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ABSTRACT 

KNOWLEDGE-BASED ANALYSIS OF GENOMIC EXPRESSION DATA BY USING 

DIFFERENT MACHINE LEARNING ALGORITHMS FOR THE PURPOSE OF 

DIAGNOSTIC, PROGNOSTIC OR THERAPEUTIC APPLICATION 

by Venkata J. Thodima 

August 2008 

With more and more biological information generated, the most pressing task of 

bioinformatics has become to analyze and interpret various types of data, including 

nucleotide and amino acid sequences, protein structures, gene expression profiling and so 

on. In this dissertation, we apply the data mining techniques of feature generation, feature 

selection, and feature integration with learning algorithms to tackle the problems of 

disease phenotype classification, clinical outcome and patient survival prediction from 

gene expression profiles. 

We analyzed the effect of batch noise in microarray data on the performance of 

classification. Batchmatch, a batch adjusting algorithm based on double scaling method is 

advantageous over Combat, another batch correcting algorithm based on the empirical 

bayes frame work. In order to identify genes associated with disease phenotype 

classification or patient survival prediction from gene expression data, we compared and 

analyzed the performance of five feature selection algorithms. Our observations from 

these studies indicated that Gainratio algorithm performs better and more consistently 

over the other algorithms studied. 
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When it comes to performance metric to choose the best classifiers, MCC gives unbiased 

performance results over accuracy in some endpoints, where class imbalance is more. 

In the aspect of classification algorithms, no single algorithm is absolutely superior to all 

others, though SVM achieved fairly good results in most endpoints. Naive bayes 

algorithm also performed well in some endpoints. Overall, from the total 65 models we 

reported (5 top models for 13 end points) SVM and SMO (a variant of SVM) dominate 

mostly, also the linear kernel performed well over RBF in our binary classifications. 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

The past two decades witnessed an explosive growth in biological information 

generated by the scientific community. This was caused by major breakthrough advances 

in the field of molecular biology, coupled with advances in genomic technologies. In 

turn, the huge amount of genomic data not only leads to a demand on the computer 

science community to help store, organize and index the data, but also leads to a demand 

for specialized computational tools to view and analyze the data.1 

"Biological science in the 21st century is being transformed from a purely lab-based 

science to an information science as well". 

As a result of this transformation, a new field of science was born, in which 

biology, computer science, and information technology merge to form a single discipline 

called bioinformatics. 

Motivation 

Two decades ago, the main role of bioinformatics was to create and maintain 

databases to store biological information, such as nucleotide and amino acid sequences. 

With more and more data generated, nowadays, the most pressing task of bioinformatics 

1 http://www.ncbi.nlm.nih.gov/About/primer/bioinformatics.html 

http://www.ncbi.nlm.nih.gov/About/primer/bioinformatics.html
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has moved to analysis and interpretation of various types of data, including nucleotide 

and amino acid sequences, protein domains, protein structures and so on. To meet the 

new requirements arising from the new tasks, researchers in the field of bioinformatics 

are working on the development of new algorithms (mathematical formulas, statistical 

methods, etc.) and software tools which are designed for assessing relationships among 

large data sets, such as methods to locate a gene within a sequence, predict protein 

structure and/or function and understand diseases at gene expression level. 

In recent years, the rapid development of DNA microarray technology has made it 

possible for scientists to measure the expression levels of thousands of genes in a single 

experiment (Schena et al. 1995, Lockhart et al. 1996). Thus, DNA microarray technology 

has found many applications in biomedical research. There are many active research 

applications of this technology in clinical cancer research; it is being used to better 

understand the biological mechanisms underlying oncogenesis (Butte 2002), in cancer 

classification (predictors of good outcome versus poor outcome) (Golub et al. 1999; 

Petricoin et al. 2002; van't Veer et al. 2002), clinical diagnosis (Yeang et al. 2001) and 

in drug discovery studies. One of the main challenging tasks in this clinical cancer 

research is the prediction of outcome, i.e., the potentiality of cancer regression and for 

severe status (metastasis). The need for sensitive and reliable predictors of clinical 

outcomes is crucial for early discovery of cancer patients. Identification of these clinical 

outcomes has direct effect on the choice of optimal therapy for each individual (Perez et 

al. 2004; Pusztai et al. 2005; Simon 2005). 
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Currently, there are two approaches to the computational analysis of gene 

expression data for clinical classification purpose. The two approaches are discrimination 

(supervised learning) and clustering (unsupervised learning). In unsupervised learning, 

the classes are unknown and need to be discovered from the data (Brown et al. 2000). 

This involves estimating the number of classes or clusters by using a clustering algorithm 

such as hierarchical clustering (Eisen et al. 1998; Spellman et al. 1998) or self-organizing 

maps (Tamayo et al. 1999) and assigning objects to these classes. In supervised learning 

(also known as classification, supervised pattern recognition and class prediction), the 

classes are predefined and the goal is to understand the basis for the classification from a 

set of labeled data, also known as the learning set. This learned information is then used 

to build a classifier or model, which will be used to predict the class or label of the future 

unlabeled (blind) data, also known as external validation dataset (Dudoit et al. 2002). 

Recently, significant research effort has been directed to the prediction of clinical 

outcomes for several kinds of cancer on the basis of microarray data, which reported a 

considerable success in this class prediction results (Bair et al. 2004; Beer et al. 2002; 

Bhattacharjee et al. 2001; Khan et al. 2001; Ramaswamy et al. 2003; Rosenwald et al. 

2002; Yeoh et al. 2002). But still there are two problems in this approach, the first is 

when one analysis group's class model or predictor was tested on another group's same 

type of cancer data, the success rate decreased significantly, and the second is 

comparison of the marker gene lists used to predict a model by different groups revealed 

very small overlap (Ein-Dor et al. 2006). 
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The probable explanation for these problems may be due to several variables like 

patient's age, race, sex, etc. and in the case of toxicological data like the amount of dose, 

time, etc. Also, the platform of microarray technology used and the different methods of 

data analysis play a significant role in these discrepancies (Ein-Dor et al. 2006; Michiels 

et al. 2005), which we are studying extensively as one analysis group through 

participating in the Microarray Quality Control Phase II (MAQC-II) project initiated by 

the Federal Drug Administration (FDA). 

Microarray Quality Control (MAQC) Project 

Overview of the Project 

On March 16,2004, the US Food and Drug Administration (FDA) released a 

report on "Innovation/Stagnation: Challenge and Opportunity on the Critical Path to 

New Medical Products", addressing the recent slowdown in innovative medical products 

submitted to the FDA for approval. The report described the urgent need to modernize 

the medical product development process - the Critical Path from bench to bed side, and 

they released the Critical Path Opportunities list that provided a concrete focus for public 

and private efforts in new research development and tools. Among the 76 opportunities in 

fields such as genomics, proteomics and bioinformatics, "Biomarker qualification" and 

"Standards for microarray and proteomics-based identification of biomarkers" were 

cited as the top two opportunities. 
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Microarray technology was identified by the FDA's Critical Path Initiative2 as a 

key tool that holds "vast potential" for personalized medicine through the identification 

of biomarkers. In response to the FDA's CPI, scientists at the FDA's National Center for 

Toxicological Research (NCTR) formally launched the MicroArray Quality Control 

(MAQC) project3 in order to address reliability concerns as well as other performance, 

standards, quality and data analysis issues (Shi et al. 2006). 

Microarray gene expression profiling is being used for a variety of applications, 

two of which are (1) understanding general expression differences in various biological 

populations, classes, states, or conditions, which typically leads to the identification of 

lists of differentially expressed genes (DEGs) that distinguish populations and classes, 

and (2) the development of predictive models or classifiers that accurately predict 

outcomes of an individual based on a gene expression profile. These two types of 

applications have important ramifications and distinctions. In the first, information about 

a population or differences between populations is inferred. In the second, something 

about an individual member of a population is inferred or predicted. Although signatures 

can be used to classify individuals (e.g., assign or associate the individual with a subtype 

of a particular disease), MAQC-II is primarily focused on prediction of health outcomes 

based on microarray measurement of biological samples. These can putatively be used to 

predict response to treatment regimens, patient prognosis, recurrence of disease, survival, 

etc. 

2 http://www.fda.gov/oc/initiatives/criticalpath/ 

3 http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/ 

http://www.fda.gov/oc/initiatives/criticalpath/
http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/
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MAQC -1 Findings: Microarrays Are Reproducible and Reliable 

One important goal of the MAQC Phase I was to assess the best performance 

achievable with microarray technology under consistent experimental conditions so that 

future end users will have a benchmark to judge whether the quality of their microarray 

data is comparable. A major challenge to the microarray user is the existence of 

numerous options for analyzing the same data set, this is creating the reproducibility 

problem (Eisenstein 2006). Even though, the reproducibility has seldom been, but in the 

future should be used as a critical criterion to judge the performance of data analysis 

procedures. 

The MAQC-I analyses (Shi et al. 2006) demonstrated that the apparent lack of 

reproducibility reported in previous studies (Marshall 2004; Tan et al. 2003) using 

microarray assays was likely caused, at least in part, by the common practice of ranking 

genes solely by a statistical significance measure, for example, P-values derived from 

simple ^-tests, and selecting differentially expressed genes with a stringent significance 

threshold, a result that is consistent with a previous report. The gene lists in the MAQC 

study were much more concordant when fold change was used as the ranking criterion. In 

addition, widely used statistical methods such as ranking based on false discovery rate 

(FDR) values, t-test using SAM (significance analysis of microarray) did not appear to 

improve inter-laboratory or inter-platform reproducibility compared to fold change 

ranking. Importantly, non-reproducible gene lists could lead to inconsistent biological 

interpretations, for example, in terms of enriched GO (Gene Ontology) terms and 

pathways. Fold change ranking combined with a less stringent P-value cutoff was found 
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to yield more reproducible signature gene lists. The effect of various data normalization 

methods on the stability of lists of differentially expressed gene is greatly reduced when 

fold change is used for gene selection. 

M A Q C - 1 : Class Comparison -> What makesthe two populations different? 

Normal Treated 

5> 
Differentially 

Expressed Genes 
(DEGs) 

Betterunderstandingof the biological mechanisms 

M AQC - I I : Class Prediction -> Can the outcome of the new individuals be predicted? 

li 
Wm 

Normal Cancer 

Diagnosis, treatment outcome, prognosis, personalized 
medicine 

DEGs 

Predictive Models 
(Classifiers) 

Class prediction 

i I 

i 
f 

Unknown 

Figure 1: Schematic representations of the two major types of applications of microarray 
technology are being addressed in Phase I (top image) and Phase II (bottom image) of the 
MAQC project, i.e., MAQC-I and MAQC-II, respectively. 
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Major findings of the first phase of the MAQC project were published in six 

research papers on the September 8, 2006 issue of Nature Biotechnology (Canales et al. 

2006; Guo et al. 2006; Patterson et al. 2006; Shi et al. 2006; Shippy et al. 2006; Tong et 

al. 2006). 

From MAQC-I to MAQC-II: To investigate the capabilities and limitations of 

microarrays in clinical applications such as disease diagnosis, prognosis, treatment 

outcome and personalized medicine, the MAQC Phase II (MAQC-II) has been launched 

to address technical and scientific issues involved in the development and validation of 

predictive models or classifiers (Figure 1). Multiple datasets were collected and 

distributed for independent analyses to the participating organizations, in which the 

University of Southern Mississippi (USM) group is also actively participating. The 

results will normally be evaluated at three different levels: within a single dataset via 

cross-validation, validation across one or more independent datasets from studies with the 

same (or similar) study objectives, and validation with blinded "prospective" samples. 

Objectives of MAQC-II 

The overall goal of MAQC-II is to comprehensively evaluate different approaches 

for the development and validation of predictive models or classifiers in clinical and 

preclinical (toxicogenomics) applications by applying the same set of approaches to a 

variety of datasets with diverse endpoints on which predictions are being developed. All 

predictions pertain to an individual patient endpoint. 
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Clinical Applications: 

1. Understand the behavior of various prediction rules and gene selection methods 

that may be applied to microarray data sets to produce clinical outcome predictors: (a) 

Examine the influence of the number of variables (probes or probe sets) on prediction 

accuracy and robustness of the prediction result (in cross-validation and in independent 

and "prospective" validation); (b) Examine the influence of prediction rules (algorithms) 

on prediction accuracy and the robustness of prediction results (in cross-validation and in 

independent validation); and (c) Examine robustness of prediction results in the face of 

increasing experimental and artificial noise. 

2. Identify and characterize the sources of variability in multi-gene prediction 

results including (a) Inter- and intra-laboratory variation in prediction results (in replicate 

experiments on the same platform); and (b) Cross-platform performance of prediction 

results (in replicate experiments on different platforms). Only NIEHS (National Institute 

of Environmental Health Sciences) is providing the datasets in two platforms (Affymetrix 

and Agilent) generated using the same experimental setup. 

Preclinical (toxicogenomics) Applications: 

The primary goal is to assess the reliability of models for the prediction of toxicity 

of new chemicals based on the microarray gene expression profiling. The entity to be 

predicted is the toxicological endpoint (e.g., the presence or absence of liver toxicity) for 

a chemical, and usually not for an individual animal. An important note is that in clinical 

applications, the entity to be predicted is usually an outcome of a subject (patient). 
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Design of MAQC-U 

As part of the MAQC - II project, the FDA collected multiple datasets from 

academic and industrial organizations. These datasets were distributed to the participating 

organizations for independent analyses with available methodologies. We received these 

datasets as part of the participating analysis groups after signing the Confidential 

Information Disclosure and Transfer Agreements (CIDTA) from the USM contracts 

office with the corresponding data providers. 

The project is divided into four working groups for better coordination and 

simplification for the participating organizations. 

1. The Clinical Working Group (CWG) focuses on the datasets related to clinical 

applications. The USM has been part of this CWG from the initial stages. 

2. The Toxicogenomics Working Group (TGxWG) focuses on the datasets related to 

toxicogenomics applications. The USM group has been part of this working group 

from the beginning of this group. 

3. The Titrations Working Group (TitrationWG) focuses on the datasets from 

MAQC titration samples (including the MAQC-I Pilot data from 13 titration 

mixtures). The USM group is not a participant in this working group. 

4. The Regulatory Biostatistics Working Group (RBWG) provides recommendations 

to the MAQC-II CWG and TGxWG on the process and criteria for evaluating the 

performance of predictive models and classifiers. This working group evaluates 

and ranks the data analysis plans (DAPs) of the participating analysis groups 
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whether they are within the acceptable statistical framework or not. Before May 

2007, the USM group along with other groups first proposed the Standard 

Operating Procedures (SOPs) for each dataset separately as per the working 

groups teleconference discussions. But after discussions and comments from the 

RBWG on the loopholes in this approach (to have a separate plan for each dataset 

would be biased) in the face-to-face meeting in SAS, Cary, NC in May 2007. The 

statisticians' part of the RBWG unanimously recommended to the participating 

analysis groups to prepare a single comprehensive Data Analysis Plans (DAPs) 

for all the datasets from each group instead of separate plan for each dataset. 

Datasetsfor Clinical and Toxicogenomics: 

Datasets were identified for the purpose of evaluating 

a) The performance of predictive models and classifiers (predictive signatures) and 

b) The performance of different approaches and methodologies for algorithms 

commonly used in the development of predictive models and classifiers. 

Datasetsfor Clinical Working Group: 

Three diseases, namely breast cancer (BR) from the M.D. Anderson Cancer 

Center (MDACC), multiple myeloma (MM) from the University of Arkansas for Medical 

Sciences (UAMS) and neuroblastoma (NB) from the University of Cologne, Germany, 

were considered for more detailed examination for predictive modeling using microarray 

data. I will explain in more detail about these datasets in the Materials and Methods 

chapter. 
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Datasetsfor Toxicogenomics Working Group: 

The goal of the TGxWG is to develop and compare methods for deriving genomic 

signatures from gene expression data that diagnose or predict toxicity of compounds in 

animal models. It should be noted that the individual entities that will be predicted or 

classified are individual chemicals, not individual animals. 

Three datasets are selected to study under this working group. They are Lung 

Tumor in rats from Hamner Institute, Hepatocarcinogenicity in rats from Iconix and 

Overall necrosis score in mouse from NIEHS. These six datasets are explained in detail 

in the Materials part of the chapter III of this dissertation. 

Prediction and Classification Algorithms 

Numerous algorithms have been reported in the literature for developing 

prediction models and classifiers based on microarray gene expression data. The 

Regulatory Biostatistics WG (RBWG) suggested more commonly (and possibly 

appropriate) used methods to be evaluated with the MAQC-II datasets. 

Supervised Learning and Classification Algorithms 

Data mining is to extract implicit, previously unknown and potentially useful 

information from data (Witten et al. 2000). It is a learning process, achieved by building 

computer programs to seek regularities or patterns from data automatically. Machine 

learning provides the technical basis of data mining. One major type of learning we 

address in this dissertation is called classification learning, which is a generalization of 

concept learning. The task of concept learning is to acquire the definition of a general 
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category given a set of positive class and negative class training instances of the category 

(Mitchell et al. 1986). Thus, it infers a Boolean-valued function from the training 

instances. As a more general format of the concept learning, classification learning can 

deal with more than two class instances. 

In practice, the learning process of classification is to find models that can 

separate instances in the different classes using the information provided by training 

instances. Thus, the models generated can be applied to classify a new unknown (blind) 

instance to one of those classes. Stating it in simpler words, given some instances of the 

positive class and some instances of the negative class, can we use them as a basis to 

decide if a new unknown instance is positive or negative (Mitchell et al. 1986)?. This 

kind of learning is a process from general to specific and is supervised because the class 

labels of training instances are clearly known. 

In contrast to supervised learning is unsupervised learning, where there are no 

pre-defined classes or labels for training instances. The main goal of unsupervised 

learning is to decide which instances should be grouped together, or in other words, to 

form the classes. Sometimes, these two kinds of learning methods are used sequentially; 

supervised learning makes use of class information derived from unsupervised learning. 

This two-step strategy has achieved some success in the gene expression data analysis 

field (Alizadeh et al. 2000; Golub et al. 1999), where the unsupervised clustering 

methods were first used to discover classes (for example, subtypes of leukemia) so that 

supervised learning algorithms could be employed to establish classification models and 

assign a clinical outcome or phenotype to a newly coming instance. 
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Gene Expression Data Representation for Classification 

In a typical classification task, data are represented as a table of samples (also 

known as instances). Each sample is described by a fixed number of features (also known 

as attributes, in our case, these were genes) and a label that indicates its class (Hall, 

1998). For example, in studies of clinical outcome classification of cancer samples, gene 

expression data of m genes for n cancer samples is often summarized by an n x (m+1) 

table (X,Y) = (xy, yi), where xy denotes the expression level of gene/ in sample /, and yi 

is the class or label (e.g., erpos in breast cancer) to which sample / belongs (i = 1,2,3,..., n 

and/ = 1,2,..., m). The table (Table 1) below shows a sample dataset with three breast 

cancer samples. 

Sample# 

Samplcl 

S;iin|)li2 

Siiinpli'3 

geneA 

2.004906 

1.445*52 

1.429597 

geneB 

-1.201 IS 

-I.DI2" 

0.567925 

geneC 

0.528131 

I.II6S66 

-0.19037 

geneD 

1.05386 

-0.90285 

3.039217 

geneE 

1.544994 

1.854096 

-0.09884 

Class (label) 

erpos 

crncg 

erpos 

Table 1: This table shows an example of gene expression data. There are three samples, 
each of which is described by 5 genes. The class label in the last column indicates the 
clinical endpoint of the sample. 

Results Evaluation or Error Estimation 

Evaluation is the key to making real progress in supervised classification (Witten 

et al. 2000). To evaluate the performance of classification algorithms, one way is to split 

samples into two sets, training samples and test samples. Training samples are used to 

build a learning model while test samples or external independent dataset (blind dataset) 

are used to evaluate the accuracy of the model. During validation, test samples or blind 
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dataset are supplied to the model, having their class labels "hidden", and then their 

predicted class labels assigned by the model are compared with their corresponding 

original class labels to calculate prediction accuracy. If two labels (actual and predicted) 

of a test sample are same, then the prediction for this sample is counted as a success; 

otherwise, it is an error (Witten et al. 2000). An often used performance evaluation term 

is error rate, which is defined as the proportion of errors made over a whole set of test 

samples. In some cases, we simply use the number of errors to indicate the performance. 

Note that, although the error rate on test samples is often more meaningful to evaluate a 

model, the error rate on the training samples is nevertheless useful to know as well since 

the model is derived from them. 

Predicted 

Neg Pos 

TN 

FN 

FP 

TP 

Figure 2: Confusion matrix for two-class classification problem 

Consider the confusion matrix illustrated in the above figure (Figure 2) of a two-

class ('Pos' and 'Neg') problem. The true positive (TP) and true negative (TN) are 

correct classifications in samples of each class, respectively. A false positive (FP) is 

when a 'Neg' class sample is incorrectly predicted as a 'Pos' class. A false negative (FN) 

is when a 'Pos' class sample is incorrectly predicted as a 'Neg' class. Then each element of 

a confusion matrix shows the number of test samples for which the actual class is the row 

and the predicted class is the column. Thus, the error rate is just the number of false 

positives and false negatives divided by the total number of test samples (i.e., error rate = 

(FP+FN)/(TN+TP+FP+FN)). 
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Error rate is a measurement of overall performance of a classification algorithm (also 

known as a classifier); however, a lower error rate does not necessarily imply better 

performance on a target task. For example, there are 10 samples in class 'Pos' and 90 

samples in class 'Neg'. Suppose, if TP = 5 and TN = 85, then FP = 5, FN = 5 and the 

error rate is 10%. However, only 50% of the samples are correctly classified in class 

'Pos'. So, this is not a perfect evaluation metric in all cases. To more impartially evaluate 

the classification results, some other evaluation metrics are constructed. 

1. True positive rate (TP rate) = TP/(TP+FN), also known as recall or sensitivity, 

measures the proportion of samples in class 'Pos' that are correctly classified as 

class 'Pos'. 

2. True negative rate (TN rate) = TN/(FP+TN), also known as specificity, measures 

the proportion of samples in class 'Neg' that are correctly classified as class 

'Neg'. 

3. False positive rate (FP rate) = FP/(FP+TN) = 1 -specificity. 

4. False negative rate (FN rate) = FN/(TP+FN) = 1-sensitivity. 

5. Another evaluation metric in the classification studies is Matthews Correlation 

Coefficient (MCC). We used this as our priority metric in determining the 

candidate model for each end point as per the RBWG recommendation due to 

more unbalanced classes for each endpoints in our study. 

MCC takes into account true and false positives and negatives and is generally 

regarded as a balanced measure which can be used even if the classes are of very 
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different sizes (significantly unbalanced). It returns a value between -1 and +1. A 

coefficient of+1 represents a perfect prediction, 0 an average random prediction and -1 

the worst possible prediction (Baldi et al. 2000; Matthews 1975). Other measures, such as 

the proportion of correct predictions, are not useful when the two classes are of very 

different sizes. For example, assigning every object to the larger set achieves a high 

proportion of correct predictions, but is not generally a useful classification.4 

(TP*TN)- (FP*F.m 
MCC — 

V'CTP + FP)(TP + FN)(TN + FP} (TN + FN} 

In classification, it is a normal situation that along with a higher TP rate, there 

comes a higher FP rate and same to the TN rate and FN rate. Thus, the receiver operating 

characteristic (ROC) curve was invented to characterize the tradeoff between TP rate and 

FP rate (Zweig et al. 1993). The ROC curve plots TP rate on the vertical axis against FP 

rate on the horizontal axis. With an ROC curve of a classifier, the evaluation metric will 

be the area under the ROC curve. The larger the area under the curve (AUC) (the more 

closely the curve follows the left-hand border and the top border of the ROC space), the 

more accurate the test. Thus, the ROC curve for a perfect classifier has an area of 1. The 

expected curve for a classifier making random predictions will be a line on the 45 degree 

diagonal and its expected area is 0.5. Please refer to Figure 3 (figure slightly modified 

from the courtesy image by Indon, 2007)5 for a sample ROC curve. 

4 http://en.wikipedia.org/wiki/Matthews_Correlation Coefficient 

5 http://en.wikipedia.Org/wiki/Image:ROC_space.pnR 

http://en.wikipedia.org/wiki/Matthews_Correlation
http://en.wikipedia.Org/wiki/Image:ROC_space.pnR
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ROC space 

Figure 3: A sample ROC curve. The dotted line on the 45 degree diagonal is the expected 

curve for a classifier making random predictions. 

Error estimation methods 

If the number of samples for training and testing is limited, a standard way of 

predicting the error rate of a learning technique is to use stratified k-fold cross validation 

(&-fold CV). In A>fold cross validation, first, a full data set is divided randomly into k 

disjoint subsets of approximately equal size, in each of which the class is represented in 

approximately the sample proportions as in the full dataset (Witten et al. 2000). Then the 

above process of training and testing will be repeated k times on the k data subsets. In 

each iteration, (1) one of the subsets is held out in turn, (2) the classifier is trained on the 
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remaining k-l subsets to build classification model, (3) the classification error of this 

iteration is calculated by testing the classification model on the holdout set (Figure 4). 

Finally, the k numbers of errors are added up to yield an overall error estimate. 

Obviously, at the end of cross validation, every sample has been used exactly once for 

testing. 

A widely used selection for A:is 10. Why 10? "Extensive tests on numerous 

different data sets, with different learning techniques, have shown that ten is about the 

right number of folds to get the best estimate of error, and there is also some theoretical 

evidence that backs this up"(Witten et al. 2000). Although 10-fold cross validation has 

become the standard method in practical terms, a single 10-fold cross validation might 

not be enough to get reliable error estimate (Witten et al. 2000). The reason is that, if the 

seed of the random function that is used to divide data into subsets is changed, the cross 

validation with the sample classifier and data set will often produce different results. 

Thus, for a more accurate error estimate, it is suggested to repeat the 10-fold cross 

validation process ten times and average the error rates. This is called 10-fold cross 

validation with ten iterations and naturally, it is a computation-intensive undertaking. 

First we used the 10-fold CV, but based on the recommendations from RBWG in 8th 

face-to-face MAQC meeting, we choose to perform 5-fold CV with ten iterations because 

the Hamner dataset is small and not strong data to use 10-fold with ten iterations. This 

avoids the over fitting problem. 
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10-fold Cross Validation 

(9/10) (1/10) 

Performance Evaluation 

Figure 4: A Graphical depiction of 10-fold cross validation 

Instead of running cross validation ten times, another approach for a reliable results is 

called leave-one-out cross validation (LOOCV). LOOCV is simply n-fold cross 

validation, where n is the number of samples in the full data set. In LOOCV, each sample 

in turn is left out and the classifier is trained on all the remaining n-\ samples. 

Classification error for each iteration is judged on the class prediction for the holdout 

sample, success or failure. Different from Mold (k < n) cross validation, LOOCV makes 

use of the greatest possible amount of samples for training in each iteration and involves 

no random shuffling of samples. 
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Classification Algorithms 

There are various ways to find models that separate two or more data classes, i.e. 

to do classification. Models derived from the same sample data can be very different 

from one classification algorithm to another. As a result, different models represent the 

knowledge learned in different formats as well. For example, decision trees represent the 

knowledge in a tree structure; instance-based algorithms, such as nearest neighbor, use 

the instances themselves to represent what is learned; Naive Bayes method represents 

knowledge in the form of probabilistic summaries. In this section, we will describe a 

number of classification algorithms that have been used in this project, including NaiVe 

Bayes, Support Vector Machines (SVM) and Voted Perceptron methods. 

Support Vector Machines (SVM) 

Support vector machines (SVM) is a kind of a blend of linear modeling and 

instance-based learning (Witten et al. 2000), which uses linear models to implement 

nonlinear class boundaries. It originates from research in statistical learning theory 

(Vapnik, 1995). An SVM selects a small number of critical boundary samples from each 

class of training data and builds a linear discriminant function (also called maximum 

margin hyperplane) that separates them as widely as possible. The selected samples that 

are closest to the maximum margin hyperplane are called support vectors. Then the 

f(T~) discriminant function 

for a test sample Tis a linear combination of the support vectors and it is constructed as: 

/ ( r ) = Y oc1.ytCr,..70+& 
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Any of these linear classifiers would be / Maximum margin linear classifier is 
fine, but which one is best? the best classifier 

Figure 5: Graphical representation of Support Vector Machines concept 

where the vectors Xz are the support vectors, } \ are the class labels (which are assumed to 

have been mapped to 1 or -1) of Xu vector Trepresents a test sample. (Xc. T) is the dot 

product of the test sample T with one of the support vectors Xt. «s and b are numeric 

parameters (like weights) to be determined by the learning algorithm. 

In the case that no linear separation is possible, the training data will be mapped 

into a higher-dimensional space H and an optimal hyperplane will be constructed there. 

The mapping is performed by a kernel function K(.,.) which defines an inner product in H 

. Different mappings construct different SVMs (Figure 5). When there is a mapping, the 

discriminant function is given like below which is a representation of a linear SVM. 

f(T)=Y KiytK0CirT) + b 
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An SVM is largely characterized by the choice of its kernel function. There are two types 

of widely used kernel functions; polynomial kernel and Gaussian radial basis function 

(RBF) kernel (Burges, 1998). 

1. A polynomial kernel is if (Z1,X2) = {Kt.X2 + i)d, the value of power d is 

called degree and generally is set as 1, 2 and 3. Particularly, the kernel 

becomes a linear function if d = 1. It is suggested to choose the value of 

degree starting with 1 and increment it until the estimated error ceases to 

improve. However, it has been observed that the degree of a polynomial 

kernel plays a minor role in the final results (Santos et al. 2002) and 

sometimes, linear function performs better than quadratic and cubic 

kernels due to over-fitting of the latter kernels. 

2. An RBF kernel has the form KWi'*z) = e*P( is^t where a is the 

width of the Gaussian. The selection of parameter a can be conducted via 

cross validation or some other manners. When using SVM with RBF 

kernel on gene expression data analysis, Brown group (Brown et al. 2000) 

set a equal to the median of the Euclidean distances from each positive 

samples (sample with class label as 1) to the nearest negative sample 

(sample with class label as -1). 

Besides polynomial kernel and Gaussian RBF kernel, other kernel functions include 

sigmoid kernel (Scholkopf et al. 2002), locality-improved kernel (Zien et al. 2000) and so 

on. 
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/(T) = £ «,-yiJfOfijr) + b 

In order to determine parameters a and b in i , the 

construction of the discriminant function finally turns out to be a constrained quadratic 

problem on maximizing the Lagrangian dual objective function (Weston et al. 2001). 

n i n 

under constraints 

n 

«(yt =• 0, «j > 0, (i = 1,2, ...,n) 

where « is the number of samples in training data. However, the quadratic programming 

(QP) problem in the above equation cannot be solved easily via standard techniques since 

it involves a matrix that has a number of elements equal to the square of the number of 

training samples. 

Sequential Minimal Optimization (SMO) 

To efficiently find the solution of the above QP program, Piatt developed the 

sequential minimal optimization (SMO) algorithm (Piatt et al. 1998); one of the fastest 

SVM training methods. Like other SVM training algorithms, SMO breaks the large QP 

problem into a series of smaller possible QP problems. Unlike other algorithms, SMO 

tackles these small QP problems analytically, which avoids using a time-consuming 

numerical QP optimization as an inner loop. The amount of memory required by SMO is 

linear with number of training samples (Piatt et al. 1998). Therefore it is good for large 

I 
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datasets, as in our case, to take advantage of computationally inexpensive aspect. SMO 

has been implemented into Weka, a data mining software package, which we used in this 

study (Witten et al. 2000). 

SVMs have shown to perform well in multiple areas of biological analysis, such 

as detecting remote protein homologies, recognizing translation initiation sites (Liu et al. 

2003; Zeng et al. 2002; Zien et al. 2000), and prediction of molecular bioactivity in drug 

design (Weston et al. 2003). Recently, more and more bioinformaticians employ SVMs 

in their research on evaluating and analyzing microarray expression data (Brown et al. 

2000; Furey et al. 2000; Yeoh et al. 2002). SVMs have many mathematical features that 

make them attractive for gene expression analysis, including their flexibility in choosing 

a similarity function, sparseness of solution when dealing with large data sets, the ability 

to handle large feature spaces, and the ability to identify outliers (Brown et al. 2000). 

In many practical data mining applications, success is measured more subjectively 

in terms of how acceptable the learned description rules, decision trees, or whatever are 

to a human user (Witten et al. 2000). This measurement is especially important to 

biomedical applications such as cancer studies where comprehensive and correct rules are 

crucial to help biologists and doctors understand the diseases (Huiqing, 2004). 

Naive Bayes 

In machine learning, we are interested in determining the best hypothesis h(x) 

from space H, based on the observed training data x. Best hypothesis is almost equal to 

most probable hypothesis, given the data x with any initial knowledge about the prior 

probabilities of the various hypothesis in/7(Jaynes 2003, Richard et al. 2001). 



Bayes theorem provides a way to calculate, 

(i) the probability of a hypothesis based on its prior probability Vx{h(x)) 

(ii) the probabilities of the observing various data given the hypothesis Pr(x|h) 

(iii) the probabilities of the observed data Pr(x) 

We can calculate the posterior probability h(x) given the observed data x, 

Vx(h(x)\x) 

using Bayes theorem. 

. . . . , Fr(%lA6c))Pr(h(x)) 
PKAGO x) = r—rr 

Pr(x) 

Naive Bayes (NB) is a classification model obtained by applying a relatively simple 

method to a training dataset (Mitchell et al. 1986). A NB classifier calculates the 

probability that a given instance (example) belongs to a certain class. It makes the 

simplifying assumption that the features constituting the instance are conditionally 

independent, given the class. 

Given an example X, described by its (xi> •••-• xn) feature vector we are 

looking for a class Cthat maximizes the likelihood: P{X\C) = P(x±,...,xfl\£) 
The (nai've) assumption of conditional independence among the features, given the class, 

allows us to express this conditional probability P(.X\ C) as a product of simpler 

probabilities: P(X\C) = Hf=1 PO^IC). We used the Weka program to train the NB 

classifier. 

Voted Perceptron 

The voted perceptron algorithm proposed by Freund et al. (1999) is based on the 

well known perceptron algorithm of Rosenblatt (1958,1962) and a transformation of 



online learning algorithms to batch learning algorithms developed by Helmbold and 

Warmuth (1995). Moreover, they used the kernel functions proposed by Aizerman, 

Braverman and Rozonoer (1964), to run their algorithm efficiently in very high 

dimensional spaces. This algorithm and its analysis involve little more than combining 

these three known methods. 

Their studies indicate that the use of kernel functions with the perceptron 

algorithm yields a dramatic improvement in performance, both in test accuracy and in 

computation time. In addition, they found that, when training time is limited, the voted-

perceptron algorithm performs better than the traditional perceptron algorithm. 

I discussed about the algorithms which I used for my final classification analysis in this 

project. I have ignored the other algorithms in this discussion which we studied initially 

for preliminary studies like KNN, Random Forest, J48 etc. 

Feature Selection Algorithms 

A well known problem in classification (in general machine learning) is to find 

ways to reduce the dimensionality of the feature space to overcome the risk of over-

fitting especially when we are dealing with gene expression data. Data over-fitting 

happens when the number of features (genes) is large ("curse of dimensionality") and the 

number of training samples is comparatively small ("curse of data set sparsity"). In such 

a situation, a decision function can perform very well on classifying training data, but 

does poorly on test samples. Feature selection is concerned with the issue of 

distinguishing signal from noise in data analysis. 
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Categorization of feature selection algorithms 

Feature selection techniques can be categorized according to a number of criteria 

(Hall et al. 2003). One popular categorization is based on whether the target 

classification algorithm will be used during the process of feature evaluation. A feature 

selection method, that makes an independent assessment only based on general 

characteristics of the data, is named "filter" (Witten et al. 2000); while, on the other hand, 

if a method evaluates features based on accuracy estimates provided by certain 

classification learning algorithm which will ultimately be employed for classification, it 

will be named as "wrapper" (Kohavi et al. 1997, Witten et al. 2000). With wrapper 

methods, the performance of a feature subset is measured in terms of the learning 

algorithm's classification performance using just those features (see Figure 6 below). 

The classification performance is estimated using the normal procedure of cross 

validation, or the bootstrap estimator (Witten et al. 2000). Thus, the entire feature 

selection process is rather computation intensive. For example, if each evaluation 

involves a 10-fold cross validation, the classification procedure will be executed 10 

times. For this reason, wrappers do not scale well to data sets containing many features 

(Hall et al. 2003). Besides, wrappers have to be re-run when switching from one 

classification algorithm to another. 
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Figure 6: Graphical depiction of two feature selection (Filter and Wrapper) approaches. 

In contrast to wrapper methods, filters operate independently of any learning 

algorithm and the features selected can be applied to any learning algorithm at the 

classification stage. Filters have been proven to be much faster than wrappers and hence, 

can be applied to data sets with many features (Hall et al. 2003). Since the biological 

data sets discussed in the later chapters of this dissertation often contain a huge number 

of features (e.g., gene expression profiles), we not only concentrate wrapper but also 

filter methods. 

Another taxonomy of feature selection techniques is to separate algorithms 

evaluating the worth or merit of a subset features from those of individual features. There 
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are some other dimensions to categorize feature selection methods. For example, some 

algorithms can handle regression problem, that is, the class label is numeric rather than a 

discrete valued variable; and some algorithms evaluate and rank features independently 

from class, i.e., unsupervised feature selection (Witten et al. 2000). We will restrict our 

study to the data sets with discrete class label since this is the case of the biological 

problems analyzed in later chapters of this dissertation, though some algorithms 

presented can be applied to numeric class label as well. 

Feature selection algorithms 

There are various ways and algorithms to conduct feature selection. We studied 

five feature selection methods in this project; they are T-test, x statistical measure, gain 

ratio, information gain and Relief-F. 

T-test 

Highly consistent with the well-known ANOVA principle, a basic concept for 

identifying a relevant feature from an irrelevant one is the following: if the values of a 

feature in samples of class 'A' are significantly different from the values of the same 

feature in samples of class '# ' , then the feature is likely to be more relevant than a feature 

that has similar values in iA' and lB\ More specifically, in order for a feature/to be 

relevant, its mean value in iA' should be significantly different from its mean value in 

'fl'(Golubefa/. 1999). 

The classical t-statistic is constructed to test the difference between means of two 

groups of independent samples. So, if samples in different classes are independent, the t-
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statistic can be used to find features that have big difference in mean level between the 

two classes. These features can be then considered to have ability to separate samples 

between different classes (Nguyen et al. 2002). We tested this method in the initial stages 

but did not perform well with over the other methods studied. 

X2 - statistical measure 

X2 measure evaluates features individually by measuring the x2 - statistic with 

respect to the class. Different from the preceding methods, x2 measure can only handle 

features with discrete values, x measure of a feature/with w discrete values is defined 

as, 

i—i L i C . f 

i = l j - 1 *' 

where k is the number of classes, Ati is the number of samples with /th value of/myth 

E-- A--

class. iJ is the expected frequency of lJ and 
By = Ri * Cjfn 

D 

1 is the number of samples having /th value off, C, is the number of samples in they'th 

class and n is the total number of samples. 

We consider a feature/ to be more relevant than a feature/ (I £j) if y^(fj) > ^(fi). 

Obviously, the worst x value is 0 if the feature has only one value. The 

degree of freedom of the x2 - statistic measure is (w-1) * (k- 1) (Liu et al. 1995). With 
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the degree of freedom known, the critical value for certain significant level can be found 

from the appendix tables provided in most statistics books. 

To apply x2 measure to numeric features, a discretization preprocessing has 

to be taken. The most popular technique in this area is the state-of-art supervised 

discretization algorithm developed by Fayyad and Irani (Fayyad et al. 1993) based on the 

idea of entropy. At the same time, feature selection can be also conducted as a by-product 

of discretization. 

Information gain and Information gain ratio 

Information gain is simply the expected reduction in entropy by partitioning 

the samples according to this feature that it is the amount of information gained by 

looking at the value of this feature. More precisely, the information gain Gain(f,S) of a 

feature/, relatively to a set of samples S, defined as, 

Gam(frS) = Ent(S) - Ent(f,Tf,S) 

where Ent(S) can be calculated from 

k 

Ent(S) = y -p f * logzPt 

and Ent(f, Tf, S) is the class entropy of the feature (for a numeric feature/, 2} is the best 

partition t o / ' s value range under certain criteria, such as MDL principle in 

discretization). Since Ent(S) is a constant once S is given, the information gain and 

entropy measures are equivalent when evaluating the relevance of a feature. In contrast to 

the rule " the smaller the class entropy value, the more important the feature is" that is 
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used in entropy measure, we consider a feature/ to more relevant than a feature// (I ^j) if 

Gaintfj, S)>Gain(f,, S) (Xing et al. 2001, Quinlan 1986). 

However, there is natural bias in the information gain measure - it favors 

features with many values over those with few values. An extreme example is a feature 

having different values in different samples. Although the feature perfectly separates the 

current samples, it is a poor predictor on subsequent samples. One refinement measure 

that has been used successfully is called information gain ratio. The gain ratio measure 

penalizes features that with many values by incorporating amount of split information, 

which is sensitive to how broadly and uniformly the feature splits the data (Mitchell et al. 

1986). 

E f t t ( 5 ) = 2 j ^ j - * logs 
I£i1 

|5 | • "''* |5| 

where Si through Sw are the w subsets of samples resulting from partitioning of S by up­

values discrete or w-value-interval numeric feature/ Then, the gain ratio measures is 

defined in terms of the earlier information gain measure and this split information, as 

follows: 

GainRatio (f, S) = 
Split Information (f, 5) 

Note that split information is actually the entropy of S with respect to the 

values of feature/and it discourages the selection of features with many values (Mitchell 

et al. 1986). For example, if there is total number of n samples in S, the split information 

of a feature/;, which has different values in different samples, is log2n. In contrast, a 

Boolean feature/ that splits the same n samples exactly in half will have split 
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information of 1. If these two features produce the equivalent information gain, then 

clearly feature^ will have a higher gain ratio measure. Generally, a feature/ is 

considered to be more significant than a feature/; (/ ±j) if GainRatio (f, S) > 

GainRatio(fi, S). When using gain ratio measure (or information gain measure) to select 

features, we sort the values of gain ratio (information gain) in the descending order and 

consider those features with highest values. 

ReliefF 

The key idea of ReliefF is to estimate attributes according to how well their 

values distinguish among the instances that are near to each other. For that purpose, given 

an instance, ReliefF searches for its two nearest neighbors: one from the same class 

(called nearest hit) and the other from a different class (called nearest miss). The original 

algorithm of ReliefF (Kira et al. 1992) randomly selects n training instances, where n is 

the user-defined parameter. 

Chapter summary 

In this chapter, I introduced the concept of classification in data mining as well as 

the ways to evaluate the classification performance. I presented in detail some of 

classification algorithms — putting the emphasis on several methods used in the final 

analysis like SVMs, SMO and Naive Bayes. We also used KNN, Random forest, J48 

algorithms to compare and contrast with the above algorithms in our preliminary studies 

which are addressed in later chapter about these studies. 
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Also the basic concepts of feature selection algorithms and the differences 

between filter and wrapper approaches were discussed. Also, the details about the feature 

selection algorithms we studied like t-test, x2 statistic measure, Information gain, 

Gainratio and ReliefF were explained. 



36 

CHAPTER II 

MATERIALS AND METHODS 

Methods 

One of the important recent breakthroughs in experimental molecular biology is 

microarray technology. This novel technology allows the monitoring of expression levels 

in cells for thousands of genes simultaneously and has been increasingly used in cancer 

research (Alizadeh et al. 2000; Alon et al. 1999; Golub et al. 1999) to understand more of 

the molecular variations among tumors so that a more reliable classification becomes 

possible. 

There are two main types of microarray systems: the cDNA microarrays 

developed in the Brown and Botstein Laboratory at Stanford (DeRisi et al. 1997) and the 

high-density oligonucleotide chips from the Affymetrix company (Lockhart et al. 1996). 

The cDNA microarrays (two-color) are also known as 'spotted' arrays, popularly called 

as 'agilent' prepared from Agilent company (Miller et al. 2002), where the probes are 

mechanically deposited onto modified glass microscope slides using a robotic array 

machine. Oligonucleotide chips are synthesized in silico (e.g., via photolithographic 

synthesis as in Affymetrix GeneChip arrays) are also popularly called as 'single channel' 

arrays. For a more detailed introduction and comparison of the biology and technology of 

the two systems, please refer to Harrington et al. (2000). 

Gene expression data from DNA microarrays are characterized by many 

measured variables (genes or features) on only a few observations (experiments or 
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samples), although both the number of experiments and genes per experiment are 

growing rapidly (Nguyen et al. 2002). The number of genes on a single array is usually in 

the thousands while the number of experiments is only a few tens or hundreds. There are 

two different ways to view data: (1) data points as genes, and (2) data points as samples 

(e.g., patients). In the way (1), the data are presented by expression levels across different 

samples, thus there will be a large number of features and a small number of samples. In 

the way (2), the data is represented by expression levels of different genes, thus the case 

will be a large number of samples with a few attributes. In this dissertation, all the 

discussions and studies on gene expression profiles are based on the format of data 

presentation that is data points as genes or features. 

Microarray experiments raise many statistical questions in many diversified 

research fields, such as image analysis, experimental design, cluster and discriminant 

analysis, and multiple hypothesis testing. The main objectives of most microarray studies 

can be broadly classified into one of the following categories: class comparison, class 

discovery, or class prediction (Miller et al. 2002). 

Class comparison is to establish whether expression profiles differ between 

classes. If they do, which genes are differentially expressed between the classes, i.e. gene 

identification. For example, which genes are useful to distinguish tumor sample from 

non-tumor ones. This is the typical microarray analysis we will perform every day. 

Class discovery is to establish subclusters or structure among specimens or among 

genes. For example, to define previously unrecognized tumor subtypes. 
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Class prediction is to predict a phenotype using information from a gene 

expression profile (Miller et al. 2002). This includes assignment of malignancies into 

known classes (tumor or non-tumor) or tumor samples into already discovered subtypes, 

prediction of patients outcome such as which patients are likely to experience severe drug 

toxicity versus who will have none, or which breast cancer patients will relapse within 

five years of treatment versus who will remain disease free. 

In this dissertation, we will focus on the class comparison and class prediction. 

For these two tasks, supervised analysis methods that use known class information are 

most effective (Miller et al. 2002). In practice, feature selection techniques are used to 

identify discriminatory genes while classification algorithms are employed to build 

models on training samples and predict the phenotype of blind test cases. 

Preprocessing of Expression Data 

Despite optimal techniques to ensure RNA quality, some amount of non-biology-

related variation remains; thus, preprocessing of the microarray data is essential before 

analysis can be initiated. Several critical preprocessing techniques have been developed 

to enhance the validity of microarray analyses. Based on the characteristics of the 

experimental data, the normal preprocessing steps include identification of outlier arrays, 

scale transformation, data normalization, missing value management, batch effect 

correction, replicate handling and so on (Herrero et al. 2003). 

Identification of Outlier Samples 

Array outliers are due to excessive chip-to-chip variation and may be the result of 

improper hybridization errors that create smudges, scratches or cross-hybridization to the 
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microarray (Han et al. 2004). These arrays may have disproportionately high or low 

intensities for individual probe sets due to non-specific or mismatch mRNA binding. 

These changes can sometimes be observed on the DAT file (the image file, not the CEL 

file) of the microarray during visual inspection. It is a better quality control procedure to 

remove the samples from the analysis when their intensities do not match the overall 

tendencies for the same probe sets in the group. 

We used dChip6 analysis to find out the array outliers. It does the probe 

summarization and high-level analysis of gene expression data through model based 

approach by applying Model Based Expression Index (MBEI) algorithm (Li et al. 2001). 

This model is based on a balanced hybridization of all probe sets, in log2 format. When 

the uniformity of hybridization exceeds the model limits, the microarray is identified as 

an outlier. For this algorithm if the standard error for a probe set is more than three times 

larger than the other probe sets on the microarray it is identified as an array outlier. If 

greater than 5% of the probe sets on an individual microarray chips are identified as 

outliers, dChip flags the entire microarray as a potential outlier (Li et al. 2001). MAQC 

asked all the analysis groups to vote each array in the dataset either as outlier (1), 

moderate outlier (0.5) and non-outlier (0). We gave our voting on each array of the 

datasets using this method and also by visualizing the box plot and PCA distribution of 

arrays in the dataset. 

6 www.dchip.org 

http://www.dchip.org
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Data Normalization 

The purpose of normalization is to adjust the effects which arise from variations 

in the microarray technology rather than from biological differences between the RNA 

samples or between the printed probes, so that data from different chips can be directly 

compared. No step in the microarray hybridization process can be perfectly controlled. 

The quantity of RNA in a sample varies slightly from chip to chip. Even if the exact same 

sample is used on each of several chips, there will be chip to chip differences in the 

overall distribution of probe intensity values (Bolstad et al. 2003; Irizarry et al. 2006). In 

microarray analysis, the normalization methods vary depending on the technology of the 

arrays we used. In this project, we have total six datasets, among these five datasets are 

Affymetrix single color technology arrays and the Neuroblastoma dataset is Agilent two 

colored customized array. 

We used MAS5 (Microarray Suite Ver. 5) probe-set summarization and 

normalization algorithm from Affymetrix (Affymetrix, 2002) for affymetrix datasets 

(exception to Iconix data, we used Median scale 1000 normalization, because the array is 

customized not the standard array supplied by Affymetrix). There is one specific reason 

for selecting this normalization for this study is that we can accommodate the external or 

blind validation dataset in to the classification system without altering the developed 

model using training dataset. I mean, the normalization step should be independent and 

should not affect the coming external validation dataset in the future. It can be possible 

when the normalization method is done within array instead of across the arrays. MAS5 

algorithm works within array and the other normalization methods like RMA, MBEI 
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(dChip) and PLIER does the normalization between the arrays. So, MAS5 algorithm fits 

well to our study and also MAQC recommendes this normalization for the same reason. 

MAS 5 algorithm 

The MAS5 algorithm uses the TukeyBiweight algorithm, which reweights the 

differences depending on how far the expression values are from the median, and 

discards any differences which are more than five times the median absolute distance 

from the median (Affymetrix, 2002). The MAS 5 algorithm also replaces the MM 

(mismatch) value (MAS4 considers MM values) with a value that is always less than the 

PM (perfect match) value, calculating what is called an ideal mismatch (IM) in this 

situation. Ideal mismatch (IM) intensity value calculated from MM value subtracted from 

PM value (IM is never bigger than PM). 

If MM < PM then IM = MM; 

If MM > PM then IM = PM - correction value; 

Robust mean of probe set values are taken using TukeyBiweight algorithm. In this 

algorithm the mean is calculated to identify center of data. Distance of each data point 

from the mean is calculated (Affymetrix, 2002). This distance determines how each value 

is weighted in the average i.e. outliers far from the median contribute less to the average. 

And the signal is calculated using; 

Signal = TukeyBiweight{log2{PMj - IMj)} 
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We implemented this normalization method on the datasets using affy packages in 

Bioconductor version 2.17 in R 2.5.08 frame work. 

In the case of Neuroblastoma dataset, which is an Agilent platform (two color), 

we used mean scale normalization, a simple scaling normalization method. In the case of 

Iconix dataset, the normalization is median scale 1000 even though it is single color data 

but the platform provider is GE Healthcare, not as usual from Affymetrix. 

Data Transformation 

Missing value transformation: One of the characteristics of the gene expression 

profile is the presence of missing values in the data set. There are diverse reasons that 

cause missing values, including insufficient resolution, image corruption, or simply due 

to dust or scratches on the slide (Troyanskaya et al. 2001). In practice, missing data also 

occur systematically as a result of the robotic methods used to create them. 

Unfortunately, many data analysis algorithms require a complete matrix of gene array 

values as input (Troyanskaya et al. 2001). For example, standard hierarchical clustering 

methods and K-means clustering are not robust to the excess of missing values since the 

calculations in these algorithms are based on a distance matrix. Even with a few missing 

values, they may lose effectiveness. More strictly, some methods like principal 

components analysis (PCA) can not deal with missing values at all. Therefore, methods 

for imputing missing data are needed, not only to minimize the effect of incomplete data 

7 www.bioconductor.org 

8 www.cran.org 

http://www.bioconductor.org
http://www.cran.org
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on further analyses, but also to increase the range of data sets to apply learning 

algorithms. 

There are some general solutions to impute missing values. Here, we list five 

commonly used strategies: (1) filling blanks with zeros; (2) replacing with the gene's 

average expression levels over all experiments; (3) replacing with the median of the 

gene's expression levels over all experiments; (4) singular value decomposition (SVD); 

(5) using weighted KNN imputation method. The KNN based method is to use the k-

nearest neighbours (KNN) to estimate the missing values, where a user is defined 

parameter. 

Both weighted KNN and SVD-based techniques surpass the commonly used 

simple average method (Troyanskaya et al. 2001). This conclusion is very natural since 

the winning methods take advantage of the correlation structure of the data to estimate 

missing expression values. In these two methods, we used KNN based missing value 

imputation method. For this purpose we used ArrayAssist (Stratagene Inc.) package 

installed in the linux computer in the lab. 

Log transformation 

We transformed the normalized raw expression data into log2 transformation for 

better graphical presentation of the data and to continue further analysis with this 

transformed data. 

Quality Control Check 

Filtered genes based on flag values: We filtered the bad quality spots or probe sets 

based on the flag values Present (P) and Marginal (M) calls, we excluded the Absent (A) 
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calls. We also excluded the genes which have either P or M calls in less than half of the 

samples in the dataset. The remaining genes after filtering based on flag values are 

considered for further analysis. 

Quality check with box-plots: We checked the quality of the normalized data 

using the box plot distribution. 

Checking Batch Effect 

Batch effects are observed when the overall intensity of a batch of microarrays 

more closely resembles the batch than the rest of the group, and this tendency may add 

enough noise in the analysis that errors are elevated. Due to the technical limitation that 

all samples cannot be processed simultaneously and must be run in batches, batch effects 

can be a potential confounding factor. This happens when the number of microarrays in a 

study makes it impossible to hybridize each sample to a microarray at the same time, by 

the same technologist, at the same location or with the same lot number of reagents or 

equipment. In our case especially with toxicogenomic datasets, which were designed to 

study the effect of chemical compounds on animal models over the period of years. This 

increases the chance of batch effect in the dataset either by time or the technology used. 

This type of errors ultimately generates false interpretations at the end of the analysis of 

large amount of information. 

We checked for the batch effect in the dataset using unsupervised hierarchical 

clustering between the samples and Principal Component Analysis (PCA). We used two 

types of methods to correct these batch effects. One is Combat, a new function in the 
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bioconductor works based on empirical Bayes framework (Johnson et al. 2007), but it 

requires the class label information to correct the batch. The other method is BatchMatch 

developed by SystemsAnalytics Inc., which works same as the above method but has the 

option to choose to include class label information or not. This is important especially 

when we are doing classification performance with external validation dataset, that does 

not have class label information. We compared both methods on the correction of batch 

in these datasets. 

Dimensionality Reduction /Feature Selection 

The microarray expression data contain thousands of genes; there may be actually a small 

number of underlying variables that account for most of the variation in the data (West et 

al. 2001). For example, a few linear combinations of genes may explain most of the 

response variation. So, dimension reduction is a necessary and crucial part of multivariate 

analysis of high-throughput assay data such as gene expression data. Class prediction 

problem is a multivariate regression problem where the number of variables (genes) far 

exceeds the number of samples. This affects the performance of classification algorithm 

studying to a bottom level and also it is a computationally expensive procedure. One way 

to achieve dimension reduction is to transform the large number of original variables 

(genes) to a new set of variables (gene components) or differentially expressed variables 

(genes), which are uncorrelated and ordered so that the few genes account for most of the 

variation in the data (Figure 7). 



20-40K genes 

Dimension reduction 

Hundreds of genes 

Figure 7: A small schematic depiction of dimensionality reduction of gene expression 

data. 

There are few ways to reduce the dimensionality like Principal Component Analysis 

(PCA), Sliced Inversion Regression (SIR), Partial Least Squares (PLS) and Fold Change 

methods (Li et al. 2007). 

Our approach of dimensionality reduction or feature selection or gene selection is 

in two levels. In the first level we reduced most of unnecessary genes using fold change 

and p-value combination. In the second level we applied feature selection algorithms. 

We combined both fold change and p-value (<0.05) to filter out differentially 

expressed genes. We varied the fold change level from 1.2 to 2 based on the dataset, but 

we fixed the p-value to 0.05. We separated these differentially expressed genes using 

volcano plot, which plots fold change on x-axis and p-value on y-axis, both in log scales. 

So, we can easily separate the genes which fall between certain fold change and p-value 

combination. 

After filtering these differentially expressed genes for all 13 end points in six 

datasets using the corresponding class labels, we checked the box plot distribution for 

those. 
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Feature Selection 

After filtering differentially expressed genes for each end point, we further 

reduced the number of genes or features using information gain, gain ratio, x2 - statistic, 

relief-F and Correlation based feature selection algorithms. These feature selection 

algorithms also ranks genes based on the ranker search algorithm. We discussed about 

feature selection algorithms earlier in this dissertation in feature selections chapter. 

We initially compared and contrasted the above feature selection algorithms to 

find which algorithm performs better to use further in our studies. We ran these with 10-

fold cross validation with 10 iterations with classification algorithms to know which 

feature selection algorithms generate better classification performance. After this, we 

separated the subsets of genes (like 10, 20, 30, 40, 60, 100 genes) based on the ranks in 

each algorithm for further classification studies. 

Classification algorithms 

I explained about the details of the classification algorithms we studied in this 

project in chapter 4 of this dissertation. We used Sequential Minimal Optimization (or 

SMO) with linear kernel by keeping exponential value (E or d) to 1 in polynomial kernel 

of SMO, explained in page number 23. The remaining parameters were kept as default as 

it is in Weka program. In LibSVM, we studied both linear kernel and Radial Basis 

Function (RBF) kernel with c =10 and y = 0.01 and the type of SVM is C-SVC. We also 

studied the voted perceptron and Naive Bayes classification algorithms with default 

options in Weka machine learning framework. The error estimation is performed using 

internal cross validation (CV) with 5-fold CV with 10 iterations. Initially we did 10-fold 

CV with 10 iterations on all datasets, which is a standard and well established. But after 
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heated discussion in the MAQC 8 face-to-face meeting in Washington, DC, analysts 

feared to use 10-fold CV on the Hamner dataset, which is small in sample size and weak 

data with strong batch effect, that can introduce the over-fitting in the classification 

performance. So, analysis groups decided to use 5-fold to all datasets instead of 10-fold 

CV. Before this analysis, we tested the implementation of nested cross validation using 

different SVM classification algorithms to avoid introducing over-fitting. After that, work 

flow is designed to fit only stratified cross validation only, due to the difficulty in using 

other classification algorithms in nested cross validation and also stratified CV is 

recommended by the RBWG. 

Error Estimation 

After running these classification algorithms, we tested the internal cross 

validation error estimation using several classification performance metrics as described 

in page number 18 of this dissertation. We reported Matthews Correlation Coefficient 

(MCC), accuracy, sensitivity, specificity, area under ROC curve (AUC) and root mean 

square error (RMSE) performance metric with the standard deviations from the 10 

iterated models for each classification using the confusing matrix generated by 

classification algorithms. Among these we preferred MCC over other performance 

metrics in selecting candidate models for each end point due to heavy imbalanced class 

label datasets we studied. MCC overcomes the bias generated by the imbalanced class 

label datasets by taking of all four elements of the two class confusion matrix into 

consideration. 



Materials 

Datasets used in this project 

We already mentioned very briefly about the six datasets available to study in this 

project in chapter 2 of this dissertation. Here we will go through in detail about the 

datasets and its experimental designs and the clinical endpoints studied in these 

experiments to get a better understanding about the endpoints we are predicting. 

Hamner Lung Tumor dataset 

Subchfante nposnrefollmTisEtbe 
NTP protocol 

A. 

r \ 2 years KTP 
experiment 

13 weeks 

Samples were collected and 
array exp was conducted 

5(22) 

6(22) 
7(26} 

2(6) 

2(6} 
2(6) 

3(16) 

4(16) 
5(20) 

Control 
NLT 
LT 

Assigned based on 
NTPfindings 

Figure 8: The experimental design of the Hamner lung tumor dataset from mice 

This is one of the dataset among the three toxicogenomics datasets studied and 

provided by the Hamner Institute (Thomas et al. 2007). The objective of this experiment 

is whether the gene expression at 13 weeks can predict tumor observed at 2 yrs in mice, 

which are exposed to toxic compounds. If the classifier developed from this study is 

valid, then the above hypothesis is true and saves millions of money and time spent for 

National Toxicology Program (NTP), which exposes the animals to toxic compounds 

over 2-3 years. 
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The endpoint we are studying in this experiment is lung tumor formation in two 

year rodent cancer bioassay. For this experiment total 150 female B6C3F1 mice were 

used by exposing to 13 chemicals over a period of 90 days (13 weeks) by Rusty Thomas 

group in the Hamner Institute, NC. Among these chemicals seven were positive for an 

increased incidence of primary alveolar/bronchiolar adenomas or carcinomas and six 

chemicals were negative. Animal treatment was initiated at 5 weeks of age. Mice were 

housed 5 per cage in the same environmental and physical conditions. Animal exposures 

for each chemical were performed via the route and dose recommended by NTP. Refer to 

Thomas et al. 2007for more information about this experimental design. 

Microarray analysis was performed on 3 to 4 animals per treatment group except 

for the corn oil and feed control groups. The microarray platform used for this study is 

Affymetrix mouse 430 version 2. They generated total 70 samples of expression data 

from 22 non-carcinogen (NLT) exposure, 26 carcinogen exposure (LT) and remaining 22 

were treated with controls (Figure 8). These 70 samples were generated in two 

experimental batches (18 in year 2005 and 52 in year 2006). For our analysis purpose, we 

labeled the phenotypic classes as Lung Tumor (LT) and Non-Lung Tumor (NLT) and our 

endpoint code for this class is 'A' with positives to negatives ratio 0.59. We treated the 

control samples also into NLT class as per MAQC recommendation. 

Iconix dataset 

This is another toxicogenomics dataset provided by the Iconix Inc. The 

experimental study is explained in their publication in (Fielden et al. 2007). They studied 

the hepato-carcinogenicity (liver cancer) in rats by exposing them to several chemical 
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compounds. They were exposed to 22 chemical compounds with 2-3 doses per compound 

and 4-5 time points. They treated 3 rats per dose-time combination. The exposure is 

multiple routes depending on the compound. Totally they provided 216 samples of 

expression data on single colored Codelink RU1 platform from GE Healthcare Inc. In 

this, 73 samples are phenotypically classified as liver carcinogenous and 143 samples are 

non-liver carcinogenous and the class is labeled as Class (B) with a positives to negative 

ratio 0.51. The endpoint we are studying is Liver Carcinogen. 

NIEHS dataset 

This is third toxicogenomics dataset in the MAQC datasets provided by the 

National Institute of Environmental Health Sciences (NIEHS), NIH (Lobenhofer et al. 

2006). The experiment is designed by exposing rats with seven acute hepato-toxicants 

and one non-toxic control. The experimental design has four doses for each compound 

and three time points for each compound-dose group and four rats for each dose-time-

compound group with a total of 214 samples. The class is labeled as Class (C) and the 

end point we are studying is the Overall Necrosis Score with positives to negatives ratio 

of 0.58 (79/135). 

MDACC-BR dataset 

This breast cancer (BR) dataset, part of the clinical datasets studied in the MAQC 

was provided by MD Anderson Cancer Center (MDACC) (Hess et al. 2006). They 

studied two clinical end points based on the treatment outcome in this experiment, one is 

pathologic complete response (pCR) and the other one is estrogen receptor status (erpos). 

pCR was defined as no residual invasive cancer in the breast or lymph nodes. Residual in 
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situ carcinoma without invasive component was also considered a pCR (Hess et al. 

2006). The gene expression data was provided using Human Affymetrix U133A slides 

from total 130 samples. In this the pCR end point has 0.34 (33/97) positives to negatives 

ratio and erpos end point has 1.6 (80/50) positives to negatives ratio. 

Multiple Myeloma (MM) 

This multiple myeloma (MM) dataset, studied four clinical end points, provided by 

the University of Arkansas Medical Sciences (UAMS) (Shaughnessy et al. 2007a; 

Shaughnessy et al. 2007b). The UAMS provided the 340 samples of gene expression data 

in Affymetrix U133 Plus version 2 platform for the analysis. They studied four clinical 

end points or classes, namely Overall Survival Milestone Outcome (OS_MO), Event-free 

Survival Milestone Outcome (EFS_MO), Clinical Parameter SI (CPS1) and Clinical 

Parameter Rl (CPR1). 

• OS milestone outcome (OSMO) is a coding of a binary clinical outcome (overall 

survival) related to whether the subject survived up to the milestone (24 months): 

1= deceased by 24 months, 0= alive at 24 months. The positive to negatives ratio 

of this end point is 0.48 (112/228). 

• EFS milestone outcome (EFS_MO) is a coding of a binary clinical outcome 

(event-free means disease relapse or progression) related to whether the subject 

was event-free up to the milestone (24 months): l=event occurred < 24 months, 

0=no event in first 24 months. The positives to negatives ratio of this end point is 

1.1 (179/161). 
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• Clinical parameter SI is a coding of binary clinical outcome of parameter SI is 

either positive (1) or negative (0). The data providers did not provide the complete 

description of this parameter based on their confidentiality policy. The positives 

to negatives ratio of this end point is 1.33 (194/146). 

• Clinical parameter Rl is a coding of binary clinical outcome of parameter Rl is 

either positive (1) or negative (0). The positives to negatives ratio of this end 

point is 1.43 (200/140). 

Neuroblastoma (NB) dataset 

This neuroblastoma (NB) clinical dataset is provided by the University of Cologne, 

Germany with four clinical end points to study (Oberthuer et al. 2006). The gene 

expression data they provided is in customized Agilent NB array, which is two color data. 

They provided total 492 expression profiles from 246 NB samples along with dye-flipped 

replicates. The four clinical outcomes in this study are Overall Survival Outcome 

(OSJV10), Event-free Survival Outcome (EFSMO), Newly Established clinical outcome 

Parameter S (NEPS) and Newly Established clinical outcome Parameter R (NEP_R). 

• OS milestone outcome (OS_MO) is a binary coding of overall survival status by 

the milestone (900 days): 0= alive, l=deceased. The positives to negatives ratio in 

this clinical end point is 0.32 (59/187). 

• EFS milestone outcome (EFS_MO) is a coding of binary clinical outcome, event-

free (event-free means disease relapse or progression) survival status with 

consideration of the nature of the event by the milestone (900 days): 0=no event 
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by milestone, l=event by milestone. The positives to negatives ratio in this end 

point is 0.65 (97/145). 

• NEP_S is the newly established clinical outcome parameter S. The positives to 

negatives ratio of this end point is 1.44 (145/101). 

• NEP_R is the newly established clinical outcome parameter R. The positives to 

negatives ratio of this end point is 1.44 (145/101). 

The summarized details about the datasets are given in the Appendix A. 

Chapter summary 

In this chapter, I explained about the methods and materials used in this analysis. I 

explained in detail about the preprocessing steps and quality control measures taken on 

the datasets studied. Also explained about the design of the analysis, the feature selection 

algorithms, classification methods studied and the error estimation methods used. This 

chapter also covered about the datasets studied and the end points (clinical and pre­

clinical outcomes) used in the classification prediction studies. 
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CHAPTER III 

RESULTS AND DISCUSSION 

The results of our analysis from preprocessing to classification prediction and 

performance on total 13 clinical and preclinical end points of six different datasets 

studied in this project are explained and discussed in this chapter. 

Outlier identification 

As part of the quality assessment of the arrays of the datasets being studied, we 

did dChip analysis, box plot distribution and PCA (where ever necessary) to identify 

array outliers as described in the methods section of this dissertation. 

For the Hamner dataset, we got the "array summary file" (Table 2) after "Model-

based expression" a pre-processing step from the dChip, and looked for unusual median 

intensity, low P call % and higher array outlier %. 

For each array, array outliers measure the percent of probe sets with expression 

patterns that are inconsistent from the rest of the arrays. In general, dChip gives warnings 

by showing' * ' in the warnings column of the result, when either single or array outlier 

percentages exceed 5% and recommends removal of arrays from further analysis when 

any of these values is 15% or more. None of the chips were flagged based on these 

criteria (Table 2). Finally, I observed the box plot distribution (Figure 9) of these arrays 

using GeneSpring software by selecting RMA pre-processing. 

By carefully observing the two results, we voted GSM 142182 file as single outlier 

in these array files based on its unusual 'Median Intensity' value and low 'P call %' and 
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high '%array outlier'. Also we voted nine other array files as marginal outliers based on 

the above results and rest as non-outliers reported in the voting sheet of MAQC. This 

information is used to do further meta-analysis on the outlier identification methods. 
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GSM142187 
GSM142176 
GSM142190 
GSM142168 
GSM142135 
GSM142192 
GSM 142160 
GSM142179 
GSM142172 
GSM142155 
GSM142191 
GSM142170 
GSM142173 
GSM142156 
GSM142163 
GSM142162 
GSM142165 
GSM142171 

122 
127 
111 
86 

115 
87 
83 
82 

101 
99 
98 

111 
98 

118 
104 
101 
107 
86 

135 
157 
83 
98 

162 
108 
114 
132 
146 
89 

152 
120 
132 
146 

62.5 
61.1 
61.8 
65.4 
65.9 
66.3 
68.4 

65 
65.7 
62.8 
66.4 

67 
65.9 
65.8 
63.4 
67.4 
61.7 
67.7 
67.7 
62.6 
67.2 
65.3 

66 
65.4 

66 
66.6 

67 
65.8 
68.8 
67.3 
68.5 
68.3 

0.255 
0.251 
0.248 
0.239 
0.228 
0.228 
0.224 
0.222 
0.215 
0.206 
0.204 

0.2 
0.195 
0.193 
0.191 
0.186 
0.184 
0.171 
0.166 
0.166 
0.162 
0.157 
0.155 

0.14 
0.133 
0.126 
0.118 
0.109 
0.098 
0.089 
0.089 
0.084 

0.242 
0.211 
0.191 
0.165 
0.185 
0.148 
0.148 

0.18 
0.158 
0.182 
0.134 
0.124 
0.127 

0.14 
0.196 
0.121 
0.178 

0.13 
0.104 
0.141 

0.1 
0.174 
0.141 
0.128 
0.143 
0.109 
0.126 
0.107 
0.088 
0.126 
0.115 

0.12 

Table 2: dChip analysis results of the Hamner dataset which contains 70 array samples. 
The analysis results showed no array is an outlier in the total 70 samples (observe no 
warnings in the warning column in this table). But we voted sample array GSM 142182 as 
an array outlier (shown in orange background above) and marginal outliers (yellow color) 
based on the box plot distribution. 

Figure 9: The figure shown in the next page is the box plot distribution of RMA 
normalized 70 array samples of Hamner dataset to identify array outliers. The red mark 
shown in this figure is voted a array outlier based on dChip analysis and this box plot 
distribution. 
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The outlier identification analysis results for MDACC breast cancer dataset using 

dChip analysis (Table 3) showing significant array outliers. By carefully observing the 

two types of analysis (Figure 10) results as I mentioned above, we voted as array outlier 

for five files in these 176 array files based on its unusual 'Median Intensity' value and 

low 'P call %' and high '%array outlier' (more than 15%). Also we voted 38 other array 

files as marginal outliers and rest as non-outliers. 

Number 

143 
168 
109 
69 

166 
171 
70 

135 
165 
63 

145 
172 
67 

173 
77 

139 
170 
71 

175 
133 
162 
136 
126 
161 
65 

151 
146 
169 
160 
75 

130 
127 

Array 

29539 ABO1833733 35649 
U133A FL151 US129 12 08 05 
28998 AB02091099_34966 
23678 ABO1562100 24635 
U133A FL136 US123 11 14 05 
U133A FL175 US147 01 13 06 2 
23678 AB01562100 26133 
29539 AB01833522 35706 
U133A FL112 US 120 10_13 05 
23678 AB01542220 24643 
29539 ABO1833747 35697 
U133A FL32-US2 05 19 05 
23678 AB01542241 24647 
U133A FL46-314 07 08 05 
23678 AB01562152 24646 
29539 AB01833699 35605 
U133A FL161 US125 01 10 06 
23678 AB01562113 24644 
U133A FL80 US97 09 01 05 
29539 AB01833504 35681 
FL398-PERU53 
29539 AB01833526 35614 
29539 AB01723039 35684 
29539 AB01833935 35648 
23678 AB01542230 24645 
29539 AB01833769 35700 
29539 ABO1833749 35607 
U133A FL15 03 17 05 
29539 ABO1833931 35690 
23678 AB01562130 24648 
29539 AB01723044 35687 
29539 AB01723040 35686 

Median 
Intensity 

62 
60 
93 
48 

211 
149 
48 
80 

113 
76 
64 

105 
65 
90 
75 
97 
90 
66 
95 

107 
92 
90 
79 
86 
73 
89 

100 
101 
82 
65 
97 
92 

% P 
caU 

23.3 
27.3 
32.9 
41.7 

9.1 
19.5 
37.3 
43.8 
26.8 
58.5 
52.8 
19.9 
56.2 
29.8 
46.2 
64.7 
22.1 
55.2 
27.4 

65 
37.2 
63.7 
57.5 
57.2 
55.7 
63.6 
62.9 
19.3 
53.2 
47.6 
55.9 
58.8 

% Array 
outlier 

29.3 
16.654 

16.08 
13.45 
12.22 
12.05 

11.619 
11.152 
10.506 
9.509 
9.492 
9.447 
9.204 
9.034 
9.016 
8.823 
8.729 
8.657 
8.616 
8.594 
8.45 

8.392 
8.257 
7.759 
7.746 
7.629 
7.625 
7.616 
7.387 
7.337 
7.311 
7.198 

% Single 
outlier 

2.378 
1.647 
1.254 
1.023 
2.353 
0.896 
0.957 

1.26 
1.066 
0.551 
1.049 
0.876 
0.511 
0.945 
0.557 

0.25 
0.832 
0.494 
0.824 

0.35 
0.879 
0.359 
0.534 
0.443 
0.447 
0.269 
0.254 

0.69 
0.721 
0.571 
0.582 
0.391 

Warning 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
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163 
174 
59 
140 
141 
142 
131 
154 
49 
132 
128 
148 
121 
157 
159 
164 
137 
155 
125 
11 
91 
134 
149 
98 
122 
176 
144 
10 
85 
129 
16 
152 
158 
156 
138 
123 
167 
150 
124 
177 
96 
147 

FL412-PERU55 

U133A FL78 US92 09 01 05 

23678 AB01542151 24650 

29539 AB01833716 35658 

29539 AB01833728 35659 

29539 AB01833732 35677 

29539 AB01723056 35693 

29539 AB01833821 35682 

23678 AB01233000 24649 

29539 ABO1833495 35688 

29539 AB01723041 35689 

29539 AB01833756 35615 

29539 AB01723009 35679 

29539 AB01833840 35610 

29539 AB01833876 35613 

FL454-713 

29539 AB01833535 35695 

29539 AB01833829 35611 

29539 AB01723032 35694 

19893 AB01923090 16992 

24817 AB02262650 26174 

29539 AB01833515 35616 

29539 AB01833758 35698 

24817 AB02263405 26175 

29539 AB01723028 35692 

U133A ROM233 06 04 04 

29539 AB01833741 35650 

19893 AB01913300 16991 

24817 AB02261485 26161 

29539 AB01723043 35685 

19893 AB01983478 17035 

29539 ABO1833780 35612 

29539 AB01833841 35702 

29539 AB01833832 35608 

29539 AB01833542J5683 

29539 AB01723030 35657 

U133A FL137 US134 11 14 05 

29539 AB01833759 35699 

29539 AB01723031 35678 
U133A ROM286 06 04 04 
24817 AB02263399 26158 

29539 AB01833754 35654 

95 
84 
107 
85 
96 
96 
90 
85 
69 
96 
97 
88 
77 
82 
91 
83 
115 
97 
91 
133 
62 
104 
84 
68 
94 
60 
88 
146 
66 
110 
58 
99 
92 
91 
93 
86 

1001 

89 
98 
61 
76 
156 

39.9 

31.1 

56.6 

60.4 

49.8 

61.1 

59.5 

56.4 

56.1 

59.2 

61.6 

62.3 

60.1 

61.8 

59.1 

35.1 
58.1 

64.5 

57.4 

48.6 

56.6 

61.3 

55 
57 
59 

49.2 

58.4 

49 
57.7 

60.9 

47 
60.1 

59.6 
62 

63.8 

60.6 

36.8 

61 
64.1 
53.9 
49.2 

53.6 

7.064 

6.907 

6.844 

6.839 

6.83 

6.444 

6.202 

6.166 

6.067 

6 
5.951 

5.91 

5.803 
5.641 

5.556 

5.533 

5.475 

5.466 

5.439 

5.412 

5.313 

5.287 

5.264 

5.17 

5.026 

4.999 

4.887 
4.802 

4.784 

4.748 
4.604 

4.582 

4.555 

4.542 

4.506 

4.344 

4.313 

4.061 

3.99 
3.904 
3.801 

3.801 

0.771 

0.612 

0.33 

0.423 

0.721 

0.323 

0.488 

0.483 

0.361 

0.42 

0.372 

0.277 

0.495 

0.27 

0.404 

0.545 
0.343 

0.202 

0.501 

0.963 
0.364 

0.216 

0.488 

0.401 

0.384 

0.428 

0.315 
1.028 

0.257 

0.248 

0.488 

0.206 

0.242 

0.235 

0.285 
0.24 

0.537 
0.214 

0.204 
0.309 
0.526 

0.238 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Table 3: dChip analysis results of the MDACC breast cancer dataset which contains 178 
array samples. The results shows (only 75 arrays results showed due to space constraint) 
57 arrays as an array outliers in the total 178 samples (observe for '*' in warnings 
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column). But we voted 5 arrays as an array outlier (shown in orange background above) 
and other 39 as marginal outliers based on the box plot distribution and dChip results. 

Figure 10: The figure shown in the next page is the box plot distribution of RMA 
normalised values for 178 array samples from Iconix. We can observe the most of 
outliers and moderate outliers are in between array numbers 140 to 175. 
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The meta-analysis of the outlier identification methods and its results (Figure 11) 

from the other analysis groups (Appendix B&C) provided by Leming Shi (MAQC 

coordinator) are discussed below. The criteria used for calling the final outlier quality based 

on the consensus score for each array. Consensus score is calculated from, 

Consensus score (%) = 100*(Sum of the votes from n organizations)//? 

MAQC proposed the following rules for assigning an array quality as one of the 

three statuses: 

Status 

Good: 
Marginal: 

Outlier: 

Consensus score (%) 

<33.33%(<l/3 votes) 
>=33.33% and <66.67% (1/3 - 2/3 votes) 

>=66.67% (>=2/3 votes) 

Based the analysis and criteria explained above, MAQC identified a consensus final 

array outliers for all the six datasets used in this project based on the meta-analysis. There are 

no consensus array outliers for Hamner, Iconix, NIEHS datasets. Consensus array outliers are 

found in MDACC breast cancer dataset (19 arrays), MM dataset (5 arrays) and NB dataset (5 

arrays). I shown the array names (Table 4 ) which are excluded for the further analysis, but 

did not show the 38 arrays excluded from MDACC breast cancer dataset. 

Multiple Myeloma dataset 
Consensus array outliers (5) 

P0266-01-B79-U133Plus-2.CEL 
P0748-01-C393-U133Plus-2.CEL 
P0753-01-C413-U133Plus-2.CEL 
P0941-02-C782-U133Plus-2.CEL 
P0984-01-C763-U133Plus-2.CEL 

Neuroblastoma dataset 
Consensus array outliers (5) 

US22502540 251271410122 SOI A02.txt 
US22502540 251271410124 SOI A02.txt 
US22502540 251271410332 SOI A02.txt 
US22502540 251271410531 SOI A02.txt 
US22502540 251271410646 S01 A02.txt 

Table 4: Consensus array outliers which are excluded from the further analysis for MM and 
NB datasets are shown in the above table (not shown the 38 arrays from MDACC-BR 
dataset) 
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Figure 11: Summarized view of the array outlier voting from different analysis groups shown 
in cluster diagram. The left side cluster is for the Hamner dataset and the right side cluster is 
for MDACC breast cancer dataset (data of the matrix shown in the Appendix B&C). 

Preprocessing and Normalization 

We performed the basic preprocessing low level summarization methods for Affymetrix 

datasets (Hamner, NIEHS, MDACC-BR and MM). The normalization we performed on 

these datasets is MAS5 (with a target value 500) to facilitate the incoming external validation 

datasets without any changes to the model developed with training datasets. For Iconix 

dataset, we performed median scale 1000 normalization method and mean scale 

normalization for NB dataset. For NB agilent dataset background correction was applied by 

FG - meanBG calculation. 
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In the next step, we filtered the genes based on the P, M and A absolute flag values 

generated from the MAS5. Also filtered the genes which has low signal values, the threshold 

cut off used based on the dataset we are studying. 

After log2 transformation of signal values, we used KNN- based missing value 

imputation algorithm to predict the missing values. Finally, we performed the quality of the 

arrays with box plot distribution after normalization and compared with before 

normalization. But here, I did not show the distribution results because of the large number 

of samples in the datasets, the quality and appearance of the images are not fine for 

dissertation purpose. 

Batch Effect and Correction 

Batch effect identification and correction is an important step in the quality 

assessment procedure, especially when we are working with large number of samples in the 

datasets. We performed this assessment using correlation heat maps and principal component 

analysis (PC A) and Q-Q plot visualizations of the datasets. We observed strong and 

significant batch effect based on the year of samples generated in Hamner and Iconix 

datasets. There is only slight and insignificant batch effect in the other four datasets studied. 
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2005 2006 

Correlation heat map before batch correction 

Figure 12: Correlation heat map of the Hamner lung tumor dataset with 70 arrays. This heat 
map clearly shows the strong batch effect based on the year of array production. 

We corrected the batch effect using an R function called 'Combat' in the 

bio conductor package. This adjusts the data based on parametric and non-parametric 

empirical Bayes frame work. The complete details about this method are obtained from 

Johnson et al. 2007 paper. We generated the correlation heat maps before (Figure 12) and 

after correcting the batch effect (Figure 13 ). Also we generated principal component analysis 

(PCA) diagrams before (Figure 14a ) and after (Figure 14b) the batch correction. These two 

visualizations clearly show the correction of batch effect present in this dataset using combat 

algorithm. This algorithm also generates Q-Q plots (Figure 15) to check the normality of the 

data. 



2005 2006 

Correlation heat map after batch correction 

Figure 13: Correlation heat map of the Hamner lung tumor dataset with 70 arrays after batch 
correction with combat funtion. This heat map clearly shows the correction of the batch 
effect based on the year of array production. 

"Quantile-quantile plots (also called QQ plots) are used to determine if two data sets come 

from populations with a common distribution. In such a plot, points are formed from the 

quantiles of the data. If the resulting points lie roughly on a line with slope 1, then the 

distributions are the same". (http://mathworld.wolfram.com/Quantile-QuantilePlot.html). 

http://mathworld.wolfram.com/Quantile-QuantilePlot.html
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(a) 

X-axis: PCA component 1 (25.04% varian... Conditions: 
Y-axis: PCA component 2 (5.949% varian... Colored by: 
Z-axis: PCA component 3 (3.871 % varian... 

user custom Experiment, De... 
Parameteryear 

& 

(b) 

X-axis: PCA component 1 02.43% variance) 
Y-axis: PCA component 2 (7.482% variants) 
2-axis: PCA component 3 (4.101% variance) 

Conditions; user custom Experiment, Default Interpretation 
Colored by ParamatarYear 

Figure 14: Principal component analysis (PCA) of the Hamner lung tumor dataset with 70 
arrays based on the year (samples shown red with year 2005 and yellow with year 2006) (a) 
before batch correction, samples are separated clearly based on the year (b) we cannot 
observe the differentiation based on the year after batch correction. 
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Figure 15: Q-Q plots for the Hamner dataset before correction of batch (top) and after 
correction (bottom). Q-Q plots shows the normality of the dataset, if the quantiles of 
theoretical and samples falls straight on the line (empirical bayes normal line) then the 
dataset is near to normal. 
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Compare with BatchMatch 1.3 

We also compared and contrasted the Batchmatch 1.3 from System Analytics Inc. 

(www.systemsanalystics.com) on the correction of batch effect in these datasets. Batchmatch 

works presently on 'double scaling' algorithm. The results generated from this algorithm 

shows a clear batch effect in both Hamner and Iconix datasets. It generates the visual results 

in correlation heat maps (Figure 16), PCA, sample cluster diagrams and analysis of variance 

(ANOVA). 

Before BatchMate h After Bate hMatcft 

2005 2006 2005 2006 

Figure 16: The above correlation heat maps for Hamner lung tumor dataset shows the same 
results as it was with Combat. The left side image shows before batch correction and right 
side image shows after batch correction. 

In the next page, ANOVA results of Hamner dataset are shown (Figure 17). In Anova 

analysis, two-factor ANOVA (treatment/biological effect and batch effect) with interaction 

term is performed before and after batch effect removal. The total variance and the variance 

percentage of each effect are shown on the pie charts. 

http://www.systemsanalystics.com
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Before BatchMatch 

Tola! Variance 85219B 

After BatchMatch 

Total Varianee:?22459 

I Biological effect (1 46%) 
I Batch effort (19.43%) 
| Interaction term {1 54%) 
I Error term (77.57%) 

| Biological effect (1.92%) 
I Batch effect (0.18%) 
I Interaction term (2.11%) 
I Error term (95.79%) 

Figure 17: The two-way ANOVA (LT_NLT and Batch label i.e. Year) results for Hamner 
lung tumor dataset shows the adjustment of batch effect. The left side image shows before 
batch correction and right side image shows after batch correction. 

Besides, giving a similar performance in adjusting the batch effect as it was with 

Combat function, the Batchmatch has several advantages over Combat especially in 

predicting classifiers using with or without class label information. Other than this, we have 

the chance of using one, a few, or all batches as reference. Reference batch(s) become 

necessary when the objective of the study is to construct a predictive model using the current 

available dataset to predict the labels of future dataset. 

We performed the same analysis on Iconix liver cancer dataset, which shows strong 

batch effect based on the year 2001 and 2002. The correlation heat maps (Figure 18), PCA 

(Figure 19) and ANOVA (Figure 20) results of this dataset are shown in the next pages. 
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Figure 18: The correlation heat maps for Iconix liver cancer dataset (216 samples) shows the 
clear batch effect based on the 2001 and 2002 year. The left side image shows before batch 
correction and right side image shows after batch correction. 
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Figure 19: Principal component analysis (PCA) of Iconix liver cancer dataset (216 samples) 
shows the clear batch effect based on the 2001 and 2002 year. The left side image shows 
before batch correction and right side image shows after batch correction. 
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Figure 20: The two-way ANOVA (Class and Batch i.e. Year) results for Iconix liver cancer 
dataset shows the adjustment of batch effect. The left side image shows before batch 
correction and right side image shows after batch correction. 

We also studied the effect of batch in expression data on the performance of class 

prediction. For this analysis, we used SVM and Naive Bayes (NB) classification algorithms 

and the feature selection is based on fold change and p-value and the evaluation by gainratio 

ranking algorithm on the Hamner lung tumor with and without batch adjustment datasets. 

The error estimation was done using 10-f cross validation with 10 iterations and percentage 

of accuracy as performance metric. The features selected in 10, 20, 30, ... 100 subsets based 

on the ranking provided by gainratio algorithm. We observed from these results that the 

batch effect adjusted dataset performed better than uncorrected dataset (Table 5 ). 
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83 

89 

80 

79 

40 

80 

84 

74 

69 

50 

79 

77 
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71 

60 

81 

79 

62 

64 

70 

77 

78 

62 

66 

80 

62 

70 

59 

61 

90 

64 

69 

61 

63 

100 

57 

63 

55 

59 

Table 5: SVM and Naive Bayes (NB) classification performance based on the % of accuracy 
on the Hamner with and without batch adjusted datasets. The after batch adjusted data 
performed better than the without batch corrected dataset. 

With the above results, we finished the preprocessing of datasets and quality 

assessment. We corrected the batch effect observed in the Hamner lung tumor dataset and 

Iconic liver cancer dataset based on the year they generated the samples. We came to a 

conclusion that Batchmatch and Combat performs similarly, but Batchmatch has several 

advantages over Combat in the application of classification without leaking class label 

information. Also we came to know that batch noise in expression data shows effect on 

classification performance. 

Dimensionality reduction is the next step in our work flow of this analysis after this 

preprocessing and quality check. 
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Dimensionality Reduction 

Feature selection or dimensionality reduction was done by combining fold change 

and p-value using volcano plot, as explained in methods part of this dissertation. The fold 

change used was depending on the number of genes passing the filter for a particular class 

label and dataset, because in some class labels no genes passed the two fold change 

expression. In those cases, we decreased the fold level to 1.1 to get some differentially 

expressed genes (Table 6). 
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Table 6: The differentially expressed genes passed the fold change (>2) and p-value (<0.05) 
using volcano plots for the total 13 end points. The '*' mark indicates the fold level is 
lowered to 1.1. 

We observed the box plot distributions and scatter plots for each endpoint using the 

corresponding filtered differentially expressed genes for that endpoint. Here, I am showing 

the some images for few endpoints for visualizing the differentiation of the class labels. The 

distribution of differentially expressed genes for NIEHS class label, MDACC breast cancer 

pCR and erpos endpoints are shown in Figures 21, 22 and 23. 
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Figure 21:512 differentially expressed genes (FC > 2 and P-value < 0.05) in NIEHS dataset 
with overall necrosis score as class label, (a) Volcano plot and (b) Box plot distribution of 
samples with differentially expressed genes, clearly shows the expression differentiation 
based on its class ' 1 ' (positive) and '0 ' (negative). 
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(a) log2(Fold change) 
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Figure 22: 106 differentially expressed genes (FC>2 and P-value < 0.05) in MDACC breast 
cancer dataset with pCR (pathological complete response) as class label, (a) Volcano plot 
and (b) Scatter plot distribution of samples with differentially expressed genes, clearly shows 
the expression differentiation based on its class pCR-Pos and pCR-Neg. 
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(a) 
log2(Fold change) 

138.. 198.. 138.. 2 0 3 . 240.. 283. . 295.. 295.. 198.. 198.. 205. . 236.. 236.. 248.. 289. . 295.. 295. . 295.. 29539.AB01 

(b) erpos (Non-averaged) 

Figure 23: 197 differentially expressed genes (FC > 2 and P-value < 0.05) in MDACC breast 
cancer dataset with erpos (estrogen receptor positive) as class label, (a) Volcano plot and (b) 
Box plot distribution of samples with differentially expressed genes, clearly shows the 
expression differentiation based on its erpos class ' 1' (positive) and '0' (negative). 
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After dimensionality reduction of the expression data, our next step to follow is 

feature evaluation or feature selection methods, which detect and rank the best classifier 

genes for that particular endpoint. 

Feature Selection /Evaluation 

Feature selection or evaluation is very crucial step in developing better classifiers. So, we 

studied five feature selection or evaluation algorithms, namely gainratio (Table 7a), chi-

square statistic (Table 7b), information gain (Table 7c), relief (Table 7d) and SVM (Table 7e) 

on Hamner lung tumor dataset and MDACC breast cancer dataset by applying SMO, 

LibSVM, Multi Layer Perceptron (MLP), NB, Random Forest (RF) and J48 classification 

algorithms with 10-f CV with 10 iterations to find the best algorithm. 

! gainratio 
I IOO 

i ° 
I as 75 

i 70 
| 

j 65 

J 60 

i 5 10 15 20 30 40 50 60 70 100 
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(a) 
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Table 7: The five feature selection algorithms classification performance with six different 
classification algorithms, (a) Gain ratio (b) Chi-Square statistic (c) Information gain (d) 
relief-F and (e) SVM feature selection algorithms. Gain ratio algorithm performs better and 
consistent with all classification algorithms. 
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The feature selection algorithms also run with 10-f CV with 10 iterations. The 

performance of the internal CV error estimation was based on the percentage of accuracy. 

The graphs (Table 7 a, b, c, d, e) shown above from grain ratio performs better and consistent 

with all the classification algorithms we studied. Also, an information gain algorithm 

performs similar to gain ratio to some extent because of the similarity in their algorithms. 

From the above analysis on the Hamner dataset and also from breast cancer dataset, we 

decided to choose gain ratio algorithm as our choice of feature selection algorithm for further 

analysis in predicting classifiers. 

After, deciding gain ratio as our feature selection algorithm, we implemented this 

feature selection algorithm within the cross validation of the classifier, also called as 

stratified cross validation. 

Classification /Error estimation 

Initially, we performed several approaches and workflow designs to develop classifier 

models on the Hamner lung tumor dataset to overcome batch effect and other over-fitting 

bias. I will present those initial approaches and its brief results on the Hamner dataset before 

going to our final generic work flow for all the six datasets. 

05+06 approach 

In the first approach, we studied three classes Lung Tumor, Non-Lung Tumor and 

Control (LT+NLT_Ctr) by combing year 2005 and 2006 (05+06) lung tumor data of Hamner 

with total 70 samples. In this three class prediction, the better performance came from 
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multilayer perceptron (MLP) with around 75 percentage of accuracy (Tables 8, 9). But the 

MLP algorithm is computationally expensive; it takes days, to even small matrix like Hamner 

dataset. It is not recommendable to do with big datasets like 200 - 300 samples. 
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05+06 (LT+NLT+Ctr) 
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Table 8: Classification performance of three class (LT, NLT and Ctr) prediction using 
Hamner lung tumor dataset with 05+06 approach. 
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Table 9: Classification performance of only two class (LT and NLT+Ctr) prediction using 
Hamner dataset with 05+06 approach. 
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J48 
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Table 10: Classification performance of chemical compound based (multi class) prediction 
using Hamner dataset with 05+06 approach. 

Later,we studied the same using only two classes (LT and NLT), here we combined 

NLT and control samples and treated both of them as NLT class. In this case, the 

classification performance drastically increased with LibSVM with around 90 % of accuracy. 

This indicates that LibSVM or other SVMs perform better with two class dataset than three 

class or multi class datasets. 

We also studied, the prediction of chemical compounds exposed to mice to study lung 

carcinogenicity using the Hamner dataset. There are totall6 chemical compounds studied, 

among these, 7 lung carcinogenic, 6 non-carcinogenic chemicals and 3 control chemicals. 

Also the 70 samples are highly imbalanced between 2005 and 2006; 2005 has only total 18 

samples (6-Ctr, 6-NLT and 6-LT) and 2006 has 52 samples in total (16-Ctr, 16-NLT and 20-

LT). The above results (Table 10 ) shows very poor classification performance based on the 

chemical studied due to small number of samples and highly imbalanced classes. Because of 
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this poor performance, MAQC excluded the multiclass prediction from the studies and 

confined to only two class prediction for each endpoint. 

Nested cross-validation with (05+06) and (06 ->05) approaches 

In the next appraoch, we implimented nested crossvalidation to avoid over-fitting bias with 

normal crossvalidation only on the test dataset samples using GEMS (Statnikov et al. 2005) 

tool. Nested crossvalidation (Figure 24) is embeding an another layer of crossvalidation 

within the training dataset of external crossvalidation for parameter tuning. There will two 

cross validations in this, the external cross validation for error estimation of the classifier and 

the internal cross validation for parameter tuning within the traning set of external CV. 

? Use tuned 
• parameters 

' Use tuned 
parameters 

Use tuned 
parameters 

Outer crttu-waJfikriiMi 

mrafaafffotikwttte 

•..sap-* 3 

Inner crou-validatta n 

Tune parameter J 

^^^J Trainings set 

4sr Test set 

Figure 24: The schematic depiction of nested crossvalidation, with inner crossvalidation 
within the outer crossvalidation (Image courtesy from MCRestimate package in Bioconductor) 
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In the GEMS, we have the chance to use only several variants of SVM algorithms but 

several feature selection methods. It automatically builds the models and selects the best 

model by parameter (C and y) tuning. We also tested our feature selection, gainratio method 

with this approach, performs better than the inbuilt features. The results are shown in the 

table (Table 11) below. 

Classifiers 

Classifier 1 

Classifier 2 

Classifier 3 

Classifier 4 

Classifier 5 

Cross-
validation 
design 

10-fCV 
(outer) 

9-fCV 
(inner) 

10-fCV 
(outer) 

9-fCV 
(inner) 

10-fCV 
(outer) 

9-fCV 
(inner) 

LOOCV 
(outer) 
10-fCV 
(inner) 

10-fCV 
(outer) 
9-fCV 
(inner) 

Type of MC-
SVM 
Classification 
(RBF with grid 
search) 

OVR, OVO 

DAGSVM, 
WW 

CS 

OVR,CS 

OVO, OVR, 
DAGSVM, CS 

Feature 
selection 

KW, S2N 
OVR, 
S2N OVO, 
BW 

KW, S2N 
OVR, 
S2N OVO, 
BW 

KW, S2N 
OVR, 
S2N OVO, 
BW 

KW, S2N 
OVR, 
S2N OVO, 
BW 

Gain Ratio 
fromWEKA 

Complexity 

96011 
models 

192011 
models 

144011 
models 

739271 
models 

192011 
models 

Best Model 
Characteristics 

69.8% accuracy 
OVR 

C=10,7=0.1s 
30 genes by Anova 
(KW) 

70.5% accuracy 
WW 

C=10,7=0.01 
30 genes by Anova 
(KW) 

71.3% accuracy 
CS 
C=l, 7=0.1 
30 genes by Anova 
(KW) 

67% accuracy 
OVR 
C=10,7=0.01 
30 genes by Anova 
(KW) 

72.8% accuracy 
OVO 
C=10. 7=0.1 

Table 11: The classification performance and the best classifiers using nested cross validation 
in GEMS. We approached 05+06 combined data for binary class prediction. 
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We also studied using 06 -> 05 approach, in this, we used 2006 dataset to train and 

test with 2005 dataset. This results are shown below in the table (Tablel2). 

Classifiers 

Classifier 1 

Classifier 2 

Classifier 3 

Cross-
validation 
design 

10-fCV 
(outer) 

9-fCV 
(inner) 

10-fCV 
(outer) 

9-fCV 
(inner) 

10-fCV 
(outer) 

9-fCV 
(inner) 

Type of MC-
SVM 
Classification 
(RBF with 
grid search) 

DAGSVM, 
WW 

CS 

OVO, OVR, 
DAGSVM, CS 

Feature 
selection 

KW, S2N 
OVR, 
S2N OVO, 
BW 

KW, S2N 
OVR, 

S2N OVO, 
BW 

Gain Ratio 
fromWEKA 

Complexity 

192011 
models 

144011 
models 

192011 
models 

Best Model 
Chracteristics 

74.1% accuracy 
WW 

C=10,7=0.01 
30 genes by Anova 
(KW) 

86.5% accuracy 
CS 
C= l,y=0.1 

30 genes by Anova 
(KW) 

89.7% accuracy 
OVO 

C=10. y=0.1 

Table 12: The classification performance and the best classifiers using nested cross validation 
in GEMS. We used 06 ->05 approach for binary class prediction (LT, NLT+Ctr). 

From the above initial studies we observed that the 06 ->05 approach performed 

better over combined (05+06) dataset and also binary class prediction gives better accuracy 

than the multi class prediction either three class (NT, NLT and Ctr) or chemical compound 

prediction. But nested cross validation using only SVM algorithms hinders our study using 

other types of algorithms. To avoid this, we used stratified cross validation by the 

recommendation of MAQC. 

But after MAQC 7th face-to-face meeting in May 2007, analysis groups and RBWG 

(statisticians) recommended to use a generic work flow for all the datasets without much 

variation in the data analysis plan. They recommended in this meeting to submit a specific 
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single data analysis plan (DAP) (Appendix D) from each analysis group to the RBWG 

approval. This is because; the main objective of this project is to standardize a better work 

flow for predicting clinical outcomes and its reproducibility consistently with future datasets. 

So, the statisticians recommended only one data analysis plan from one group irrespective of 

dataset studying. This makes the work flow independent of the dataset being studied and has 

a chance to study the parameters affecting the classification performance. 

Generic DAP from USM Group 

We proposed our single generic data analysis plan (DAP) (Appendix D) for all the six 

datasets for biostatistics (RBWG) group approval. The main features of our data analysis 

plan are, (i) it includes fold change combined p-value as dimensionality reduction and gain 

ratio as feature selection algorithm, (ii) batch effect correction on the two datasets (iii) 

Feature selection algorithm is implemented inside the cross validation (called stratified cross 

validation), (iv) We proposed to use SMO (linear), LibSVM (linear and RBF kernels), NB, 

and Voted Perceptron classification algorithms on all the endpoints to generate candidate 

("best" models) models, (v) MCC as the primary performance metric used to select candidate 

models due to highly imbalanced class datasets. 

The schematic diagram of our final work flow is shown in the figure (Figure 25). 
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CV for model selection 

5-fold <V 

lOtimes 

Best Model 

Train data 

hv 
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Gain Rati* 

10,15,20,50,40.6030,100 
genes 
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Mauve Bay*5 

ot«dP«re«ptron 

Figure 25: The schematic diagram of the data analysis plan we studied 

Results for final candidate classifiers for each end point 

We selected the candidate or best model for each end point based on the MCC 

performance from the models generated by 5-fold CV with 10 iterations and with 5 

classification algorithms, so totally 250 models for each subset of gene lists generated by 

gain ratio algorithm. Also reported the popular performance metrics accuracy, sensitivity, 

specificity, AUC (area under ROC curve), RMSE along with MCC values for each model 

generated. Standard deviations are calculated for each performance metric from the models 

generated by the 10 iterations. We reported only the top five models for each endpoint along 

with the standard deviation values (Table 13-25). The first one among those five is our 

candidate model (best model) for that end point. 
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Among this 13 candidate models for 13 end points proposed by USM group, our 

candidate models chosen best for five end points based on the best MCC performance and 

better analysis plan accepting most of the RBWG recommendations. Here, I am providing 

the exact response sent by Campbell Gregory (FDA) with ratings and comments given by the 

RBWG. 

Recommendations 

"The 13 groups that reported all 13 endpoints and submitted a DAP are: 

CAS, CBC, Cornell, FBK, GeneGo, GHI, GSK, NCTR, SAI, Tsinghua, UIUC, USM, ZJU 

It is surprising SAS and NWU did not submit a DAP - presumably they did their analysis 

correctly, but it is unfair to assume so without reading the plan. Of these 13 groups, the 

following 7 appear to have the analysis done right, with the caveat that the more models the 

group chose from, the higher the scores are likely to be, representing greater overfitting. The 

two groups for which this is the largest problem are likely to be NCTR for the sheer number 

of models, and SAI with its very high standard deviations for model quality measures. CBC 

and Cornell also have an uncomfortably large number of models for my liking. 

CBC, Cornell, GHI, NCTR, SAI, USM, and ZJU 

Three additional groups (GSK, Tsinghua, and UIUC) could be included in this list if their 

write-ups provided better clarity that they were not somehow snooping/overfitting the data. 

SAS and NWU could also be considered if they submitted a write-up. 
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Based on the small chance of over-fitting, if I had to bet money on which models would hold 

up out of sample and be of high quality, I would select from only the following groups (and 

still look carefully under the hood): 

GHI, USM.andZJU 

Taking these three groups and ranking models by MCC, and choosing the top model by MCC 

gives the following selections I would make for the 13 endpoints, pending verification of the 

methodologies of the top 3 groups. 

A:ZJU 
B:GHI 
C:ZJU 
D:USM 
E:USM 
F:USM 
G:ZJU 
H:GHI 
I:ZJU 
J:ZJU 
K:USM 
L:USM 
M:GHI 

For all three groups, batch effect correction was not really addressed. Hence we need to think 

carefully about potentially rerunning these methodologies on batch effect corrected data for 

those studies where the validation set comes from a different array type or there is an 

expectation of large batch differences between training and validation sets." 

From comments and observations especially on the batch effect made by RBWG 

came from our mistake in filling the batch effect column in the analysis plan. I mentioned 
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about the batch effect correction method we applied in the summary of DAP, was not 

observed by the reviewers. Then we intimated about this mistake and corrected. 

Discussion 

This dissertation is about how to effectively apply data mining technologies to 

biological and clinical expression data. Some problems arising from gene expression 

profilings like batch effect are studied in depth using data mining techniques of feature 

generation, selection and integration with classification algorithms. Also this analysis effort 

in conjunction with MAQC consortium helps to facilitate a standard work flow for predicting 

better and reproducible classifiers using gene expression data. 

Initially, we participated in array outlier identification analysis with other members to 

identify a consensus array outliers. The purpose of this QC assessment exercise is to reach 

consensus on a subset of arrays that should be considered with reasonable confidence as 

outliers due to array quality concerns and also clear outliers would impact the performance of 

classifiers significantly. Our outlier identification using dChip and box-plot distribution 

performed well based on the meta-analysis. 

Our observations in the preprocessing stages indicated that the strong batch noise 

introduced at the level of array making could affect the performance of classifiers 

significantly. To overcome this difficulty we applied two batch adjusting algorithms in this 

study. In our compare and contrast studies of these batch adjustment algorithms, (Combat 

and Batchmatch) we observed that both performed similarly in correcting the batch but 

Batchmatch has several advantages over Combat in terms of class label information leakage 
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and batch reference. These features could help more when we are analyzing the performance 

of classifiers with external validation or blind datasets. 

In order to identify genes associated with disease phenotype classification or patient 

survival prediction from gene expression data, we compared and analyzed the performance 

of five feature selection algorithms. Our observations from these studies, indicated that 

gainratio algorithm performs better and consistent over the other algorithms studied. This 

makes to take gainratio as our feature evaluation algorithm for further classification studies 

with other datasets. 

When it comes to performance metric to choose the best classifiers, MAQC 

recommends of using Matthews' correlation coefficient (MCC) as primary performance 

metric especially when we are dealing with highly unbalanced class datasets. Because of, 

MCC takes all four elements of the two class confusion matrix into consideration avoids you 

the bias, our observation and studies strengthen the above recommendation that, MCC gives 

unbiased performance results over accuracy in some endpoints (K and M), where class 

imbalance is more. 

In the aspect of classification algorithms, no single algorithm is absolutely superior to 

all others, though SVM achieved fairly good results in most endpoints. Naive bayes 

algorithm also performed well in some endpoints. In overall, from the total 60 models we 

reported (5 top models for 13 end points) SVM and SMO (a variant of SVM) dominates 

mostly, also the linear kernel performed well over RBF in our binary classifications. 
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Future work 

Currently, our proposed generic data analysis work flow for this classification 

purpose would help along with other groups analysis to come to a conclusion about the 

standardize methodology. But the candidate models for all the endpoints generated from 

these training datasets from all groups should validate with the external blind datasets to 

know how well they perform with unknown data. Presently, the consortium is working hard 

on providing the blind datasets to analysis groups, most probably by the end of this month. 

As part of this study and discussions with in the consortium, several groups proposed 

the manuscript ideas to publish the work done by the analysis groups by meta analysis. 

Among one of them, Dr. Deng proposed meta-analysis of gene features used in the candidate 

models across the groups in all endpoints. This study facilitates finding the consensus gene 

lists using the genes the groups used for their candidate model for a particular end point. 

After finding the consensus gene lists, ranking them based on the number of occurrences in 

the candidate models. Generating the new classifiers and comparing the performance 

validation with already known candidate models using the top consensus gene list could be 

an interesting work. We are currently working on these analysis after getting the summarized 

results from other groups. 

We are also working the effect of batch on the classification and how could we 

quantify the batch noise along with other groups. 
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APPENDIX - D: USM Data Analysis Plan (DAP) 

Part A: Data Analysis Team 

University of Southern Mississippi 
Venkata Thodima (venkata.thodima@usm.edu, 601-266-4353) 

Primary Contact - Dr. Youping Deng (youping.deng@usm.edu, 601-266-6678) 

Part B: DAP Summary 
USM will analyze six datasets with four different machine learning algorithms (LibSVM, SMO, Naieve Bayes and 
Voted perceptron), and select one best model for each dataset as final model. We omitted the outliers from analysis 
specified in each dataset by the QC working groups. Batch effect will be treated in the Hamner and Iconix datasets 
based on parametric and nonparametric Empirical Bayes frameworks available in one of R function (Combat). We 

will use fold level and P-value (0.05) filter for dimensionality reduction and further ranking of features will be based 
on Gainratio feature selection algorithm. 

Part C: Brief Data Description - see Appendix A for more details 
Dataset Type 
Dataset Source 

Disease or 
Toxicity (s) 

Primary 
Prediction 

Endpoint (s) 

Microarray 
Platform 

Channel(s) 
Training 

Samples after 
QC 

Sample QC 

Batch effect 

Other 
Endpoint (s) 

Toxicogenomic 
Hamner 

Lung Cancer 

Predict NTP 
long term 
assay lung 

carcinogenicity 
from 3 month 

exposure 
Affy 430.2 

(Mouse) 

1 
70 

ByQC 
subgroup (1) 
Strong (2), 

Batch effect 
corrected 

Iconix-EPA 
Liver 

Toxicity 
Predict NTP 

long term 
hepatotoxicity 

from 5 to 7 
day exposure 

Codelink-
RU1 (Rat) 

1 
216 

ByQC 
subgroup 

Strong (3), 
Batch effect 

corrected 

NIEHS 
Rat Liver 
Toxicity 

Liver 
necrosis 

Affy-
RG230 2 

(Rat) 
1 

214 

ByQC 
subgroup 

Slight 
and 

equivocal 
(4) 

Clinical 
MDACC 

Breast 
Cancer 

Treatment 
Outcome & 
Prognosis 

Affy 
HGJJ133A 

(human) 
1 

130 

ByQC 
subgroup 
Slight and 
equivocal 

UAMS 
Multiple 
Myeloma 
Subtype & 
Treatment 

Outcome: a) even 
free survival 

(EFS); b) overall 
survival (OS); 

Affy 
HG_U133_plus_2 

(Human) 
1 

340 

By QC subgroup 

Slight and 
equivocal 

U Cologne 
Neuroblastoma 

Subtypes and 
three year: a) 

even free 
survival (EFS) 

b) overall 
survival (OS); 
Agilent-NB-

10707 (Human 
Custom) 

2 (Dye Swap) 
246 

ByQC 
subgroup 
Slight and 
equivocal 

See Appendix A 
We will think about the other endpoints after some more clarity about UAMS and Cologne 

datasets, seems the CWG will update about this soon according to the teleconference. 
Part D: Data Pre-Processing 

Raw data 
preprocessing 

Transforms 
Summarization 
(for probe-
level data) 
Normalization 

None None None None None Background 
substraction 

(fg-mean BG) 
Baseline transformation and Log2 

MAS5 

Median scale 
1000 (provided 

byMAQC) 

MAS5 MAS5 MAS5 NA 

Agilent Mean 
scale 

normalization 

mailto:venkata.thodima@usm.edu
mailto:youping.deng@usm.edu
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Part E.l: Classification Method (s) 
(Part F. is intended to be a simplified matrix of the modeling algorithm (s) that will be used on each dataset. 

However, note that the final model will have to be based on one algorithm of the data analysis team's choosing. 
Chronology 
and parameter 
space 
reduction 

Classification 
Method 
Classification 
Method(s) 
Eliminated 

Chronology of dataset analysis: In the anticipation thai there may be some learning and reduction 
of the modeling process across each dataset considered, an indication of the chronology of 

analysis may be appropriate. For example, if after the first two datasets considered it is 
determined that one class of models is either too computationally expensive or appears to be 

leading to poor results, the class of models may be dropped for subsequent datasets. Alternatively, 
model parameter spaces (e.g., number of genes) may be reduced. 

LibSVM 
5 

SMOS Naieve Bayes 1 Voted perceptron 8 

Wc eliminated KNN, J48 and Bagging algorithms because of poor performance in our exploratory 
investigation. 

Fart £.2: Molecular Feature Filtering (i.e., features removed) and Selection 
(Note that some AGs might imbed or nest feature selection within the modeling algorithm such as by a Monte Carlo. 
genetic algorithm or within cross validation, etc.. or by some combination of these. Other approaches could be based 

on biological insights or relevance, such as disease-related genes or pathways - there are endless possibilities) 
A Priori 
Feature 
Reduction 
Filtering 
A Priori 
Feature Pool 
Selection 
Features 
removed based 
on biological 
considerations 
Features 
selection 
through cross 
validation 

Filtering based on low signals and flags (P/M absolute calls) 

Further reduction in number of genes based on the fold change (2) but in some end points less than 
2 and P-value (<0.05) 

None 

Gain ratio 11 
The above feature selection method with 5f cross validation 

Part E.3: Non-Molecular Feature Selection (i.e., features added other than from the microarray data) 

Features 
derived from 
clinical data 

Features 
derived from 

disease-
associated 

genes, proteins 
and/or 

pathways 
Features 

derived from 
other in vitro 
or in vivo data 

sources 

NO 

NO 

NO 

Part £.4: Internal Validation (e.g., training and internal test set split and or Cross-validation (CV) 

Training set 
samples 
Internal test set 
set-aside 
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samples 
OR by Cross 
validation 
Level of 
Cross-
validation 

5fCV 5fCV 5fCV 5fCV 5fCV 5fCV 

Stratified CV with 10 iterations 

Part E.5: Model Tuning Criteria by Dataset 

Single 
performance 
tuning criteria 

Or, Dataset 
dependent 
performance 

MCC, Accuracy, sensitivity, specificity, RMSE and AUC are reported with 
std.dev. 

But model selection based on MCC 
TBD TBD TBD TBD TBD TBD 

Part E.6: Modeling Procedure and Model Tuning by Method 

Classification 
procedure flow 
and logic 
Method 
Parameter(s) 
Number of 
Features 
Level of cross-
validation 
Process 

FOUR different methods will be applied to each dataset to enable systematic comparison: 
LibSVM (linear and 

RBF) 
SMO (linear) Naieve Bayes Voted Perceptron 

Stratified 5f CV with 10 iterations, c=10 and gamma=0.01 

See figure 1 
I 

(Ap 
Number 
samples from 
original data 
source held out 
for blinded, 
confirmatory 
test 
Prospective 
dataset number 
1 
Prospective 
dataset number 
2 
Endpoints to 
be predicted 

Procedure 

Batch effect 
treatment 
Prediction 
performance 
criteria 

40 

LTandNLT 

'art F: Confirmatory Blinded Test Procedure 
nendix A contains information germane to this part) 

201 

Liver 
cancer and 
non-liver 

cancer 

204 

Overall 
necrosis 

score 

About 100 

Tr. 
response 
andER 

214 

TBD 

200 to 300 

TBD 

Using the best model from the corresponding dataset 
Yes 

TBD 

No 

TBD 

No 

TBD 

No 

TBD 

No 

TBD 

No 

TBD 



116 

Footnotes: 
1 - Used array data distributed after QC by MAQC QC subgroups, whereby suspect arrays were 
removed by a consensus method. 
2 - Exploratory analysis revealed a highly relevant batch effect that dictated setting aside a portion of 
the training samples as a testing set. Specifically, training samples were divided between arrays from a 
2005 batch and a 2006, with 2006 arrays used for training, and 2005 arrays used for external testing. 
3 - The data exhibited a strong time temporal dependency, with distinct separation into three batches 
4 - Exploratory analyses indicated that the batch effect was too small to affect modeling and 
predictions (results not shown) 
5 - LibSVM: Library of SVM developed by Chung Chang and Jen Lin, both Linear and RBF kernel 
type with c=10 and gamma = 0.01 
6 - SVM-linear: This method involves the construction of binary SVM classifiers for all pairs of 

classes; 
7 - Class for a Naive Bayes classifier using estimator classes. Numeric estimator precision values are 

chosen based on analysis of the training data. 
8 - A variant of perceptron algorithm. Implementation of the voted perceptron algorithm by Freund and 

Schapire. Globally replaces all missing values, and transforms nominal attributes into binary ones. 
11 - Evaluates the worth of an attribute by measuring the gain ratio with respect to the class. Ranks 

attributes by their individual evaluations. 
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APPENDIX - E: Summary of the candidate models for 13 endpoints and the gene lists 
used for each model 
End point A: 

Steps 

Serial # 
Model ID 
Normalization 
Pre-Filtering of genes 
Feature Selection Step 1 
Number of Features 
Classifier 
Software Packages used 
Gene list and coefficients 
in model 

Description 

1 
USM Hamner A 1 
MAS5 
FoldChange+P-value 
Gain Ratio with Cross validation approach 
20 in final model 
LibSVM-RBF 
Weka, R 

1426280_at 

1419476_at 

145025 l_a_at 

1418668_at 

1437580_s_at 

1423410_at 

1435647_at 

1420683_at 

1456823_at 

1440314_at 

1449555_a_at 

1455048_at 

1420723_at 

142253 l_at 

1425767_a_at 

1452804_at 

1455760_at 

1460012_at 

1435323_a_at 

1420377 at 

Coefficients 
(If applicable) 
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End point B: 

Steps 

Serial # 
Model ID 
Normalization 
Pre-Filtering of genes 
Feature Selection Step 1 
Number of Features 
Classifier 
Software Packages used 
Gene list and coefficients 
in model 

Description 

6 
USM Iconix B 1 
MAS5 
FoldChange+P-value 
Gain Ratio with Cross validation approach 
30 in final model 
LibSVM-LIN 
Weka, R 

NM_013200_Probel 

NM_019157_Probel 

AI715955_Probel 

BF387347_Probel 

X92495_Probel 

AW914013_Probel 

AF031879_Probel 

AW914913_Probel 

U37058_Probel 

BE108246_Probel 

M26199_Probel 

AW525290_Probel 

AW524548_Probel 

AW535381_Probel 

X61925_Probel 

AW533257_Probel 

BF286131_Probel 

AW529672_Probel 

AW525189_Probel 

BE109912__Probel 

BF404878_Probel 

BF401593_Probel 

D86345_Probel 

BF405177_Probel 

D12498_Probel 

BE118122_Probel 

AW531250_Probel 

AW525089_Probel 

AF024622_Probel 

All 13076 Probel 

Coefficients 
(If applicable) 



End point C: 

Steps 

Serial # 
Model ID 
Normalization 
Pre-Filtering of genes 
Feature Selection Step 1 
Number of Features 
Classifier 
Software Packages used 
Gene list and coefficients 
in model 

Description 

11 
USM NIEHS C 1 
MAS5 
FoldChange+P-value 
Gain Ratio with Cross validation approach 
20 in final model 
LibSVM-RBF 
Weka, R 

1370902_at 

1370832_at 

1371785_at 

1371400_at 

1371412_a_at 

1370355_at 

1370080_at 

1370150_a_at 

1370725_a_at 

1370583_s_at 

1370670_at 

1374610_at 

137459 l_at 

1375170_at 

1374625_at 

1374765_at 

1373778_at 

1372510_at 

1372729_at 

1374529 at 

Coefficients 
(If applicable) 



End point D: 

Steps 

Serial # 
Model ID 
Normalization 
Pre-Filtering of genes 
Feature Selection Step 1 
Number of Features 
Classifier 
Software Packages used 
Gene list and 
coefficients in model 

Description 

16 
USM BR D 1 
MAS5 
FoldChange+P-value 
Gain Ratio with Cross validation approach 
50 in final model 
NB 
Weka,R 

208712 at 212960 at 
218236 s at 201030 x at 
204623 at 218211 s at 
208711 s at 203108 at 
201508 at 215726 s at 
205225_at 213032_at 
216092 s at 209290 s at 
215867 x at 213564 x at 
204667 at 217762 s at 
212190 at 209773 s at 
218807 at 203476 at 
212956 at 204822 at 
212444 at 209459 s at 
208103 s at 211864 s at 
214164 x at 207843 x at 
213134 x at 218806 s at 
209289 at 205548 s at 
204825 at 217838 s at 
210735 s at 210652 s at 
202088_at 212195_at 
205066 s at 208682 s at 
205347 s at 
203963_at 
202870 s at 
203789 s at 
209366 x at 
209173_at 
209604 s at 
202089_s_at 

Coefficients 
(If applicable) 



End point E: 

Steps Description Coefficients 
(If applicable) 

Serial # 21 
Model ID USM BR E 1 
Normalization MAS5 
Pre-Filtering of genes FoldChange+P-value 
Feature Selection Step 1 Gain Ratio with Cross validation approach 
Number of Features 30 in final model 
Classifier SMO 
Software Packages used Weka, R 
Gene list and coefficients 
in model 

205225_at 

209602_s_at 

203963_at 

214164_x_at 

215867_x_at 

217838_s_at 

212960_at 

214440_at 

204623_at 

209173_at 

209696_at 

218195_at 

212956_at 

209604_s_at 

214404_x_at 

205066_s_at 

221765_at 

202089_s_at 

212771_at 

210735_s_at 

221016_s_at 

203749_s_at 

212148_at 

212190_at 

218807_at 

212209_at 

212492_s_at 

201508_at 

220192_x_at 

209289 at 



End point F: 

Steps 

Serial # 
Model ID 
Normalization 
Pre-Filtering of genes 
Feature Selection Step 1 
Number of Features 
Classifier 
Software Packages used 
Gene list and coefficients 
in model 

Description 

26 
USM MM F 1 
RMA 
FoldChange + P-value 
Gain Ratio with Cross validation approach 
40 in final model 
NB 
Weka, R 

236558_at 215982_s_at 

1555878_at 218701_at 

1554899_s_at 218984_at 

209945_s_at 204204_at 

225917_at 228955_at 

223625_at 224523_s_at 

202416_at 202107_s_at 

213194_at 212022_s_at 

201602_s_at 211973_at 

211908_x_at 212021_s_at 

205529_s_at 211944_at 

216956_s_at 211963_s_at 

204159_at 211979_at 

211641_x_at 211990_at 

242104_at 

22775 l_at 

218859_s_at 

218187_s_at 

211650_x_at 

211576_s_at 

209098_s_at 

1569454_a_at 

201614_s_at 

228324_at 

213320_at 

201558 at 

Coefficients 
(If applicable) 



End point G; 

Steps 

Serial # 
Model ID 
Normalization 
Pre-Filtering of genes 
Feature Selection Step 1 
Number of Features 
Classifier 
Software Packages used 
Gene list and coefficients 
in model 

Description 

31 
USM MM G 1 
RMA 
FoldChange+P-value 
Gain Ratio with Cross validation approach 
24 in final model 
LibSVM-LIN 
Weka,R 

217934_x_at 

223506_at 

209206_at 

210205__at 

210178_x_at 

210244_at 

210220_at 

210231_x_at 

210057_at 

210052_s_at 

200602_at 

204379_s_at 

209053_s_at 

209374_s_at 

211645_x_at 

214768_x_at 

214777_at 

215176_x_at 

216207_x_at 

216401_x_at 

216576_x_at 

217378_x_at 

222777_s_at 

234764 x at 

Coefficients 
(If applicable) 



End point H: 

Steps 

Serial # 
Model ID 
Normalization 
Pre-Filtering of genes 
Feature Selection Step 1 
Number of Features 
Classifier 
Software Packages used 
Gene list and coefficients 
in model 

Description 

36 
USM MM H 1 
RMA 
FoldChange+P-value 
Gain Ratio with Cross validation approach 
21 in final model 
LibSVM-RBF 
Weka, R 

201909_at 

204409_s_at 

204410_at 

205000_at 

20500 l_s_at 

206624_at 

206700_s_at 

20903 l_at 

214131_at 

214218_s_at 

221728_x_at 

223645_s_at 

223646_s_at 

224588_at 

224589_at 

224590_at 

22767 l_at 

228492_at 

230760_at 

232618__at 

236694 at 

Coefficients 
(If applicable) 



End point I: 

Steps 

Serial # 
Model ID 
Normalization 
Pre-Filtering of genes 
Feature Selection Step 1 
Number of Features 
Classifier 
Software Packages used 
Gene list and coefficients 
in model 

Description 

41 
USM MM I 1 
RMA 
FoldChange+P-value 
Gain Ratio with Cross validation approach 
40 in final model 
LibSVM-LIN 
Weka,R 

211302_s_at 212063_at 

211026_s_at 212076_at 

211084_x_at 212221_x_at 

211919_s_at 212223_at 

211962_s_at 212209_at 

211473_s_at 212220_at 

211505_s_at 209318_x_at 

210568_s_at 209279_s_at 

210756_s_at 209309_at 

210479_s_at 209498_at 

210538_s_at 209512_at 

210807_s_at 209427_at 

210986_s_at 209456_s_at 

210785_s_at 208657_s_at 

210788_s_at 208890_s_at 

212338_at 208373_s_at 

212233_at 

212334_at 

212415_at 

212568_s_at 

212392_s_at 

212409_s_at 

212085_at 

212090 at 

Coefficients 
(If applicable) 



End point J: 

Steps 

Serial # 
Model ID 
Normalization 
Pre-Filtering of genes 
Feature Selection Step 1 
Number of Features 
Classifier 
Software Packages used 
Gene list and coefficients 
in model 

Description 

46 
USM NB J 1 
MAS5 
FoldChange+P-value 
Gain Ratio with Cross validation approach 
20 in final model 
LibSVM-LIN 
Weka, R 

A23P74349 

A_23_P401 

A_23_P44155 

A_23_P145529 

A32P159234 

A_32_P151800 

A_32_P143245 

AJ2P44831 

A_32_P77989 

A_23_P335329 

A_24_P96780 

A24P57047 

A_23_P10385 

A_23_P51085 

A_23_P17575 

A_23_P163306 

Hs23960.1 

Hsl43769.1 

A_23_P102331 

A_23_P386 

Coefficients 
(If applicable) 



End point K: 

Steps 

Serial # 
Model ID 
Normalization 
Pre-Filtering of genes 
Feature Selection Step 1 
Number of Features 
Classifier 
Software Packages used 
Gene list and coefficients 
in model 

Description 

51 
USM NB K 1 
MAS5 
FoldChange+P-value 
Gain Ratio with Cross validation approach 
30 in final model 
NB 
Weka,R 

A23JP149668 

A32JM981 

A_23_P501831 

A_32_P47538 

A_32_P190303 

A32P4985 

A_32_P134756 

A_23_P48669 

A_23_P396765 

A_24_P88696 

A_24_P297539 

A23P133123 

Hs75426.3 

A_23_P323751 

A_23_P2543 

A_23_P155765 

Hs87507.1 

A_23_P125680 

A_23_P96325 

A_23_P254733 

A_23_P138507 

A_23_P100711 

A_24_P98021 

A_32_P171043 

A_23_P65757 

A_24_P902509 

A 23_P23303 

A23P157027 

A_23_P115872 

A 32 P30874 

Coefficients 
(If applicable) 



End point L: 

Steps 

Serial # 
Model ID 
Normalization 
Pre-Filtering of genes 
Feature Selection Step 1 
Number of Features 
Classifier 
Software Packages used 
Gene list and coefficients 
in model 

Description 

63 
USM NB L 1 
MAS5 
FoldChange+P-value 
Gain Ratio with Cross validation approach 
20 in final model 
SMO 
Weka, R 

A_23_P259314 

A_24_P500584 

AJ23P137238 

Hs456200.1 

A_23_P309224 

A_23_P429950 

A_32_P212471 

A_23_P315345 

A23P125519 

A_23_P162766 

A_24_P186030 

A_32_P183001 

A_23_P156970 

A_24_P134653 

A_24_P237389 

A_23_P146997 

A_23_P217409 

A_23_P148629 

A_23_P93009 

A 23 P136870 

Coefficients 
(If applicable) 



End point M: 

Steps 

Serial # 
Model ID 
Normalization 
Pre-Filtering of genes 
Feature Selection Step 1 
Number of Features 
Classifier 
Software Packages used 
Gene list and coefficients 
in model 

Description 

68 
USM NB M 1 
MAS5 
FoldChange+P-value 
Gain Ratio with Cross validation approach 
20 in final model 
NB 
Weka, R 

Hs32976.1 

A_32_P83570 

A_23_P251151 

Hs301404.34 

A_23_P35277 

A_24_P37540 

A_23_P316012 

A23P151895 

Hs284281.1 

A_24_P184931 

A_24_P260443 

A_32_P97169 

A_23_P214897 

A_24_P63290 

A_24_P389251 

A_32_P196837 

A_23_P45536 

A_24_P372833 

A_23_P132718 

A 23 P257649 

Coefficients 
(If applicable) 
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