sentence as a whole. After each requirement is processed, ambiguous

requirements are analyzed and refined during the Evaluation step of the process.

Evaluation. During this phase, novice developer refines the ambiguous

requirements through the proposed process. If assistance is necessary, the expert

developer becomes part of this process. Each requirement term is corrected, completed,

or changed as per the resulting meeting between the developers. A draft of all

requirements is produced. With this draft at hand, novice developer and customer meet.

In this meeting, the draft produced from the coordination between the developer and the

conceptual model is analyzed. Customer analyzes each requirement in the draft to ensure

the produced requirements meet the needs of the application to be developed. If any

requirement in this draft does not meet customer needs, the processing phase is repeated

and evaluation is carried out. This iteration is repeated until customer is satisfied with the

list of requirements. Once the customer is satisfied with the list of requirements, a formal

requirements specification document is elaborated.

The proposed three-stage process as shown in Figure 13 is incorporated into the

conceptual model for customer and developers usage. The accompanying scripts aids in

the manipulation of the conceptual model and forms usage. The forms permit customer to

46

record requirements in order for the requirements to be refined and evaluated after the

coordination between the conceptual model and the novice developer.

Figure 13. The Three-Stage Process as it is Applied to the Proposed Tool for Reducing

Ambiguities in Customer Requirement.

Phase 2: Construction of the Knowledge Base

In order to build the knowledge-base, there is a need to select a particular sample

of customer requirements. The purpose of the knowledge-base in this study is to provide

a collection of requirements of previously implemented Web-based forms and

applications. As discussed in Chapter IV of this dissertation, five previously implemented

Web-based forms were gathered. The selection of existing applications was the key to the

development of the requirements dictionary knowledge-base. A parser was developed in

Java as part of this study to parse the HTML form tags and SQL create table script from

which the requirements were derived. The ontology and knowledge-base were

implemented using the Jess rules language. Instances of the ontology established the

knowledge-base. Rules and functions were implemented to maintain the knowledge-base

47

and to avoid the creation of inaccurate instances and to assure data in the knowledge-base

is consistent. The results from parsing the HTML form tags and SQL create table script

included assert statements. Assert statements were imported into the rule-based program

in order to create instances of ontology concepts and to populate the knowledge-base.

Phase 3: Testing of the Proposed Concept using a Case Study

In this phase, testing of the proposed concept is conducted using a case study. The

subjects selected for this study were software developers from a software development

unit. The chosen subjects have different levels of experience. One developer is an expert

in this area of requirements, and the second developer is a novice developer. They both

work directly with customers and understand customer needs when it comes to

requirements for Web-based applications. The case study scenarios, as described in

Chapter V of this dissertation, include two sets of customer requirements written for two

proposed Web-based form. The first set of requirements was processed in two ways: 1)

no historical knowledge was present, and 2) historical knowledge of previously defined

Web-based form requirements was present. The second set of requirements was

processed only when historical knowledge was present. After each scenario, expert and

novice developers met to review the draft and to discuss improvement in requirements.

Statistical results from these scenarios were recorded and analyzed. The produced results

were utilized to pinpoint the number of requirements that were ambiguous and

unambiguous. These results of this study demonstrated whether or not the process was

useful in reducing ambiguities in customer requirements.

48

CHAPTER IV

HISTORICAL RULE-BASED KNOWLEDGE

The implementation of an ontology described in Chapter III, lead to the

development of a platform for loading data in the corresponding knowledge-base. The

proposed platform includes a set of rules, functions, and queries for populating the

knowledge-base with historical data of previously defined requirements and for

processing new customer requirements. This chapter discusses the implementation of a

historical rule-based knowledge for reducing ambiguities in customer requirements.

Knowledge Base Implementation

The knowledge-base was implemented using Jess, the rule engine program for

Java. Jess was implemented using a plug-in in Eclipse IDE (Friedman-Hill, n.d.). In Jess,

a set of templates, functions, queries, and rules were created. Templates in Jess are

equivalent to classes in Protégé. The functions, queries, and the rules of the ontology

were implemented in Jess in order to reason about the data. Jess provides several

functions, but as with many programming languages, users can also define functions.

Because Jess does not provide predefined rules in its language definition, rules were

created. Also, a rule executes upon the existence of a fact that the rule refers to. In Jess,

facts are instances of a template just as objects are instances of classes in Java. The

following steps were taken to build the historical knowledge-base in Jess:

1. Install the Jess plugin in Eclipse

2. Defined Jess templates corresponding to each class in the ontology

3. Defined Jess rules, functions, and queries to reason about historical data

49

Installation of Jess Plugin in Eclipse

The Jess website (Friedman-Hill, n.d.) contains important information about how

to install Jess as a plugin for Eclipse. Before downloading Jess, a form was filled, and

contact was made with the person of contact for Jess. An email was received with

instructions on how to obtain a free copy of Jess for research purpose only. The problem

with this version was that it had an expiration date. A request was made to be able to use

an unlimited version of Jess for students. Jess packages were download and added to

Eclipse as plugins and features. Jess was also installed as a separate standalone platform.

Once installation was complete, coding of the knowledge-base began.

Jess Templates Definition

The first step in processing the ontology was to create the Jess templates. Jess

templates were created to represent each class in the ontology. Templates are like classes

in Java. The name of the template corresponds to the name of the class. The slots of a

template correspond to the properties of a class in Java. The name of a fact and its list of

slots originate from its template just as an instance name and properties originate from a

class. A template in Jess can extend one parent and inherits the parent’s slots. Templates

are created using the deftemplate construct. Figure 14 depicts the template and slot

definition for SQLObjects, SQLDatatype, SQLTable, and SQLColumns classes.

50

Figure 14. Template Definition for SQLObjects, SQLDatatype, SQLTable, and

SQLColumns Classes.

The SQLObjects class is the parent class for SQLDatatype, SQLTable, and SQLColumns

classes. The “extends” keyword in the template definition of the SQLDatatype class

identifies this class as being a child of the SQLObjects class. Detail of the template

construct usage is beyond the focus of this dissertation and can be found in the Jess Rules

manual (Friedman-Hill, n.d.).

Templates for each class defined in Jess are outlined. The Jess template for the

HTMLObjects and its subclasses are listed in Table 5. Table 6 describes the Department,

Apps, and MapObjects classes as Jess templates. Each template as shown may or may not

have a parent template.

51

Table 5

HTMLObjects Class as Jess Template

Template Name Slots Properties
Parent

Template

HTMLObjects

InputType Type symbol type with allowed values of: button,

checkbox, file, hidden, image, password,

radio, reset, submit, text

HTMLObjects

FormTagsType hasSQLObject

inApp

description

a SQLObject instance

String

String

HTMLObjects

Input input_name

is_of_type

unique_id

value

size

maxlength

String

String

String

String, default to an empty String

Int, default 1

Int, default 1

FormTagsType

Select name

unique_id

String

String

FormTagsType

Optgroup label

has Select

String

String

FormTagsType

Option value

label

selected

disabled

hasOptgroup

hasSelect

String

String

String

String

String

String

FormTagsType

Textarea accesskey

classname

disabled

name

rows

cols

unique_id

readonly

String

String

String

String

String

String

String

String

FormTagsType

Button button_type

disabled

name

value

Symbol with allowed values of: button, reset,

submit

String

String

String

FormTagsType

52

Table 6

Department, Apps and MapObjects Classes as Templates

Template Name Slots Properties
Parent

Template

Department deptName String

Apps hasDepartment

appName

hasSQLTables

hasPart

String

String

String, multislot

String, multislot

MapObjects objName

mapName

colFact

hasSQLObjects

htmlFactID

hasHTMLObj

htmlName

value

isPartOf

String

String

Int, default -1

String

Int, default -1

String

String

String

String, multi slot

Rules, Functions, and Queries Definition

The set of rules defined in Jess allows instances to be created and processed. A

rule contains 2 parts: the left-hand-side (LHS) and the right-hand-side (RHS). The LHS is

matched against the corresponding facts in working memory. A collection of facts

constitute the working memory in Jess. When an exact match occurs, the RHS of the rule

is executed. Rules are executed when a fact is created, updated, and deleted. A fact is

similar to an instance of an object in a programming language such as Java. Facts are

created through assert statements. It is important to point out that rules are mostly created

to keep the knowledge-base consistent and to avoid unwanted facts from being created.

For instance, SQL table definition allows only for certain types of data to be defined. If a

column is defined with a datatype that is not allowed, then a rule must exist to avoid the

formation of such column. The rule created in this situation defines the column with a

default datatype. Columns that have the same name and are in the same table also are not

53

allowed to be instantiated. A rule was defined to retract such columns and to display an

error message about the fault. A summary of certain rules defined in Jess for validating

HTML and SQL instances in the knowledge-base can be found in Table 7.

Table 7

Dictionary Jess Rules for Validating HTML and SQL Instances

Criteria Rule

The datatype for a column can

only be one of the following:

"varchar2" "char" "date"

“number" "integer" "decimal"

"smallint" "timestamp"

If a column is created with a datatype that is not allowed, the datatype for

that column will be of a default type set as “varchar2”

(defrule checkDatatype

(declare (no-loop TRUE))

 ?sqlC <- (SQLColumns (tableName ?tbl)(colName ?c)(colType ?t)(size

?s)(weight ?w))

 (not (SQLDatatype (datatype_name ?t)))

 =>

 (printout t "Type " ?t " is not a valid type. Changing to default

\"varchar2\"." crlf)

 (modify ?sqlC (tableName ?tbl)(colName ?c)(colType "varchar2")(size

?s)(weight ?w))

)

Do not allow columns with

the same name and for the

same table name to be created.

If a column is created for a table that already has a column with the same

name, don’t allow the new column to be created.

(defrule checkColInTable

 "Rule to make sure column fact doesn't already exist in the table"

 (declare (no-loop TRUE))

 ?sqlc <- (SQLColumns(tableName ?table)(colName ?col))

 (not (SQLColumns(tableName $? ?table $?)(colName ?col)))

 =>

 (printout t "Column " ?col " already exist in table " ?table crlf)

 (retract ?sqlc)

)

When a column is created,

make sure a table exist. If not,

create the table.

If a column is created for a table that does not exist, display error

message; delete new column created.

(defrule checkTableExist

(declare (no-loop TRUE))

 ?sqlc <-(SQLColumns(tableName ?table)(colName ?col))

 (not (SQLTable (table_name ?table)))

 =>

 (printout t "Table name does not exist. Creating table." crlf)

(assert (SQLTable (table_name ?table)))

)

54

Table 7 (continued).

Criteria Rule

When creating a form Input

instance, make sure the type of

the input field is a valid input

type.

If an input field is created with a input type that does not exist, set the

default input type to “text”

(defrule checktype

(declare (no-loop TRUE))

 ?input <- (Input (input_name ?n)(is_of_type ?t)(size ?s)(unique_id

?id))

 (not (InputType (type ?t)))

 =>

 (printout t "Type " ?t " is not a valid type. Changing to default

\"text\"." crlf)

 (modify ?input (input_name ?n)(is_of_type "text")(size ?s)(unique_id

?id))

)

When creating a form optgroup

label, make sure there exists a

select instance associated with

the optgroup. An optgroup can

only be created if there is a

select instance.

If an optgroup is created without an associated select instance, display

error message and delete new optgroup created.

(defrule checkOptgroupSelect

(declare (no-loop TRUE))

 ?optg <- (Optgroup(label ?label)(hasSelect ?select))

 (not (Select(name ?select)))

 =>

 (printout t "There is no valid Select instance for Optgroup " ?label

crlf)

 (retract ?optg)

)

When creating an option, make

sure there exists a select

instance associated with this

option. An option can only be

created if there is a select

instance.

If an option is created without an associated select instance, display

error message and delete new option created.

(defrule checkOptionSelect

 (declare (no-loop TRUE))

 ?opt <- (Option(value ?value)(hasOptgroup

?optgroup)(hasSelect ?select))

 (not (Select(name ?select)))

 =>

 (printout t "There is no valid Select instances for Option " ?value crlf)

 (retract ?opt)

)

As shown in Table 7, the LHS of the rule is stated before the “=>” symbol while

the RHS of the rule is stated after the “=>” symbol. In the “checkOptionSelect” rule, if

there is a fact of the Option class that has the exact values for the “value”,

“hasOptgroup”, and “hasSelect” slots, and it does not exist as a Select fact, the RHS of

the rule is executed, which displays an error message and retract the Option fact. Several

55

other rules were implemented to permit the formation of the knowledge-base. For

instance, there was a need to create a rule to update the “colFact” slot in MapObjects

class with the fact ID of the corresponding column. The fact ID of a fact can only be

identified once the fact is created. The fact ID allows the relationships between the facts

of different classes to be identified.

In addition to rules, Jess also allows for functions and queries to be implemented.

Functions in Jess are executed when they are called to be executed. Unlike rules,

functions do not depend on facts to be executed. Jess provides pre-defined functions and

also allows user-defined functions. Jess functions and user-defined functions may or may

not include parameters and may or may not be a return value function. Similar to rules,

Jess provides queries. However, a query is invoked through a function call. A query has a

left-hand-side, but it does not have the right-hand-side as in a rule. The results of a query

include an object containing a list of all items matching the left-hand-side of the query.

 A number of functions and queries were implemented. For instance, a query was

created to query all SQLColumns facts that match the “colName” slot to a given name.

If one or match is found, the query returns all matching objects. This query is

invoked from a function which process categories for columns and assert ColCat

facts for the matching name.

Sample Selection

In order to populate the knowledge-base, there was a need to select a sample. The

selected sample encompassed 5 Web-based forms implemented in a software

development unit. These forms incorporated the necessary structure for both the HTML

objects and SQL objects of the ontology. Instances of HTML objects and SQL objects

56

were derived from these forms and loaded into the knowledge-base for historical use. The

motivation for selecting the Web-based forms was due to the nature of this research

which is focused on using historical knowledge-base to reduce ambiguities in customer

requirements. In addition, the researcher had a significant contribution in the

implementation of these 5 Web-based forms. Having an experience in building Web-

based forms, the research found it necessary to improve the process for reducing

ambiguities in customer requirements. The existing Web-based forms, as shown in Figure

15 constitute the data that was part of the knowledge-base.

Figure 15. Selected Web-Based Forms to be Parsed and Incorporated into the

Knowledge-Base.

The structure of these forms comprises of HTML form tags. These tags were extracted

from the forms using a parse written in Java. The tags of interest here are the tags that are

between the <form> and </form> HTML tags. The first step of the parser is to retrieve

all content that is between the <form> and </form> tags. The content retrieved is stored

in a list and then processed. The next step involves processing the items between the form

57

tags. The items that are not related to a form field are ignored during the process. These

tags include <div>, , and any other tag related to the style of the form. Tags that

are directly associated to the fields and their properties on the form are the ones included

in this study. For instance, the HTML form snippet presented in Figure 16 shows the

elements of a form. In the example shown, there is only one input field, which represents

the First Name field on the form.

Figure 16. Form Tag and Input Tag for Text Input Field.

The elements that were parsed in this snippet include: <label for=“firstname”>First

Name, <input name =“firstname” type=“text” id=“firstname” size=“30”

maxlength=“128” value=“”>.

The SQL create table structure for these forms were retrieved using SQL

Developer (Oracle, n.d.). Figure 17 shows an example of a SQL create table script that

was used as an input in the parser program. The SQL script for the create table, as shown,

defines the name of the table, the columns in the table, and other properties related to the

table. The significant items here are: the name of the table, the column name, the type of

the column, and the size of the column.

department = Gulf Coast Admissions

SQLTables = scholarships_form

<form name="form" id="form" method="post" action="index.php">

<input type="hidden" name="submitForm" value="form">

<div class = "formLayout">

<div class = "row">

<label for="firstname">First Name*

</label>

<input name="firstname" type="text"

id="firstname" size="30" maxlength="128" value="">

</div></div></form>

58

Figure 17. SQL Create Table. The SQL create table is a script utilized in the creation of

database tables where columns are associated to elements in a form.

Parsing

In order to retrieve each individual field in the HTML form and the SQL objects

corresponding to each field in the form, the forms and the SQL create table script had to

be parsed. A Java parser was developed to parse the HTML form tags and the SQL

create table script. Figure 18 illustrates the flow of the parsing process. The results

of the parser program consist of Jess assert statements for the creation of Jess facts

in the knowledge-base.

--

DDL for Table FORM

--

CREATE TABLE "GCSCHOLARSHIP"."FORM"

("FORMID" NUMBER(10,0),

"FIRSTNAME" VARCHAR2(128 BYTE),

"MIDDLENAME" VARCHAR2(128 BYTE) DEFAULT '',

"LASTNAME" VARCHAR2(128 BYTE),

"EMPLID" VARCHAR2(11 BYTE),

"STREET" VARCHAR2(128 BYTE),

"CITY" VARCHAR2(32 BYTE),

"STATE" VARCHAR2(2 BYTE),

"ZIP" VARCHAR2(10 BYTE),

"DOB" VARCHAR2(11 BYTE),

"PRIMARYPHONE" VARCHAR2(12 BYTE) DEFAULT ' ',

"EMAIL" VARCHAR2(128 BYTE),

"LASTSCHOOL" VARCHAR2(128 BYTE),

"LASTDATEATTENDANCE" VARCHAR2(24 BYTE),

"SCHOLARSHIPSEMESTERYEAR" VARCHAR2(24 BYTE) DEFAULT ' ',

"ALREADYAPPLIED" CHAR(1 BYTE) DEFAULT 'N',

"DATEAPPLIED" VARCHAR2(24 BYTE) DEFAULT ' ',

"APPLICATIONDATE" TIMESTAMP (6),

"IPADDRESS" VARCHAR2(40 BYTE),

"EXTRACTDATE" TIMESTAMP (6)

) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING

 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645

 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)

 TABLESPACE "USERS" ;

59

Figure 18. Web-Based Forms and Corresponding HTML and Database Items. Items are

parsed into Jess assert statements and processed via Jess engine.

As indicated in Figure 18, the select forms were broken down into the HTML

items and the database items. The HTML items represent the HTML form tags, and the

database items represent the items in the SQL create table script. The parser program

reads the HTML code and strips out all code that is not between the <form> and

<form/> tags and the Jess code, for the assert statements are written to an external data

file. The same was done with the SQL create table script. The name of the table, the

columns, and the column properties were parsed, and the assert statement equivalent to

these elements was written to the external data file. The program was executed two

different times to produce two different files. Figure 19 shows examples of assert

statements for the SQLTable and SQLColumns templates after the parsing of the

SQL create table script:

Figure 19. Assert Statements for Creating Facts of SQLTable and SQLColumns

Templates. Facts are also known as instances, which are used to build knowledge.

Web-

based

forms

(assert (SQLTable (table_name "GCScholarship_Form")))

(assert (SQLColumns (colName "firstname") (size 128)

 (colType "varchar2") (tableName "GCScholarship_Form")))

60

In the example shown in Figure 19, facts of each template are created after execution of

the assert statements in the Jess program. Values are given to each slot of the template. If

a slot does not have a value and it has a default value in the template definition, the value

of that slot will have the default value defined in the template definition. Otherwise, the

slot will have a value of null.

The values given to the slots of each template are the values parsed from the

existing Web-based forms. For the SQLTable template, the “table_name” slot contains

the name of the table as defined in the SQL create table script. For the SQLColumns

template, the “colName” refers to the name of the column; the “size” and “colType” slots

refer to the size and datatype defined for this column. The “tableName” slot contains the

name of the table defined in “table_name” slot of the SQLTable. Assert statements of

SQLDatatype template are defined for all datatype values allowed in the Oracle SQL

database (Lorentz, 2005). These assert statements are executed prior to any other assert

statement. In addition to creating facts of each database item through assert statements, if

the column is also a field on the form, the corresponding HTML assert statement is also

created. Using the form code shown in Figure 16, assert statements were created for the

Department, Apps and Input templates. Additionally, an assert statement for the

MapObjects fact is defined for each item in the knowledge-base to show relationship.

For instance, the “First Name” field is a SQLColumn fact and it is also an input field

in the form, so the MapObjects fact is created to connect the two facts. Figure 20

illustrates the assert statements for Department, Apps, Input, and MapObjects for

the “First Name” field.

61

Figure 20. Assert Statements for Department, Apps, Input, and MapObjects Templates.

Upon execution of the assert statements, the corresponding rules are executed and

specifics slots are updated.

Code Execution

Once all templates, rules, functions, queries, and assert statements were created,

the Jess program to populate the knowledge-base was executed. The assert statements for

all the elements in the selected Web-based forms were defined as functions in separate

files and loaded into the program. A main function was defined to control the flow of the

program. Before executing the function with the assert statements for the elements on

the forms, facts of SQLDatatype, InputType, and Category were created. The execution

of the assert statements for these three templates was done prior to executing the assert

statements for the elements in a form. This was a necessary step to avoid unwanted

data to be instantiated.

The execution of certain rules is dependent on the existence of facts of templates.

The assert statements created for the SQLDatatype template contained the allowed values

as defined in the template’s slot. The allowed values for the datatype of a column in SQL

were derived from the Oracle SQL database manual (Lorentz, 2005). This manual defines

the allowed datatype values when defining columns in a SQL create table script. The

assert statements created for the InputType templates included the allowed types of the

(assert (Department (deptName "Gulf Coast Admissions")))

(assert (Apps (hasDepartment "Gulf Coast Admissions")

 (appName "scholarships_form")(hasSQLTables "GCSCHOLARSHIPS_FORM")))

(assert (Input(inApp "scholarships_form") (unique_id "firstname")

 (input_name "firstname")(maxlength 128) (size 30) (is_of_type

"text")

 (value " ") (hasSQLObjects "firstname")(description "First Name")))

(assert (MapObjects (objName "First Name") (hasHTMLObj "Input")

 (hasSQLObjects "firstname")(isPartOf "scholarships_form")))

62

<input> tag in HTML. As mentioned earlier in this dissertation, the HTML input form

tag can only be of type: button, checkbox, file, hidden, image, password, radio, reset,

submit, and text. The assert statements for the Category template include the categories

for the items in a form. Category facts are useful when classifying form fields that can be

grouped together. For instance, the “First Name” field along with the “Middle Name” and

“Last Name” fields can be part of the Names category. This is a convenient feature when

there is a need for matching facts in the Names category. All facts in the Names category

may be suggested for use. Note that no rules were executed after these assert statements

were executed. The reason for this is that these are predefined constant values for each

one of the templates; and therefore, there is no need for changing these created facts.

After the execution of the assert statements for instantiating facts of

SQLDatatype, InputType and Category, the files containing the assert statements for the

elements on the forms were loaded. The first file loaded was the file containing the

SQLObjects assert statements. Assert statements for each table (defined as SQLTable)

and the corresponding SQLColumns assert statements for each column defined in the

table were defined and stored in the file. The second file loaded into the program

contained the assert statement for HTML items. The statements in this file included

the assert statements for Department, Apps, Input, Select, Option, Optgroup,

Textarea, and MapObjects. As discussed earlier, these were the main HTML form

elements considered in this study.

63

After the execution of the assert statements shown in Figure 19, rules for some

facts are fired. Assert statements cause Jess facts to be created in working memory

and rules to be fired. An example of a rule being fired upon the creation of a fact

is seen in Figure 21.

Figure 21. Jess Rules are fired upon Jess Facts in the Jess Rule Engine.

When the assert statements are executed, Jess facts are inserted into the working memory

of the engine. In Figure 21, assert statements of SQLDatatype and SQLColumns are

executed. After the execution of the SQLColumns assert statement, the “checkDatatype”

rule is activated and fired. This rule displays an error message and modifies the fact that

meets the criteria on the left-hand side of the rule. In this case, as summarized in Table 7,

in the “checkDatatype” rule if a column is created with a datatype that is not an allowed

SQLDatatype, the datatype for that column is changed to be of a default type, which is

the “varchar2” datatype.

Another rule being fired and also summarized in Table 7 occurs when the

SQLColumns assert statement is executed. When this happens, the rule

64

“checkColInTable” is activated. This rule checks working memory for the existence of a

SQLColumns fact with the same name as the “tableName” slot in the SQLColumns fact.

If a column already exists with the same table name, the rule is fired, and this new fact is

retracted. Otherwise, the rule is not fired, and the rule is deactivated. The rule becomes

active again when a change occurs in the fact that matches the left-hand side of the rule

or when a new fact is created.

Besides the rules summarized in Table 7, other rules in the program were defined.

The execution of the assert statements in Figure 19 and 20 also causes additional rules to

be activated and fired as shown in Figures 22a and 22b. The output of the program, as

seen in Figures 22a and 22b show the rules that are activated and fired when the assert

statements are executed.

Figure 22a. Output of the Execution of Assert Statements for SQLDatatype, InputType,

Category, SQLTable, and SQLColumns.

==> f-1 (MAIN::SQLDatatype (datatype_name "varchar2"))

 ==> f-2 (MAIN::SQLDatatype (datatype_name "char"))

 ==> f-3 (MAIN::SQLDatatype (datatype_name "date"))

 ==> f-4 (MAIN::SQLDatatype (datatype_name "number"))

 ==> f-5 (MAIN::SQLDatatype (datatype_name "integer"))

 ==> f-6 (MAIN::SQLDatatype (datatype_name "decimal"))

 ==> f-7 (MAIN::SQLDatatype (datatype_name "smallint"))

 ==> f-8 (MAIN::InputType (type "checkbox"))

 ==> f-9 (MAIN::InputType (type "radio"))

 ==> f-10 (MAIN::InputType (type "reset"))

 ==> f-11 (MAIN::InputType (type "submit"))

 ==> f-12 (MAIN::InputType (type "text"))

 ==> f-13 (MAIN::Category (catName "Names") (subName " "))

 ==> f-14 (MAIN::Category (catName "Addresses") (subName "Home"))

 ==> f-15 (MAIN::Category (catName "Addresses") (subName "Mailing"))

 ==> f-16 (MAIN::Category (catName "Addresses") (subName "Degree"))

 ==> f-17 (MAIN::SQLTable (table_name "GCSCHOLARSHIPS_FORM"))

 ==> f-18 (MAIN::SQLColumns (tableName "GCSCHOLARSHIPS_FORM") (colName

"FIRSTNAME") (colType "zzz") (size 128) (weight 0) (description " "))

==> Activation: MAIN::checkDatatype : f-18,

==> Activation: MAIN::checkColInTable : f-18,

<== Activation: MAIN::checkColInTable : f-18,

65

Figure 22a shows the output of the beginning of the execution of the program when assert

statements for SQLDatatype, InputType, Category, SQLTable, and SQLColumns are

executed. The Figure also shows the activation of “checkDatype” and “checkColInTable”

rules.

Figure 22b. Output of the Execution of Assert Statements for Department, Apps, Input,

and MapObjects.

Figure 22b, shows the second half of the output of the same program input but showing

the results of when assert statements for Department, Apps, Input, and MapObjects are

executed and the activation and firing of the corresponding rules. As seen in the output of

Figures 22a and 22b, the creation of a fact causes one or more rules to be activated and

fired. Rule-based programs do not flow the same way as sequential and object-oriented

==> f-19 (MAIN::Department (deptName "Gulf Coast Admissions"))

 ==> f-20 (MAIN::Apps (hasDepartment "Gulf Coast Admissions") (appName

"scholarships_form") (hasSQLTables "GCSCHOLARSHIPS_FORM") (hasPart " "))

==> Activation: MAIN::updateApps : f-20

 ==> f-21 (MAIN::Input (hasSQLObjects "firstname") (inApp "scholarships_form")

(description "First Name") (input_name "firstname") (is_of_type "text") (unique_id

"firstname") (value " ") (size 30) (maxlength 128))

 ==> f-22 (MAIN::MapObjects (objName "First Name") (mapName " ") (colFact -1)

(hasSQLObjects "firstname") (htmlFactID -1) (hasHTMLObj "Input") (htmlName " ")

(weight 0) (value " ") (isPartOf "scholarships_form"))

==> Activation: MAIN::updMapObj : f-18, f-22, f-21

FIRE 1 MAIN::updMapObj f-18, f-22, f-21

 <=> f-22 (MAIN::MapObjects (objName "First Name") (mapName "FIRSTNAME") (colFact

18) (hasSQLObjects "FIRSTNAME") (htmlFactID 21) (hasHTMLObj "Input") (htmlName

"firstname") (weight 0) (value " ") (isPartOf "scholarships_form"))

==> Activation: MAIN::updateDescription : f-18, f-22

FIRE 2 MAIN::updateDescription f-18, f-22

<== Activation: MAIN::checkDatatype : f-18,

 <=> f-18 (MAIN::SQLColumns (tableName "GCSCHOLARSHIPS_FORM") (colName

"FIRSTNAME") (colType "zzz") (size 128) (weight 0) (description "First Name"))

==> Activation: MAIN::checkDatatype : f-18,

==> Activation: MAIN::checkColInTable : f-18,

<== Activation: MAIN::checkColInTable : f-18,

FIRE 3 MAIN::checkDatatype f-18,

Type zzz is not a valid type. Changing to default "varchar2".

 <=> f-18 (MAIN::SQLColumns (tableName "GCSCHOLARSHIPS_FORM") (colName

"FIRSTNAME") (colType "varchar2") (size 128) (weight 0) (description "First

Name"))

==> Activation: MAIN::checkColInTable : f-18,

<== Activation: MAIN::checkColInTable : f-18,

FIRE 4 MAIN::updateApps f-20

 ==> f-23 (MAIN::__query-trigger-getMapObjs "scholarships_form")

 <== f-23 (MAIN::__query-trigger-getMapObjs "scholarships_form")

 <=> f-20 (MAIN::Apps (hasDepartment "Gulf Coast Admissions") (appName

"scholarships_form") (hasSQLTables "GCSCHOLARSHIPS_FORM") (hasPart 22))

66

programs. As stated earlier, rules in a rule-based program are executed upon the existing

of facts matching the LHS of the rule.

The creation of an Apps fact cause the “updateApps” rule to be activated.

However, this rule is fired after the corresponding MapObjects fact is created. The RHS

of this rule calls the function “getObjects” and through a query it retrieves and returns the

MapObjects fact IDs that have a value in the “isPartOf” slot that matches the value in the

“appName” slot of the Apps fact. The “updateApps” rule updates the “hasPart” slot in

the Apps fact with the MapObjects fact ID number returned by the function. As stated

earlier, each fact in the Jess working memory is associated to an ID. The fact ID is useful

when there is a need to refer to the fact. Using the fact ID as a reference to the fact is a

practical way to identify the fact.

Another rule activated is the “updMapObj”. This rule is activated and fired after a

fact of MapObjects type is created and SQLColumns and FormTagsType facts exist and

match the criteria on the LHS of the rule. The RHS of this rule modify the MapObjects

fact by updating the following slots: mapName, htmlFactID, colFact, and htmlName.

After the MapObjects fact is updated, the “updateDescription” rule is activated and fired.

The existence of a SQLColumns fact and the existence of a MapObjects fact with the

same value in the “colName” and “hasSQLObjects” slots, respectively, match the LHS of

the rule and initiate the RHS of this rule to be carried out. The RHS of this rule modify

the value in the “description” slot of the SQLColumns fact with the same value in the

“objName” slot of the MapObjects fact. The “colFact” slot in the MapObjects fact is

updated with the fact ID of the SQLColumns fact is also updated in this rule. Because the

SQLColumns fact was modified, the “checkDatatype” and “checkColInTable” are

67

activated and fired as necessary. If the “colType” slot in the SQLColumns fact does not

have a valid datatype, the “checkDatatype” is fired and the slot is updated with the

default type “varchar2.” After this update, any other rule dependent on SQLColumns are

activated and fired if necessary.

Continuing with the flow of the program, the next rule to be activated is the

“checkColInTable” rule. This rule is activated because of the changes that occurred in the

“colType” slot of the SQLColumns fact. The rule is not fired, and it is deactivated due to

no changes in the table to which this SQLColumn fact belongs to. Finally, the last rule to

be fired is the “updateApps” rule. After the Apps fact is updated, the focus is turned to

creating categories for the facts. A function was defined to query any MapObjects fact

that has a value in the “objName” slot that matches a given name. The list of matching

MapObjects facts is processed, and any matching fact is utilized in creating categories for

a given category name. For instance, the call to the function “processColCat2” would

pass two arguments: 1) the name of the matching fact, such as “name” and 2) the name of

the proposed category, such as “Names”. The query searches the value in the “objName”

slot of each MapObjects fact that has “name” as part of the value. If a MapObjects fact is

found, the corresponding SQLColumn fact for that MapObjects fact is processed for the

“Names” category leading to the creation of a ColCat fact for the “Names” category.

Figure 23 summarizes the process of creating ColCat fact described here.

68

Figure 23. ColCat Fact Creation Process.

In addition to the rules defined so far, other rules were defined to process the

facts. The example provided only shows the creation of a fact that is both a HTML item

and a SQL column item. What if the item is only an HTML item without being a SQL

column? An example of this situation is when there is a submit button on the Web-based

form. This button is an HTML item and does not exist as a SQL column item. What if the

item is only a SQL column item without being an HTML item? An example of this

scenario is when there is a column for storing the current date and time the Web-based

form was submitted. This type of item does not need to exist as an HTML item. Rules for

these types of items were created. As formerly stated, all items have a related

MapObjects fact. The MapObjects fact contains slots that identify all items whether the

items are only HTML items, SQL items, or both. Table 8 shows a summary of the rules

defined in the program in addition to the rules defined in Table 7.

69

Table 8

Rules Defined for Updating or Asserting Facts

Rule Name Templates Modify/Assert Slots Description

checkColExist4Input

Input,

SQLColumns,

Apps

Input

hasSQLObjects

Condition: this slot is

blank; rule modifies

this slot with the

matching column

name that is a column

in a table that is part

of an application,

Apps. The tableName

slot value in

SQLColumns

matches a value in

the hasSQLTables

slot in the Apps fact

checkColExist4Select Select,

SQLColumns,

Apps

Select hasSQLObjects Condition: this slot is

blank; rule modifies

this slot with the

matching column

name that is a column

in a table that is part

of an application,

Apps. The tableName

slot value in

SQLColumns

matches a value in

the hasSQLTables

slot in the Apps fact

updMapObj SQLColumns,

MapObjects,

FormTagsType

MapObjects mapName,

htmlFactID,

hasHTMLObj,

colFact,

hasSQLObjects,

htmlName

Modifies slots with

the matching column

name; the value in

colName is matched

with the value in

hasSQLObjects of

both MapObjects and

FormTagsType facts

updMapObj2 FormTagsType,

MapObjects

MapObjects mapName,

htmlFactID,

hasHTMLObj,

htmlName

Modifies slots with

the matching HTML

object; this

MapObjects fact does

not have a column

associated; it is just

an HTML item that is

not in a SQL Table

70

Table 8 (continued).

Rule Name Templates Modify/Assert Slots Description

updMapObjOptgroup FormTagsType,

MapObjects

MapObjects objName,

mapName,

htmlFactID,

htmlName

Modifies slots with

the matching HTML

object that is an

"Optgroup" element;

the objName slot is

updated with the

value in the label slot

of the Optgroup fact

updMapObjSQLNoH

TML

SQLColumns,

MapObjects,

Apps

MapObjects objName,

mapName,

hasSQLObject

s, isPartOf

This MapObjects fact

is not an element in a

form; this is a

SQLColumns fact;

the slots are modified

with the matching

values found in the

SQLColumns fact;

the Apps appName is

the value assigned to

isPartOf slot

updateApps Apps Apps hasPart hasPart is updated

with a list of

MapObjects fact ID

that has the appName

of this Apps fact; a

function is called to

query working

memory and find the

matching

MapObjects

updateDescription SQLColumns,

MapObjects

SQLColumns,

MapObjects

description

(SQLColumns

), colFact

(MapObjects)

Condition: The value

in objName slot of

MapObjects fact is

not blank and the

hasSQLObjects value

matches the name of

the colName slot in

SQLColumns;

description slot is

updated with same

value in objName and

colFact is updated

with the

SQLColumns fact ID

71

Table 8 (continued).

Rule Name Templates Modify/Assert Slots Description

updateDescription2 FormTagsType,

MapObjects

FormsTagType description Condition:

description slot is

blank; the type of this

FormsTagType fact

matches the value in

hasHTMLObj slot in

MapObjects; the fact

ID of this

formsTagType fact

matches the fact ID

in htmlFactID slot of

MapObjects fact; the

description slot is

updated with the

value in objName of

MapObjects

createMapObject SQLColumns,

FormTagsType

MapObjects Assert a MapObjects

fact that does not

exist for the

SQLColumns and

FormTagsType facts.

updateDescription3 MapObjects MapObjects objName Condition: objName

slot is blank;

mapName slot

contains a value; this

fact does not have a

value in

hasHTMLObj; the

objName slot is

updated with the

value in mapName

The rules, as summarized in Table 8, are executed for each fact that matches the LHS of

the rule. The description column details the condition of the rule and what is executed on

the RHS of the rule. On the RHS of the rule, an existing fact may be modified or a new

fact may be asserted.

Upon the execution of all assert statements for the selected Web-based forms,

all facts were created and saved to an external file in the order they were created.

The save-facts command in Jess allows for all facts to be saved to a specified file. This

72

file was saved in the same directory as the program and ready for loading when

processing new requirements.

Rules for New Requirements

The additional templates, rules, functions, and queries implemented permit new

customer requirements to be processed and analyzed for ambiguities. These rules are

specific to processing customer requirements by allowing the user to define the

requirements while using historical requirements data. The benefits of these rules let new

requirements to be matched against existing requirements in the knowledge-base.

When a new requirement is entered, specific rules, functions, and queries are fired and a

“temp” fact is created for the requirement. This new “temp” fact is created through the

“newReq” rule and “processNewReq” function. The “temp” fact contains slots that

associate this fact to all other facts in the knowledge-base. Figure 24 shows the definition

for the “temp” template.

Figure 24. Template Definition for “temp” and its Slots.

73

The “processNewReq” function searches the current working memory for MapObjects

facts matching the value in the “objName” slot with the newly input requirement. The

“temp” fact for this requirement is created whether or not a fact is found. The procedure

for handling new requirements as seen in Figure 25 shows the two different paths: 1) the

newly input requirement matches an existing fact in the historical knowledge-base, and 2)

the newly input requirement does not have a matching fact in the historical knowledge-

base.

Figure 25. Process Flow for Handling New Requirement.

74

If the fact is found, the corresponding slots in the “temp” fact for this new

requirement are updated via the “updateSizeType” rule. The “objName” slot is updated

with the same value as in the “objName” slot of the MapObjects fact. If the matching

MapObjects fact has a corresponding SQLColumns fact, the “colFact”, “colName”,

“type”, “size”, and “tableName” slots are populated with the same values of the matching

SQLColumns fact. The temp fact is also updated through the “updateHTMLSlots” rule. If

the matching MapObjects fact has a corresponding HTMLObjects fact, the

“hasHTMLObj”, “htmlFactID”, and “htmlName” slots are populated with the same

values of the matching HTMLObjects fact. If a category exists for the MapObjects, the

“catName” slot is populated with the corresponding category. The “selected” slot is

populated with a “Y” if this “temp” fact is selected as a requirement to be included in the

initial draft, or “N” if otherwise. If the “colExist” slot value is a “Y”, then a SQLColumns

exist for this “temp” fact, otherwise, a value of “N” is in this slot and the “noColName”

contains the name of the requirement entered. The “reqType” slot is used to store the type

this requirement is used in the corresponding application. If the requirement is to be

shown on the form front end and backend, in the database, then the value of this slot will

be “DBF”, otherwise, it will have a value of “F” for form only, and “DB” for database

only. Finally, the “weight” slot is used to include the weight of this requirement and how

often it is applied to other applications. The weight slot also allows for sorting

requirements and grouping requirements that are used often together. The idea for using

weight is considered in future applications of the proposed process.

75

If no matching is found for the newly input requirement, the “temp” fact is

created with only the “objName” and “noColName” slots being populated. These slots

contain the name of the requirement entered. When this is the case, certain rules and

functions are executed in order to create SQLColumns, HTMLObjects, and MapObjects

facts for this new requirement. The first rule to be executed is the

“createNewEntry4Req”. This rule is fired, and a SQLColumns fact and an Input fact are

created. These facts are created by default to populate the slot with given and default

values. The slots in these facts are populated with default values suggested by the system

and later updated as per user request. The default slot values populated in the

SQLColumns fact and in the Input fact are summarized in Figure 26.

Figure 26. SQLColumns and Input Facts and the Values that go into each Slot upon the

Execution of the createNewEntry4Req Rule.

Each slot in the corresponding fact is populated with the slot values shown or with the

default value of the slot. The given application name at the time of requirement input fills

the “tableName” and “inApp” slots of the SQLColumns and Input facts respectively. The

“colName” and “description” slots of the SQLColumns fact and the “hasSQLObjects”,

“description”, “input_name”, and “unique_id” slots of the Input fact are populated with

SQLColumns Slot Values Input
tableName <application name> hasSQLObjects

colName inApp

colType <default "varchar2"> <input requirement name> description

size input_name

weight <default 1> <default 30> is_of_type

default_val <default " "> unique_id

description <default "text"> value <default " ">

size

maxlength

createNewEntry4Req

76

the name of the input requirement. The default size and maxlength is set to 30. This

default value is suggested by the system and may be modified as per user request. Text is

the default type of the Input fact created. All other slots are populated with the default

value of the slot.

After the SQLColumn and Input facts are created, the temp fact is updated with

the correct slot values for the SQLColumns fact and the Input fact. This update is carried

out through the “updateColName” rule. The MapObjects fact is then instantiated through

the “createMapObjSelected2” rule. Figure 27 shows the values for each slot in the

MapObjects fact for the new requirement.

Figure 27. MapObjects Fact and Slot Values after createMapObjSelected2

Rule Execution.

The “createMapObjSelected2” rule asserts a fact of MapObjects based on the

SQLColumns and Input facts created. The slots in the newly created MapObjects fact are

77

populated as follow. The “objName” slot takes the same value as the value in the

“description” slot in the Input fact. The SQLColumns “colName” slot value populates the

“mapName”, “hasSQLObjects”, and “htmlName” slots. The “colFact” slot is populated

with the fact ID of the SQLColumns fact. The “htmlFactID” slot takes the fact ID of the

parent class of the Input template, in this case the FormTagsType fact ID. The

“hasHTMLObj” slot is populated with the name of this FormTagsType, which is “Input.”

All other slots are populated with default values as defined in the MapObjects template.

Finally, after the creation of a MapObjects fact and the temp fact is updated, a fact

for the new requirement is created through the “createReq” rule. This rule creates a fact

of FuncReq. The FuncReq template, as depicted in Figure 28, defines the structure of a

functional requirement for the domain being studied in this dissertation.

Figure 28. FuncReq Template Definition and its Slots.

The “createReq” rule creates a FuncReq fact based on facts matches between temp,

MapObjects, and FormTagsType facts. These facts must have values in some of the slots

that are common in all 3 facts. The “objName” slot in the temp fact must match the

“objName” slot of the MapObjects fact. The name of the column stored in the “colName”

slot of the temp fact need to be equal to the values in the “mapName” and

“hasSQLObjects” slots of the MapObjects fact. The “colFact” slot in both temp and

78

MapObjects facts are also coordinated. The fact ID of the FormTagsType fact

corresponding to this match is also coordinated with the “htmlFactID” slot in the temp

and MapObjects facts. The name of one of the subclasses of the FormTagsType

corresponds to the value in the “hasHTMLObj” slot in both MapObjects and temp facts.

The value in the “htmlName” slot in both temp and MapObjects facts must also match.

As stated earlier in this dissertation, the matching of select slots and facts on the LHS of

the rule must take place before the RHS of the rule is executed. Once a matching occurs,

the RHS of the rule is carried out and additional processing is followed. Figure 29

summarizes the process performed by the “createReq” rule.

79

Figure 29. Rule for the “createReq” Process.

The “descr” and “descr2” elements shown in Figure 29 correspond to variables

that are utilized as placeholders for the description of the database and form respectively

slots of the FuncReq fact. The “descr” variable is built using the values of the slots

pointed by the blue arrows, which include the “objName” slot of the MapObjects fact and

the “type” and “size” slots of the temp fact. The description of the new requirement as it

should be on the form is stored in the “descr2” variable. The “descr2” variable is

constructed using the value of the slots pointed by the green arrows, which comprise of

the name of one of the FormTagsType subclasses, the value in the “objName” slot in the

MapObjects fact, and the value of the slots “size”, “hasHTMLObj”, and “htmlName” of

80

the temp fact. The values of the slots in the FuncReq fact are populated through the red

arrows. The “required”, “showOnForm”, “functionality”, “dependency”, and “appName”

slot values are filled through user input.

Following the creation of the FuncReq fact, all created facts are added to the

historical knowledge-base and saved. The preliminary requirements document is also

generated and the Preliminary Customer Requirement form is updated. This document

contains the system’s suggested requirements. The default requirement sentence for any

requirement processed is shown in Figure 30.

Figure 30. The Default Requirement Sentence for any Requirement Processed.

Any requirement that needs to be revised or modified can be processed in the system

through the refinement procedure. In the refinement procedure, the corresponding area

department and application must be known. Once the department and application names

are entered in the system and the option to refine is chosen, the corresponding historical

facts are loaded into working memory. The requirement to be refined is then input. The

“refineRequirement” rule is activated and fired if the LHS of this rule finds a matching of

the requirement to be refined on a MapObjects fact with a matching temp fact and a

matching FuncReq fact as shown in Figure 31.

81

Figure 31. The LHS of the refineRequirement Rule.

As shown in Figure 31, there must be a match between the requirement to be refined and

the “objName” slot value of the FuncReq, MapObjects, and temp facts before the rule can

be activated and fired.

The RHS of the “refineRequirement” rule displays the details about the

requirement, prompts the user to choose what to update, and through additional functions

the requirement is updated. There are two additional functions that are important in the

refinement process: 1) the “refCol” function allows the SQLColumns fact corresponding

to this requirement to be updated, and 2) the “refHtml” function allows the corresponding

FormTagsType fact to be updated. The updates on these facts cause the existing FuncReq

fact to be retracted and a new fact generated. If there is no need to update the

SQLColumns fact or the FormTagsType fact, the system prompts the user to update one

or all of the following FuncReq slots values: “required”, “showOnForm”, “functionality”,

and “dependency.” These slots are updated through functions. In each function,

the user is prompted to enter the value for the corresponding slot. The value is returned

to the “refineRequirement” rule, and the equivalent slots are updated in the FuncReq

82

fact. Figure 32 shows the flow of this process carried out on the RHS of the

“refineRequirement” rule.

Figure 32. Flow of the RHS of the “refineRequirement” Rule.

The FuncReq fact needs to be retracted if the database fields and/or the HTML fields

need to be updated because the “dbDescr” and “formDescr” slot values are constructed as

strings in the “createReq” rule as shown in Figure 29.

83

CHAPTER V

CASE STUDY AND RESULTS

The results of the case study will in fact demonstrate whether or not the goal of

this dissertation can be met in which requirements can be improved through reducing

ambiguities with the use of a historical rule-based knowledge system while also

improving the communication between customers, novice developers, and expert

developers.

Selected Case Study

The selection of a case study included selecting subjects, environment, and a

comparative requirement elicitation test for the study. The subjects selected for this study

encompassed software developers of a software development unit. From here forth this

software unit will be referred to as the IT unit. The software developers selected included

a novice developer and an expert developer. A fictional customer was also selected for

the test. The customer’s main function was to provide a set of requirements for a new

Web based application to be developed. The set of new requirements was used in a

comparative test that was carried out in this study. The test carried out compares the

results of reducing ambiguities through the process proposed in this study in two ways:

1. No historical data is available.

2. Historical data is implemented

In addition to carrying out this experiment with the set of new requirements in these two

ways and comparing the results, an additional experiment with another set of

requirements was also carried out. In the latter experiment, the requirements were

84

processed using the historical data in knowledge-base, including history about the

requirements of the first experiment.

The subjects of this study executed the two scenarios with the aid of the proposed

scripted process and required forms. In both experiments, a customer provided the set of

requirements and submitted them to the development team. The two sets of requirements

explored in this experiment contained 27 and 15 requirement items, respectively.

Appendix B shows the two sets of requirements utilized in this experiment. Each set of

requirements are input separately into the Preliminary Customer Requirement form. Each

set of requirements may be inconsistent and missing essential complementary

requirements. As previously stated, a novice developer is in charge of processing these

new requirements using the proposed process and identifying ambiguities in the

requirements in order to improve the set of requirements. Due to the fact that a novice

developer has vague knowledge about requirements elicitation, an experienced developer

interacts with the novice developer when needed. The coordinated results between the

user and the process are recorded in the Preliminary Customer Requirement form for

each test. Ambiguities are evaluated and requirements needing refinement are processed

again.

Each test scenario was processed through the proposed three-stage process,

planning, processing, and evaluation, as discussed in Chapter III of this dissertation. The

result of the tests performed in this experiment gives room for a discussion of the

beneficial use of historical knowledge about the domain of Web-based applications when

utilized for keyword matching.

85

Experiment and Results

Test Scenario 1: No Historical Knowledge

Planning phase. As shown in Figure 33, the first step of the scripted process to be

completed is the planning phase. In this phase, the following are the the novice developer

follows:

Figure 33. Planning Phase of the Step-by-Step Scripted Process.

Processing phase. In this next phase, as shown in Figure 34, the set of 27

requirements was processed without the knowledge of any previously defined

requirement. Without any historical knowledge about requirements, the process at this

point was only able to suggest a default requirement sentence for each requirement. The

suggested sentence for each requirement was recorded into the same Preliminary

Customer Requirement form.

1. Retrieved the requirements from the customer

2. Input the requirements into the Preliminary Customer Requirement form in addition to

any information about the Web-based application to be implemented. Additional

information includes the name of the application, the purpose of the application, the

department name for which the application is being built, the use of a database, and any

known information about each requirement.

86

Figure 34. Processing Phase of the Scripted Process.

With the assistance of the expert developer, the novice developer was able to pinpoint the

requirements that needed to be refined and the ones that needed complementary

requirements. The findings of this first test were recorded as seen in Table 9 and the

corresponding chart showing the percentage of ambiguous terms are shown in Figure 35.

Table 9

Results of First Test of 27 Requirements and No Historical Knowledge

Term
of

Ambiguities

Size 21

Datatype 6

HTML type 7

Functionality 7

Default value 7

Dependency 5

3. List of requirements was input into the tool for processing

4. Tool suggested a list of requirement sentences for each requirement with default values for

each term in the sentence (expert developer assisted novice developer as needed.)

5. Each requirement sentence was processed and ambiguities were detected.

87

Table 9 (continued).

Improvement # of Requirements

Unambiguous requirements 5

New requirements 0

Figure 35. Percentage of Ambiguous Terms in All Produced Sentences.

As seen in Table 9, out of a total of 27 requirements, only five of those requirements

were found to be unambiguous. This suggestion resulted from the interaction between the

novice and expert developers after the requirements were processed. Due to the

inexperience of the novice developer, there was a need for expert guidance in this first

pass of the process. The unambiguity of a requirement does not mean the requirement is

complete or that additional requirement is not needed. As previously stated, the

unambiguity of a requirement is determined by the number of terms that need refinement

Size, 77.8%

Datatype, 22.2%
HTML type ,

25.9%

Functionality ,
25.9%

Default value ,
25.9%

Dependency ,
18.5%

% of Ambiguities per Term (without history)

88

in the requirement sentence. Table 9 also shows, according to the novice developer, the

terms in the proposed requirement sentence that need to be refined. Out of the 27

requirements, 21 requirements need to have the term size revised, which corresponds to

77.8% of requirements, as seen in Figure 35. This is due to the fact that, as previously

stated, the default size proposed is 30. Not all terms in the requirement sentence are listed

in this table in order to avoid confusion and save space.

Since there was no history about previously defined requirements in the

knowledge-base, this first test resulted in no additional requirements. Figure 36 shows the

FuncReq facts created for the first 5 requirements processed.

Figure 36. FuncReq Facts Created for the First Five Requirements of the

27-Requirement Set.

As seen in Figure 36, all 5 requirements were created with the default values for the

database description and HTML form description. The requirement Name was the only

requirement is this subset that did not need to be revised. All other 4 requirements, shown

here, needed to go through the refinement process.

(MAIN::FuncReq (reqID 26) (tempFactId 22) (objName "Social security number") (dbDescr

"Social security number is of type varchar2 size 30.") (formDescr "Social security

number will be an Input of type text.") (required "Y") (showOnForm "Y") (functionality

" ") (dependency " ") (default_val " ") (appName "app_without_history"))

(MAIN::FuncReq (reqID 42) (tempFactId 34) (objName "Email address") (dbDescr "Email

address is of type varchar2 size 30.") (formDescr "Email address will be an Input of

type text.") (required "Y") (showOnForm "Y") (functionality " ") (dependency " ")

(default_val " ") (appName "app_without_history"))

(MAIN::FuncReq (reqID 54) (tempFactId 49) (objName "Name") (dbDescr "Name is of type

varchar2 size 30.") (formDescr "Name will be an Input of type text.") (required "Y")

(showOnForm "Y") (functionality " ") (dependency " ") (default_val " ") (appName

"app_without_history"))

(MAIN::FuncReq (reqID 69) (tempFactId 61) (objName "Maiden Name") (dbDescr "Maiden

Name is of type varchar2 size 30.") (formDescr "Maiden Name will be an Input of type

text.") (required "Y") (showOnForm "Y") (functionality " ") (dependency " ")

(default_val " ") (appName "app_without_history"))

(MAIN::FuncReq (reqID 81) (tempFactId 76) (objName "Gender") (dbDescr "Gender is of

type varchar2 size 30.") (formDescr "Gender will be an Input of type text.") (required

"Y") (showOnForm "Y") (functionality " ") (dependency " ") (default_val " ") (appName

"app_without_history"))

89

Evaluation phase. Finally, during the evaluation phase, as shown in Figure 37, all

requirements in need of refinement, that is all ambiguous requirements, were refined.

Figure 37. Evaluation Phase of the Proposed Scripted Process.

6. Each ambiguous requirement sentence was recorded in a separate Preliminary

Customer Requirement form

7. Each requirement was input into the tool and refined as required

8. Suggested draft after all requirements were processed and refined is produced

9. Developer meets with customer to discuss findings

10 Repeat step 1 to 9 if necessary, otherwise, requirements can be included in

specification document

90

In this phase, the novice developer with the assistance of the expert developer went

through each ambiguous requirement instance and made the necessary adjustments to

each term of the requirement sentence as determined during the processing phase. During

the refinement process, the requirements were redefined as shown in Figure 38.

Figure 38. Results of Refining the First Five Requirements.

As Figure 38 shows, the requirements in bold were the ones refined and the

corresponding items in bold were also part of the refinement process of these first 5

requirements. The Social security number and Email address requirements had a change

in the size and functionality terms, as shown. The Maiden name requirement had a

change in its functionality and dependency sentence term. Finally, the Gender

requirement had a change in its size and formDescr terms.

Once all requirements were refined, a draft of requirements was proposed and a

meeting with the customer was set. The result of this meeting was not conclusive, and a

(MAIN::FuncReq (reqID 36) (tempFactId 118) (objName "Social security number")

(dbDescr "Social security number is of type varchar2 size 9.") (formDescr "Social

security number will be an Input of type text.") (required "Y") (showOnForm "Y")

(functionality "Must be all numbers (e.g. 123456789)") (dependency "n/a")

(default_val " ") (appName "app_without_history"))

(MAIN::FuncReq (reqID 37) (tempFactId 146) (objName "Email address") (dbDescr "Email

address is of type varchar2 size 255.") (formDescr "Email address will be an Input of

type text.") (required "Y") (showOnForm "Y") (functionality "Must be in the format of

local-part@domain.com") (dependency "n/a") (default_val " ") (appName

"app_without_history"))

(MAIN::FuncReq (reqID 38) (tempFactId 120) (objName "Name") (dbDescr "Name is of type

varchar2 size 30.") (formDescr "Name will be an Input of type text.") (required "Y")

(showOnForm "Y") (functionality " ") (dependency " ") (default_val " ") (appName

"app_without_history"))

(MAIN::FuncReq (reqID 39) (tempFactId 121) (objName "Maiden Name") (dbDescr "Maiden

Name is of type varchar2 size 30.") (formDescr "Maiden Name will be an Input of type

text.") (required "Y") (showOnForm "Y") (functionality "Should have a value if the

gender field is an F") (dependency "gender") (default_val " ") (appName

"app_without_history"))

(MAIN::FuncReq (reqID 40) (tempFactId 122) (objName "Gender") (dbDescr "Gender is of

type char size 1.") (formDescr "Gender will be of type radio with the following

values: Radio button: Gender value: F

Radio button: Gender value: M") (required "Y") (showOnForm "Y") (functionality "n/a")

(dependency "n/a") (default_val " ") (appName "app_without_history"))

91

final requirement draft was not produced. There was a need to include additional

requirements in the original list of requirement, and additional iterations of the entire

process were necessary. From this first test, it was determined that the addition of

historical knowledge maybe essential to produce the desired list of requirements, which

would include the additional requirements proposed by the customer.

Test Scenario 2: Historical Knowledge Exists

For the second test, historical knowledge was present and the same 27

requirements were processed. The planning, processing, and evaluation phases were

basically the same, but with different results. The results of this test are shown in Table

10 and the corresponding pie chart in Figures 39 and 40.

Table 10

Results of Second Test of 27 Requirements with Historical Knowledge.

Term
of

Ambiguities

Size 15

Datatype 4

HTML type 7

Functionality 2

Default value 5

Dependency 3

Improvement # of Requirements

Unambiguous requirements 11

New requirements 22

92

Figure 39. Percentage of ambiguous terms in all produced sentences.

Figure 40. Percentage of Requirements Improvement with History.

The results shown in Table 10 after 27 requirements were processed using historical

knowledge of previously defined requirements shows an improvement on the number of

terms as compared to the results of the first test. When making use of history, it is

important to see that new requirements were generated. These new requirements were

produced in consequence of the matching that occurred between new and existing

Size, 55.6%

Datatype, 14.8%

HTML type , 25.9%

Functionality , 7.4%

Default value ,
18.5%

Dependency ,
11.1%

% of Ambiguities per Term (with history)

40.7%

81.5%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Unambiguous requirements

New requirements

Percentage Requirements Improvement (with history)

93

requirements. As shown in the chart presented in Figure 40, after the evaluation process,

new requirements counted for 81.5% of the original list of requirements.

Because the process matches keywords in requirements, not all newly produced

requirements were a perfect match for the requirements in the set. The developer had to

manually map each new requirement to each corresponding requirement in the set.

Basically, a requirement that had a matching requirement was not always the desired

match. For example, the requirement “email address” in the set of processed requirements

was found to be a match for the following existing requirements: contact_email, email,

emailaddress, street address, other address, city, state, and zip. This match occurred

because of the “email” and “address” words. Because the word “address” is associated to

the category “Address”, all requirements in this same category were also matched against

“email address.” Table 11 shows the requirements in the set that were produced and the

number of requirements that were mapped.

94

Table 11

Requirements in the Set Mapped to the Newly Produced Requirements

Requirement in KB Requirement in Set
Total # of New

Requirements

name 3

first name maiden name 0

middle name mother name 3

last name father name 3

child name 3

zip

street address email address 0

other address permanent address 5

city mailing address 5

state

Total: 22

As seen in Table 11, not all requirements in the set are mapped to a requirement matched

in the knowledge-base. The “name”, “mother name”, “father name”, and “child name”

requirements each were mapped to “first name”, “middle name”, and “last name”

requirements. The 4 requirements in the set were replaced by 12 new requirements. The

“maiden name” requirement was not replaced by any requirement and remained in the

requirement draft. The “email address” requirement was replaced by one of the suggested

email requirements. The “permanent address” and “mailing address” were each mapped

to “zip”, “street address”, “other address”, “city”, and “state” existing requirements and

adding 10 new requirements to the requirements draft. After the manual mappings of the

8 matching requirements, a total of 22 new requirements were added to the original list of

requirements, which correspond to the 81.5% increase in new requirements as compared

to 0 new requirements in the first test without any historical knowledge. The comparison

95

charts shown in Figure 41 shows where the addition of new requirements makes a visual

difference to the number of requirements.

Figure 41. Comparison Charts Showing the Percentage Difference Between Test 1 and

Test 2 Results.

From this second test, it was clear to see that in order to reduce the number of

ambiguities in the requirements terms as shown in Table 10, there was a need to

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0%

Size

Datatype

HTML type

Functionality

Default value

Dependency

77.8%

22.2%

25.9%

25.9%

25.9%

18.5%

55.6%

14.8%

25.9%

7.4%

18.5%

11.1%

% of
Ambiguities with History

% of
Ambiguities No History

18.5%

0.0%

40.7%

81.5%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%

Unambiguous

New requirements

% of Requirement Improvement With and Without History

With History Without History

96

increase the number of historical facts in the knowledge-base. With additional history in

the knowledge-base, it is implied that there would be a larger number of matches

between requirements and fewer ambiguities among the terms in the proposed

requirement sentence. Due to the limited size of the data being used in this test, a third

test scenario was implemented.

Test Scenario 3: New Set of Requirements, Historical Knowledge Exists

In this third test scenario, a set of new requirements is employed. The set of

requirements comprised of 15 customer requirements. The requirements were again listed

as single statements as to what they would represent on a Web-based form. The process

involved in this case study was very similar to the process carried out in the first set of

requirements when the historical knowledge-base was available. The results of this

scenario, as expected, is different from the results of the two scenarios, for the first set of

requirements due to the number of requirements and the diverse types of

requirements. The result of this test is shown in Table 12 and the corresponding

chart in Figure 42 and 43.

Table 12

Results of Second Test of 15 Requirements with Historical Knowledge Present.

Term # of Ambiguities

Size 5

Datatype 1

HTML type 2

Functionality 5

Default value 3

Dependency 1

97

Table 12 (continued).

Improvement # of Requirements

Unambiguous requirements 10

New requirements 7

Figure 42. Percentage of Ambiguities per Term for the Second Set of Requirements when

History is Present.

As shown in Table 12, the number of unambiguous requirements increased as compared

to the first set of requirements. In this set of 15 requirements, 5 new requirements were

created due to a match in the knowledge-base. As seen in Figure 42, this counted for

46.7% of the number of requirements that did not need refinement. The number of

ambiguous terms in a sentence continued to show for the sentence terms size, datatype,

HTML type, functionality, default value, and dependency due to the lack of matching

between certain requirements. The automatic formation of a requirement sentence

Size, 33.3%

Datatype, 6.7%

HTML type , 13.3%

Functionality ,
33.3%

Default value ,
20.0%

Dependency , 6.7%

% of Ambiguities per Term (with History)

98

for the requirements that did not have a perfect match caused these terms to be formed

with unexpected values.

Figure 43. Improvement in Requirements when History is Available for the

Set of 15 Requirements.

Another relevant aspect of this test includes the creation of new requirements. In

this test, 8 new requirements were also produced. However, not all of these newly created

requirements were taken into consideration. For instance, the requirement “preferred first

name” caused the “first name”, “middle name” and “last name” requirements to be

created. Because these 3 new requirements are not needed as per requirement set, there

was no need to include these requirements. The “mailing address” and “hometown (city

and state)” requirements were matched to “zip”, “street address”, “other address”, “city”,

and “state” existing requirements in the knowledge-base. These requirements were

considered and as shown in Table 13 they were mapped to each requirement as needed.

66.7%

46.7%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0%

Unambiguous requirements

New requirements

% of Improvement in Requirements

99

Table 13

Requirements in the Set Mapped to the Newly Produced Requirements

Requirement in KB Requirement in Set
Total # of New

Requirements

first name

Preferred first name

middle name 0

last name

zip mailing address
5

street address

other address
hometown (city and state) 2 city

state

Total: 7

As seen in Table 13, the “preferred first name” requirement was created as a new

requirement and did not use any of the matched requirements shown in the “Requirement

in KB” column. The “mailing address” requirement was not created as a new

requirement, but it was replaced by the 5 existing requirements: zip, street address, other

address, city, and state. The “hometown (city and state)” requirement was replaced by the

“city” and “state” requirement. These replacements gave a total of 7 new requirements

that were added to the original set of requirements.

It is important to point out that the additional requirements added to the historical

knowledge-base produced during the second case study, for the set of 27 requirements

had an impact in the results of this scenario. Some of the requirements in this set of 15

requirements were the same or similar as the requirements in the first set. For instance,

the “semester in which you intend to start” appears in both sets of requirements. In the

first set, this requirement needed to be refined. Once it was refined and added to the

historical knowledge-base, it became a match for the same requirement in the second set

100

of requirements. As suggested before, as more requirements are added to the historical

knowledge-base the better will be when it comes to matching future requirements and

reducing ambiguities in the terms of the requirement sentence. As described, the first set

of requirements produced better results when processed via the conceptual model when

historical knowledge was present than the results when no historical knowledge was

present. The second set of requirements also produced good results after it was processed.

Having knowledge about the domain under discussion was the key in demonstrating how

ambiguities in customer requirements can be reduced.

Even with the historical knowledge present, not all requirements had a perfect

match. When no perfect match was found, the knowledge of the expert developer was

essential in determining what parts of the requirement sentence needed attention. From

experience in the area of Web-based form requirements, the expert developer was able to

assist the novice developer in identifying the specific parts in the requirement sentence

that demonstrated to be ambiguous. The size part of the requirement sentence was found

to be the main part causing ambiguity in the requirement sentence in both sets of

requirements. The size is often questionable as it depends on the type of field the

requirement represents on the form.

Other requirements were not matched against similar requirements due to being

worded differently. The unmatched requirements turn out to be ambiguous. For instance,

the requirement “List the names of colleges you have attended” in the first set and the

requirement “Current School OR School Last Attended” in the second set of

requirements could have been matched if synonyms were employed as part of the

101

matching process. However, both requirements are now in the knowledge-base, and any

future new requirement matching either one will be generated.

In summary, the results after running two sets of requirements with and without

historical knowledge did in fact demonstrate that ambiguities in customer requirements

can be reduced and new requirements can be suggested. The results from the processed

set of requirements in the case studies showed the need for knowing about the domain

under discussion. Without knowledge about the requirements, no new requirements were

suggested, and several requirements were found to be ambiguous. When knowledge

about the domain was present, fewer requirements were ambiguous, and several new

requirements were suggested.

Impact of Results

In addition to reducing ambiguities in customer requirements, the proposed semi-

automated conceptual model was also able to suggest new requirements. It is also safe to

say that in theory and by induction that the model was able to reduce the communication

gap between the development team, both expert and novice developers, and between the

development team and the customer. The potential combination of a rule-based tool and a

scripted process imply the production of a less ambiguous set of customer requirements.

Many studies have shown that a good set of functional requirements produces a good

software product (Davis, Dieste, Hickey, Juristo, & Moreno, 2006; Herlea, Jonker, Treur,

& Wijngaards, 1998; Jacobs, 2007; Jiang, Eberlein, & Far, 2004). Given the semi-

automated process, it can be assumed that novice developers will be more knowledgeable

of the domain under discussion and spend less time understanding the specified

102

requirements. In addition, with the improved quality of customer requirements, one can

assume better quality in the development effort and a reduction in the development time.

The results of this study have a direct impact on how customer requirements for

Web-based forms are interpreted. It is well-known customers often do not know how to

express their needs of what they want implemented. It is during this early stage of the

requirement elicitation process that customer requirements are malformed and not

understood by the people involved in the process, such those in the development team.

With the use of a reasoning rule engine, historical knowledge-base of previously defined

requirements and a step-by-step scripted process for requirements elicitation, customer

requirements can become easier to understand. If requirements can become easier to

understand, there will be fewer meetings scheduled between the developer and the

customer. In the current setting where the testing took place, the developer involved

needs time to review and to understand the set of customer requirements prior to meeting

with the customer. The results of this dissertation can be summarized in terms of the

developers and the set of requirements tested here are summarized in Table 14.

Table 14

The Effect of the Proposed Conceptual Model in Processing Requirements

Subject Item
Before Conceptual

Model

After Employing

Conceptual Model

Expert Developer Time spent reviewing

and understanding the

requirements

30 to 40 minutes ± 30 minutes

Time spent meeting

with the customer to

understand

requirements

1 to 1 ½ hours ± 30 minutes

Number of meetings

with customer
2 to 3 1 to 2

103

Table 14 (continued).

Subject Item
Before Conceptual

Model

After Employing

Conceptual Model

Novice Developer Time spent reviewing

and understanding the

requirements

1 ½ to 2 hours ± 30 minutes

Time spent meeting

with the customer to

understand

requirements

2+ hours ± 30 minutes

Number of meetings

with customer
2 to 3 1 to 2

As seen in Table 14, for someone with the skill set of an expert developer, it would take

about 30 to 40 minutes just to review a set of 15 requirements prior to meeting with the

customer as compared to the time using the conceptual model to just process the

requirements. Then a meeting with the customer would be estimated to last from 1 to 1 ½

hours to examine the requirements. However, after using the conceptual model proposed

here, this meeting may last about 30 minutes or even be eliminated. If only 5

requirements were identified to be ambiguous, the developer could contact the customer

via email and avoid a meeting altogether.

The time reviewing the requirements and the time meeting with the customers for

a novice developer varies slightly. For a novice developer, it would take 1 ½ to 2 hours

reviewing the requirements with help from the expert developer due to the fact that a

novice developer does not have the skills of an expert developer. After employing the

conceptual model, this time is also reduced. The time a novice developer would spend

meeting with a customer can be estimated to last 2 or more hours, but after employing the

proposed conceptual tool, this meeting can last about 30 minutes or less. In this meeting,

the novice developer would be accompanied by the expert developer in order to guide

and answers questions a novice developer may not know the answer.

104

In addition to the first meeting with the customer taking place prior to

development of requirements, a meeting during development and after development may

be required. A meeting during development may become necessary. No matter if the

process involves a novice or an expert developer, there will come a time that something

will get missed. A missing element can impact the development timeline and a meeting

with the customer is going to be required. A meeting with the customer after

development may also be needed to run through everything to make sure all of the

requirements were met. Or instead of a meeting, the customer should be able to go

through the set of produced requirements and the application and to make sure the

requirements were met.

In summary, the set of produced requirements can in fact reduce the

communication gap between the developers and the customer and at the same time

reduce ambiguities in customer requirements. The suggested new set of requirements and

the improved requirements that are generated add knowledge to the domain. Both

customer and novice developer become more acquainted with the overall process for

eliciting requirements for Web-based form while reducing the communication gap. As

compared to other studies, the results of the work explored in this dissertation have

demonstrated to produce an impact in the requirements structure and definition. It has

also caused an effect on how customer and developers communicate. As stated earlier,

the study presented in Kaiya and Saeki (2006) the authors suggest a related technique for

improving requirements, but the study does not take into consideration the effect of the

technique on the people involved in the process and how they communicate.

105

CHAPTER VI

SUMMARY AND FUTURE WORK

This chapter summarizes the work presented in this dissertation and the

contributions to the current research literature. It also presents the limitations of this study

and potential future research related to the study and the results of this dissertation.

Summary

The objective of this study was focused on two obstacles during the elicitation of

customer requirements: ambiguities in customer requirements for Web-based forms and

communication gaps between customer and a novice developer. Research in the area of

requirements elicitation process was accomplish and described in Chapter II. In Chapter

III, a methodology was implemented to investigate and explore the implementation of a

conceptual method and the scripted process to reduce ambiguities in customer

requirements and bridge the communication gap between the people involved in the

process. The focus of the proposed conceptual model was to improve misused and

misunderstood parameters between domain experts and customers. After the creation of

an ontology for Web-based forms, a knowledge-base of previously defined requirements

was implemented and described in Chapter IV. The implemented knowledge-base was

constructed using reasoning rules and a Java parser. The main function of the parser was

to process existing Web-based forms to extract the requirement items that led to the

development of the forms. Reasoning rules allowed for existing to be stored in the

knowledge-base and allowed for these existing requirements and new requirements to be

processed and matched via keywords. The results of the case studies utilized in this

research were described in Chapter V. The results of the use of the proposed ontology

106

and scripted process demonstrated the impact on how customer and developers

communicate and how requirements are structured. In addition, it was important to keep

track of the requirements as they were processed during the three-stage scripted process.

The performance and evaluation of the conceptual method and of the scripted process are

reasonably difficult to determine when method and process must act in conjunction.

As shown in Table 1 in Chapter II, this dissertation is linked with seven

characteristics related to processing requirements. The characteristics of this dissertation

in terms of the approach in this study are summarized in Table 15.

Table 15

Characteristics Approached in this Study

Dissertation

Characteristics
Approach in this Study Purpose

User

experience

Novice developer, inexperienced customer,

no analyst available; limited budget

organization

Improve novice developer

knowledge about the domain and

how to process requirements

Ontology Ontology based on requirements definition

for Web-based form; conceptualization of

HTML form elements and SQL table

definition

Allow reusability of requirements,

allow categorization of common

requirements; define knowledge for

Web-based forms: HTML and SQL

create table

Rules for

Reasoning

about

knowledge

Semi-automated reasoning using rule-based

language allow keyword matching (Jess

rules for reasoning about knowledge,

keyword matching, and syntax processing)

Maintains integrity of requirements

and allow reasoning about

requirements

Scripted

process and

supported

forms

Step-by-step procedure with supported

forms to aid novice developer in reducing

ambiguities in customer requirements

Reduce communication gap between

people involved, adapts to domain,

reduce meetings with customer

Historical

Knowledge

Base

Historical knowledge related to Web-based

form requirements

Allow reusability of requirements,

reduce ambiguities in requirements,

improve requirement definition and

allow unambiguous formation of

requirement sentences

Through keyword matching using a rule-based programming language, it was possible to

process customer requirements written in natural language. The creation of an ontology

107

for categorizing the structure of Web-based form requirements made it possible to

populate a knowledge-base of previously defined requirements. The previously defined

requirements were categorized and organized based on their relationships. Newly defined

requirements were matched against existing requirements using reasoning knowledge.

The matching between new and existing requirements permitted the construction of a

structured requirement sentence. The generated sentence for each requirement was

evaluated, and ambiguities were identified. These steps were accomplished using the aid

of a scripted process with instructions on how to process the requirements and how to

identify ambiguities. The experience of the developers was important factors in this

process. A novice developer was the main user of the process. When necessary, an expert

developer assisted the novice developer during the process.

The ability to reuse requirements was one of the main characteristics of this

dissertation. The suggested process improves new requirements by reusing previously

defined requirements of formerly created Web forms. The effectiveness of the use of the

conceptual model and the scripted process was established by the results of the

comparative tests of two sets of new requirements. One test was executed using a set of

27 new requirements without any prior knowledge about the domain of Web-based

forms. The same set was also tested using the conceptual model with available historical

knowledge. The results of these tests were compared, and conclusions were drawn. The

comparison results gave evident reasons to determine how the use of historical

knowledge can be used to reduce ambiguities in requirements. With added knowledge, a

second set of requirements was processed. Fewer requirements were found to be

108

ambiguous. The results for this set were also a confirmation of the effectiveness of the

proposed conceptual model.

The impact of these results caused an effect on how developers communicate and

how developers and customers communicate. Novice developers are assumed to have no

formal training in the area of Web-based form requirements. By using the proposed

conceptual model and the assistance of an expert developer, a novice developer is able to

understand and to reduce ambiguities in customer requirements, to reduce the time

meeting with the customer, and learn about the entire process of reviewing and reducing

ambiguities in customer requirements.

Limitations and Future Work

One important aspect of the study presented here was the use of a conceptual

model and a scripted process for reducing ambiguities in customer requirements while

improving communication among the people involved. The performance evaluation of

the conceptual model and the process are reasonably hard to determine when both

concepts must work together. In addition, the accuracy of the results of the proposed

concept was highly dependable on the accuracy of the collected data and the involvement

of the people collecting the data. For instance, the form employed in this study for the

analysis of ambiguities in customer requirements was mostly biased. Although it was a

relatively easy form, it depended on the perception of those who were using the form.

The same could be applied to the measurement employed in this study for identifying

ambiguities in requirements. The proposed study presented additional limitations and

future work as described.

109

Scalability

The proposed model and process are limited to organizations with small budget

and personnel. It can also be assumed that the organization would have no formal process

in place for requirements elicitation and software development. The complete

implementation of this theory in a university domain or a larger organization would be

too big to put into practice and would require more study in this area. Also, as the results

showed, presumably with all things, more data would be necessary to really show a

difference in the results.

Context of Use

It is assumed that a novice developer has no formal training in specifying

requirements and would require assistance from an expert developer when using the

process proposed here in this study. The conceptual model is limited to improving

customer requirements given a list of requirements. Other aspects of the requirement such

as its functionality would require more elaboration and formalization of the model. The

functionality of the requirement at the programming level could be included as part of the

requirement sentence. The functionality field of the requirement sentence would be the

ideal place for including the partial pseudocode for the functionality of the requirement,

including the placement of the requirement on the form.

Additional Processing

The concept proposed here should not be the only method for reducing

ambiguities in customer requirement. The proposed method should be used where

suitable and with the support of other techniques for reducing ambiguities in customer

requirements. It is essential to understand that the document produced after the use of the

110

proposed concept and process must not be considered as the final requirements

document. The document produced is just a draft version of a set of requirements with

fewer ambiguities that can be used in subsequent iterations of the process and eventual

customer approval.

User Interface and Files

Currently the user interface is limited to command line input and file processing.

The implementation of a graphical user interface (GUI) can be put into practice in the

future as more users are allowed to utilize the process. The handling of files for storing

data is also archaic, and methods for storing data in a database can be evaluated for future

improvement of the tool. The use of database is not well-suited when employing

reasoning rules for processing data.

Additional Future Research

The extension of this study includes coordination between applications that are

related in terms of common fields in the form. In the future, this study could be extended

to complete the requirement elicitation process and possibly the entire software

development process. This completion could be accomplished through the

implementation of a formal process similar to the PSP (Personal Software Process) for

software development.

Allowing customers to actually input the requirements into the tool is envisioned

for the improvement of this conceptual model. Also plans are in place to also include the

visual output of how the requirements will look on the form. Although the presented

conceptual model currently does not allow customer to utilize the process when entering

the requirements, as a future direction this can become possible with the use of modeling

111

tools for visualizing the requirements. Customers often do not know all of the specifics of

coding and building the code, but by adding a visual element to the conceptual model, it

would be possible to produce a visual interpretation of the requirement.

112

APPENDIX A

SCRIPTS, FORMS, AND INSTRUCTIONS

Process Script for Customer Requirements

Purpose: To guide customers and developers in reducing ambiguities in requirements

Entry Criteria - Identify customer name and department

- Identify application name and details

- Preliminary Customer Requirements Form

- Requirement Processing Time Recording Log Form

Planning - Customer(s)

o Write requirements

 May meet with developer

o Record customer requirements and application details in Preliminary

Customer Requirements form

o Input application details in Requirement Processing Time Recording

Log form

Processing - Customer

o Process each customer requirement

o Record process results for each requirement in Preliminary Customer

Requirements Form

o Record detailed time spent in Requirement Processing Time Recording

Log form

Evaluation - Developers

o Analyze requirements

 Approximate unambiguity for requirements

 Prepare version 2 of Preliminary Customer Requirements Form

o Meets with customer(s) to:

 Discuss results

 Discuss refinement

 Refine customer requirements (cycle: Development and

Testing)

o Record detailed time spent in Requirement Processing Time Recording

Log form

Exit Criteria - Customer verify requirements

o Meet with developer for review

o Design and development may begin

- Number of unambiguous requirements are recorded

- Fewer ambiguities in customer requirements

- A properly documented process for eliciting customer requirements and

reducing ambiguities in customer requirements

- A process that learns from history of previously defined requirements

113

Preliminary Customer Requirements Form

114

Preliminary Customer Requirements Form Instructions

Purpose This form holds details about customer requirements for a given Web-based

application

Header Enter the following in the fields:

- Today’s date

- Your name (Developer’s Name)

- Customer Name

- Customer department (Department)

- The name of the application for which these requirements will be employed

(Application Name)

- Total number of requirements in this form (Number of Requirements)

- Database: mark “YES” if the application will be backed by a database to store

its data or “NO” if the application will not be backed by a database

- Email Info: mark “YES” if the application will be sending via email

information entered in the application or “NO” if the application will not be

sending information via email

- If you marked “YES” in the Email Info box, enter the Email in which

information entered in the application will be sent to

- Enter the details of the application in the Application Description

- New Entry: mark “YES” if the requirements will be entered in the tool with no

prior knowledge involved or mark “NO” if not or if you are not sure

- Use Historical Knowledge: mark “YES” if the you wish to load prior

knowledge about other Web-based applications or mark “NO” if not of if you

are not sure

- Ambiguities: this field will be populated when you meet with the developer;

this is calculated using the formula: # {the requirements items that are mapped

into concepts that can be traced from each other through relationships}/#

{requirements items}

- Correctness: this field will be populated when customer meets with the

developer; the value here represents the number of requirements that

unambiguous.

- Script: type here the process script you are using to fill this form. The script

used may be one of the following: Process Script for Customer Requirements

with No Historical Data or Process Script for Customer Requirements with

Historical Data

Customer

Requirements

In this column, enter the requirement for the application being developed. Enter as

much detail as you know about the requirement. You may use a separate sheet for

this step if the requirement has details that will not fit in the box.

(continued)

115

Coordination

Results

between User

and Process

In this column, enter details about the results of each requirement upon using the

process.

- DB field: enter here the entire details about this item as per tool results

- HTML field: enter here the entire details about this item as per tool results

- Default Value: enter here the default value for this item. A default value is

given to a requirement if no value is entered in the application

- Show on app? Mark “YES” if the requirement will be shown on the

application or mark “NO” if not or if you are not sure.

- DB Field: Mark “YES” if the requirement will be a database item or mark

“NO” if not or if you are not sure.

- Required? Mark “YES” if the requirement is required on the form or mark

“NO” if the requirement is not required on the form

- Functionality: enter here the functionality about the requirement if any. For

example, e-mail address must be in the format of local-part@domain.

- Dependency: enter here the dependency criteria for the requirement. There

are some requirements that are dependent on the values entered in the

application. For instance, if you filled in a value for ACT (composite), then

the SAT (composite) field is not required and vise-a-versa

Comments Enter comments about requirements and any suggestions about the results from the

tool coordination.

116

Requirement Processing Time Recording Log

117

Requirement Processing Time Recording Log Instructions

Purpose This form holds details about the time spent in processing customer requirements

for a given Web-based application. Novice developer records all time spent in

processing customer requirements from the time it was received to the time a

requirement draft was produced.

Header Enter the following in the fields:

- Today’s date

- Your name (Developer’s Name)

- Customer name (Customer Name)

- Customer department (Department)

- The name of the application for which these requirements will be employed

(Application Name)

- Total number of requirements in this form (Number of Requirements)

Date Enter the date when the process started, example: 11/20

Start Enter the time when the process started, example: 9:30 am

Stop Enter the time when you stop processing the requirements, example: 11:30 am

Interruption

Time

Enter any interruption time that was not spent processing the requirements and the

reason, for example: 1 hours, lunch break

Delta Time Enter the actual time you spent processing the requirement minus the interruption

time, for example 9:30 am to 2:00 pm, less 1 hour

Num. Req.

Processed

Enter number of requirements processed during this time. For example: processed

all 20 requirements, or processed 5 requirements

Num. Unamb.

Requirements

During the process, enter the number of requirements that were unambiguous, for

example: 5 requirements

Comments Enter any other relevant comments related to the process of these requirements

that might be useful later in case you have to come back to this same process

Important If accurate time is not possible to be input here, enter the best estimate of the time.

It is important to have all time spent processing the requirements recorded here.

118

APPENDIX B

CASE STUDIES REQUIREMENT SETS

Set of 27 requirements:

1. Social security number

2. Email address

3. Name

4. Maiden Name

5. Gender

6. Citizenship status

7. country of birth

8. Birth date

9. Ethnicity

10. Phone number

11. Permanent address

12. Mailing address

13. Campus

14. Are you a resident of Mississippi?

15. Were you born in Mississippi?

16. Dates you have lived in Mississippi?

17. Have you ever been convicted of a felony or do you currently have felony

charges pending against you?

18. ACT (composite)

19. SAT (composite)

20. Semester in which you intend to start at Southern Miss

21. Please list the names of any community/junior colleges or other universities

attended dates of attendance, and G.P.A.

22. Academic Concerns

23. Non-Academic Concerns

24. Are you a single parent?

25. Mother Name

26. Father Name

27. Child Name

Set of 15 requirements:

1. Ethnic Group

2. Are you a single parent?

3. If you are a student, do you receive Financial Aid?

4. Due Date

5. Zip

6. Student ID Number

7. Style Manual

119

8. Approximate Defense Date

9. Hometown (City and State)

10. Suffix

11. Current School OR School Last Attended

12. Date of Birth

13. Semester in which you intend to start at Southern Miss

14. Mailing address

15. Preferred First Name (if different from first name)

Result of the conceptual process for first set of requirements when historical knowledge

is present.

120

Result of the conceptual process for second set of requirements when historical

knowledge is present.

121

APPENDIX C

PROPOSED PROCESS STEP-BY-STEP IMPLEMENTATION

In order to implement the proposed process as described in this dissertation, it is

important to have completed the steps for setting up Eclipse and Jess described in

Chapter IV of this dissertation. It is also important to have at hand the HTML code for

the chosen Web-based forms and the equivalent “Create Table” SQL script for a specific

department. If a form does not have a corresponding SQL “Create Table,” the HTML

code is sufficient. However, if a form has multiple pages with multiple HTML pages,

each page must have only one pair of <form> and </form> tag. The “name” attribute of

the <form> tag must be the first attribute followed by “form”. It is recommended to place

all HTML code between the <html> and </html> tags in a text document and saved with

the .txt extension. In addition, the name for the text document must match the name of

the SQL script for the Web-based form being parsed. As for the SQL “Create Table”

script, it is recommend the file to remain with the .sql extension. The name of the Web-

based application or department must be part of the SQL file name in addition to the

name of the table. It is suggested to proceed with the implementation of this process

using similar Web-based forms for a specific department.

The step-by-step instructions for implementing the proposed process for Web-

based forms in a small organization are as follow:

1. A Java project in Eclipse named WebBasedFormProcess was created in the

Workspace directory of Eclipse. In that project, the Java programs for parsing the

HTML code and the SQL scripts were placed in the src folder. All Jess lines of code

were placed in the WebBasedFormProcess folder.

122

2. A directory named HTML was created as a subdirectory of WebBasedFormProcess

directory. Under the HTML directory, two subdirectories were created: FullHTML

and ParsedHTML. Text file containing the HTML code for the chosen Web-based

form were placed in the FullHTML folder.

3. A directory named SQL was created as a subdirectory of WebBasedFormProcess

directory. Under the SQL directory, two subdirectories were created: FullSQL and

ParsedSQL. The SQL “Create Table” script files for the chosen Web-based form

were placed in the FullSQL folder.

4. The Java program “ParseHTMLFormFinal.java” was executed. This program parses

the HTML code for the five chosen Web-based forms. This program requires the

input directory where the files are located. The program processed one file at a time.

The output of this program consists of a single file containing Jess “assert” statements

for HTML form tags for all five forms. Figure A1 shows a simplified version of the

contents of the input file this program processed. Figure A2 shows a simplified

version of the contents of the generated output file.

123

Figure A1: Simplified version of the HTML code for one of the chosen Web-based form.

Figure A2: Simplified version of the contents of the output file generated after the

execution of the “ParseHTMLFormFinal.java” program.

Notice in Figure A1 all contents between the <form> and </form> pair of tags are

parsed. The resulting output file must be placed in the ParsedHTML folder. The

simplified version shown in Figure A2 shows the assert statements for each parsed field

between the form tags. The contents of this file contain a Jess function in which the body

contains the “assert” statements for creating instances of each field in the form. In

addition, the department for this form and the name of the application are also shown.

The name of the department is retrieved from the value between the <title> and </title>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html lang="en">

<head>

<title>Admissions | University of Southern Mississippi

</title>

</head>

<body>

<form name="page1" action="./index.php" method="post" id="page1">

<input type="hidden" name="submitForm" value="page1">

<table width="730" border="0" align="center" cellpadding="5" cellspacing="0"

bordercolor="#000000">

<tbody>

<tr><td align="left" valign="top" class="questionbox">

<table width="100%" border="0" cellspacing="0" cellpadding="3">

<tr><td colspan="3">Message about this application goes here.

All fields are required unless

specified.

</td></tr>

<tr><td width="25%" valign="middle"><div align="right"><label

for="firstname">First Name:</label></div></td>

<td colspan="2" valign="middle"><input name=" firstname" type="text" id="

firstname" value="" size="30" maxlength="30" /></td></tr>

……….

</tr></table></td>

</tr></tbody></table>

</form>

</body>

</html>

(deffunction process_HTMLInstance()

(assert (Department (deptName "Admissions ")))

(assert (Apps (hasDepartment "Admissions ")(appName

"gcscholarships")(hasSQLTables "gcscholarships_form")))

(assert (Input(inApp "gcscholarships") (unique_id "firstname")

(input_name "firstname") (maxlength 128) (size 30) (is_of_type "text") (value

" ") (hasSQLObjects "firstname") (description "First Name")))

(assert (MapObjects (objName "First Name") (hasHTMLObj

"Input")(hasSQLObjects "firstname") (isPartOf "gcscholarships")))

………
)

124

tags. As a requirement, the name of the department must be placed between these tags

followed by the | (bar) sign. The name of the application was retrieved from the name of

the file. The name of the file must match the name of the application followed by an

underscore, “_” and the name of the SQL table. In fact, the name of the HTML text file

and the name of the SQL “Create Table” script file must match. The generated output file

must go through a find and replace process. Everywhere in the contents of the file, a pair

of double quotes without anything in between must be replaced with a single space

between the double quotes. For instance, replace “” with “ ” in the generated HTML

assert function for the HTML parsed code.

5. The Java program “ParseCreateTableFinal.java” was executed. This program parses

the SQL “Create Table” scripts of the chosen HTML form. The input directory is

chosen, and all SQL scripts located in the input directory are processed one at a time.

Thus, a single output file is generated. The output file contains a Jess function with

“assert” statements for the table and columns. Figure A3 contains a simplified version

of the content of the input file required for parsing the “Create Table” script.

125

Figure A3: Simplified version of the SQL “Create Table” script for one of the chosen

Web-based form.

Figure A4: Simplified version of the contents of the output file generated after running

the “ParseCreateTableFinal.java” program.

As seen in Figure A3, the contents in the SQL file for the “Create Table” script

contains the details of a table creation and its corresponding columns. Each Web-based

form that makes use of a database has a corresponding SQL file script. The contents of

the resulting file as shown in the simplified content of Figure A4 include a function and

“assert” statements for creating instances of a table and respective columns. The

attributes defined for the columns in the SQL script are defined as slots of the

--

-- File created - Tuesday-April-24-2012

--

--

-- DDL for Table FORM

--

 CREATE TABLE "GCSCHOLARSHIP"."FORM"

 ("FORMID" NUMBER(10,0),

 "FIRSTNAME" VARCHAR2(128 BYTE),

 "MIDDLENAME" VARCHAR2(128 BYTE) DEFAULT '',

 "LASTNAME" VARCHAR2(128 BYTE),

 "EMPLID" VARCHAR2(11 BYTE),

 "STREET" VARCHAR2(128 BYTE),

 "CITY" VARCHAR2(32 BYTE),

 "STATE" VARCHAR2(2 BYTE),

 "ZIP" VARCHAR2(10 BYTE),

 "DOB" VARCHAR2(11 BYTE),

 "PRIMARYPHONE" VARCHAR2(12 BYTE) DEFAULT ' ',

 "EMAIL" VARCHAR2(128 BYTE),

 "LASTSCHOOL" VARCHAR2(128 BYTE),

 "LASTDATEATTENDANCE" VARCHAR2(24 BYTE),

 "SCHOLARSHIPSEMESTERYEAR" VARCHAR2(24 BYTE) DEFAULT ' ',

 "ALREADYAPPLIED" CHAR(1 BYTE) DEFAULT 'N',

 "DATEAPPLIED" VARCHAR2(24 BYTE) DEFAULT ' ',

 "APPLICATIONDATE" TIMESTAMP (6),

 "IPADDRESS" VARCHAR2(40 BYTE),

 "EXTRACTDATE" TIMESTAMP (6)

)

……

(deffunction process_SQLInstance()

(assert (SQLTable (table_name "gcscholarships_form")))

(assert (SQLColumns (colName "FORMID") (size 10) (colType "number") (tableName

"gcscholarships_form")))

(assert (SQLColumns (colName "FIRSTNAME") (size 128) (colType "varchar2")

(tableName "gcscholarships_form")))

(assert (SQLColumns (colName "MIDDLENAME") (size 128) (colType "varchar2")

(tableName "gcscholarships_form")))

……
)

126

SQLColumns template in Jess. The produced output file is placed in the ParsedSQL

folder under the SQL folder.

6. The Jess program “final_tool_dictionary_rules.clp” was executed. This program

builds the knowledge-base about requirements for the chosen Web-based forms.

The program requires the fully qualified path of the HTML and SQL output files

specified in the “main” function of the program. It is important not to change

 the name of these files and their respective location. Figure A5 shows the

console results and part of the program code after execution of the Jess program

for creating the knowledge-base.

Figure A5. Console result of the execution of the “final_tool_dictionary_rules.clp”

program. The results shown do not show the output of the historical knowledge-base as

the facts are saved to the history.clp file.

As seen in Figure A5, the program for creating the knowledge-base loads the

files that were generated from the parsing of the HTML code, “htmlInstances.clp”

127

and from the parsing of the SQL “Create Table” scripts, “SQLInstance.clp”. Once all

“assert” statements from these files are executed, the rules associated to creating

historical knowledge are also executed. Once all rules finish processing, a function

for processing the categories is called and processed. All facts were saved into two

different historical files for later usage. The contents of the historical file “history.clp”

can be seen in Figure A6. The simplified version of this file shows the facts that were

instantiated and saved. When historical knowledge is needed for processing new

requirements, this file is utilized to load the facts into Jess’ main memory.

Figure A6. Simplified version of the history file storing all requirements derived from the

chosen Web-based forms.

Each item in the chosen HTML forms and corresponding SQL “Create Table”

script were processed and included in the historical files as facts. The next step was to

process new requirements.

128

7. In this step, the “final_tool_newReq.clp” program was executed. This program allows

for new requirements to be processed. The program allows the user to start a new

historical knowledge-base for new requirements for a specific department without any

prior knowledge about previously defined requirements or previous utilization of the

historical knowledge (the historical facts produced in step 6) about previously defined

requirements. The results of this program depend on the input requirements and the

way the requirements are processed. If the process is carried out without any prior

knowledge, the produced historical knowledge and draft requirement will not contain

any prior knowledge about previously defined Web-based forms. While this process

does not show much improvement in reducing ambiguities in the requirements, it

does produce a suggested requirement sentence for each requirement. The lack of a

complete requirement sentence is considered the main cause for ambiguity in Web-

based form requirements. On the other hand, processing new requirements by making

use of existing knowledge, new requirements, and existing requirements are

suggested. The program produces requirement sentences for the new requirements

that had a matching requirement in the knowledge-base including suggested

requirements that fell in the same category.

Code execution without historical knowledge

Figure A7 shows the console of the results of running this program without any

prior historical knowledge about the domain.

129

Figure A7. Simplified output of “final_tool_newReq.clp” program without the use of

historical knowledge.

The input file “req.txt” processed in the execution of the program shown in Figure

A7 contains the set of 27 requirements described in Chapter V of this dissertation. The

file containing the set of 27 requirements is a text file. This file looks similar to the file

shown in Figure A8.

Figure A8. Set of 27 requirements for Web-based form processed.

130

After these requirements are processed, the suggested requirement sentences

are written to a “.csv” file. Figure A9 shows the suggested requirement sentence file

when viewed using Microsoft Office Excel spreadsheets applications. All SQL and

HTML facts created are stored in the “history.clp” file if it exists or not.

Figure A9. Suggested sentences for the set of 27 requirements processed

without prior knowledge.

In addition to the “.csv” file, three other files are also generated as shown below:

1. “departmentName_appName_appHistory.clp” – as shown in Figure A10, this file

stores SQL and HTML facts specific to the departmentName and appName.

2. “departmentName_appName_reqFacts.clp” – as shown in Figure A11, this file

stores the suggested requirements sentences as facts and temporary facts for the

departmentName and appName to be later used during refinement.

131

3. “departmentName_deptHistory.clp” – as shown in Figure A12, this file stores

SQL and HTML facts specific to the departmentName. All applications facts for

the departmentName will be stored in this file.

Figure A10. The contents of the “departmentName_appName_appHistory.clp” file.

132

Figure A11. The contents of the “departmentName_appName_reqFacts.clp” file.

Figure A12. The contents of the “departmentName_deptHistory.clp” file.

Novice and expert developers go through each requirement shown in Figure A9.

For each requirement that needs a change, the change is recorded in the corresponding

133

column for that change and refined through the same program, the

“final_tool_newReq.clp” program. After the requirements are processed, the

requirements are then input into the Preliminary Customer Requirement Form to present

to the customer for review and approval. Any changes to any one of the requirements

after customer review, go through the refinement process again until an acceptable set of

requirements is approved.

During the refinement process, the name of the department and the application

must be known. The novice developer inputs this information and chooses option 3 to

refine the requirement(s). As shown in Figures A13 and A14, each requirement needed to

be refined is input and processed.

Figure A13: Console results when refining a requirement for a given department and

application.

134

Figure A14. Console results when refining “social security number” requirement.

When refining a requirement, the currently defined SQL column fact and HTML

fact must be edited or deleted in order for the creation of a new requirement fact. For

instance, as shown in Figures A13 and A14, novice developer chooses to refine the

“social security number” requirement. The requirement is found and the developer is

prompted to enter the new information about the requirement being refined for both the

SQL column fact and HTML fact. Once the values for the corresponding slot facts are

entered, a new requirement fact is created and added to the corresponding fact list and

files. As seen in Figure A15, the new “.csv” file containing the suggested sentences is

generated which includes the newly created “social security number” requirement with its

new definition and values.

135

Figure A15. Newly created “.csv” file containing the new definition for the “social

security number” requirement.

If more than one requirement is refined, the “.csv” file shown in Figure A15 will

contain the list of all requirements that were refined and those that were not. The file is

generated after all requirements are refined, and the execution of the program is ended.

Code execution with historical knowledge

Executing the code using historical knowledge is basically the same process as

when no historical knowledge is present, except in this process there will be history about

previously defined requirements. The same set of 27 requirements will be input into the

program and matched against existing requirements. Figure A16 shows the simplified

output when historical knowledge is chosen for processing new requirements.

136

Figure A16. Simplified console result when executing requirements using historical data

about previously defined requirements.

After the requirements are processed, the generated new and existing facts are

saved to the history file and to the corresponding files as previously explained in step 7

when requirements are processed with no historical knowledge. If the requirements

cannot be matched, a default requirement sentence is produced the same way as when no

historical knowledge is available. However, when processing requirements using

historical knowledge new requirements are also matched against requirements in a

category. As explained in Chapter III and IV of this dissertation, categories are created to

combine requirements that are often used in conjunction. Therefore, if a requirement does

not have an exact match, requirements from a category are suggested. Figure A17 shows

the simplified “.csv” file containing the suggested requirement sentences when historical

knowledge is available.

137

Figure A17. Simplified “.csv” file showing suggested sentences for the new set of

requirements when history is utilized.

Once again, novice and expert developer process the suggested requirements

shown in Figure A17. The requirements that are irrelevant are eliminated from the list.

The requirements that are relevant to the new set of requirements are kept for possible

refinement. For instance, the suggested requirement “Email” in row 19 was suggested

because the new set of requirements contains “Email address” as a requirement. Each

word in “Email address” is matched against each requirement in the knowledge-base.

This requirement will be kept and if needed, it will be refined. The refinement process is

the same as previously explained when no historical knowledge is present. Based on the

expertise of the experienced developer, the novice developer processes and refines all

suggested requirements. Once this process is complete, the requirements are then input

into the Preliminary Customer Requirement Form. The novice developer meets with the

customer for input. If necessary, the entire process may be repeated until requirements

satisfy user needs.

138

REFERENCES

Arikoglu, E. S. (2011). The Impact of Scenarios and Personas on Requirement

Elicitation: an Experimental Study. Grenoble.

Benitti, F. B. V., & da Silva, R. C. (2013). Evaluation of a Systematic Approach to

Requirements Reuse. J. UCS, 19(2), 254–280.

Committee, P. P. (2004). Guide to the Software Engineering Body of Knowledge 2004

Version SWEBOK ® A project of the IEEE Computer Society Professional

Practices Committee. Society. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4425813

Coulin, C. (2007). A situational approach and intelligent tool for collaborative

requirements elicitation, (Toulouse III). Retrieved from

http://hal.inria.fr/docs/00/19/58/33/PDF/COULIN_PhD_Thesis_vFinal.pdf

Cybulsky, J., & Reed, K. (2000). Requirements Classification and Reuse: Crossing

Domains Boundaries. In 6th International Conference on Software Reuse (pp. 190–

210). Viena: Springer, Lecture Notesin Computer Science.

Davis, A., Dieste, O., Hickey, A., Juristo, N., & Moreno, A. M. (2006). Effectiveness of

Requirements Elicitation Techniques: Empirical Results from a Systematic Review.

In 14th IEEE International Requirements Engineering Conference (RE’06)2. IEEE

Comput. Soc.

Denger, C., Berry, D. M., & Kamsties, E. (2003). Higher quality requirements

specifications through natural language patterns. Proceedings 2003 Symposium on

Security and Privacy, 80–90. doi:10.1109/SWSTE.2003.1245428

139

Denger, C., Dörr, J., & Kamsties, E. (2001). A Survey on approaches for writing precise

natural language requirements. Fraunhofer Institut Experimentelles Software, (070).

Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+Survey+on+A

pproaches+for+Writing+Precise+Natural+Language+Requirements#4

Di Stefano, J. S., & Menzies, T. (2002). Machine Learning for Software Engineering:

Case Studies in Software Reuse. In Proceedings of the 14th IEEE international

Conference on Tools with Artificial intelligence (ICTAI) (p. 246). Washington, DC:

IEEE Comput. Soc.

Dzung, D. V., & Ohnishi, A. (2009). Ontology-Based Reasoning in Requirements

Elicitation. 2009 Seventh IEEE International Conference on Software Engineering

and Formal Methods, 263–272. doi:10.1109/SEFM.2009.31

Fabrini, F., Fusani, M., Gnesi, G., & Lami, G. (2000). Quality Evolution of Software

Requirements Specifications. In Proceedings of Software and Internet Quality Week.

San Francisco.

Franch, X., Palomares, C., Quer, C., Renault, S., & Tudor, C. R. P. H. (2010). A

Metamodel for Software Requirement Patterns, 85–90.

Friedman-Hill, E. (n.d.). Jess Rules. Retrieved from http://jessrules.com/

Friedman-Hill, E. (2003). Jess in Action: Java Rule-Based Systems. Manning

Publications (July 2003).

Herlea, D., Jonker, C. M., Treur, J., & Wijngaards, N. J. E. (1998). A Case Study in RE: a

Personal Internet Agent.

140

Heumesser, N., & Houdek, F. (2003). Towards Systematic Recycling of Systems

Requirements. In Proceedings of the 25th International Conference on Software

Engineering (ICSE) (pp. 512–519). Portland: IEEE Comput. Soc.

HTML Forms and Input. (n.d.). Retrieved from

http://w3schools.com/html/html_forms.asp

Humphrey, W. S. (2000). The personal software process (PSP), (November). Retrieved

from http://repository.cmu.edu/sei/207/

Humphrey, W. S. (2005). PSP. Addison Wesley.

Jacobs, D. (2007). Requirements Engineering So Things Don’t Get Ugly. Engineering,

8–9.

Jiang, L., Eberlein, A., & Far, B. H. (2004). A Methodology for Requirements

Engineering Process Development. In 11th IEEE International Conference and

Workshop on the Engineering of Computer-Based Systems (ECBS’04).

Kaiya, H., & Saeki, M. (2006). Using Domain Ontology as Domain Knowledge for

Requirements Elicitation. In 14th IEEE International Requirements Engineering

Conference (RE’ (pp. 189–198). Minneapolis/St. Paul: IEEE Comput. Soc.

Kamalrudin, M., Hosking, J., & Grundy, J. (2011). Improving requirements quality using

essential use case interaction patterns. Proceeding of the 33rd International

Conference on Software Engineering - ICSE ’11, 531.

doi:10.1145/1985793.1985866

Kitazawa, N., Osada, A., Kamijo, K., & Kaiya, H. (2008). So/M: A Requirements De

nition Tool using Characteristics of Existing Similar Systems, 255–262.

doi:10.1109/COMPSAC.2008.41

141

Kluge, R., Hering, T., Belter, R., & Franczyk, B. (2008). An Approach for Matching

Functional Business Requirements to Standard Application Software Packages via

Ontology. 2008 32nd Annual IEEE International Computer Software and

Applications Conference, 1017–1022. doi:10.1109/COMPSAC.2008.147

Knethen, A. V., Paech, B., Kiedaisch, F., & Houdek, F. (2002). Systematic Requirements

Recycling Through Abstraction and Traceability. In Proceeding of Requirements

Engineering (RE). Essen.

Kohlbacher, F. (2006). The Use of Qualitative Content Analysis in Case Study Research.

Forum Qualitative Social Research, 7(1), 1–38. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.1378&rep=rep1&

amp;type=pdf

Kroha, P., Janetzko, R., & Labra, J. E. (2009). Ontologies in Checking for Inconsistency

of Requirements Specification. In 2009 Third International Conference on Advances

in Semantic Processing (pp. 32–37). Ieee. doi:10.1109/SEMAPRO.2009.11

Krueger, C. W. (1992). Software Reuse. ACM Computing Surveys, 24(2), 131–183.

doi:http://doi.acm.org/10.1145/130844.130856

Leedy, P. D., & Ormrod, J. E. (2009). Practical Research Planning and Design (9th ed.,

pp. 137–138). Old Tappan, NJ: Prentice Hall.

Lopez, M., Moreno, a. M., & Juristo, N. (2000). How to use linguistic instruments for

object-oriented analysis. IEEE Software, 17(3), 80–89. doi:10.1109/52.896254

Lorentz, D. (2005). Oracle Database SQL Reference 10g Release 2 (10.2). Retrieved

from http://docs.oracle.com/cd/B19306_01/server.102/b14200/title.htm

142

Mayring, P. (2000). Qualitative Content Analysis. Forum: Qualitative Social Research

[On-Line Journal]. Retrieved from http://www.qualitative-research.net/fqs-texte/2-

00/2-00mayring-e.htm

Mayring, P. (2008). The qualitative content analysis process. Journal of Advanced

Nursing, 62(1), 107–15. doi:10.1111/j.1365-2648.2007.04569.x

Mili, H., Mili, F., & Mili, A. (1995). Reusing Software: Issues and Research Directions.

IEEE Transactions on Software Engineering, 21(6), 528–562.

Noy, N. F., Fergerson, R. W., Musen, M. A., & Informatics, S. M. (2000). The

knowledge model of Protégé-2000  : combining interoperability and flexibility.

Knowledge Engineering and Knowledge Management Methods Models and Tools,

1937(1), 1–20. Retrieved from

http://www.springerlink.com/index/ff4979945txfvkku.pdf

Noy, N. F., & McGuiness, D. L. (2001). Ontology Development 101: A guide to creating

your first ontology. Stanford, CA.

Ohnishi, A. (1994). Customizable Software Requiremenst Languages. In Proceedings of

the 8th International Computer Software and Application Conference (COMPSAC).

Los Alamitos: IEEE.

Omoronyia, I., Sindre, G., & Stålhane, T. (2010). A Domain Ontology Building Process

for Guiding Requirements Elicitation. Springer, 188–202. Retrieved from

http://www.idi.ntnu.no/grupper/su/publ/stalhane/inah-refsq10.pdf

Oracle. (n.d.). Oracle SQL Developer Documentation. Retrieved from

http://docs.oracle.com/cd/E35137_01/index.htm

143

Pfleeger, S. L., & Atlee, J. M. (2006). Software Engineering Theory and Practice (3rd

ed., pp. 141–222). Pearson Education, Inc.

Rolland, C., & Proix, C. (1992). A Natural Language Approach for Requirements

Engineering. Pp. 257-277 in Proceedings of Conference on Advanced Information

Systems Engineering, CAiSE 1992, Manchester, UK 12-15 May.

Souag, A. (2012). Towards a New Generation of Security Requirements Definition

Methodology Using Ontologies. In 24th International Conference on Advanced

Information Systems Engineering (CAiSE’12). Gdansk, Poland.

Toval, A., Nicolás, J., Moros, B., & García, F. (2002). Requirements Reuse for

Improving Information Systems Security: A Practitioner’s Approach. Requirements

Engineering, 6(4), 205–219. doi:10.1007/PL00010360

Williams, L. A. (2000). The Collaborative Software Process. The University of Utah.

Wilson, W. M. (n.d.). Automated Quality Analysis of Natural Language Requirement

Specifications.

Zhang, Z. (2007). Effective Requirements Development - A Comparison of

Requirements Elicitation techniques. In INSPIRE (pp. 225–240). Tempere, Finland.

Zong-yong, L., Zhi-xue, W., Ying-ying, Y., Yue, W., & Ying, L. (2007). Towards a

Multiple Ontology Framework for Requirements Elicitation and Reuse. In In

COMPSAC (pp. 189–195).

	Reducing Ambiguities in Customer Requirements Through Historical Rule-Based Knowledge in a Small Organization
	Recommended Citation

	tmp.1453413109.pdf.F6e2p

