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ABSTRACT
KNOWLEDGE-BASED ANALYSIS OF GENOMIC EXPRESSION DATA BY USING
DIFFERENT MACHINE LEARNING ALGORITHMS FOR THE PURPOSE OF
DIAGNOSTIC, PROGNOSTIC OR THERAPEUTIC APPLICATION
by Venkata J. Thodima

August 2008

With more and more biological information generated, the most pressing task of
bioinformatics has become to analyze and interpret various types of data, including
nucleotide and amino acid sequences, protein structures, gene expression profiling and so
on. In this dissertation, we apply the data mining techniques of feature generation, feature
selection, and feature integration with Ieamiﬁg algorithms to tackle the problems of
disease phenotype classification, clinical outcome and patient survival prediction from

gene expression profiles.

We analyzed the effect of batch noise in microarray data on the performance of
classification. Batchmatch, a batch adjusting algorithm based on double scaling method is
advantageous over Combat, another batch correcting algorithm based on the empirical
bayes frame work. In order to identify genes associated with disease phenotype
classification or patient survival prediction from gene expression data, we compared and
analyzed the performance of five feature selection algorithms. Our observations from
these studies indicated that Gainratio algorithm performs better and more consistently

over the other algorithms studied.



When it comes to performance metric to choose the best classifiers, MCC gives unbiased
performance results over accuracy in some endpoints, where class imbalance is more.

In the aspect of classification algorithms, no single algorithm is absolutely superior to all
others, though SVM achieved fairly good results in most endpoints. Naive bayes
algorithm also performed well in some endpoints. Overall, from the total 65 models we
reported (S top models for 13 end points) SVM and SMO (a variant of SVM) dominate

mostly, also the linear kernel performed well over RBF in our binary classifications.
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CHAPTER I
INTRODUCTION AND BACKGROUND

The past two decades witnessed an explosive growth in biological information
generated by the scientific community. This was caused by major breakthrough advances
in the field of molecular biology, coupled with advances in genomic technologies. In
turn, the huge amount of genomic data not only leads to a demand on the computer
science community to help store, organize and index the data, but also leads to a demand
for specialized computational tools to view and analyze the data.!

“Biological science in the 21st century is being transformed from a purely lab-based
science to an information science as well”.!

As a result of this transformation, a new field of science was born, in which
biology, computer science, and information technology merge to form a single discipline
called bioinformatics.'

Motivation

Two decades ago, the main role of bioinformatics was to create and maintain

databases to store biological information, such as nucleotide and amino acid sequences.

With more and more data generated, nowadays, the most pressing task of bioinformatics

1 http.//www.ncbi.nlm.nih.gov/About/primer/bioinformatics. htmt
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has moved to analysis and interpretation of various types of data, including nucleotide
and amino acid sequences, protein domains, protein structures and so on. To meet the
new requirements arising from the new tasks, researchers in the field of bioinformatics
are working on the development of new algorithms (mathematical formulas, statistical
methods, etc.) and software tools which are designed for assessing relationships among
large data sets, such as methods to locate a gene within a sequence, predict protein

structure and/or function and understand diseases at gene expression level.

In recent years, the rapid development of DNA microarray technology has made it
possible for scientists to measure the expression levels of thousands of genes in a single
experiment (Schena et al. 1995, Lockhart et al. 1996). Thus, DNA microarray technology
has found many applications in biomedical research. There are many active research
applications of this technology in clinical cancer research; it is being used to better
understand the biological mechanisms underlying oncogenesis (Butte 2002), in cancer
classification (predictors of good outcome versus poor outcome) (Golub et al. 1999;
Petricoin et al. 2002; van 't Veer et al. 2002), clinical diagnosis (Yeang et al. 2001) and
in drug discovery studies. One of the main challenging tasks in this clinical cancer
research is the prediction of outcome, i.e., the potentiality of cancer regression and for
severe status (metastasis). The need for sensitive and reliable predictors of clinical
outcomes is crucial for early discovery of cancer patients. Identification of these clinical
outcomes has direct effect on the choice of optimal therapy for each individual (Perez et

al. 2004; Pusztai et al. 2005; Simon 2005).



Currently, there are two approaches to the computational analysis of gene
expression data for clinical classification purpose. The two approaches are discrimination
(supervised learning) and clustering (unsupervised learning). In unsupervised learning,
the classes are unknown and need to be discovered from the data (Brown et al. 2000).
This involves estimating the number of classes or clusters by using a clustering algorithm
such as hierarchical clustering (Eisen et al. 1998; Spellman et al. 1998) or self-organizing
maps (Tamayo et al. 1999) and assigning objects to these classes. In supervised learning
(also known as classification, supervised pattern recognition and class prediction), the
classes are predefined and the goal is to understand the basis for the classification from a
set of labeled data, also known as the learning set. This learned information is then used
to build a classifier or model, which will be used to predict the class or label of the future

unlabeled (blind) data, also known as external validation dataset (Dudoit et al. 2002).

Recently, significant research effort has been directed to the prediction of clinical
outcomes for several kinds of cancer on the basis of microarray data, which reported a
considerable success in this class prediction results (Bair et al. 2004; Beer et al. 2002;
Bhattacharjee et al. 2001; Khan et al. 2001; Ramaswamy et al. 2003; Rosenwald et al.
2002; Yeoh et al. 2002). But still there are two problems in this approach, the first is
when one analysis group’s class model or predictor was tested on another group’s same
type of cancer data, the success rate decreased significantly, and the second is
comparison of the marker gene lists used to predict a model by different groups revealed

very small overlap (Ein-Dor et al. 2006).



The probable explanation for these problems may be due to several variables like
patient’s age, race, sex, etc. and in the case of toxicological data like the amount of dose,
time, etc. Also, the platform of microarray technology used and the different methods of
data analysis play a significant role in these discrepancies (Ein-Dor et al. 2006; Michiels
et al. 2005), which we are studying extensively as one analysis group through
participating in the Microarray Quality Control Phase II (MAQC-II) project initiated by

the Federal Drug Administration (FDA).

Microarray Quality Control (MAQC) Project

Overview of the Project

On March 16, 2004, the US Food and Drug Administration (FDA) released a
report on “Innovation/Stagnation: Challenge and Opportunity on the Critical Path to
New Medical Products”, addressing the recent slowdown in innovative medical products
submitted to the FDA for approval. The report described the urgent need to modernize
the medical product development process — the Critical Path from bench to bed side, and
they released the Critical Path Opportunities list that provided a concrete focus for public
and private efforts in new research development and tools. Among the 76 opportunities in
fields such as genomics, proteomics and bioinformatics, “Biomarker qualification” and
“Standards for microarray and proteomics-based identification of biomarkers” were

cited as the top two opportunities.



Microarray technology was identified by the FDA’s Critical Path Initiative” as a
key tool that holds “vast potential” for personalized medicine through the identification
of biomarkers. In response to the FDA’s CPI, scientists at the FDA’s National Center for
Toxicological Research (NCTR) formally launched the MicroArray Quality Control
(MAQC) project’ in order to address reliability concerns as well as other performance,

standards, quality and data analysis issues (Shi et al. 2000).

Microarray gene expression profiling is being used for a variety of applications,
two of which are (1) understanding general expression differences in various biological
populations, classes, states, or conditions, which typically leads to the identification of
lists of differentially expressed genes (DEGs) that distinguish populations and classes,
and (2) the development of predictive models or classifiers that accurately predict
outcomes of an individual based on a gene expression profile. These two types of
applications have important ramifications and distinctions. In the first, information about
a population or differences between populations is inferred. In the second, something
about an individual member of a population is inferred or predicted. Although signatures
can be used to classify individuals (e.g., assign or associate the individual with a subtype
of a particular disease), MAQC-II is primarily focused on prediction of health outcomes
based on microarray measurement of biological samples. These can putatively be used to
predict response to treatment regimens, patient prognosis, recurrence of disease, survival

2

etc.

? http://www.fda.gov/oc/initiatives/criticalpath/

® http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/
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MAQC - I Findings: Microarrays Are Reproducible and Reliable

One important goal of the MAQC Phase I was to assess the best performance
achievable with microarray technology under consistent experimental conditions so that
future end users will have a benchmark to judge whether the quality of their microarray
data is comparable. A major challenge to the microarray user is the existence of
numerous options for analyzing the same data set, this is creating the reproducibility
problem (Eisenstein 2006). Even though, the reproducibility has seldom been, but in the
future should be used as a critical criterion to judge the performance of data analysis

procedures.

The MAQC-I analyses (Shi ef al. 2006) demonstrated that the apparent lack of
reproducibility reported in previous studies (Marshall 2004; Tan et al. 2003) using
microarray assays was likely caused, at least in part, by the common practice of ranking
genes solely by a statistical significance measure, for example, P-values derived from
simple z-tests, and selecting differentially expressed genes with a stringent significance
threshold, a result that is consistent with a previous report. The gene lists in the MAQC
study were much more concordant when fold change was used as the ranking criterion. In
addition, widely used statistical methods such as ranking based on false discovery rate
(FDR) values, t-test using SAM (significance analysis of microarray) did not appear to
improve inter-laboratory or inter-platform reproducibility compared to fold change
ranking. Importantly, non-reproducible gene lists could lead to inconsistent biological
interpretations, for example, in terms of enriched GO (Gene Ontology) terms and

pathways. Fold change ranking combined with a less stringent P-value cutoff was found



to yield more reproducible signature gene lists. The effect of various data normalization

methods on the stability of lists of differentially expressed gene is greatly reduced when

fold change is used for gene selection.
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Figure 1: Schematic representations of the two major types of applications of microarray
technology are being addressed in Phase I (top image) and Phase II (bottom image) of the
MAQC project, i.e., MAQC-I and MAQC-II, respectively.



Major findings of the first phase of the MAQC project were published in six
research papers on the September 8, 2006 issue of Nature Biotechnology (Canales et al.
2006; Guo et al. 2006; Patterson et al. 2006; Shi et al. 2006; Shippy et al. 2006; Tong et

al, 2006).

From MAQC-I to MAQC-II: To investigate the capabilities and limitations of
microarrays in clinical applications such as disease diagnosis, prognosis, treatment
outcome and personalized medicine, the MAQC Phase II (MAQC-II) has been launched
to address technical and scientific issues involved in the development and validation of
predictive models or classifiers (Figure 1). Multiple datasets were collected and
distributed for independent analyses to the participating organizations, in which the
University of Southern Mississippi (USM) group is also actively participating. The
results will normally be evaluated at three different levels: within a single dataset via
cross-validation, validation across one or more independent da‘tasets from studies with the

same (or similar) study objectives, and validation with blinded “prospective” samples.

Objectives of MAQC-I1

The overall goal of MAQC-II is to comprehensively evaluate different approaches
for the development and validation of predictive models or classifiers in clinical and
preclinical (toxicogenomics) applications by applying the same set of approaches to a
variety of datasets with diverse endpoints on which predictions are being developed. All

predictions pertain to an individual patient endpoint.



Clinical Applications:

1. Understand the behavior of various prediction rules and gene selection methods
that may be applied to microarray data sets to produce clinical outcome predictors: (a)
Examine the influence of the number of variables (probes or probe sets) on prediction
accuracy and robustness of the prediction result (in cross-validation and in independent
and “prospective” validation); (b) Examine the influence of prediction rules (algorithms)
on prediction accuracy and the robustness of prediction results (in cross-validation and in
independent validation); and (c) Examine robustness of prediction results in the face of

increasing experimental and artificial noise.

2. Identify and characterize the sources of variability in multi-gene prediction
results including (a) Inter- and intra-laboratory variation in prediction results (in replicate
experiments on the same platform); and (b) Cross-platform performance of prediction
results (in replicate experiments on different platforms). Only NIEHS (National Institute
of Environmental Health Sciences) is providing the datasets in two platforms (Affymetrix
and Agilent) generated using the same experimental setup.

Preclinical (toxicogenomics) Applications:

The primary goal is to assess the reliability of models for the prediction of toxicity
of new chemicals based on the microarray gene expression profiling. The entity to be
predicted is the toxicological endpoint (e.g., the presence or absence of liver toxicity) for
a chemical, and usually not for an individual animal. An important note is that in clinical

applications, the entity to be predicted is usually an outcome of a subject (patient).
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Design of MAQC — 11

As part of the MAQC — II project, the FDA collected multiple datasets from

academic and industrial organizations. These datasets were distributed to the participating

organizations for independent analyses with available methodologies. We received these

datasets as part of the participating analysis groups after signing the Confidential

Information Disclosure and Transfer Agreements (CIDTA) from the USM contracts

office with the corresponding data providers.

The project is divided into four working groups for better coordination and

simplification for the participating organizations.

1.

The Clinical Working Group (CWG) focuses on the datasets related to clinical

applications. The USM has been part of this CWG from the initial stages.

The Toxicogenomics Working Group (TGxWG) focuses on the datasets related to
toxicogenomics applications. The USM group has been part of this working group

from the beginning of this group.

The Titrations Working Group (TitrationWG) focuses on the datasets from
MAQC titration samples (including the MAQC-I Pilot data from 13 titration

mixtures). The USM group is not a participant in this working group.

The Regulatory Biostatistics Working Group (RBWG) provides recommendations
to the MAQC-II CWG and TGxWG on the process and criteria for evaluating the
performance of predictive models and classifiers. This working group evaluates

and ranks the data analysis plans (DAPs) of the participating analysis groups
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whether they are within the acceptable statistical framework or not. Before May
2007, the USM group along with other groups first proposed the Standard
Operating Procedures (SOPs) for each dataset separately as per the working
groups teleconference discussions. But after discussions and comments from the
RBWG on the loopholes in this approach (to have a separate plan for each dataset
would be biased) in the face-to-face meeting in SAS, Cary, NC in May 2007. The
statisticians’ part of the RBWG unanimously recommended to the participating
analysis groups to prepare a single comprehensive Data Analysis Plans (DAPs)

for all the datasets from each group instead of separate plan for each dataset.
Datasets for Clinical and Toxicogenomics:
Datasets were identified for the purpose of evaluating
a) The performance of predictive models and classifiers (predictive signatures) and

b) The performance of different approaches and methodologies for algorithms

commonly used in the development of predictive models and classifiers.
Datasets for Clinical Working Group:

Three diseases, namely breast cancer (BR) from the M.D. Anderson Cancer
Center (MDACC), multiple myeloma (MM) from the University of Arkansas for Medical
Sciences (UAMS) and neuroblastoma (NB) from the University of Cologne, Germany,
were considered for more detailed examination for predictive modeling using microarray
data. I will explain in more detail about these datasets in the Materials and Methods

chapter.
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Datasets for Toxicogenomics Working Group:

The goal of the TGxWG is to develop and compare methods for deriving genomic
signatures from gene expression data that diagnose or predict toxicity of compounds in
animal models. It should be noted that the individual entities that will be predicted or

classified are individual chemicals, not individual animals.

Three datasets are selected to study under this working group. They are Lung
Tumor in rats from Hamner Institute, Hepatocarcinogenicity in rats from Iconix and
Overall necrosis score in mouse from NIEHS. These six datasets are explained in detail

in the Materials part of the chapter III of this dissertation.
Prediction and Classification Algorithms

Numerous algorithms have been reported in the literature for developing
prediction models and classifiers based on microarray gene expression data. The
Regulatory Biostatistics WG (RBWG) suggested more commonly (and possibly

appropriate) used methods to be evaluated with the MAQC-II datasets.

Supervised Learning and Classification Algorithms
Data mining is to extract implicit, previously unknown and potentially useful
information from data (Witten et al. 2000). It is a learning process, achieved by building
computer programs to seek regularities or patterns from data automatically. Machine
learning provides the technical basis of data mining. One major type of learning we
address in this dissertation is called classification learning, which is a geheralization of

concept learning. The task of concept learning is to acquire the definition of a general
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category given a set of positive class and negative class training instances of the category
(Mitchell et al. 1986). Thus, it infers a Boolean-valued function from the training
instances. As a more general format of the concept learning, classification learning can
deal with more than two class instances.

In practice, the learning process of classification is to find models that can
separate instances in the different classes using the information provided by training
instances. Thus, the models generated can be applied to classify a new unknown (blind)
instance to one of those classes. Stating it in simpler words, given some instances of the
positive class and some instances of the negative class, can we use them as a basis to
decide if a new unknown instance is positive or negative (Mitchell et al. 1986)?. This
kind of learning is a process from general to specific and is supervised because the class

labels of training instances are cleéu'ly known.

In contrast to supervised learning is unsupervised learning, where there are no
pre-defined classes or labels for training instances. The main goal of unsupervised
learning is to decide which instances should be grouped together, or in other words, to
form the classes. Sometimes, these two kinds of learning methods are used sequentially;
supervised learning makes use of class information derived from unsupervised learning.
This two-step strategy has achieved some success in the gene expression data analysis
field (Alizadeh et al. 2000; Golub et al. 1999), where the unsupervised clustering
methods were first used to discover classes (for example, subtypes of leukemia) so that
supervised learning algorithms could be employed to establish classification models and

assign a clinical outcome or phenotype to a newly coming instance.
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Gene Expression Data Representation for Classification

In a typical classification task, data are represented as a table of samples (also
known as instances). Each sample is described by a fixed number of features (also known
as attributes, in our case, these were genes) and a label that indicates its class (Hall,
1998). For example, in studies of clinical outcome classification of cancer samples, gene
expression data of m genes for n cancer samples is often summarized by an n x (m+1)
table (X,Y) = (x4 ¥i), where x;; denotes the expression level of gene j in sample 7, and y;
is the class or label (e.g., erpos in breast cancer) to which sample i belongs (i = 1,2,3,..., n
andj = 1,2,..., m). The table (Table 1) below shows a sample dataset with three breast

cancer samples.

Sample# geneA geneB geneC geneD genef Class (label)

i
1.854096  erneg

‘Sample2 1445852  -1.0127 1116866  -0.90285

Table 1: This table shows an example of gene expression data. There are three samples,
each of which is described by 5 genes. The class label in the last column indicates the
clinical endpoint of the sample.

Results Evaluation or Error Estimation

Evaluation is the key to making real progress in supervised classification (Witten
et al. 2000). To evaluate the performance of classification algorithms, one way is to split
samples into two sets, training samples and test samples. Training samples are used to
build a learning model while test samples or external independent dataset (blind dataset)

are used to evaluate the accuracy of the model. During validation, test samples or blind
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dataset are supplied to the model, having their class labels “hidden”, and then their
predicted class labels assigned by the model are compared with their corresponding
original class labels to calculate prediction accuracy. If two labels (actual and predicted)
of a test sample are same, then the prediction for this sample is counted as a success;
otherwise, it is an error (Witten et al. 2000). An often used performance evaluation term
is error rate, which is defined as the proportion of errors made over a whole set of test
samples. In some cases, we simply use the number of errors to indicate the performance.
Note that, although the error rate on test samples is often more meaningful to evaluate a
model, the error rate on the training samples is nevertheless useful to know as well since
the model is derived from them.

Predicted
Neg Pos

™ FP Neg
FN TP Pos

Figure 2: Confusion matrix for two-class classification problem

Consider the confusion matrix illustrated in the above figure (Figure 2) of a two-
class (‘Pos’ and ‘Neg’) problem. The true positive (TP) and true negative (TN) are
correct classifications in samples of each class, respectively. A false positive (FP) is
when a 'Neg' class sample is incorrectly predicted as a 'Pos' class. A false negative (FN)
is when a 'Pos' class sample is incorrectly predicted as a 'Neg' class. Then each element of
a confusion matrix shows the number of test samples for which the actual class is the row
and the predicted class is the column. Thus, the error rate is just the number of false
positives and false negatives divided by the total number of test samples (i.e., error rate =

(FP+FN)/(TN+TP+FP+FN)).
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Error rate is a measurement of overall performance of a classification algorithm (also
known as a classifier); however, a lower error rate does not necessarily imply better
performance on a target task. For example, there are 10 samples in class ‘Pos’ and 90
samples in class ‘Neg’. Suppose, if TP = 5 and TN = 85, then FP = 5, FN = 5 and the
error rate is 10%. However, only 50% of the samples are correctly classified in class
‘Pos’. So, this is not a perfect evaluation metric in all cases. To more impartially evaluate

the classification results, some other evaluation metrics are constructed.

1. True positive rate (TP rate) = TP/(TP+FN), also known as recall or sensitivity,
measures the proportion of samples in class ‘Pos’ that are correctly classified as

class ‘Pos’.

2. True negative rate (TN rate) = TN/(FP+TN), also known as specificity, measures
the proportion of samples in class ‘Neg’ that are correctly classified as class

‘Neg’.
3. False positive rate (FP rate) = FP/(FP+TN) = 1-specificity.
4, False negative rate (FN rate) = FN/(TP+FN) = 1-sensitivity.

5. Another evaluation metric in the classification studies is Matthews Correlation
Coefficient (MCC). We used this as our priority metric in determining the
candidate model for each end point as per the RBWG recommendation due to

more unbalanced classes for each endpoints in our study.

MCC takes into account true and false positives and negatives and is generally

regarded as a balanced measure which can be used even if the classes are of very
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different sizes (significantly unbalanced). It returns a value between -1 and +1. A
coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1
the worst possible prediction (Baldi et al. 2000; Matthews 1975). Other measures, such as
the proportion of correct predictions, are not useful when the two classes are of very
different sizes. For example, assigning every object to the larger set achieves a high
proportion of correct predictions, but is not generally a useful classification.*

(TP +TN) — (FP «FN)

MCC =
V(TP + FP)TP + FN)(TN + FP)(TN + FN)

In classification, it is a normal situation that along with a higher TP rate, there
comes a higher FP rate and same to the TN rate and FN rate. Thus, the receiver operating
characteristic (ROC) curve was invented to characterize the tradeoff between TP rate and
FP rate (Zweig et al. 1993). The ROC curve plots TP rate on the vertical axis against FP
rate on the horizontal axis. With an ROC curve of a classifier, the evaluation metric will
be the area under the ROC curve. The larger the area under the curve (AUC) (the more
closely the curve follows the left-hand border and the top border of the ROC space), the
more accurate the test. Thus, the ROC curve for a perfect classifier has an area of 1. The
expected curve for a classifier making random predictions will be a line on the 45 degree
diagonal and its expected area is 0.5. Please refer to Figure 3 (figure slightly modified

from the courtesy image by Indon, 2007)° for a sample ROC curve.

* http://en. wikipedia.org/wiki/Matthews Correlation Coefficient

® http://en.wikipedia.org/wiki/Image:ROC space.png



http://en.wikipedia.org/wiki/Matthews_Correlation
http://en.wikipedia.Org/wiki/Image:ROC_space.pnR

18

ROC space

0.7¢

TPR or sensitivity
© © © ©
w S w [o2]

o
n

0.11

i

0.6 0.8 1
FPR or (1 - specificity)

0 0.2 0.4

Figure 3: A sample ROC curve. The dotted line on the 45 degree diagonal is the expected

curve for a classifier making random predictions.
Error estimation methods

If the number of samples for training and testing is limited, a standard way of
predicting the error rate of a learning technique is to use stratified £-fold cross validation
(k-fold CV). In k-fold cross validation, first, a full data set is divided randomly into &
disjoint subsets of approximately equal size, in each of which the class is represented in
approximately the sample proportions as in the full dataset (Witten et al. 2000). Then the
above process of training and testing will be repeated & times on the & data subsets. In

each iteration, (1) one of the subsets is held out in turn, (2) the classifier is trained on the
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remaining k-1 subsets to build classification model, (3) the classification error of this
iteration is calculated by testing the classification model on the holdout set (Figure 4).
Finally, the & numbers of errors are added up to yield an overall error estimate.
Obviously, at the end of cross validation, every sample has been used exactly once for

testing.

A widely used selection for £ is 10. Why 10? “Extensive tests on numerous
different data sets, with different learning techniques, have shown that ten is about the
right number of folds to get the best estimate of error, and there is also some theoretical
evidence that backs this up”(Witten et al. 2000). Although 10-fold cross validation has
become the standard method in practical terms, a single 10-fold cross validation might
not be enough to get reliable error estimate (Witten et al. 2000). The reason is that, if the
seed of the random function that is used to divide data into subsets is changed, the cross
validation with the sample classifier and data set will often produce different results.
Thus, for a more accurate error estimate, it is suggested to repeat the 10-fold cross
validation process ten times and average the error rates. This is called 10-fold cross
validation with ten iterations and naturally, it is a computation-intensive undertaking.
First we used the 10-fold CV, but based on the recommendations from RBWG in 8™
face-to-face MAQC meeting, we choose to perform 5-fold CV with ten iterations because

the Hamner dataset is small and not strong data to use 10-fold with ten iterations. This

avoids the over fitting problem.
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Figure 4: A Graphical depiction of 10-fold cross validation

Instead of running cross validation ten times, another approach for a reliable results is
called leave-one-out cross validation (LOOCV). LOOCYV is simply n-fold cross
validation, where » is the number of samples in the full data set. In LOOCV, each sample
in turn is left out and the classifier is trained on all the remaining n-1 samples.
Classification error for each iteration is judged on the class prediction for the holdout
sample, success or failure. Different from 4-fold (k < n) cross validation, LOOCV makes
use of the greatest possible amount of samples for training in each iteration and involves

no random shuffling of samples.
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Classification Algorithms

There are various ways to find models that separate two or more data classes, i.e.
to do classification. Models derived from the same sample data can be very different
from one classification algorithm to another. As a result, different models represent the
knowledge learned in different formats as well. For example, decision trees represent the
knowledge in a tree structure; instance-based algorithms, such as nearest neighbor, use
the instances themselves to represent what is learned; Naive Bayes method represents
knowledge in the form of probabilistic summaries. In this section, we will describe a
number of classification algorithms that have been used in this project, including Naive
Bayes, Support Vector Machines (SVM) and Voted Perceptron methods.

Support Vector Machines (SVM)

Support vector machines (SVM) is a kind of a blend of linear modeling and
instance-based learning (Witten et al. 2000), which uses linear models to implement
nonlinear class boundaries. It originates from research in statistical learning theory
(Vapnik, 1995). An SVM selects a small number of critical boundary samples from each
class of training data and builds a linear discriminant function (also called maximum
margin hyperplane) that separates them as widely as possible. The selected samples that
are closest to the maximum margin hyperplane are called support vectors. Then the
f(TY discriminant function

for a test sample 7 is a linear combination of the support vectors and it is constructed as:

(T = Z ; ¥i(X.T) +b

b
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Figure 5: Graphical representation of Support Vector Machines concept

where the vectors X; are the support vectors, y; are the class labels (which are assumed to
have been mapped to 1 or -1) of X;, vector T represents a test sample. (X;.T) is the dot
product of the test sample T with one of the support vectors X;. , and b are numeric
parameters (like weights) to be determined by the learning algorithm.

In the case that no linear separation is possible, the training data will be mapped
into a higher-dimensional space A and an optimal hyperplane will be constructed there.
The mapping is performed by a kernel function K(.,.) which defines an inner product in A
. Different mappings construct different SVMs (Figure 5). When there is a mapping, the
discriminant function is given like below which is a representation of a linear SVM.

A= o nk(, T+

i
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An SVM is largely characterized by the choice of its kernel function. There are two types
of widely used kernel functions; polynomial kernel and Gaussian radial basis function

(RBF) kernel (Burges, 1998).

1. A polynomial kernel is K(X,,X;) = (¥,.X, + 1)%, the value of power d is
called degree and generally is set as 1, 2 and 3. Particularly, the kernel
becomes a linear function if d = 1. It is suggested to choose the value of
degree starting with 1 and increment it until the estimated error ceases to
improve. However, it has been observed that the degree of a polynomial
kernel plays a minor role in the final results (Santos et al. 2002) and
sometimes, linear function performs better than quadratic and cubic

kernels due to over-fitting of the latter kernels.

—xg)|®

2. An RBF kernel has the form KX, X)) - Em(_“_%ﬂ’—— , Where 0 is the
width of the Gaussian. The selection of parameter ¢ can be conducted via
cross validation or some other manners. When using SVM with RBF
kernel on gene expression data analysis, Brown group (Brown et al. 2000)
set 0 equal to the median of the Euclidean distances from each positive
samples (sample with class label as 1) to the nearest negative sample

(sample with class label as -1).

Besides polynomial kernel and Gaussian RBF kernel, other kernel functions include
sigmoid kernel (Schélkopf et al. 2002), locality-improved kernel (Zien et al. 2000) and so

on.
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construction of the discriminant function finally turns out to be a constrained quadratic

problem on maximizing the Lagrangian dual objective function (Weston et al. 2001).

ma.xW an -5 Z aqoyiy; K (X, X;)

7':':1 1J"""

under constraints

.3

Yay =0 420 (@=12..m
i=1

where 7 is the number of samples in training data. However, the quadratic programming
(QP) problem in the above equation cannot be solved easily via standard techniques since
it involves a matrix that has a number of elements equal to the square of the number of

training samples.

Sequential Minimal Optimization (SMO)

To efficiently find the solution of the above QP program, Platt developed the
sequential minimal optimization (SMO) algorithm (Platt et al. 1998); one of the fastest
SVM training methods. Like other SVM training algorithms, SMO breaks the large QP
problem into a series of smaller possible QP problems. Unlike other algorithms, SMO
tackles these small QP problems analytically, which avoids using a time-consuming
numerical QP optimization as an inner loop. The amount of memory required by SMO is

linear with number of training samples (Platt et al. 1998). Therefore it is good for large
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datasets, as in our case, to take advantage of computationally inexpensive aspect. SMO
has been implemented into Weka, a data mining software package, which we used in this
study (Witten et al. 2000).

SVMs have shown to perform well in multiple areas of biological analysis, such
as detecting remote protein homologies, recognizing translation initiation sites (Liu et al.
2003; Zeng et al. 2002; Zien et al. 2000), and prediction of molecular bioactivity in drug
design (Weston ef al. 2003). Recently, more and more bioinformaticians employ SVMs
in their research on evaluating and analyzing microatray expression data (Brown et al.
2000; Furey et al. 2000; Yeoh et al. 2002). SVMs have many mathematical features that
make them attractive for gene expression analysis, including their flexibility in choosing
a similarity function, sparseness of solution when dealing with large data sets, the ability

to handle large feature spaces, and the ability to identify outliers (Brown et al. 2000).

In many practical data mining applications, success is measured more subjectively
in terms of how acceptable the learned description rules, decision trees, or whatever are
to a human user (Witten ef al. 2000) . This measurement is especially important to
biomedical applications such as cancer studies where comprehensive and correct rules are

crucial to help biologists and doctors understand the diseases (Huiqing, 2004).
Naive Bayes

In machine learning, we are interested in determining the best hypothesis A(x)
from space H, based on the observed training data x. Best hypothesis is almost equal to
most probable hypothesis, given the data x with any initial knowledge about the prior

probabilities of the various hypothesis in A (Jaynes 2003, Richard et al. 2001).



Bayes theorem provides a way to calculate,

(i) the probability of a hypothesis based on its prior probability Pr(4(x))

(ii) the probabilities of the observing various data given the hypothesis Pr(x}h)

(iii) the probabilities of the observed data Pr(x)

We can calculate the posterior probability 4(x) given the observed data x,
Pr(h(x)kx)
using Bayes theorem.

Pr{x|h(x))Pr (h(x))

Pr{a(x)lx) = Pr (0

Naive Bayes (NB) is a classification model obtained by applying a relatively simple
method to a training dataset (Mitchell ez al. 1986). A NB classifier calculates the
probability that a given instance (example) belongs to a certain class. It makes the
simplifying assumption that the features constituting the instance are conditionally
independent, given the class.

Given an example X, described by its (*1s %] feature vector we are

looking for a class C that maximizes the likelihood: P(X|C) = P(xy, ..., x4 C)

26

The (naive) assumption of conditional independence among the features, given the class,

allows us to express this conditional probability P(X|C) as a product of simpler
probabilities: P{X|CX=[T%, P(x,1C). We used the Weka program to train the NB
classifier.

Voted Perceptron

The voted perceptron algorithm proposed by Freund et al. (1999) is based on the

well known perceptron algorithm of Rosenblatt (1958, 1962) and a transformation of



27

online learning algorithms to batch learning algorithms developed by Helmbold and
Warmuth (1995). Moreover, they used the kernel functions proposed by Aizerman,
Braverman and Rozonoer (1964), to run their algorithm efficiently in very high
dimensional spaces. This algorithm and its analysis involve little more than combining
these three known methods.

Their studies indicate that the use of kernel functions with the perceptron
algorithm yields a dramatic improvement in performance, both in test accuracy and in
computation time. In addition, they found that, when training time is limited, the voted-
perceptron algorithm performs better than the traditional perceptron algorithm.

I discussed about the algorithms which I used for my final classification analysis in this
project. I have ignored the other algorithms in this discussion which we studied initially

for preliminary studies like KNN, Random Forest, J48 etc.

Feature Selection Algorithms

A well known problem in classification (in general machine learning) is to find
ways to reduce the dimensionality of the feature space to overcome the risk of over-
fitting especially when we are dealing with gene expression data. Data over-fitting
happens when the number of features (genes) is large (“curse of dimensionality”) and the
number of training samples is comparatively small (“curse of data set sparsity”). In such
a situation, a decision function can perform very well on classifying training data, but
does poorly on test samples. Feature selection is concerned with the issue of

distinguishing signal from noise in data analysis.
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Categorization of feature selection algorithms

Feature selection techniques can be categorized according to a number of criteria
(Hall et al. 2003). One popular categorization is based on whether the target
classification algorithm will be used during the process of feature evaluation. A feature
selection method, that makes an independent assessment only based on general
characteristics of the data, is named “filter” (Witten ef a/. 2000); while, on the other hand,
if a method evaluates features based on accuracy estimates provided by certain
classification learning algorithm which will ultimately be employed for classification, it
will be named as “wrapper” (Kohavi ef al. 1997, Witten et al. 2000). With wrapper
methods, the performance of a feature subset is measured in terms of the learning

algorithm’s classification performance using just those features (see Figure 6 below).

The classification performance is estimated using the normal procedure of cross
validation, or the bootstrap estimator (Witten et al. 2000). Thus, the entire feature
selection process is rather computation intensive. For example, if each evaluation
involves a 10-fold cross validation, the classification procedure will be executed 10
times. For this reason, wrappers do not scale well to data sets containing many features
(Hall et al. 2003). Besides, wrappers have to be re-run when switching from one

classification algorithm to another.
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Figure 6: Graphical depiction of two feature selection (Filter and Wrapper) approaches.

In contrast to wrapper methods, filters operate independently of any learning

algorithm and the features selected can be applied to any learning algorithm at the

classification stage. Filters have been proven to be much faster than wrappers and hence,

can be applied to data sets with many features (Hall ez al. 2003). Since the biological
data sets discussed in the later chapters of this dissertation often contain a huge number

of features (e.g., gene expression profiles), we not only concentrate wrapper but also

filter methods.

Another taxonomy of feature selection techniques is to separate algorithms

evaluating the worth or merit of a subset features from those of individual features. There
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are some other dimensions to categorize feature selection methods. For example, some
algorithms can handle regression problem, that is, the class label is numeric rather than a
discrete valued variable; and some algorithms evaluate and rank features independently
from class, i.e., unsupervised feature selection (Witten et al. 2000). We will restrict our
study to the data sets with discrete class label since this is the case of the biological
problems analyzed in later chapters of this dissertation, though some algorithms

presented can be applied to numeric class label as well.

Feature selection algorithms

There are various ways and algorithms to conduct feature selection. We studied
five feature selection methods in this project; they are T-test, X’ statistical measure, gain
ratio, information gain and Relief-F.

T-test

Highly consistent with the well-known ANOVA principle, a basic concept for
identifying a relevant feature from an irrelevant one is the following; if the values of a
feature in samples of class ‘4’ are significantly different from the values of the same
feature in samples of class ‘B’, then the feature is likely to be more relevant than a feature
that has similar values in ‘4’ and ‘B’. More specifically, in order for a feature f'to be

relevant, its mean value in ‘4’ should be significantly different from its mean value in

‘B’(Golub et al. 1999).

The classical t-statistic is constructed to test the difference between means of two

groups of independent samples. So, if samples in different classes are independent, the t-
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statistic can be used to find features that have big difference in mean level between the
two classes. These features can be then considered to have ability to separate samples
between different classes (Nguyen et al. 2002). We tested this method in the initial stages

but did not perform well with over the other methods studied.
X’ - statistical measure

X* measure evaluates features individually by measuring the X* - statistic with

respect to the class. Different from the preceding methods, x* measure can only handle
features with discrete values, x* measure of a feature fwith w discrete values is defined
as,
w ok
. (4; —Ey)?
v0=), )T
Eed — i
i=1 =1

where k is the number of classes, A:;;  is the number of samples with ith value of fin jth
class. ~“ is the expected frequency of ~ ~ and

Eij - R!‘_ L ij'n

Riis the number of samples having ith value of £, C; is the number of samples in the jth

class and # is the total number of samples.
We consider a feature f; to be more relevant than a feature f; (I £ ) if *(f) > X*(f)-

Obviously, the worst x* value is 0 if the feature has only one value. The

degree of freedom of the X* — statistic measure is (w-1) * (k— 1) (Liu et al. 1995). With
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the degree of freedom known, the critical value for certain significant level can be found

from the appendix tables provided in most statistics books.

To apply x* measure to numeric features, a discretization preprocessing has
to be taken. The most popular technique in this area is the state-of-art supervised
discretization algorithm developed by Fayyad and Irani (Fayyad ef al. 1993) based on the
idea of entropy. At the same time, feature selection can be also conducted as a by-product

of discretization.
Information gain and Information gain ratio

Information gain is simply the expected reduction in entropy by partitioning
the samples according to this feature that it is the amount of information gained by
looking at the value of this feature. More precisely, the information gain Gain(f,S) of a

feature f, relatively to a set of samples S, defined as,

Gain(f,5) = Ent(S) — Ent(f,T.,5)

where Ent(S) can be calculated from

k
Ent(S) = Z —p; * logp;

=1

and Ent(f, T; S) is the class entropy of the feature (for a numeric feature f; 7y is the best
partition to f ‘s value range under certain criteria, such as MDL principle in
discretization). Since Ent(S) is a constant once S is given, the information gain and
entropy measures are equivalent when evaluating the relevance of a feature. In contrast to

the rule “ the smaller the class entropy value, the more important the feature is” that is
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used in entropy measure, we consider a feature f; to more relevant than a feature f; (I # j) if
Gain(f;, S)>Gain(f,, S) (Xing et al. 2001, Quinlan 1986).

However, there is natural bias in the information gain measure - it favors
features with many values over those with few values. An extreme example is a feature
having different values in different samples. Although the feature perfectly separates the
current samples, it is a poor predictor on subsequent samples. One refinement measure
that has been used successfully is called information gain ratio. The gain ratio measure
penalizes features that with many values by incorporating amount of split information,
which is sensitive to how broadly and uniformly the feature splits the data (Mitchell ez al.
1986).

Ent(5) = “' B + lo B

=
where §; through S,, are the w subsets of samples resulting from partitioning of S by w-
values discrete or w-value-interval numeric feature . Then, the gain ratio measures is
defined in terms of the earlier information gain measure and this split information, as

follows:

Gain(f, 5)

GainRatio (f,5) = —
ainRatio (f,5) Split mformation (f, 5)

Note that split information is actually the entropy of S with respect to the
values of feature f'and it discourages the selection of features with many values (Mitchell
et al. 1986). For example, if there is total number of » samples in S, the split information
of a feature f;, which has different values in different samples, is log,n. In contrast, a

Boolean feature f; that splits the same n samples exactly in half will have split
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information of 1. If these two features produce the equivalent information gain, then
clearly feature £ will have a higher gain ratio measure. Generally, a feature f; is
considered to be more significant than a feature f; (I #j) if GainRatio (f, S) >
GainRatio(f;, S). When using gain ratio measure (or information gain measure) to select
features, we sort the values of gain ratio (information gain) in the descending order and

consider those features with highest values.
Reliefl’

The key idea of ReliefF is to estimate attributes according to how well their
values distinguish among the instances that are near to each other. For that purpose, given
an instance, ReliefF searches for its two nearest neighbors: one from the same class
(called nearest hit) and the other from a different class (called nearest miss). The original
algorithm of ReliefF (Kira et al. 1992) randomly selects n training instances, where # is

the user-defined parameter.
Chapter summary

In this chapter, I introduced the concept of classification in data mining as well as
the ways to evaluate the classification performance. I presented in detail some of
classification algorithms — putting the emphasis on several methods used in the final
analysis like SVMs, SMO and Naive Bayes. We also used KNN, Random forest, J48
algorithms to compare and contrast with the above algorithms in our preliminary studies

which are addressed in later chapter about these studies.
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Also the basic concepts of feature selection algorithms and the differences
between filter and wrapper approaches were discussed. Also, the details about the feature
selection algorithms we studied like t-test, X’ statistic measure, Information gain,

Gainratio and ReliefF were explained.
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CHAPTER II

MATERIALS AND METHODS

Methods

One of the important recent breakthroughs in experimental molecular biology is
microarray technology. This novel technology allows the monitoring of expression levels
in cells for thousands of genes simultaneously and has been increasingly used in cancer
research (Alizadeh et al. 2000; Alon et al. 1999; Golub et al. 1999) to understand more of
the molecular variations among tumors so that a more reliable classification becomes

possible.

There are two main types of microarray systems: the cDNA microarrays
developed in the Brown and Botstein Laboratory at Stanford (DeRisi et al. 1997) and the
high-density oligonucleotide chips from the Affymetrix company (Lockhart et al. 1996).
The cDNA microarrays (two-color) are also known as ‘spotted’ arrays, popularly called
as ‘agilent’ prepared from Agilent company (Miller et al. 2002), where the probes are
mechanically deposited onto modified glass microscope slides using a robotic array
machine. Oligonucleotide chips are synthesized in silico (e.g., via photolithographic
synthesis as in Affymetrix GeneChip arrays) are also popularly called as ‘single channel’
arrays. For a more detailed introduction and comparison of the biology and technology of

the two systems, please refer to Harrington et al. (2000).

Gene expression data from DNA microarrays are characterized by many

measured variables (genes or features) on only a few observations (experiments or
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samples), although both the number of experiments and genes per experiment are
growing rapidly (Nguyen et al. 2002). The number of genes on a single array is usually in
the thousands while the number of experiments is only a few tens or hundreds. There are
two different ways to view data: (1) data points as genes, and (2) data points as samples
(e.g., patients). In the way (1), the data are presented by expression levels across different
samples, thus there will be a large number of features and a small number of samples. In
the way (2), the data is represented by expression levels of different genes, thus the case
will be a large number of samples with a few attributes. In this dissertation, all the
discussions and studies on gene expression profiles are based on the format of data

presentation that is data points as genes or features.

Microarray experiments raise many statistical questions in many diversified
research fields, such as image analysis, experimental design, cluster and discriminant
analysis, and multiple hypothesis testing. The main objectives of most microarray studies
can be broadly classified into one of the following categories: class comparison, class

discovery, or class prediction (Miller et al. 2002).

Class comparison is to establish whether expression profiles differ between
classes. If they do, which genes are differentially expressed between the classes, i.e. gene
identification. For example, which genes are useful to distinguish tumor sample from

non-tumor ones. This is the typical microarray analysis we will perform every day.

Class discovery is to establish subclusters or structure among specimens or among

genes. For example, to define previously unrecognized tumor subtypes.
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Class prediction is to predict a phenotype using information from a gene
expression profile (Miller et al. 2002). This includes assignment of malignancies into
known classes (tumor or non-tumor) or tumor samples into already discovered subtypes,
prediction of patients outcome such as which patients are likely to experience severe drug
toxicity versus who will have none, or which breast cancer patients will relapse within

five years of treatment versus who will remain disease free.

In this dissertation, we will focus on the class comparison and class prediction.
For these two tasks, supervised analysis methods that use known class information are
most effective (Miller et al. 2002). In practice, feature selection techniques are used to
identify discriminatory genes while classification algorithms are employed to build

models on training samples and predict the phenotype of blind test cases.
Preprocessing of Expression Data

Despite optimal techniques to ensure RNA quality, some amount of non-biology-
related variation remains; thus, preprocessing of the microarray data is essential before
analysis can be initiated. Several critical preprocessing techniques have been developed
to enhance the validity of microarray analyses. Based on the characteristics of the
experimental data, the normal preprocessing steps include identification of outlier arrays,
scale transformation, data normalization, missing value management, batch effect
correction, replicate handling and so on (Herrero et al. 2003).

Identification of Outlier Samples
Array outliers are due to excessive chip-to-chip variation and may be the result of

improper hybridization errors that create smudges, scratches or cross-hybridization to the
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microarray (Han et al. 2004). These arrays may have disproportionately high or low
intensities for individual probe sets due to non-specific or mismatch mRNA binding,
These changes can sometimes be observed on the DAT file (the image file, not the CEL
file) of the microarray during visual inspection. It is a better quality control procedure to
remove the samples from the analysis when their intensities do not match the overall
tendencies for the same probe sets in the group.

We used dChip® analysis to find out the array outliers. It does the probe
summarization and high-level analysis of gene expression data through model based
approach by applying Model Based Expression Index (MBEI) algorithm (Li et al. 2001).
This model is based on a balanced hybridization of all probe sets, in log, format. When
the uniformity of hybridization exceeds the model limits, the microarray is identified as
an outlier. For this algorithm if the standard error for a probe set is more than three times
larger than the other probe sets on the microarray it is identified as an array outlier. If
greater than 5% of the probe sets on an individual microarray chips are identified as
outliers, dChip flags the entire microarray as a potential outlier (Li ez al. 2001). MAQC
asked all the analysis groups to vote each array in the dataset either as outlier (1),
moderate outlier (0.5) and non-outlier (0). We gave our voting on each array of the
datasets using this method and also by visualizing the box plot and PCA distribution of

arrays in the dataset.

® www.dchip.org
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Data Normalization

The purpose of normalization is to adjust the effects which arise from variations
in the microarray technology rather than from biological differences between the RNA
samples or between the printed probes, so that data from different chips can be directly
compared. No step in the microarray hybridization process can be perfectly controlled.
The quantity of RNA in a sample varies slightly from chip to chip. Even if the exact same
sample is used on each of several chips, there will be chip to chip differences in the
overall distribution of probe intensity values (Bolstad et al. 2003; Irizarry et al. 2006). In
microarray analysis, the normalization methods vary depending on the technology of the
arrays we used. In this project, we have total six datasets, among these five datasets are
Affymetrix single color technology arrays and the Neuroblastoma dataset is Agilent two
colored customized array.

We used MASS5 (Microarray Suite Ver. 5) probe-set summarization and
normalization algorithm from Affymetrix (Affymetrix, 2002) for affymetrix datasets
(exception to Iconix data, we used Median scale 1000 normalization, because the array is
customized not the standard array supplied by Affymetrix). There is one specific reason
for selecting this normalization for this study is that we can accommodate the external or
blind validation dataset in to the classification system without altering the developed
model using training dataset. I mean, the normalization step should be independent and
should not affect the coming external validation dataset in the future. It can be possible
when the normalization method is done within array instead of across the arrays. MAS5

algorithm works within array and the other normalization methods like RMA, MBEI
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(dChip) and PLIER does the normalization between the arrays. So, MASS algorithm fits

well to our study and also MAQC recommendes this normalization for the same reason.
MASS algorithm

The MASS5 algorithm uses the TukeyBiweight algorithm, which reweights the
differences depending on how far the expression values are from the median, and
discards any differences which are more than five times the median absolute distance
from the median (Affymetrix, 2002). The MASS5 algorithm also replaces the MM
(mismatch) value (MAS4 considers MM values) with a value that is always less than the
PM (perfect match) value, calculating what is called an ideal mismatch (IM) in this
situation. Ideal mismatch (IM) intensity value calculated from MM value subtracted from

PM value (IM is never bigger than PM).
If MM < PM then IM = MM;
If MM > PM then IM = PM — correction value;

Robust mean of probe set values are taken using TukeyBiweight algorithm. In this
algorithm the mean is calculated to identify center of data. Distance of each data point
from the mean is calculated (Affymetrix, 2002). This distance determines how each value

is weighted in the average i.e. outliers far from the median contribute less to the average.
And the signal is calculated using;

Signal = TukeyBiweight{log, (PM, — IM; )}
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We implemented this normalization method on the datasets using affy packages in

Bioconductor version 2.17 in R 2.5.0° frame work.

In the case of Neuroblastoma dataset, which is an Agilent platform (two color),
we used mean scale normalization, a simple scaling normalization method. In the case of
Iconix dataset, the normalization is median scale 1000 even though it is single color data

but the platform provider is GE Healthcare, not as usual from Affymetrix.
Data Transformation

Missing value transformation: One of the characteristics of the gene expression
profile is the presence of missing values in the data set. There are diverse reasons that
cause missing values, including insufficient resolution, image corruption, or simply due
to dust or scratches on the slide (Troyanskaya et al. 2001). In practice, missing data also
occur systematically as a result of the robotic methods used to create them.
Unfortunately, many data analysis algorithms require a complete matrix of gene array
values as input (Troyanskaya et al. 2001). For example, standard hierarchical clustering
methods and K-means clustering are not robust to the excess of missing values since the
calculations in these algorithms are based on a distance matrix. Even with a few missing
values, they may lose effectiveness. More strictly, some methods like principal
components analysis (PCA) can not deal with missing values at all. Therefore, methods

for imputing missing data are needed, not only to minimize the effect of incomplete data

” www.bioconductor.org

® www.cran.org
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on further analyses, but also to increase the range of data sets to apply learning

algorithms.

There are some general solutions to impute missing values. Here, we list five
commonly used strategies: (1) filling blanks with zeros; (2) replacing with the gene’s
average expression levels over all experiments; (3) replacing with the median of the
gene’s expression levels over all experiments; (4) singular value decomposition (SVD);
(5) using weighted KNN imputation method. The KNN based method is to use the .-
nearest neighbours (KNN) to estimate the missing values, where a user is defined

parameter.

Both weighted KNN and SVD-based techniques surpass the commonly used
simple average method (Troyanskaya ef al. 2001). This conclusion is very natural since
the winning methods take advantage of the correlation structure of the data to estimate
missing expression values. In these two methods, we used KNN based missing value
imputation method. For this purpose we used ArrayAssist (Stratagene Inc.) package

installed in the linux computer in the lab.

Log transformation

We transformed the normalized raw expression data into log, transformation for
better graphical presentation of the data and to continue further analysis with this
transformed data.
Quality Control Check

Filtered genes based on flag values: We filtered the bad quality spots or probe sets

based on the flag values Present (P)‘and Marginal (M) calls, we excluded the Absent (A)
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calls. We also excluded the genes which have either P or M calls in less than half of the
samples in the dataset. The remaining genes after filtering based on flag values are

considered for further analysis.

Quality check with box-plots: We checked the quality of the normalized data

using the box plot distribution.

Checking Batch Effect

Batch effects are observed when the overall intensity of a batch of microarrays
more closely resembles the batch than the rest of the group, and this tendency may add
enough noise in the analysis that errors are elevated. Due to the technical limitation that
all samples cannot be processed simultaneously and must be run in batches, batch effects
can be a potential confounding factor. This happens when the number of microarrays in a
study makes it impossible to hybridize each sample to a microarray at the same time, by
the same technologist, at the same location or with the same lot number of reagents or
equipment. In our case especially with toxicogenomic datasets, which were designed to
study the effect of chemical compounds on animal models over the period of years. This
increases the chance of batch effect in the dataset either by time or the technology used.
This type of errors ultimately generates false interpretations at the end of the analysis of

large amount of information.

We checked for the batch effect in the dataset using unsupervised hierarchical
clustering between the samples and Principal Component Analysis (PCA). We used two

types of methods to correct these batch effects. One is Combat, a new function in the
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bioconductor works based on empirical Bayes framework (Johnson ez al. 2007), but it
requires the class label information to correct the batch. The other method is BatchMatch
developed by SystemsAnalytics Inc., which works same as the above method but has the
option to choose to include class label information or not. This is important especially
when we are doing classification performance with external validation dataset, that does
not have class label information. We compared both methods on the correction of batch

in these datasets.

Dimensionality Reduction / Feature Selection

The microarray expression data contain thousands of genes; there may be actually a small
number of underlying variables that account for most of the variation in the data (West et
al. 2001). For example, a few linear combinations of genes may explain most of the
response variation. So, dimension reduction is a necessary and crucial part of multivariate
analysis of high-throughput assay data such as gene expression data. Class prediction
problem is a multivariate regression problem where the number of variables (genes) far
exceeds the number of samples. This affects the performance of classification algorithm
studying to a bottom level and also it is a computationally expensive procedure. One way
to achieve dimension reduction is to transform the large number of original variables
(genes) to a new set of variables (gene components) or differentially expressed variables

(genes), which are uncorrelated and ordered so that the few genes account for most of the

variation in the data (Figure 7).
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Dimension reduction

20-40K genes —__——= | Hundreds of genes

Figure 7: A small schematic depiction of dimensionality reduction of gene expression

data.

There are few ways to reduce the dimensionality like Principal Component Analysis
(PCA), Sliced Inversion Regression (SIR), Partial Least Squares (PLS) and Fold Change

methods (Li ef al. 2007).

Our approach of dimensionality reduction or feature selection or gene selection is
in two levels. In the first level we reduced most of unnecessary genes using fold change

and p-value combination. In the second level we applied feature selection algorithms.

We combined both fold change and p-value (<0.05) to filter out differentially
expressed genes. We varied the fold change level from 1.2 to 2 based on the dataset, but
we fixed the p-value to 0.05. We separated these differentially expressed genes using
volcano plot, which plots fold change on x-axis and p-value on y-axis, both in log scales.
So, we can easily separate the genes which fall between certain fold change and p-value

combination.

Afier filtering these differentially expressed genes for all 13 end points in six
datasets using the corresponding class labels, we checked the box plot distribution for

those.
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Feature Selection

After filtering differentially expressed genes for each end point, we further
reduced the number of genes or features using information gain, gain ratio, X* — statistic,
relief-F and Correlation based feature selection algorithms. These feature selection
algorithms also ranks genes based on the ranker search algorithm. We discussed about
feature selection algorithms earlier in this dissertation in feature selections chapter.

We initially compared and contrasted the above feature selection algorithms to
find which algorithm performs better to use further in our studies. We ran these with 10-
fold cross validation with 10 iterations with classification algorithms to know which
feature selection algorithms generate better classification performance. After this, we
separated the subsets of genes (like 10, 20, 30, 40, 60, 100 genes) based on the ranks in
each algorithm for further classification studies.
Classification algorithms

I explained about the details of the classification algorithms we studied in this
project in chapter 4 of this dissertation. We used Sequential Minimal Optimization (or
SMO) with linear kernel by keeping exponential value (E or d) to 1 in polynomial kernel
of SMO, explained in page number 23. The remaining parameters were kept as default as
it is in Weka program. In LibSVM, we studied both linear kernel and Radial Basis
Function (RBF) kernel with ¢ =10 and y = 0.01 and the type of SVM is C-SVC. We also
studied the voted perceptron and Naive Bayes classification algorithms with default
options in Weka machine learning framework. The error estimation is performed using
internal cross validation (CV) with 5-fold CV with 10 iterations. Initially we did 10-fold

CV with 10 iterations on all datasets, which is a standard and well established. But after
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heated discussion in the MAQC 8™ face-to-face meeting in Washington, DC., analysts
feared to use 10-fold CV on the Hamner dataset, which is small in sample size and weak
data with strong batch effect, that can introduce the over-fitting in the classification
performance. So, analysis groups decided to use 5-fold to all datasets instead of 10-fold
CV. Before this analysis, we tested the implementation of nested cross validation using
different SVM classification algorithms to avoid introducing over-fitting. After that, work
flow is designed to fit only stratified cross validation only, due to the difficulty in using
other classification algorithms in nested cross validation and also stratified CV is

recommended by the RBWG.

Error Estimation

After running these classification algorithms, we tested the internal cross
validation error estimation using several classification performance metrics as described
in page number 18 of this dissertation. We reported Matthews Correlation Coefficient
(MCCQ), accuracy, sensitivity, specificity, area under ROC curve (AUC) and root mean
square error (RMSE) performance metric with the standard deviations from the 10
iterated models for each classification using the confusing matrix generated by
classification algorithms. Among these we preferred MCC over other performance
metrics in selecting candidate models for each end point due to heavy imbalanced class
label datasets we studied. MCC overcomes the bias generated by the imbalanced class
label datasets by taking of all four elements of the two class confusion matrix into

consideration.
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Materials
Datasets used in this project
We already mentioned very briefly about the six datasets available to study in this
project in chapter 2 of this dissertation. Here we will go through in detail about the
datasets and its experimental designs and the clinical endpoints studied in these
experiments to get a better understanding about the endpoints we are predicting.
Hamner Lung Tumor dataset

Subchronic exposarz following the
WTPprotozol
A,

- \ _ 2 vears NTP
. experiment
-

13 weeks

Samples were collected and
array exp was conducted

5(22) 2 (6) T 3() Control

6(22) 2 (6) 4(16) NLT } Assigned based on
7 (26) 2(6) | 5(20) LT NTPfindings

Figure 8: The experimental design of the Hamner lung tumor dataset from mice
This is one of the dataset among the three toxicogenomics datasets studied and
provided by the Hamner Institute (Thomas et al. 2007). The objective of this experiment
is whether the gene expression at 13 weeks can predict tumor observed at 2 yrs in mice,
which are exposed to toxic compounds. If the classifier developed from this study is
valid, then the above hypothesis is true and saves millions of money and time spent for

National Toxicology Program (NTP), which exposes the animals to toxic compounds

over 2-3 years.
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The endpoint we are studying in this experiment is lung tumor formation in two
year rodent cancer bioassay. For this experiment total 150 female B6C3F1 mice were
used by exposing to 13 chemicals over a period of 90 days (13 weeks) by Rusty Thomas
group in the Hamner Institute, NC. Among these chemicals seven were positive for an
increased incidence of primary alveolar/bronchiolar adenomas or carcinomas and six
chemicals were negative. Animal treatment was initiated at 5 weeks of age. Mice were
housed 5 per cage in the same environmental and physical conditions. Animal exposures
for each chemical were performed via the route and dose recommended by NTP. Refer to

Thomas et al. 2007for more information about this experimental design.

Microarray analysis was performed on 3 to 4 animals per treatment group except
for the corn oil and feed control groups. The microarray platform used for this study is
Affymetrix mouse 430 version 2. They generated total 70 samples of expression data
from 22 non-carcinogen (NLT) exposure, 26 carcinogen exposure (LT) and remaining 22
were treated with controls (Figure 8). These 70 samples were generated in two
experimental batches (18 in year 2005 and 52 in year 2006). For our analysis purpose, we
labeled the phenotypic classes as Lung Tumor (LT) and Non-Lung Tumor (NLT) and our
endpoint code for this class is ‘A’ with positives to negatives ratio 0.59. We treated the

control samples also into NLT class as per MAQC recommendation.

Iconix dataset
This is another toxicogenomics dataset provided by the Iconix Inc. The
experimental study is explained in their publication in (Fielden et al. 2007). They studied

the hepato-carcinogenicity (liver cancer) in rats by exposing them to several chemical
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compounds. They were exposed to 22 chemical compounds with 2-3 doses per compound
and 4-5 time points. They treated 3 rats per dose-time combination. The exposure is
multiple routes depending on the compound. Totally they provided 216 samples of
expression data on single colored Codelink RU1 platform from GE Healthcare Inc. In
this, 73 samples are phenotypically classified as liver carcinogenous and 143 samples are
non-liver carcinogenous and the class is labeled as Class (B) with a positives to negative
ratio 0.51. The endpoint we are studying is Liver Carcinogen.

NIEHS dataset

This is third toxicogenomics dataset in the MAQC datasets provided by the
National Institute of Environmental Health Sciences (NIEHS), NIH (Lobenhofer ef al.
2006). The experiment is designed by exposing rats with seven acute hepato-toxicants
and one non-toxic control. The experimental design has four doses for each compound
and three time points for each compound-dose group and four rats for each dose-time-
compound group with a total of 214 samples. The class is labeled as Class (C) and the
end point we are studying is the Overall Necrosis Score with positives to negatives ratio

0f 0.58 (79/135).
MDACC-BR dataset

This breast cancer (BR) dataset, part of the clinical datasets studied in the MAQC
was provided by MD Anderson Cancer Center (MDACC) (Hess et al. 2006). They
studied two clinical end points based on the treatment outcome in this experiment, one is
pathologic complete response (pCR) and the other one is estrogen receptor status (erpos).

pCR was defined as no residual invasive cancer in the breast or lymph nodes. Residual in
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situ carcinoma without invasive component was also considered a pCR (Hess et al.
2006). The gene expression data was provided using Human Affymetrix U133A slides
from total 130 samples. In this the pCR end point has 0.34 (33/97) positives to negatives

ratio and erpos end point has 1.6 (80/50) positives to negatives ratio.
Multiple Myeloma (MM)

This multiple myeloma (MM) dataset, studied four clinical end points, provided by
the University of Arkansas Medical Sciences (UAMS) (Shaughnessy et al. 2007a;
Shaughnessy et al. 2007b). The UAMS provided the 340 samples of gene expression data
in Affymetrix U133 Plus version 2 platform for the analysis. They studied four clinical
end points or classes, namely Overall Survival Milestone Outcome (OS_MO), Event-free
Survival Milestone Outcome (EFS_MO), Clinical Parameter S1 (CPS1) and Clinical

Parameter R1 (CPR1).

e OS milestone outcome (OS_MO) is a coding of a binary clinical outcome (overall
survival) related to whether the subject survived up to the milestone (24 months):
1= deceased by 24 months, 0= alive at 24 months. The positive to negatives ratio

of this end point is 0.48 (112/228).

¢ EFS milestone outcome (EFS_MO) is a coding of a binary clinical outcome
(event-free means disease relapse or progression) related to whether the subject
was event-free up to the milestone (24 months): 1=event occurred < 24 months,
0=no event in first 24 months. The positives to negatives ratio of this end point is

1.1 (179/161).
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Clinical parameter S1 is a coding of binary clinical outcome of parameter S1 is
either positive (1) or negative (0). The data providers did not provide the complete
description of this parameter based on their confidentiality policy. The positives

to negatives ratio of this end point is 1.33 (194/146).

Clinical parameter R1 is a coding of binary clinical outcome of parameter R1 is
either positive (1) or negative (0). The positives to negatives ratio of this end

point is 1.43 (200/140).

Neuroblastoma (NB) dataset

This neuroblastoma (NB) clinical dataset is provided by the University of Cologne,

Germany with four clinical end points to study (Oberthuer et al. 2006). The gene

expression data they provided is in customized Agilent NB array, which is two color data.

They provided total 492 expression profiles from 246 NB samples along with dye-flipped

replicates. The four clinical outcomes in this study are Overall Survival Outcome

(OS_MO), Event-free Survival Outcome (EFS_MO), Newly Established clinical outcome

Parameter S (NEP_S) and Newly Established clinical outcome Parameter R (NEP_R).

OS milestone outcome (OS_MO) is a binary coding of overall survival status by
the milestone (900 days): 0= alive, 1=deceased. The positives to negatives ratio in

this clinical end point is 0.32 (59/187).

EFS milestone outcome (EFS_MO) is a coding of binary clinical outcome, event-
free (event-free means disease relapse or progression) survival status with

consideration of the nature of the event by the milestone (900 days): 0=no event
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by milestone, 1=event by milestone. The positives to negatives ratio in this end

point is 0.65 (97/145).

o NEP_S is the newly established clinical outcome parameter S. The positives to

negatives ratio of this end point is 1.44 (145/101).

e NEP_R is the newly established clinical outcome parameter R. The positives to

negatives ratio of this end point is 1.44 (145/101).

The summarized details about the datasets are given in the Appendix A.

Chapter summary

In this chapter, I explained about the methods and materials used in this analysis. I
explained in detail about the preprocessing steps and quality control measures taken on
the datasets studied. Also explained about the design of the analysis, the feature selection
algorithms, classification methods studied and the error estimation methods used. This
chapter also covered about the datasets studied and the end points (clinical and pre-

clinical outcomes) used in the classification prediction studies.
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CHAPTER III
RESULTS AND DISCUSSION

The results of our analysis from preprocessing to classification prediction and
performance on total 13 clinical and preclinical end points of six different datasets

studied in this project are explained and discussed in this chapter.

Outlier identification

As part of the quality assessment of the arrays of the datasets being studied, we
did dChip analysis, box plot distribution and PCA (where ever necessary) to identify
array outliers as described in the methods section of this dissertation.

For the Hamner dataset, we got the "array summary file" (Table 2) after "Model-
based expression" a pre-processing step from the dChip, and looked for unusual median

intensity, low P call % and higher array outlier %.

For each array, array outliers measure the percent of probe sets with expression
patterns that are inconsistent from the rest of the arrays. In general, dChip gives warnings
by showing ' * ' in the warnings column of the result, when either single or array outlier
percentages exceed 5% and recommends removal of arrays from further analysis when
any of these values is 15% or more. None of the chips were flagged based on these
criteria (Table 2). Finally, I observed the box plot distribution (Figure 9) of these arrays

using GeneSpring software by selecting RMA pre-processing.

By carefully observing the two results, we voted GSM142182 file as single outlier

in these array files based on its unusual 'Median Intensity’ value and low 'P call %' and
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high '%array outlier'. Also we voted nine other array files as marginal outliers based on

the above results and rest as non-outliers reported in the voting sheet of MAQC. This

information is used to do further meta-analysis on the outlier identification methods.

Number Array Median P call % Array % Single Warnings
Intensity % outlier outlier

215 55.1 1.049 0.397

7 | GSM142134 137 67.3 0.953 0.37
68 | GSM142195 106 64.7 0.936 0.216
30 | GSM142157 209 56.2 0.933 0.568
62 | GSM142189 172 59.8 0.92 0.307
13 | GSM142140 92 65 0.869 0.284
69 | GSM142196 98 62 0.778 0.304
16 | GSM142143 106 66 0.772 0.265
4 | GSM142131 103 66.6 0.756 0.276
2 | GSM142129 86 69.1 0.752 0.225
32 | GSM142159 60 66.1 0.698 0.27
56 | GSM142183 116 55.7 0.696 0.381
11 | GSM142138 152 68.1 0.694 0.25
5 | GSM142132 101 69.6 0.645 0.228
3 | GSM142130 128 66.6 0.63 0.23
9 | GSM142136 134 65.9 0.619 0.214
17 | GSM142144 82 67.9 0.55 0.238
24 | GSM142151 242 554 0.508 0.365
1 | GSM142128 107 69.4 0.506 0.188
6 | GSM142133 95 68.6 0.499 0.206
20 | GSM142147 101 59.8 0.468 0.301
12 | GSM142139 134 68.7 0.421 0.175
10 | GSM142137 136 69.5 0.408 0.167
57 | GSM142184 92 66.6 0.392 0.267
14 | GSM142141 132 68.7 0.386 0.206
27 | GSM142154 91 63.1 0.386 0.246
18 | GSM142145 136 67 0.357 0.164
31 | GSM142158 93 67.2 0.344 0.178
51 | GSM142178 104 65.4 0.344 0.151
61 | GSM142188 95 62 0.326 0.282
22 | GSM142149 111 58.7 0.322 0.309
53 | GSM142180 80 65 0.306 0.235
23 | GSM142150 150 59.2 0.295 0.199
15 | GSM142142 127 68.5 0.29 0.182
66 | GSM142193 118 62 0.29 0.193
50 | GSM142177 94 64.1 0.279 0.158
21 | GSM142148 94 63.5 0.275 0.222
40 | GSM142167 88 67.5 0.275 0.153
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59 | GSM142186 122 62.5 0.255 0.242
67 | GSM142194 127 61.1 0.251 0.211
47 { GSM142174 111 61.8 0.248 0.191
42 | GSM142169 86 65.4 0.239 0.165
37 | GSM142164 115 65.9 0.228 0.185
48 | GSM142175 87 66.3 0.228 0.148
34 | GSM142161 83 68.4 0.224 0.148
54 | GSM142181 82 65 0.222 0.18
25 | GSM142152 101 65.7 0.215 0.158
19 | GSM142146 99 62.8 0.206 0.182
26 | GSM142153 98 66.4 0.204 0.134
58 | GSM 142185 111 67 0.2 0.124
39 | GSM142166 98 65.9 0.195 0.127
70 | GSM 142197 118 65.8 0.193 0.14
60 | GSM 142187 104 63.4 0.191 0.196
49 | GSM142176 101 67.4 0.186 0.121
63 | GSM142190 107 61.7 0.184 0.178
41 | GSM142168 86 67.7 0.171 0.13

8 | GSM142135 135 67.7 0.166 0.104
65 | GSM142192 157 62.6 0.166 0.141
33 | GSM142160 83 67.2 0.162 0.1
52 | GSM142179 98 65.3 0.157 0.174
45 | GSM142172 162 66 0.155 0.141
28 | GSM142155 108 65.4 0.14 0.128
64 | GSM142191 114 66 0.133 0.143
43 | GSM142170 132 66.6 0.126 0.109
46 | GSM142173 146 67 0.118 0.126
29 | GSM 142156 89 65.8 0.109 0.107
36 | GSM142163 152 68.8 0.098 0.088
35 | GSM142162 120 67.3 0.089 0.126
38 | GSM142165 132 68.5 0.089 0.115
44 | GSM142171 146 68.3 0.084 0.12

Table 2: dChip analysis results of the Hamner dataset which contains 70 array samples.
The analysis results showed no array is an outlier in the total 70 samples (observe no

warnings in the warning column in this table). But we voted sample array GSM 142182 as
an array outlier (shown in orange background above) and marginal outliers (yellow color)
based on the box plot distribution.

Figure 9: The figure shown in the next page is the box plot distribution of RMA
normalized 70 array samples of Hamner dataset to identify array outliers. The red mark
shown in this figure is voted a array outlier based on dChip analysis and this box plot

distribution.
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The outlier identification analysis results for MDACC breast cancer dataset using

dChip analysis (Table 3) showing significant array outliers. By carefully observing the

two types of analysis (Figure 10) results as I mentioned above, we voted as array outlier

for five files in these 176 array files based on its unusual Median Intensity' value and

low 'P call %' and high "%array outlier' (more than 15%). Also we voted 38 other array

files as marginal outliers and rest as non-outliers.

Number Array Median | % P | % Array | % Single | Warning
Intensity | call outlier outlier

‘ 62| 233 29.3 2378 | *
168 | U133A FL151 US129 12 08 05 601 273 16.654 1.647 | *
93 | 329 16.08 1254 | *
23678 ABO1SS 48 | 417 13.45 1.023 | *
166 | U133A FL136 US123 11_14 05 211 9.1 12.22 2353 | *
U133A FL175 US147 01 13 06 2 149§ 195 12.05 0.896 | *
48 [ 373 11.619 0957 | *
135 | 29539 AB01833522_35706 80 | 43.8 11.152 1.26 | *
165 | U133A FL112 US120 10 13 05 113 | 268 10.506 1.066 | *
63 | 23678 AB01542220 24643 76 | 58.5 9.509 0.551 | *
145 | 29539 AB01833747 35697 64| 528 9.492 1.049 | *
172 | U133A FL32-US2 05 19 05 1051 199 9.447 0.876 | *
67 | 23678 AB01542241 24647 65| 562 9.204 0.511 | *
173 | U133A FI146-314 07 08 05 90 | 29.8 9.034 0.945 | *
77 | 23678 AB01562152 24646 751 462 9.016 0.557 | *
139 | 29539 AB01833699 35605 97 | 647 8.823 025 | *
170 | U133A FL161 US125 01 10 06 90 [ 22.1 8.729 0.832 | *
71 | 23678 ABO01562113 24644 66| 55.2 8.657 0494 | *
175 | U133A_FL80 US97 09 01 05 951 274 8.616 0.824 | *
133 [ 29539 AB01833504 35681 107 65 8.594 035 | *
162 | FL398-PERUS3 ‘ 92| 372 8.45 0.879 | *
136 | 29539 AB01833526 35614 90 | 63.7 8.392 0359 | *
126 | 29539 AB(01723039 35684 79| 575 8.257 0.534 [ *
161 | 29539 AB01833935 35648 ' 86| 57.2 7.759 0443 | *
65 | 23678. AB01542230 24645 73 55.7 7.746 0.447 | *
151 | 29539 AB01833769 35700 89 [ 63.6 7.629 0.269 | *
146 | 29539 AB01833749 35607 100 | 62.9 7.625 0.254 [ *
101 19.3 7.616 0.69 | *
160 | 29539 AB(01833931 35690 82| 53.2 7.387 0.721 | *
75 | 23678 AB01562130 24648 65| 476 7.337 0.571 [ *
130 | 29539 AB01723044 35687 97| 559 7.311 0.582 | *
127 | 29539 AB01723040 35686 92| 588 7.198 0391 | *
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163 | F1412-PERUSS 95| 399 7.064 0771 | *
174 | U133A FL78 US92 09 01 05 84 | 31.1 6.907 0.612 [ *
59 | 23678 _AB01542151 24650 107 | 56.6 6.844 033 | *
140 | 29539 AB01833716_35658 85| 60.4 6.839 0423 | *
141 | 29539 AB01833728 35659 96 | 498 6.83 0.721 | *
142 | 29539 AB01833732_ 35677 96 | 61.1 6.444 0.323 [ *
131 | 29539 AB01723056_35693 90| 595 6.202 0.488 | *
154 | 29539 AB01833821 35682 85 | 564 6.166 0.483 | *
49 | 23678 _AB01233000_ 24649 69 | 56.1 6.067 0.361 | *
132 | 29539 AB01833495 35688 96 | 59.2 6 042 | *
128 | 29539 AB01723041_ 35689 971 616 5.951 0372 | *
148 ] 29539 AB01833756 35615 88| 623 591 0.277 | *
121 | 29539 AB01723009 35679 77 | 60.1 5.803 0.495 | *
157 | 29539 AB01833840_35610 82| 618 5.641 0.27 | *
159 | 29539 AB01833876_35613 91 59.1 5.556 0404 | *
164 | F1454-713 83 [ 351 5.533 0.545 | *
137 | 29539 _AB01833535_35695 115 | 58.1 5.475 0343 | *
155 | 29539 AB01833829 35611 971 645 5.466 0.202 | *
125 | 29539 AB01723032_ 35694 91 574 5.439 0.501 | *
11 | 19893 AB01923090 16992 133 [ 48.6 5412 0963 | *
91 | 24817 AB02262650 26174 62 [ 56.6 5.313 0364 [ *
134 | 29539 AB01833515 35616 104 | 613 5.287 0.216 | *
149 | 29539 AB01833758 35698 84 55 5.264 0.488 | *
98 | 24817 _AB02263405_26175 68 57 5.17 0.401 | *
122 | 29539 AB01723028 35692 94 59 5.026 0.384 | *
176 | U133A ROM233 06 _04 04 60 | 49.2 4.999 0.428
144 | 29539 AB01833741 35650 88 | 584 4.887 0.315
10 | 19893 AB01913300_ 16991 146 49 4.802 1.028
85 | 24817 _AB02261485 26161 66 | 577 4.784 0.257
129 | 29539 AB01723043 35685 110 | 60.9 4.748 0.248
16 | 19893 AB01983478 17035 58 47 4.604 0.488
152 | 29539 _AB01833780 35612 99 [ 60.1 4.582 0.206
158 | 29539 AB01833841 35702 92| 59.6 4.555 0.242
156 | 29539 AB01833832 35608 91 62 4.542 0.235
138 | 29539 ABO01833542_35683 93 | 63.8 4.506 0.285
123 | 29539 AB01723030_35657 86 | 60.6 4.344 0.24
167 { U133A FL137 US134 11 14 05 1001 | 36.8 4313 0.537
150 | 29539 _AB01833759 35699 89 61 4.061 0.214
124 | 29539 AB01723031_35678 98 | 64.1 3.99 0.204
177 | U133A ROM286 06 04 04 61 53.9 3.904 0.309
96 | 24817_AB02263399 26158 76 | 49.2 3.801 0.526
147 | 29539 ABO01833754 35654 156 | 53.6 3.801 0.238

Table 3: dChip analysis results of the MDACC breast cancer dataset which contains 178
array samples. The results shows (only 75 arrays results showed due to space constraint)
57 arrays as an array outliers in the total 178 samples (observe for ‘*’ in warnings
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column). But we voted 5 arrays as an array outlier (shown in orange background above)
and other 39 as marginal outliers based on the box plot distribution and dChip results.

Figure 10: The figure shown in the next page is the box plot distribution of RMA
normalised values for 178 array samples from Iconix. We can observe the most of
outliers and moderate outliers are in between array numbers 140 to 175.
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The meta-analysis of the outlier identification methods and its results (Figure 11)
from the other analysis groups (Appendix B&C) provided by Leming Shi (MAQC
coordinator) are discussed below. The criteria used for calling the final outlier quality based
on the consensus score for each array. Consensus score is calculated from,

Consensus score (%) = 100*(Sum of the votes from » organizations)/n

MAQC proposed the following rules for assigning an array quality as one of the

three statuses:
Status Consensus score (%)
Good: <33.33% (<1/3 votes)
Marginal: | >=33.33% and <66.67% (1/3 - 2/3 votes)
Outlier: >=66.67% (>=2/3 votes)

Based the analysis and criteria explained above, MAQC identified a consensus final
array outliers for all the six datasets used in this project based on the meta-analysis. There are
no consensus array outliers for Hamner, Iconix, NIEHS datasets. Consensus array outliers are
found in MDACC breast cancer dataset (19 arrays), MM dataset (5 arrays) and NB dataset (5
arrays). I shown the array names (Table 4 ) which are excluded for the further analysis, but

did not show the 38 arrays excluded from MDACC breast cancer dataset.

Multiple Myeloma dataset Neuroblastoma dataset
Consensus array outliers (5) Consensus array outliers (5)

P0266-01-B79-U133Plus-2.CEL | US22502540_ 251271410122 S01 AQ02.txt
P0748-01-C393-U133Plus-2.CEL | US22502540_251271410124_S01_ AO02.txt
P0753-01-C413-U133Plus-2.CEL | US22502540_251271410332 S01_AO02.txt
P0941-02-C782-U133Plus-2.CEL | US22502540 251271410531 _SO01 A02.txt
P0984-01-C763-U133Plus-2.CEL | US22502540 251271410646 _SO01 A02.txt

Table 4: Consensus array outliers which are excluded from the further analysis for MM and
NB datasets are shown in the above table (not shown the 38 arrays from MDACC-BR
dataset)
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Figure 11: Summarized view of the array outlier voting from different analysis groups shown
in cluster diagram. The left side cluster is for the Hamner dataset and the right side cluster is
for MDACC breast cancer dataset (data of the matrix shown in the Appendix B&C).
Preprocessing and Normalization

We performed the basic preprocessing low level summarization methods for Affymetrix
datasets (Hamner, NIEHS, MDACC-BR and MM). The normalization we performed on
these datasets is MASS5 (with a target value 500) to facilitate the incoming external validation
datasets without any changes to the model developed with training datasets. For Iconix
dataset, we performed median scale 1000 normalization method and mean scale
normalization for NB dataset. For NB agilent dataset background correction was applied by

FG - meanBG calculation.
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In the next step, we filtered the genes based on the P, M and A absolute flag values
generated from the MASS5. Also filtered the genes which has low signal values, the threshold

cut off used based on the dataset we are studying.

After log, transformation of signal values, we used KNN- based missing value
imputation algorithm to predict the missing values. Finally, we performed the quality of the
arrays with box plot distribution after normalization and compared with before
normalization. But here, I did not show the distribution results because of the large number
of samples in the datasets, the quality and appearance of the images are not fine for

dissertation purpose.

Batch Effect and Correction

Batch effect identification and correction is an important step in the quality
assessment procedure, especially when we are working with large number of samples in the
datasets. We performed this assessment using correlation heat maps and principal component
analysis (PCA) and Q-Q plot visualizations of the datasets. We observed strong and
significant batch effect based on the year of samples generated in Hamner and Iconix

datasets. There is only slight and insignificant batch effect in the other four datasets studied.
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Correlatien heat map before batch correction

Figure 12: Correlation heat map of the Hamner lung tumor dataset with 70 arrays. This heat
map clearly shows the strong batch effect based on the year of array production.

We corrected the batch effect using an R function called ‘Combat’ in the
bioconductor package. This adjusts the data based on parametric and non-parametric
empirical Bayes frame work. The complete details about this method are obtained from
Johnson et al. 2007 paper. We generated the correlation heat maps before (Figure 12) and
after correcting the batch effect (Figure 13 ). Also we generated principal component analysis
(PCA) diagrams before (Figure 14a ) and after (Figure 14b) the batch correction. These two
visualizations clearly show the correction of batch effect present in this dataset using combat
algorithm. This algorithm also generates Q-Q plots (Figure 15) to check the normality of the

data.
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Correlation heat map after batch cerrection

Figure 13: Correlation heat map of the Hamner lung tumor dataset with 70 arrays after batch
correction with combat funtion. This heat map clearly shows the correction of the batch
effect based on the year of array production.

“Quantile-quantile plots (also called QQ plots) are used to determine if two data sets come
from populations with a common distribution. In such a plot, points are formed from the

quantiles of the data. If the resulting points lie roughly on a line with slope 1, then the

distributions are the same”. (http://mathworld. wolfram.com/Quantile-QuantilePlot.html).


http://mathworld.wolfram.com/Quantile-QuantilePlot.html
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Figure 14: Principal component analysis (PCA) of the Hamner lung tumor dataset with 70
arrays based on the year (samples shown red with year 2005 and yellow with year 2006) (a)
before batch correction, samples are separated clearly based on the year (b) we cannot
observe the differentiation based on the year after batch correction.
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Figure 15: Q-Q plots for the Hamner dataset before correction of batch (top) and after
correction (bottom). Q-Q plots shows the normality of the dataset, if the quantiles of
theoretical and samples falls straight on the line (empirical bayes normal line) then the
dataset is near to normal.
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Compare with BatchMatch 1.3

We also compared and contrasted the Batchmatch 1.3 from System Analytics Inc.
(www.systemsanalystics.com) on the correction of batch effect in these datasets. Batchmatch
works presently on 'double scaling' algorithm. The results generated from this algorithm
shows a clear batch effect in both Hamner and Iconix datasets. It generates the visual results
in correlation heat maps (Figure 16), PCA, sample cluster diagrams and analysis of variance

(ANOVA).

Before BatchMatch After BatchMatch

0.98

2005k ¢ 2005

0.96
084

0.92

0.88
D.86
0.84

0.82

2005 2006 2005 2006

Figure 16: The above correlation heat maps for Hamner lung tumor dataset shows the same
results as it was with Combat. The left side image shows before batch correction and right
side image shows after batch correction.

In the next page, ANOVA results of Hamner dataset are shown (Figure 17). In Anova
analysis, two-factor ANOVA (treatment/biological effect and batch effect) with interaction

term is performed before and after batch effect removal. The total variance and the variance

percentage of each effect are shown on the pie charts.


http://www.systemsanalystics.com
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Figure 17: The two-way ANOVA (LT_NLT and Batch label i.e. Year) results for Hamner
lung tumor dataset shows the adjustment of batch effect. The left side image shows before
batch correction and right side image shows after batch correction.

Besides, giving a similar performance in adjusting the batch effect as it was with
Combat function, the Batchmatch has several advantages over Combat especially in
predicting classifiers using with or without class label information. Other than this, we have
the chance of using one, a few, or all batches as reference. Reference batch(s) become
necessary when the objective of the study is to construct a predictive model using the current
available dataset to predict the labels of future dataset.

We performed the same analysis on Iconix liver cancer dataset, which shows strong

batch effect based on the year 2001 and 2002. The correlation heat maps (Figure 18), PCA

(Figure 19) and ANOVA (Figure 20) results of this dataset are shown in the next pages.
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Figure 18: The correlation heat maps for Iconix liver cancer dataset (216 samples) shows the
clear batch effect based on the 2001 and 2002 year. The left side image shows before batch
correction and right side image shows after batch correction.
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Figure 19: Principal component analysis (PCA) of Iconix liver cancer dataset (216 samples)
shows the clear batch effect based on the 2001 and 2002 year. The left side image shows
before batch correction and right side image shows after batch correction.
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Total Vararce: 832235 Total Variance 65850

| T Biclogpcal effect {1.91%) W Ciclogical effact (2 36%) .
| I Baich effect {24.22%) O Sotch cffect (004%)
| N rreraction term (1.46%) R intoraction tarm {2.09%) |
. I Eeror term {T2.41%) W Erior term (95 585%,)

Figure 20: The two-way ANOVA (Class and Batch i.e. Year) results for Iconix liver cancer
dataset shows the adjustment of batch effect. The left side image shows before batch
correction and right side image shows after batch correction.

We also studied the effect of batch in expression data on the performance of class
prediction. For this analysis, we used SVM and Naive Bayes (NB) classification algorithms
and the feature selection is based on fold change and p-value and the evaluation by gainratio
ranking algorithm on the Hamner lung tumor with and without batch adjustment datasets.
The error estimation was done using 10-f cross validation with 10 iterations and percentage
of accuracy as performance metric. The features selected in 10, 20, 30, ...100 subsets based
on the ranking provided by gainratio algorithm. We observed from these results that the

batch effect adjusted dataset performed better than uncorrected dataset (Table 5 ).
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Batch eftect on classitier pertormance
100
90
80 |
£ 70
3 |
Z G0
= |
s 50 !
< i
40
30
20
10
0 : :
. 1o 20 30 40 50 @ 60 70 80 90 . 100
——NB afterbatch 77 82 8 8 79 . 8 | 77 62 64 57
—@—SVM _afterbatch . 79 86 89 g4 77 79 - 78 70 69 | 63
—fr~NB . 65 77 80 74 76 62 62 59 61 55
—5VM 70 75 79 69 71 64 66 61 63 59

Table 5: SVM and Naive Bayes (NB) classification performance based on the % of accuracy
on the Hamner with and without batch adjusted datasets. The after batch adjusted data
performed better than the without batch corrected dataset.

With the above results, we finished the preprocessing of datasets and quality
assessment. We corrected the batch effect observed in the Hamner lung tumor dataset and
Iconic liver cancer dataset based on the year they generated the samples. We came to a
conclusion that Batchmatch and Combat performs similarly, but Batchmatch has several
advantages over Combat in the application of classification without leaking class label
information. Also we came to know that batch noise in expression data shows effect on
classification performance.

Dimensionality reduction is the next step in our work flow of this analysis after this

preprocessing and quality check.
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Dimensionality Reduction

Feature selection or dimensionality reduction was done by combining fold change
and p-value using volcano plot, as explained in methods part of this dissertation. The fold
change used was depending on the number of genes passing the filter for a particular class
label and dataset, because in some class labels no genes passed the two fold change
expression. In those cases, we decreased the fold level to 1.1 to get some differentially

expressed genes (Table 6).

Table 6: The differentially expressed genes passed the fold change (>2) an
using volcano plots for the total 13 end points. The ‘*’ mark indicates the fold level is
lowered to 1.1.

We observed the box plot distributions and scatter plots for each endpoint using the
corresponding filtered differentially expressed genes for that endpoint. Here, I am showing
the some images for few endpoints for visualizing the differentiation of the class labels. The
distribution of differentially expressed genes for NIEHS class label, MDACC breast cancer

pCR and erpos endpoints are shown in Figures 21, 22 and 23.
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Figure 21: 512 differentially expressed genes (FC > 2 and P-value < 0.05) in NIEHS dataset
with overall necrosis score as class label. (a) Volcano plot and (b) Box plot distribution of
samples with differentially expressed genes, clearly shows the expression differentiation
based on its class ‘1’ (positive) and ‘0’ (negative).
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Figure 22: 106 differentially expressed genes (FC>2 and P-value < 0.05) in MDACC breast
cancer dataset with pCR (pathological complete response) as class label. (a) Volcano plot
and (b) Scatter plot distribution of samples with differentially expressed genes, clearly shows
the expression differentiation based on its class pCR-Pos and pCR-Neg.



78

354@

30 4

25 1

g

v T T T T T T T T T T T 4 T T T T v
198.. 198.. 198.. 209.. 248.. 289.. 295.. 295.. 196.. 198.. 205..236.. 2236.. 248., 282.. 295., 295.. 295,, 2953 5_Ap01
0 1.

(b) erpas (Non-averaged)

Figure 23: 197 differentially expressed genes (FC > 2 and P-value < 0.05) in MDACC breast
cancer dataset with erpos (estrogen receptor positive) as class label. (a) Volcano plot and (b)
Box plot distribution of samples with differentially expressed genes, clearly shows the
expression differentiation based on its erpos class ‘1’ (positive) and ‘0’ (negative).
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After dimensionality reduction of the expression data, our next step to follow is
feature evaluation or feature selection methods, which detect and rank the best classifier
genes for that particular endpoint.

Feature Selection / Evaluation

Feature selection or evaluation is very crucial step in developing better classifiers. So, we
studied five feature selection or evaluation algorithms, namely gainratio (Table 7a), chi-
square statistic (Table 7b), information gain (Table 7¢), relief (Table 7d) and SVM (Table 7e)
on Hamner lung tumor dataset and MDACC breast cancer dataset by applying SMO,
LibSVM, Multi Layer Perceptron (MLP), NB, Random Forest (RF) and J48 classification
algorithms with 10-f CV with 10 iterations to find the best algorithm.
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Table 7: The five feature selection algorithms classification performance with six different
classification algorithms. (a) Gain ratio (b) Chi-Square statistic (c) Information gain (d)
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relief-F and (e€) SVM feature selection algorithms. Gain ratio algorithm performs better and
consistent with all classification algorithms.
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The feature selection algorithms also run with 10-f CV with 10 iterations. The
performance of the internal CV error estimation was based on the percentage of accuracy.
The graphs (Table 7 a, b, ¢, d, €) shown above from grain ratio performs better and consistent
with all the classification algorithms we studied. Also, an information gain algorithm
performs similar to gain ratio to some extent because of the similarity in their algorithms.
From the above analysis on the Hamner dataset and also from breast cancer dataset, we
decided to choose gain ratio algorithm as our choice of feature selection algorithm for further

analysis in predicting classifiers.

After, deciding gain ratio as our feature selection algorithm, we implemented this
feature selection algorithm within the cross validation of the classifier, also called as

stratified cross validation.
Classification / Error estimation

Initially, we performed several approaches and workflow designs to develop classifier
models on the Hamner lung tumor dataset to overcome batch effect and other over-fitting
bias. I will present those initial approaches and its brief results on the Hamner dataset before

going to our final generic work flow for all the six datasets.

05+06 approach
In the first approach, we studied three classes Lung Tumor, Non-Lung Tumor and
Control (LT+NLT_Ctr) by combing year 2005 and 2006 (05+06) lung tumor data of Hamner

with total 70 samples. In this three class prediction, the better performance came from
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multilayer perceptron (MLP) with around 75 percentage of accuracy (Tables 8, 9). But the
MLP algorithm is computationally expensive; it takes days, to even small matrix like Hamner

dataset. It is not recommendable to do with big datasets like 200 — 300 samples.

05+06 (LT+NLT+Ctr)
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75 —
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Table 8: Classification performance of three class (LT, NLT and Ctr) prediction using
Hamner lung tumor dataset with 05+06 approach.

05+06 (LT+NLT)
105
100 /4—-—-—-——\A
95 ¥ . .
90 ,
> 85 r""‘""—'_‘ &
3 80 =
3 75
2 70 e #
s 65
® 60
o8 e - -
50
as
40
5 10 15 : 20 25 35
—s—LibSVM 958 100 100 95.8 95.8 95.8
—@—SMO 56.2 58.3 58.3 56.2 56.2 56.2
o J48 83.3 83.3 83.3 70.8 70.8 70.8
! e AL P 85.4 87.5 87.5 87.5 87.5 87.5

Table 9: Classification performance of only two class (LT and NLT+Ctr) prediction using
Hamner dataset with 05+06 approach.
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05+06 (Compound based)
70
60
50
40
30

% of accuracy

20
10

LbSVM sMo MLP 148
——10 32.8 31.4 | 62.8 64.2
—m—15 32.8 31.4 i 62.8 | 64.2

Table 10: Classification performance of chemical compound based (multi class) prediction
using Hamner dataset with 05+06 approach.

Later,we studied the same using only two classes (LT and NLT), here we combined
NLT and control samples and treated both of them as NLT class. In this case, the
classification performance drastically increased with LibSVM with around 90 % of accuracy.
This indicates that LibSVM or other SVMs perform better with two class dataset than three

class or multi class datasets.

We also studied, the prediction of chemical compounds exposed to mice to study lung
carcinogenicity using the Hamner dataset. There are totall6 chemical compounds studied,
among these, 7 lung carcinogenic, 6 non-carcinogenic chemicals and 3 control chemicals.
Also the 70 samples are highly imbalanced between 2005 and 2006; 2005 has only total 18
samples (6-Ctr, 6-NLT and 6-LT) and 2006 has 52 samples in total (16-Ctr, 16-NLT and 20-
LT). The above results (Table 10 ) shows very poor classification performance based on the

chemical studied due to small number of samples and highly imbalanced classes. Because of
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this poor performance, MAQC excluded the multiclass prediction from the studies and
confined to only fwo class prediction for each endpoint.

Nested cross-validation with (05+06) and (06 -?05) approaches

In the next appraoch, we implimented nested crossvalidation to avoid over-fitting bias with
normal crossvalidation only on the test dataset samples using GEMS (Statnikov et al. 2005)
tool. Nested crossvalidation (Figure 24) is embeding an another layer of crossvalidation
within the training dataset of external crossvalidation for parameter tuning. There will two
cross validations in this, the external cross validation for error estimation of the classifier and

the internal cross validation for parameter tuning within the traning set of external CV.

Usetuned
' paramsters

- Usetuned
“parameters

- Usetuned
. parameters

Figure 24: The schematic depiction of nested crossvalidation, with inner crossvalidation
within the outer crossvalidation (Image courtesy from MCRestimate package in Bioconductor)
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In the GEMS, we have the chance to use only several variants of SVM algorithms but

several feature selection methods. It automatically builds the models and selects the best

model by parameter (C and y) tuning. We also tested our feature selection, gainratio method

with this approach, performs better than the inbuilt features. The results are shown in the

table (Table 11) below.

Classifiers Cross- Type of MC- Feature Complexity | Best Model
validation SVM selection Characteristics
design Classification

(RBF with grid
search)

Classifier 1 10-fCV OVR, OVO KW, S2N 96011 69.8% accuracy
(outer) OVR, models OVR
9-fCV S2N OVO, C=10,y=0.1s
(inner) BW 30 genes by Anova

KW)

Classifier 2 10-fCV DAGSVM, KW, S2N 192011 70.5% accuracy
(outer) A A OVR, models wWW
9-fCV S2N OVO, C=10, y=0.01
(inner) BW 30 genes by Anova

(KW)

Classifier 3 | 10-fCV CS KW, S2N 144011 71.3% accuracy
(outer) OVR, models CsS
9'—f cv ;%;/\I OVvO, C=1,y=0.1
(inner) 30 genes by Anova

W)

Classifier4 | LOOCV OVR, CS KW, S2N 739271 67% accuracy
(outer) OVR, models OVR
10-fCV S2N OVO, C=10, y=0.01
(inner) BW

30 genes by Anova
KW)

Classifier 5 | 10-f{CV OVO, OVR, Gain Ratio 192011 72.8% accuracy
(outer) DAGSVM, CS from WEKA | models ovo
9-fCV C=10. y=0.1
(inner)

Table 11: The classification performance and the best classifiers using nested cross validation
in GEMS. We approached 05+06 combined data for binary class prediction.
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We also studied using 06 = 05 approach, in this, we used 2006 dataset to train and

test with 2005 dataset. This results are shown below in the table (Table12).

Classifiers Cross- Type of MC- Feature Complexity Best Model
validation SVM selection Chracteristics
design Classification

(RBF with
grid search)

Classifier 1 10-fCV DAGSVM, KW, S2N 192011 74.1% accuracy
(outer) WW OVR, models WW
9.-f CcvV S2N OVO, C=10, y=0.01
(inner) BW 30 genes by Anova

(KW)

Classifier 2 10-fCV CS KW, S2N 144011 86.5% accuracy
(outer) OVR, models cs
9‘-f cv S2N OVO, C=1,y=0.1
(inner) BW 30 genes by Anova

(KW)

Classifier 3 10-fCV OVO, OVR, Gain Ratio 192011 89.7% accuracy
(outer) DAGSVM, CS | from WEKA models ovVOo
9-fCV C=10.y=0.1
(inner)

Table 12: The classification performance and the best classifiers using nested cross validation
in GEMS. We used 06 =>05 approach for binary class prediction (LT, NLT+Ctr).

From the above initial studies we observed that the 06 =05 approach performed

better over combined (05+06) dataset and also binary class prediction gives better accuracy

than the multi class prediction either three class (NT, NLT and Ctr) or chemical compound

prediction. But nested cross validation using only SVM algorithms hinders our study using

other types of algorithms. To avoid this, we used stratified cross validation by the

recommendation of MAQC.

But after MAQC 7™ face-to-face meeting in May 2007, analysis groups and RBWG

(statisticians) recommended to use a generic work flow for all the datasets without much

variation in the data analysis plan. They recommended in this meeting to submit a specific
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single data analysis plan (DAP) (Appendix D) from each analysis group to the RBWG
approval. This is because; the main objective of this project is to standardize a better work
flow for predicting clinical outcomes and its reproducibility consistently with future datasets.
So, the statisticians recommended only one data analysis plan from one group irrespective of
dataset studying. This makes the work flow independent of the dataset being studied and has

a chance to study the parameters affecting the classification performance.

Generic DAP from USM Group

We proposed our single generic data analysis plan (DAP) (Appendix D) for all the six
datasets for biostatistics (RBWG) group approval. The main features of our data analysis
plan are, (i) it includes fold change combined p-value as dimensionality reduction and gain
ratio as feature selection algorithm. (ii) batch effect correction on the two datasets (iii)
Feature selection algorithm is implemented inside the cross validation (called stratified cross
validation). (iv) We proposed to use SMO (linear), LibSVM (linear and RBF kernels), NB,
and Voted Perceptron classification algorithms on all the endpoints to generate candidate
("best" models) models. (v) MCC as the primary performance metric used to select candidate

models due to highly imbalanced class datasets.

The schematic diagram of our final work flow is shown in the figure (Figure 25).



Feature Evaluation &
Selection (10f-CV}

Gain Ratye

10,15,20,30,40,60,80,100
‘genes

Train data -Jl l
CV for model selection
10times Test data
Performance Computation v l
ACC Cy ]
Best Model ("‘"""‘"“" I ceurac é
i ACC l

Classification

LibSyhy

SKIO

Haeve Baves l

votedPrrceptron

&l

Figure 25: The schematic diagram of the data analysis plan we studied

Results for final candidate classifiers for each end point

We selected the candidate or best model for each end point based on the MCC

performance from the models generated by 5-fold CV with 10 iterations and with 5

classification algorithms, so totally 250 models for each subset of gene lists generated by
gain ratio algorithm. Also reported the popular performance metrics accuracy, sensitivity,
specificity, AUC (area under ROC curve), RMSE along with MCC values for each model

generated. Standard deviations are calculated for each performance metric from the models

89

generated by the 10 iterations. We reported only the top five models for each endpoint along

with the standard deviation values (Table 13-25). The first one among those five is our

candidate model (best model) for that end point.
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Among this 13 candidate models for 13 end points proposed by USM group, our
candidate models chosen best for five end points based on the best MCC performance and
better analysis plan accepting most of the RBWG recommendations. Here, I am providing
the exact response sent by Campbell Gregory (FDA) with ratings and comments given by the

RBWG.
Recommendations
"The 13 groups that reported all 13 endpoints and submitted a DAP are:
CAS, CBC, Cornell, FBK, GeneGo, GHI, GSK, NCTR, SAl Tsinghua, UIUC, USM, ZJU

It is surprising SAS and NWU did not submit a DAP — presumably they did their analysis
correctly, but it is unfair to assume so without reading the plan. Of these 13 groups, the
following 7 appear to have the analysis done right, with the caveat that the more models the
group chose from, the higher the scores are likely to be, representing greater overfitting. The
two groups for which this is the largest problem are likely to be NCTR for the sheer number
of models, and SAI with its very high standard deviations for model quality measures. CBC

and Cornell also have an uncomfortably large number of models for my liking.
CBC, Cornell, GHI, NC1R, SAI, USM, and ZJU

Three additional groups (GSK, Tsinghua, and UIUC) could be included in this list if their
write-ups provided better clarity that they were not somehow snooping/overfitting the data.

SAS and NWU could also be considered if they submitted a write-up.
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Based on the small chance of over-fitting, if I had to bet money on which models would hold
up out of sample and be of high quality, I would select from only the following groups (and

still look carefully under the hood):

GHI, USM, and ZJU

Taking these three groups and ranking models by MCC, and choosing the top model by MCC
gives the following selections I would make for the 13 endpoints, pending verification of the

methodologies of the top 3 groups.

A:7ZJU
B: GHI
C.ZJU
D: USM
E: USM
F: USM
G:ZJU
H: GHI
1. ZJU
J: ZJU
K: USM
L: USM
M: GHI

For all three groups, batch effect correction was not really addressed. Hence we need to think
carefully about potentially rerunning these methodologies on batch effect corrected data for

those studies where the validation set comes from a different array type or there is an

expectation of large batch differences between training and validation sets."

From comments and observations especially on the batch effect made by RBWG

came from our mistake in filling the batch effect column in the analysis plan. I mentioned
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about the batch effect correction method we applied in the summary of DAP, was not

observed by the reviewers. Then we intimated about this mistake and corrected.
Discussion

This dissertation is about how to effectively apply data mining technologies to
biological and clinical expression data. Some problems arising from gene expression
profilings like batch effect are studied in depth using data mining techniques of feature
generation, selection and integration with classification algorithms. Also this analysis effort
in conjunction with MAQC consortium helps to facilitate a standard work flow for predicting

better and reproducible classifiers using gene expression data.

Initially, we participated in array outlier identification analysis with other members to
identify a consensus array outliers. The purpose of this QC assessment exercise is to reach
consensus on a subset of arrays that should be considered with reasonable confidence as
outliers due to array quality concerns and also clear outliers would impact the performance of
classifiers significantly. Our outlier identification using dChip and box-plot distribution

performed well based on the meta-analysis.

Our observations in the preprocessing stages indicated that the strong batch noise
introduced at the level of array making could affect the performance of classifiers
significantly. To overcome this difficulty we applied two batch adjusting algorithms in this
study. In our compare and contrast studies of these batch adjustment algorithms, (Combat
and Batchmatch) we observed that both performed similarly in correcting the batch but

Batchmatch has several advantages over Combat in terms of class label information leakage
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and batch reference. These features could help more when we are analyzing the performance

of classifiers with external validation or blind datasets.

In order to identify genes associated with disease phenotype classification or patient
survival prediction from gene expression data, we compared and analyzed the performance
of five feature selection algorithms. Our observations from these studies, indicated that
gainratio algorithm performs better and consistent over the other algorithms studied. This
makes to take gainratio as our feature evaluation algorithm for further classification studies

with other datasets.

When it comes to performance metric to choose the best classifiers, MAQC
recommends of using Matthews' correlation coefficient (MCC) as primary performance
metric especially when we are dealing with highly imbalanced class datasets. Because of,
MCC takes all four elements of the two class confusion matrix into consideration avoids you
the bias. our observation and studies strengthen the above recommendation that, MCC gives
unbiased performance results over accuracy in some endpoints (K and M), where class

imbalance is more.

In the aspect of classification algorithms, no single algorithm is absolutely superior to
all others, though SVM achieved fairly good results in most endpoints. Naive bayes
algorithm also performed well in some endpoints. In overall, from the total 60 models we
reported (5 top models for 13 end points) SVM and SMO (a variant of SVM) dominates

mostly, also the linear kernel performed well over RBF in our binary classifications.
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Future work

Currently, our proposed generic data analysis work flow for this classification
purpose would help along with other groups analysis to come to a conclusion about the
standardize methodology. But the candidate models for all the endpoints generated from
these training datasets from all groups should validate with the external blind datasets to
know how well they perform with unknown data. Presently, the consortium is working hard

on providing the blind datasets to analysis groups, most probably by the end of this month.

As part of this study and discussions with in the consortium, several groups proposed
the manuscript ideas to publish the work done by the analysis groups by meta analysis.
Among one of them, Dr. Deng proposed meta-analysis of gene features used in the candidate
models across the groups in all endpoints. This study facilitates finding the consensus gene
lists using the genes the groups used for their candidate model for a particular end point.
After finding the consensus gene lists, ranking them based on the number of occurrences in
the candidate models. Generating the new classifiers and comparing the performance
validation with already known candidate models using the top consensus gene list could be
an interesting work. We are currently working on these analysis after getting the summarized

results from other groups.

We are also working the effect of batch on the classification and how could we

quantify the batch noise along with other groups.
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APPENDIX - D: USM Data Analysis Plan (DAP)
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Primary Contact - Dr. Youping Deng (youping.deng@usm.edu, 601-266-6678)

University of Southern Mississippi
Venkata Thodima (venkata.thodima@usm.edu, 601-266-4353)

USM Wlll analyze six datasets w1th four dlfferent machine leammg algonthms (L1bSVM SMO Naleve Bayes and

Voted perceptron), and select one best model for each dataset as final model. We omitted the outliers from analysis

specified in each dataset by the QC working groups. Batch effect will be treated in the Hamner and Iconix datasets

based on parametric and nonparametric Empirical Bayes frameworks available in one of R function (Combat). We
will use fold level and P-value (0.05) filter for dimensionality reduction and further ranking of features will be based

on Gainratio feature selection algorithm.

___ Part C:Brief Data Description -

ee Appendix A for more details

Dataset Type Toxicogenomic Clinical
Dataset Source Hamner Iconix-EPA NIEHS MDACC UAMS U Cologne
Disease or Lung Cancer Liver Rat Liver Breast Multiple Neuroblastoma
Toxicity (s) Toxicity Toxicity Cancer Myeloma
Primary Predict NTP Predict NTP Liver Treatment Subtype & Subtypes and
Prediction long term long term necrosis | Outcome & Treatment three year: a)
Endpoint (s) assay lung hepatotoxicity Prognosis | Outcome: a) even even free
carcinogenicity | from 5to 7 free survival survival (EFS)
from 3 month | day exposure (EFS); b) overall b) overall
exposure survival (OS); survival (OS);
Microarray Affy 430.2 Codelink- Affy- Affy Affy Agilent-NB-
Platform (Mouse) RUI1 (Rat) RG230_2 | HG_U133A | HG U133 plus 2 | 10707 (Human
(Rat) (human) (Human) Custom)
Channel(s) 1 1 1 1 1 2 (Dye Swap)
Training 70 216 214 130 340 246
Samples after
QC
Sample QC ByQC By QC By QC By QC By QC subgroup By QC
subgroup (1) subgroup subgroup | subgroup subgroup
Batch effect Strong (2), Strong (3}, Slight Slight and Slight and Slight and
Batch effect Batch effect and equivocal equivocal equivocal
corrected corrected equivocal
@)
Other See Appendix A
Endpoint (s)

We will think about the other endpoints dftCl‘ some more uldrity about UAMS dlld Colog,ne

datascts, see

Raw data

None

Background

preprocessing substraction
(fg-mean BG)
Transforms Baseline transformation and Log,
Summarization MASS MASS MASS MASS NA
(for probe-
level data)
Normalization Median scale Agilent Mean
1000 (provided scale
by MAQC)

normalization
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.. However, npte that the fiy al modelwillhave to be |  one algo he data analysis team’s choosing.
Chronology Chronology of dataset analysis: In the anticipation that there may be some learning and reduction
and parameter of the modeling process across each dataset considered, an indication of the chronology of
space analysis may be appropriate. For example, if after the first two datasets considered it is
reduction determined that one class of models is either too computationally expensive or appears to be

leading to poor results, the class of models may be dropped for subsequent datascts. Alternatively,

model parameter spaces (e.g., number of genes) may be reduced.
Classification LibSVM SMO 6 Naieve Bayes 7 Voted perceptron §
Method 5
Classification We eliminated KNN, J48 and Bagging algorithms because of poor performance in our exploratory
Method(s) investigation.

Eliminated

there less possibilities)

,,,,,,,, it ey a lated genes hiways :
ed on low signals and flags (P/M absolute calls)

A Priori
Feature
Reduction
Filtering
A Priori Further reduction in number of genes based on the fold change (2) but in some end points less than
Feature Pool 2 and P-value (<0.05)
Selection
Features None
removed based
on biological
considerations
Features
selection
through cross
validation

Features
derived from
clinical data

Features NO
derived from
disease-
associated
genes, proteins
and/or
pathways

Features NO
derived from
other in vitro
or in vivo data
sources

Training set
samples
Internal test set

set-aside
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samples

OR by Cross 5fCV 5fCV 5fCV 5fCV 5fCV 5fCV
validation

Level of Stratified CV with 10 iterations
Cross-
validation

Single MCC, Accuracy, sensitivity, specificity, RMSE and AUC are reported with

performance std.dev.

tuning criteria But model selection based on MCC

Or, Dataset TBD TBD TBD TBD TBD TBD
dependent

perfi rmance

Part E.6: Modeling Procedure and Model Tuning by Method

FOUR different methods will be applied to each dataset to enable svstematlc comparison:

Classification LibSVM (linear and SMO (linear) Naieve Bayes Voted Perceptron
procedure flow RBF)
and logic

Method Stratified 5f CV with 10 iterations, c=10 and gamma=0.01
Parameter(s)
Number of
Features

Level of cross-
validation

Process

Number
samples from
original data
source held out 40 201 204 About 100 214 200 to 300
for blinded,
confirmatory
test

Prospective
dataset number
1

Prospective
dataset number
2

Endpoints to LT and NLT Liver Overall Tr. TBD TBD

be predicted cancer and | necrosis | response

non-liver score and ER
cancer

Procedure Using the best model from the corresponding dataset

Batch effect Yes No No No No No
treatment

Prediction TBD TBD TBD TBD TBD TBD
performance
criteria
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Footnotes:

1 - Used array data distributed after QC by MAQC QC subgroups, whereby suspect arrays were

removed by a consensus method.

2 - Exploratory analysis revealed a highly relevant batch effect that dictated setting aside a portion of

the training samples as a testing set. Specifically, training samples were divided between arrays from a

2005 batch and a 2006, with 2006 arrays used for training, and 2005 arrays used for external testing.

3 — The data exhibited a strong time temporal dependency, with distinct separation into three batches

4 - Exploratory analyses indicated that the batch effect was too small to affect modeling and

predictions (results not shown)

5 - LibSVM: Library of SVM developed by Chung Chang and Jen Lin, both Linear and RBF kernel

type with ¢=10 and gamma = 0.01

6 - SVM-linear: This method involves the construction of binary SVM classifiers for all pairs of
classes; ,

7 - Class for a Naive Bayes classifier using estimator classes. Numeric estimator precision values are
chosen based on analysis of the training data.

8 - A variant of perceptron algorithm. Implementation of the voted perceptron algorithm by Freund and
Schapire. Globally replaces all missing values, and transforms nominal attributes into binary ones.

11 - Evaluates the worth of an attribute by measuring the gain ratio with respect to the class. Ranks
attributes by their individual evaluations.
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APPENDIX - E: Summary of the candidate models for 13 endpoints and the gene lists

used for each model

End point A:
. L. Coefficients
Steps Description (If applicable)
Serial # 1
Model ID USM Hamner A 1
Normalization MASS

Pre-Filtering of genes

FoldChange+P-value

Feature Selection Step 1

Gain Ratio with Cross validation approach

Number of Features

20 in final model

Classifier

LibSVM-RBF

Software Packages used

Weka, R

Gene list and coefficients
in model

1426280 _at
1419476 _at
1450251 _a_at
1418668 _at
1437580_s_at
1423410 _at
1435647 _at
1420683 _at
1456823 _at
1440314 _at
1449555 _a_at
1455048 _at
1420723 _at
1422531_at
1425767 _a_at
1452804 _at
1455760 _at
1460012_at
1435323 _a_at
1420377 _at
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End point B:
e Coefficients
D
Steps escription (If applicable)
Serial # 6
Model ID USM Iconix B 1
Normalization MASS5

Pre-Filtering of genes

FoldChange+P-value

Feature Selection Step 1

Gain Ratio with Cross validation approach

Number of Features

30 in final model

Classifier

LibSVM-LIN

Software Packages used

Weka, R

Gene list and coefficients
in model

NM 013200_Probel
NM 019157 Probel
Al715955_Probel
BF387347 Probel
X92495 Probel
AW914013 Probel
AF031879 Probel
AW914913_Probel
U37058 Probel
BE108246_Probel
M26199 Probel
AWS525290 Probel
AW524548 Probel
AW535381_Probel
X61925 Probel
AW533257_Probel
BF286131 Probel
AW529672 Probel
AWS525189 Probel
BE109912_Probel
BF404878_Probel
BF401593_Probel
D86345_Probel
BF405177 Probel
D12498 Probel
BE118122_Probel
AWS531250_Probel
AW525089_Probel
AF024622_Probel
AI113076 Probel
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End point C:
.. Coefficients
D
Steps escription (If applicable)
Serial # 11
Model ID USM NIEHS C 1
Normalization MASS

Pre-Filtering of genes

FoldChange+P-value

Feature Selection Step 1

Gain Ratio with Cross validation approach

Number of Features 20 in final model

Classifier LibSVM-RBF

Software Packages used | Weka, R

Gene list and coefficients 1370902 at

in model 1370832_at
1371785 _at
1371400 _at
1371412_a_at
1370355_at
1370080 at

1370150 a at
1370725 _a at
1370583 _s_at
1370670 _at
1374610 _at
1374591 _at
1375170 _at
1374625 _at
1374765 _at
1373778 _at
1372510 _at
1372729 at
1374529 at
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End point D:
. . Coefficients
Steps Description (If applicable)
Serial # 16
Model ID USM BR D 1
Normalization MASS

Pre-Filtering of genes

FoldChange+P-value

Feature Selection Step 1

Gain Ratio with Cross validation approach

Number of Features 50 in final model

Classifier NB

Software Packages used | Weka, R

Gene list and 208712 at 212960 at

coefficients in model 218236_s_at 201030 _x_at
204623 at 218211 s at
208711 s at 203108 at
201508 at 215726 s at
205225 at 213032 at
216092 s at 209290 s at
215867 x_at 213564 x at
204667 at 217762 s_at
212190 at 209773 s at
218807 at 203476 _at
212956 at 204822 at
212444 at 209459 s at
208103 s at 211864 s at
214164 x_at 207843 x at
213134 x_at 218806 s _at
209289 at 205548 s at
204825 at 217838 s at
210735 s _at 210652 s at
202088 at 212195_at
205066 s _at 208682 s at
205347 s at
203963 at
202870 s _at
203789 s at
209366_x_at
209173 at
209604 s at

202089 _s_at
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End point E:
- Coefficients
Steps Description (If applicable) |
Serial # 21
Model ID USM BR E 1
Normalization MASS

Pre-Filtering of genes

FoldChange+P-value

Feature Selection Step 1

Gain Ratio with Cross validation approach

Number of Features

30 in final model

Classifier

SMO

Software Packages used

Weka, R

Gene list and coefficients
in model

205225 at
209602 s at
203963 _at
214164 x at
215867 x_at
217838 s at
212960 at
214440 at
204623 _at
209173 _at
209696 _at
218195 at
212956 _at
209604 _s_at
214404 x at
205066 s at
221765 at
202089 s at
212771 _at
210735_s at
221016 _s at
203749 s_at
212148 at
212190 at
218807 _at
212209 _at
212492 s at
201508 _at
220192 x at
209289 at
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End point F:
. L. Coefficients
Steps Description (If applicable)
Serial # 26
Model ID USM MM F 1
Normalization RMA

Pre-Filtering of genes

FoldChange + P-value

Feature Selection Step 1

Gain Ratio with Cross validation approach

Number of Features

40 in final model

Classifier NB

Software Packages used | Weka, R

Gene list and coefficients | 736558 at 215982 s at

in model 1555878 _at 218701 at
1554899 s at 218984 _at
209945 s at 204204 at
225917 at 228955 at
223625 at 224523 s at
202416 _at 202107 s at
213194 at 212022 s at
201602_s_at 211973 _at
211908 x at 212021 s at
205529 s at 211944 at
216956 s at 211963 s at
204159 _at 211979_at
211641 x_at 211990 _at
242104 _at
227751 at
218859 s at
218187 s at
211650 x at
211576 s at
209098 _s_at
1569454 _a_at
201614 s at
228324 at
213320 at

201558 at
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End point G:
. e Coefficients
Steps Description (If applicable)
Serial # 31
Model ID USM MM G 1
Normalization RMA

Pre-Filtering of genes

FoldChange+P-value

Feature Selection Step 1

Gain Ratio with Cross validation approach

Number of Features

24 in final model

Classifier

LibSVM-LIN

Software Packages used

Weka, R

Gene list and coefficients
in model

217934 x_at
223506_at
209206 at
210205_at
210178 x_at
210244 _at
210220 _at
210231 _x_at
210057 _at
210052 s at
200602_at
204379 s_at
209053 _s _at
209374 _s_at
211645 x at
214768 x at
214777 at
215176 x at
216207 x at
216401 _x_at
216576_x_at
217378 x at
222777 s_at
234764 x_at
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End point H:
. Coefficients
Steps Description (f applicable)
Serial # 36
Model ID USM MM H 1
Normalization RMA

Pre-Filtering of genes

FoldChange+P-value

Feature Selection Step 1

Gain Ratio with Cross validation approach

Number of Features

21 in final model

Classifier

LibSVM-RBF

Software Packages used

Weka, R

Gene list and coefficients
in model

201909 at
204409 s at
204410 at
205000 at
205001 _s_at
206624 at
206700 s at
209031 at
214131 at
214218 s at
221728 x at
223645 s at
223646 s at
224588 at
224589 at
224590 at
227671 at
228492 at
230760 at
232618 at
236694 at
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End point I:
. Coefficients
Steps Description (If applicable)
Serial # 41
Model ID USM MM 11
Normalization RMA

Pre-Filtering of genes

FoldChanget+P-value

Feature Selection Step 1

Gain Ratio with Cross validation approach

Number of Features 40 in final model

Classifier LibSVM-LIN

Software Packages used | Weka, R

Gene list and coefficients 211302 s at 212063 at

in model 211026 s at 212076 _at
211084 x at 212221 x at
211919 s at 212223 _at
211962 s at 212209 at
211473 s at 212220 at
211505_s_at 209318 x_at
210568 s _at 209279 s at
210756 s _at 209309 _at
210479 s at 209498 at
210538_s_at 209512_at
210807 _s_at 209427 _at
210986 s at 209456 _s_at
210785 s _at 208657 s at
210788 s at 208890 s at
212338 at 208373 s _at
212233 at
212334 _at
212415 _at
212568 s at
212392 s _at
212409 s _at
212085_at

212090 at
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End point J:
Steps Description (I(t;::)f;il::;lll)tli)
Serial # 46
Model ID USM NB J 1
Normalization MASS
Pre-Filtering of genes FoldChange+P-value
Feature Selection Step 1 | Gain Ratio with Cross validation approach
Number of Features 20 in final model
Classifier LibSVM-LIN

Software Packages used | Weka, R

Gene list and coefficients A 23 P74349

in model A_23_P401
A_23_P44155
A_23_P145529
A 32 P159234
A_32_P151800
A_32_P143245
A 32 P44831
A_32_P77989
A 23 P335329
A 24 P96780
A 24 P57047
A 23 P10385
A 23 P51085
A 23 P17575
A_23 P163306
Hs23960.1
Hs143769.1
A_23 P102331
A_23_P386
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End point K:
o Coefficients
Steps Description (f applicable)
Serial # 51
Model ID USM NB K 1
Normalization MASS

Pre-Filtering of genes FoldChange+P-value

Feature Selection Step 1 | Gain Ratio with Cross validation approach

Number of Features 30 in final model

Classifier NB

Software Packages used | Weka, R

Gene list and coefficients A 23 P149668

in model A_32_P4981

A 23 P501831
A 32 P47538
A 32_P190303
A 32 P4985
A_32 P134756
A 23 P48669
A 23 P396765
A 24 _P88696
A 24 P297539
A 23 P133123
Hs75426.3

A 23 P323751
A 23 P2543

A 23 PI55765
Hs87507.1

A 23 P125680
A 23 P96325
A 23 P254733
A 23 P138507
A 23 P100711
A 24 P98021
A_32_P171043
A 23 P65757
A 24 P902509
A 23 P23303
A 23 P157027
A 23 P115872
A 32 P30874
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End point L:
i Coefficients
Steps Description (f applicable)
Serial # 63
Model ID USM NB L 1
Normalization MASS
Pre-Filtering of genes FoldChange+P-value
Feature Selection Step 1 | Gain Ratio with Cross validation approach
Number of Features 20 in final model
Classifier SMO

Software Packages used | Weka, R

Gene list and coefficients A 23 P259314

in model A_24 P500584
A_23 P137238
Hs456200.1

A 23 P309224
A_23_P429950
A_32_P212471
A_23_P315345
A 23 P125519
A_23 P162766
A_24 P186030
A_32_P183001
A 23 P156970
A_24_P134653
A_24 P237389
A_23 P146997
A_23_P217409
A_23_P148629
A_23_P93009
A 23 P136870
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End point M:
. L. Coefficients
Steps Description (f applicable)
Serial # 68
Model ID USM NB M 1
Normalization MASS5
Pre-Filtering of genes FoldChange+P-value
Feature Selection Step 1 | Gain Ratio with Cross validation approach
Number of Features 20 in final model
Classifier NB

Software Packages used | Weka, R

Gene list and coefficients Hs32976.1

in model A 32 P83570
A_23 P251151
Hs301404.34
A_23_P35277
A_24 P37540
A_23 P316012
A 23 P151895
Hs284281.1

A 24 P184931
A_24_P260443
A 32 P97169
A_23_P214897
A 24 P63290
A 24 P389251
A_32_P196837
A 23 P45536
A 24 P372833
A_23 P132718
A 23 P257649
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