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ABSTRACT 

Robert Parker (1972) demonstrated the effectiveness of Fourier Transforms (FT) 

to compute gravitational potential anomalies caused by uneven, non-uniform layers of 

material.  This important calculation relates the gravitational potential anomaly to sea-

floor topography.  As outlined by Sandwell and Smith (1997), a six-step procedure, 

utilizing the FT, then demonstrated how satellite altimetry measurements of marine geoid 

height are inverted into seafloor topography.  However, FTs are not local in space and 

produce Gibb’s phenomenon around discontinuities.  Seafloor features exhibit spatial 

locality and features such as seamounts and ridges often have sharp inclines.  Initial tests 

compared the windowed-FT to wavelets in reconstruction of the step and saw-tooth 

functions and resulted in lower Root Mean Square (RMS) error with fewer coefficients.  

This investigation, thus, examined the feasibility of utilizing sparser base functions such 

as the Mexican Hat Wavelet, which is local in space, to first calculate the gravitational 

potential, and then relate it to sea-floor topography, with the aim of improving satellite 

derived bathymetry maps. 

 



 

iii 

ACKNOWLEDGMENTS 

I would like to acknowledge Dr. Paul Elmore of the Naval Research Laboratory, 

Geo-Sciences Division for allowing me to do my dissertation as part of his research into 

sparsity and machine learning, Dr. Juliette Ioup of the University of New Orleans for help 

on wavelet transforms, and the rest of my committee, Dr. Stephan Howden (Committee 

Chair), Dr. David Wells, both of the University of Southern Mississippi, as well as Dr. 

Ian Church of the University of New Brunswick for their patient support and keen 

insights. 

 



 

iv 

DEDICATION 

I would like to sincerely thank the leadership of the Naval Research Laboratory 

for allowing me the opportunity and time to continue my studies.  Without their support, 

this work would not be possible.  I would also like to thank Dr. Brenda Little, Senior 

Scientist with the Naval Research Laboratory, Oceanography Division for her 

mentorship, guidance on technical writing and friendship.  Finally, I give thanks to my 

family who encouraged me throughout the many long days and evenings that went 

towards my degree.  I am forever grateful to them. 

 



 

v 

TABLE OF CONTENTS 

ABSTRACT ........................................................................................................................ ii 

ACKNOWLEDGMENTS ................................................................................................. iii 

DEDICATION ................................................................................................................... iv 

LIST OF TABLES ............................................................................................................. ix 

LIST OF ILLUSTRATIONS .............................................................................................. x 

LIST OF ABBREVIATIONS .......................................................................................... xvi 

CHAPTER I – INTRODUCTION ...................................................................................... 1 

1.1 Overview, Background and Motivation .................................................................... 1 

1.2 New Approach .......................................................................................................... 3 

1.3 Hypotheses ................................................................................................................ 7 

1.4 Proposed Test Case ................................................................................................... 7 

1.5 Importance of Work .................................................................................................. 8 

1.6 Proposed Approach ................................................................................................... 9 

1.7 Constraints ................................................................................................................ 9 

CHAPTER II - BACKGROUND ..................................................................................... 11 

2.1 Monopole ................................................................................................................ 12 

2.2 Vertical Line ........................................................................................................... 13 

2.3 Calculation of Gravitational Potential Anomaly .................................................... 14 

2.3.2 Intermediate Calculations ................................................................................ 20 



 

vi 

2.3.3 Obtaining relation between 𝓕∆𝐠 and 𝓕∆𝐡 ...................................................... 21 

2.4 Gibbs Phenomenon ................................................................................................. 23 

CHAPTER III - METHODS ............................................................................................. 28 

3.1 Fourier Transforms ................................................................................................. 28 

3.2 Wavelet Transforms ................................................................................................ 29 

3.3 Power Spectral Density ........................................................................................... 31 

3.4 Histogram ................................................................................................................ 32 

3.5 Root Mean Square Error ......................................................................................... 32 

CHAPTER IV – RESULTS .............................................................................................. 34 

4.1 Initial RMS Error Test ............................................................................................ 34 

4.2 Noise ....................................................................................................................... 39 

4.3 Feasibility of an Analytical Solution of the CWT of the Gravitational Potential ... 43 

4.4 Application of the FT(MHW) to the Gravitational Potential.................................. 46 

4.4.1 Case 1:  r=0 ..................................................................................................... 51 

4.4.2 Case 2:  r = k ................................................................................................... 52 

4.4.3 Case 3:  r sufficiently larger than k ................................................................. 52 

4.4.4 Use the FT(MHW) to show end-to-end Prediction for Case r=0: ................... 54 

4.4.5 General Case .................................................................................................... 55 

4.4.5.1 Use the FT(MHW) to show end-to-end Prediction for the General Case: 57 

4.5 Simple numerical examples:  The potentials for the monopole and cone. ............. 57 



 

vii 

4.6 Numerical Solution to the Morlet wavelet transform applied to the Newtonian 

Potential ........................................................................................................................ 60 

4.7 Numerical Solution to the Paul wavelet transform applied to the Newtonian 

Potential ........................................................................................................................ 62 

4.8 Derivation of the Derivative Theorem for the Mexican Hat, Paul and Morlet 

Wavelets ........................................................................................................................ 64 

4.9 Comparison of results between continuous wavelets and the FT ........................... 66 

4.10 Wavelet and FT calculation of potential anomalies .............................................. 78 

4.11 End to End Prediction ........................................................................................... 85 

4.12 CWT (2D) of the Monopole ................................................................................. 88 

4.12.1 Mexican Hat Wavelet .................................................................................... 88 

4.12.2 Morlet Wavelet .............................................................................................. 88 

4.12.3 Paul Wavelet .................................................................................................. 89 

4.13 Downward Continuation ....................................................................................... 90 

4.13.1 Application of Sparser Functions................................................................... 91 

4.14 De-noising with a Weiner Filter ......................................................................... 155 

CHAPTER V – DISCUSSION and C ............................................................................ 163 

5.1 Discussion ............................................................................................................. 163 

5.1.1 Initial Tests:  Simple 1D Functions ............................................................... 163 

5.1.1.1 Analytical vs. Numerical Solutions ........................................................ 168 



 

viii 

5.2 Conclusions ........................................................................................................... 170 

APPENDIX A – List of Symbols.................................................................................... 172 

APPENDIX B Full Steps Between Equations 2.22 and 2.23 ......................................... 174 

APPENDIX C The Proof of Parseval’s Relation for Hankel Transforms ...................... 175 

APPENDIX D Proof of Equation 4.33 ........................................................................... 176 

APPENDIX E Nichols and Yates Proof ......................................................................... 177 

REFERENCES ............................................................................................................... 179 

 

  



 

ix 

LIST OF TABLES 

Table 4.1 Student t-test values of the Root Mean Square Error ....................................... 71 

Table 4.2 Student t-test values of the Root Mean Square Error (2D dataset) ................... 77 

Table 4.3 Student t-test Results ...................................................................................... 119 

Table 4.4 Student t-test Results ...................................................................................... 124 

Table 4.5 Student t-test Results ...................................................................................... 129 

Table 4.6 Student t-test Results ...................................................................................... 134 

Table 4.7 Student t-test Results ...................................................................................... 139 

Table 4.8 Student t-test Results ...................................................................................... 144 

Table 4.9 Student t-test Results ...................................................................................... 149 

Table 4.10 ....................................................................................................................... 154 

 

 

 

 



 

x 

LIST OF ILLUSTRATIONS 

Figure 1.1 The Geometry of Parker’s Paper. ...................................................................... 3 

Figure 1.2 The 2D and 3D MHW ....................................................................................... 5 

Figure 1.3 Area of interest: Southern East Pacific Rise (From Google Earth) ................... 8 

Figure 2.1 Thin walled spherical shell. ............................................................................. 12 

Figure 2.2 Coordinate system adopted after Blakely (1996). ........................................... 14 

Figure 2.3 Geometric coordinate system adopted after Sandwell and Smith (1997). ...... 18 

Figure 2.4 Gibbs Phenomenon of a Step function. ........................................................... 24 

Figure 2.5 Gibbs Error vs. No. of Coefficients. ................................................................ 25 

Figure 2.6 Gibbs Phenomenon of a step function with respect to the FFT, selected 

discrete wavelets and MHW. ............................................................................................ 26 

Figure 2.7 Gibbs Phenomenon of the FFT and db6 wavelet. ........................................... 27 

Figure 4.1 RMSE of the FT, MHW and DB1 wavelets. ................................................... 35 

Figure 4.2 FFT Reconstruction of a Step-Function .......................................................... 36 

Figure 4.3 Reconstruction of a Step Function via the FFT and Continuous and Discrete 

Wavelets. ........................................................................................................................... 37 

Figure 4.4 1D Bathymetric Signal, MHW vs. FFT........................................................... 38 

Figure 4.5 1D Bathymetric Signal, DB Wavelets vs. FFT ............................................... 39 

Figure 4.6 Noise removal of a signal via FFT filtering. ................................................... 40 

Figure 4.7 Noise removal via MHW filtering. .................................................................. 41 

Figure 4.8 Depiction of the DWT to remove and add noise from and to a signal. ........... 42 

Figure 4.9 Noise Removal for a Step Function by the FFT, db1 and MHW .................... 43 

Figure 4.10 Behavior of equation 28 as “r” varies............................................................ 53 



 

xi 

Figure 4.11 Behavior of equation 15 with respect to “r.” ................................................. 54 

Figure 4.12 Comparison of computed RMSEs for the monopole potential. .................... 58 

Figure 4.13 Geometry of a Cone ....................................................................................... 59 

Figure 4.14 Comparison of computed RMSEs for the potential of a cone. ...................... 60 

Figure 4.15 Southern East Pacific Rise Topography ........................................................ 68 

Figure 4.16 1D Signal Reconstruction .............................................................................. 69 

Figure 4.17 Root Mean Square Error of the 1D signal reconstructions............................ 70 

Figure 4.18 Seamount from the SEPR Region. ................................................................ 72 

Figure 4.19 FFT reconstruction of the selected seamount. ............................................... 73 

Figure 4.20 MHW reconstruction of the selected seamount. ............................................ 74 

Figure 4.21 Paul reconstruction of the selected seamount. ............................................... 75 

Figure 4.22 Morlet reconstruction of the selected seamount. ........................................... 76 

Figure 4.23 Root Mean Square Error of the 2D signal reconstructions............................ 77 

Figure 4.24 Two adjacent seamounts in the SEPR region ................................................ 79 

Figure 4.25 FT reconstruction of the seamounts .............................................................. 80 

Figure 4.26 MHW reconstruction of the seamounts. ........................................................ 81 

Figure 4.27 FT[MHW] reconstruction of the seamounts.................................................. 82 

Figure 4.28 Paul reconstruction of the seamounts ............................................................ 83 

Figure 4.29 Morlet reconstruction of the seamounts ........................................................ 84 

Figure 4.30 Area of study within the SEPR ...................................................................... 92 

Figure 4.31 MHW predicted bathymetry. ......................................................................... 94 

Figure 4.32 Morlet predicted bathymetry. ........................................................................ 95 

Figure 4.33 Paul predicted bathymetry. ............................................................................ 96 



 

xii 

Figure 4.34 FFT predicted bathymetry. ............................................................................ 97 

Figure 4.35 Error comparison between tested basis functions ......................................... 98 

Figure 4.36 MHW predicted bathymetry of two side by side seamounts. ........................ 99 

Figure 4.37 Morlet predicted bathymetry of two side by side seamounts. ..................... 100 

Figure 4.38 Paul predicted bathymetry of two side by side seamounts. ......................... 101 

Figure 4.39 FFT predicted bathymetry of two side by side seamounts. ......................... 102 

Figure 4.40 Error comparison between tested basis functions. ...................................... 103 

Figure 4.41 MHW solution to the area of interest with only 5% of the terms................ 104 

Figure 4.42 Morlet solution to the area of interest with only 5% of the terms ............... 105 

Figure 4.43 Paul solution to the area of interest with only 5% of the terms ................... 106 

Figure 4.44 Paul solution to the area of interest with only 5% of the terms ................... 107 

Figure 4.45 Error comparison beween tested basis functions. ........................................ 108 

Figure 4.46 MHW solution of two side by side seamounts with only 5% of the terms . 109 

Figure 4.47 Morlet solution of two side by side seamounts with only 5% of the terms. 110 

Figure 4.48 Paul solution of two side by side seamounts with only 5% of the terms .... 111 

Figure 4.49 FFT solution of two side by side seamounts with only 5% of the terms .... 112 

Figure 4.50 Error comparison between tested basis functions. ...................................... 113 

Figure 4.51 Residual plot with only 50% of terms used for the Paul Transform ........... 115 

Figure 4.52 Residual plot with only 50% of terms used for the Morlet Transform ....... 116 

Figure 4.53 Residual plot with only 50% of terms used for the MHW Transform ........ 117 

Figure 4.54 Residual plot with only 50% of terms used for the FFT ............................. 118 

Figure 4.55 RMSE comparison of tested basis functions. .............................................. 119 

Figure 4.56 Residual plot with only 25% of terms used for the Paul Transform ........... 120 



 

xiii 

Figure 4.57 Residual plot with only 25% of terms used for the Morlet Transform ....... 121 

Figure 4.58 Residual plot with only 25% of terms used for the MHW Transform ........ 122 

Figure 4.59 Residual plot with only 25% of terms used for the FFT ............................. 123 

Figure 4.60 Error comparison between tested basis functions ....................................... 124 

Figure 4.61 Residual plot with only 12% of terms used for the Paul Transform ........... 125 

Figure 4.62 Residual plot with only 12% of terms used for the Morlet Transform ....... 126 

Figure 4.63 Residual plot with only 12% of terms used for the MHW Transform ........ 127 

Figure 4.64 Residual plot with only 12% of terms used for the FFT ............................. 128 

Figure 4.65 Error comparison between tested basis functions ....................................... 129 

Figure 4.66 Residual plot with only 5% of terms used for the Paul Transform ............. 130 

Figure 4.67 Residual plot with only 5% of terms used for the Morlet Transform ......... 131 

Figure 4.68 Residual plot with only 5% of terms used for the MHW Transform .......... 132 

Figure 4.69 Residual plot with only 5% of terms used for the FFT ............................... 133 

Figure 4.70 Error comparison between tested basis functions ....................................... 134 

Figure 4.71 Residual of plot of larger area with only 50% of terms used for the Paul 

Transform ........................................................................................................................ 135 

Figure 4.72 Residual of plot of larger area with only 50% of terms used for the Morlet 

Transform ........................................................................................................................ 136 

Figure 4.73 Residual of plot of larger area with only 50% of terms used for the MHW 

Transform ........................................................................................................................ 137 

Figure 4.74 Residual of plot of larger area with only 50% of terms used for the FTT .. 138 

Figure 4.75 Error comparison between tested basis functions ....................................... 139 



 

xiv 

Figure 4.76 Residual of plot of larger area with only 25% of terms used for the Paul 

Transform ........................................................................................................................ 140 

Figure 4.77 Residual of plot of larger area with only 25% of terms used for the Morlet 

Transform ........................................................................................................................ 141 

Figure 4.78 Residual of plot of larger area with only 25% of terms used for the MHW 

Transform ........................................................................................................................ 142 

Figure 4.79 Residual of plot of larger area with only 25% of terms used for the MHW 

Transform ........................................................................................................................ 143 

Figure 4.80 Error comparison between tested basis functions ....................................... 144 

Figure 4.81 Residual of plot of larger area with only 12% of terms used for the Paul 

Transform ........................................................................................................................ 145 

Figure 4.82 Residual of plot of larger area with only 12% of terms used for the Morlet 

Transform ........................................................................................................................ 146 

Figure 4.83 Residual of plot of larger area with only 12% of terms used for the MHW 

Transform ........................................................................................................................ 147 

Figure 4.84 Residual of plot of larger area with only 12% of terms used for the FFT ... 148 

Figure 4.85 Error comparison between tested basis functions ....................................... 149 

Figure 4.86 Residual of plot of larger area with only 5% of terms used for the Paul 

Transform ........................................................................................................................ 150 

Figure 4.87 Residual of plot of larger area with only 5% of terms used for the Morlet 

Transform ........................................................................................................................ 151 

Figure 4.88 Residual of plot of larger area with only 5% of terms used for the MHW 

Transform ........................................................................................................................ 152 



 

xv 

Figure 4.89 Residual of plot of larger area with only 5% of terms used for the FFT ..... 153 

Figure 4.90 Error comparison between tested basis functions ....................................... 154 

Figure 4.91 Reconstruction of a noisy signal via FFT deconvolution ............................ 156 

Figure 4.92 Reconstruction of a noisy signal via CWT deconvolution .......................... 157 

Figure 4.93 Original 2D signal in the SEPR region........................................................ 158 

Figure 4.94 Degraded signal with a Gaussian blur in the SEPR region ......................... 159 

Figure 4.95 Reconstruction of a noisy 2D signal via CWT deconvolution in the SEPR 

region .............................................................................................................................. 160 

Figure 4.96 Alternate view of the degraded signal with a Gaussian blur in the SEPR 

region .............................................................................................................................. 161 

Figure 4.97 Alternate view of the CWT restored signal in the SEPR region ................. 162 

 

 

 

 

 



 

xvi 

LIST OF ABBREVIATIONS 

  COI    Cone of Influence 

  CWT    Continuous Wavelet Transform 

  DOG    Derivative of the Gaussian 

  DWT    Discrete Wavelet Transform 

  FFT    Fast Fourier Transform 

  FT    Fourier Transform 

  FT(MHW)   FT of the Mexican Hat Wavelet 

  iFFT    Inverse Fast Fourier Transform 

  MHW    Mexican Hat Wavelet 

  MHWF   Mexican Hat Wavelet Family 

  PSD    Power Spectral Density 

  RMSE    Root Mean Square Error 

  SEPR    Southern East Pacific Rise 

  SNR    Signal to Noise Ratio 

  STFT    Short Time Fourier Transform 

  WT    Wavelet Transform 

 

 



 

1 

CHAPTER I – INTRODUCTION 

1.1 Overview, Background and Motivation 

In the public domain, eighty percent of Earth’s ocean floor in ice-free regions 

remain unmapped by sonar systems (Sandwell et al., 2014).  Mappings for the remainder 

of Earth’s deep-water (> 1km depth) undersea topography in ice-free regions is by 

inversion of marine geoid height to topography (Smith and Sandwell, 1994 & 1997).  

Marine geoid height is obtained by satellite altimetry, in which two-way travel time of a 

radar signal sent by the satellite and reflected back by the ocean surface provides altitude 

above the Earth (Chelton et al., 2001), (Wolfgang Torge, 2012)).  Seafloor topographic 

features > 15 km in size and > 1 km in height such as seamounts, mid-ocean ridges, 

trenches, etc. cause enough near-field anomalies in gravity for static undulations to form 

over these features that are large enough to be measured in the altimeter spatio-data series 

data (Sandwell and Smith, 1994; Sandwell et al., 2014).  These data are processed 

(Garcia et al. 2015) to create grid data products of the geoid, gravity field, vertical gravity 

gradient, and vertical gravity deflection for public download (Pavlis et al. 2012, Sandwell 

et al., 2014). 

This inversion of the geoid to seafloor topography requires two sets of analytic 

equations involving Newtonian physics and satellite altimeter measurements. Parker 

(1972) published the potential solution for the part of the inversion that was computable.  

Using Newtonian gravitational potential, Parker’s theory relates a convergent infinite 

series of Fourier transform (FT) of undersea topography, ℱ[ℎ(𝑥, 𝑦)], to the FT of the 

vertical component of the gravity anomaly, ℱ[∆𝑔(𝑥, 𝑦)], (Fig. 1).  The second part of the 

inversion comes from Haxby et. al. (1983).  Given measurements of marine geoid height, 
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𝑁(𝑥, 𝑦), their paper provides the equation to relate the FT of the geoid gradient, 

ℱ[∇𝑥,𝑦𝑁(𝑥, 𝑦)], to ℱ[∆𝑔(𝑥, 𝑦)].  With both pieces, ℱ[ℎ(𝑥, 𝑦)] is predictable from 

ℱ[∇𝑥,𝑦𝑁(𝑥, 𝑦)] using 𝑁(𝑥, 𝑦) from satellite altimeter measurements. 

With these equations, Smith and Sandwell (1994, 1997) created their algorithms 

to process geoid height to predicted bathymetry, using only the first term from the infinite 

series of ℱ[ℎ(𝑥, 𝑦)].  For the data they had in the 1990’s, they found that the correlation 

between bathymetry and gravity resided between a limited band of wavelengths in the 

gravity field, 𝜆(𝑥, 𝑦) = 1 |𝑘⃗ (𝑥, 𝑦)|⁄  , from 15 and 160 km.  Wavelengths in the gravity 

field less than 15 km resulted in a small signal to noise ratio (SNR) making prediction 

unobtainable for navigation; whereas, wavelengths greater than 160 km produced no 

gravity anomaly due to isostatic compensation (Smith & Sandwell 1994).  Smith and 

Sandwell (1994) calculated total predicted bathymetry as the sum of passband prediction 

and long-wavelength regional depth.  The passband prediction was the product of 

downward continued gravity that is also band-pass filtered and a scaling factor. 

Smith and Sandwell published their first version of worldwide predicted 

bathymetry in 1997 in the journal Science.  Since then, they have continued to use new 

multibeam data, data from new satellite altimeter missions, and re-tracked satellite 

altimetry data (Sandwell and Smith, 2009) to produce newer versions of predicted 

bathymetry.  The current version is Version 17.1 (Scripps Institute of Oceanography, 

2014). 
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Figure 1.1 The Geometry of Parker’s Paper. 

This is the geometry of Parker’s paper on top of a background image courtesy of NOAA. 

 

1.2 New Approach 

Although Fourier transforms are a proven mathematical tool and rapidly 

computable, they are not without issue.  Specifically, although their basis functions are 

local in wavenumber, they are not local in space.  Seafloor features, however, exhibit 

spatial locality, meaning that the amplitude goes to zero away from the object.  Thus, the 

FT of seafloor topography will have a wide spectrum of wavenumber components, 

requiring computation of many Fourier coefficients, because the components have 

constant amplitude from −∞ to +∞.  Small changes in the transform will produce 

changes everywhere in the spatial domain (Vidakovic & Mueller, 1991).  As a result, the 

root-mean-square error (RMSE) in the transform will eventually reach a lower limit that 

is pragmatically unreducible without the use of a different transformation method. 
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The proposed dissertation effort focuses on the applicability of alternate 

transformation methods to perform the inversion.  Specifically, these transformation 

methods were sparse representations of seafloor features.  The transformation of a signal 

from a basis space (dense measurements required for characterization) to a new basis 

space that requires only minimal measurements or terms is defined as a sparse 

representation (Elad, 2010; Starck et. al. 2010).  Sparse representations enable lower 

RMSE between original and constructed information because there is better correlation 

term-by-term in the sparse transform space compared to a dense transform space.  In 

contrast, the FT is a dense representation for seafloor features. 

If a sparse representation could be found to replace the Fourier method, the 

associated RMSE of inversion calculations to get ℎ(𝑥, 𝑦) from 𝑁(𝑥, 𝑦) could be lowered.  

The result could reduce uncertainty of sea floor topography heights and the location and 

depths of navigational hazards.  Using different sparse transform methods may not only 

maximize the use of new satellite systems but also help to capitalize on older systems and 

data. 

The aim of this research is to determine what candidate sparse basis function will 

best remediate the resolution problem.  However, sparse basis functions are well known 

to require heavy computational power (Elad, 2010).  Unlike the time in the early 1990’s 

in which the Smith and Sandwell work appeared, computational power is now orders of 

magnitude larger, making computationally intractable problems that existed then to be 

potentially applicable now. 

A determination of what candidate sparse basis functions, in lieu of the FT, are 

capable of providing an increase in resolution of the inverse transformation was the first 
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step.  Candidate functions that exhibit localization include wavelets, ridgelets, curvelets, 

contourlets and fractals (Starck et al., 2010).  The second Derivative of the Gaussian 

(DOG) named the Ricker Wavelet, is also known as the Mexican Hat Wavelet (MHW) 

due to its sombrero-like shape (Daubechies, 1992; Ryan, 1994).  The MHWs are real 

zero-phase functions that consist of a central peak with two smaller lobes on either side; 

and, they are uniquely specified by a singular frequency parameter, which is its peak 

frequency (Ryan, 1994). 

 

Figure 1.2 The 2D and 3D MHW 

Figure a is the 2D MHW and figure b is the 3D MHW. 

 

This particular wavelet and its extension to the sphere have been used extensively 

to detect structures on a 2D image, utilizing signal amplification to move from real to 

wavelet space (Argueso et al., 2006).  Also, because the MHW is circularly symmetric, 

its FT results in a zero order Hankel function, many solutions for which are listed in 

tables.  Unlike the FT, wavelets are local in both frequency and time (Vidakovic & 

Mueller, 1991) and wavenumber and space.  Further, many different function classes are 
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more compactly represented by wavelets than FTs, such as functions with discontinuities 

and sharp spikes (Vidakovic & Mueller, 1991).  Further reasons for selecting the MHW 

as the initial candidate are its properties as a non-orthogonal, real valued function, 

capable of separating both positive and negative values of time series oscillations into 

separate peaks in wavelet power (Torrence & Compo 1998).  When a smooth and 

continuous variation in wavelet amplitude is expected, non-orthogonal transforms are of 

great utility in time series analysis (Torrence & Compo 1998).  Further, they have a very 

small cone of influence (COI), thus less affected by edge effects (Torrence & Compo 

1998).  For these reasons, the primary candidate function tested was the MHW.  An 

attempt was made to produce inverse solutions using similar procedures that Parker 

(1972) and Sandwell and Smith (2009) used in their methods, however, utilizing the 

MHW. 

Ridgelets, contourlets and fractals were also considered for their practicality in 

this problem, though, due to time constraints were not applied during this study.  Like the 

MHW, these basis functions should be studied.  Should the methods proposed decrease 

RMSE, then compressed sensing algorithms should be considered to calculate the 

coefficients of the candidate basis functions.  One last alternative method, however, was 

also considered.  As highlighted by Argueso et al. (2006), the calculation of the basis 

function coefficients can be made by taking the FT of the basis function.  In the case of 

Argueso et at. (2006) for the Mexican Hat Wavelet Family (MHWF), the iterative 

process of applying the Laplacian to the MHW, produced the set of basis functions.  This 

technique employed the use of the signal’s amplification moving from real to wavelet 

space (Argueso et al., 2006).  They credited their technique’s success of point source 
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detection in cosmic microwave background maps on the fact that wavelets amplified the 

ratio between the background dispersion and point source intensity.  Thus, this method 

was thought to allow for a comparison of results of two different approaches such that a 

determination could be made as to which was more efficient and computationally more 

practical. 

1.3 Hypotheses 

 H1: The application of sparse basis functions to satellite altimetry data 

will result in a lower RMSE than the Fourier transform approach when 

predicting Newtonian gravitational potential with fewer coefficients. 

 H2: These functions then, will be applicable for sparse transformation 

operations to predict higher resolution bathymetry. 

 H3: Taking the Fourier transform of the candidate basis functions to 

calculate their coefficients will also result in a decrease in RMSE and may 

result in an analytical solution. 

1.4 Proposed Test Case 

Due to the extensive amount of research conducted at the Southern East Pacific 

Rise (SEPR), this area was used to test the hypotheses.  A quick scan of the area via 

Global Multi-Resolution Topography (GMRT) visualizations (powered using Google 

Earth) revealed several seamounts that could be used as test cases. 
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Figure 1.3 Area of interest: Southern East Pacific Rise (From Google Earth) 

 

1.5 Importance of Work 

The practicality of this approach lies in its economic as well as ecological utility.  

As Fourier methods do not produce the level of resolution required for navigation in 

naval warfare, general scientific and commercial needs, increased costly sea time would 

be required to resolve this issue as the fruits of increases in satellite resolution cannot be 

met with current calculation methods.  In fact, it was estimated that an approximate 900 

ship years would be required to complete a complete multibeam survey of the world’s 

oceans (Weatherall 2015).  However, the cost of applying a different 

mathematical/computational approach to the current data is low. 
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1.6 Proposed Approach 

Application of various transforms to the earth’s gravitational potential was 

attempted including the MHW, the Paul wavlet and Morlet wavelet.  The Mexican Hat 

Wavelet, was the first transform applied to the earth’s gravitational potential.  A 

numerical solution was obtained.  Data from the Southern Eastern Pacific Rise was 

applied to the transform solutions and then compared to the method used by Parker 

(1972) and Smith & Sandwell (1994) using Fourier transforms, by calculating the RMSE 

of both.  Transform performance was evaluated by comparing each tested method against 

each other with regards to RMSE vs. number of coefficients, utilizing the same datasets. 

1.7 Constraints 

In order to provide a clear and focused research directive, the following 

constraints were made.  The data considered was from the Juan de Fuca Ridge.  

Bathymetry and gravity data for tests are publically available through the Global Multi-

Resolution Topography synthesis database (Ryan et al. 2009).  Because there are large 

amounts of data for this particular site, and it is well studied, any test results can be met 

with greater certainty of truth than for other areas not as well studied.  All geoid height 

datasets used were strictly from satellite altimetry with the intent to invert the data to 

derive bathymetry.  To further constrain the research timeline, only a few basis functions 

were considered.  The first priority for testing of the basis functions was the Mexican Hat 

wavelet followed by the Paul and Morlet wavelets.  There is great utility in applying 

these same methods to increasing resolution between satellite altimeter tracks.  

Resolution is highest on the tracks but drops between them.  However, this line of study 
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was not tested due to time constraints, but should be considered for future research 

interests 
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CHAPTER II - BACKGROUND 

(Kellogg, 1953) defined the gravity potential or Newtonian potential as “the work 

done by the field on a test particle.”  As the gravitational field is conservative, net work is 

not required to move a mass around a closed loop (Blakely 1995) which makes the 

concept of gravity potential useful.  To begin this study and further understand the 

concepts behind the gravitational potential, a review of some basic principles was 

required.  Key among them is the principle of superposition which states that the 

interaction of two stimuli is completely unaffected by the presence of others, thus the 

combination of two or more potentials may be taken simply as their sum (Griffiths 1981).  

Following this convention, the gravitational potential of a group of masses is defined as 

the sum of the individual masses’ potentials (Blakely 1995).  This concept will prove 

useful when considering the potential of a mass source in conjunction with a smooth flat 

earth later in the study.  Fundamentally, however, this study will begin with simpler 

problems and build from there.  Blakely (1995) first considered the potential of a mass 

distribution expressed as:  

 𝑈(𝑃) = 𝛾 ∫
𝜎(𝑆)

𝑟𝑆
𝑑𝑆,  (2.1) 

where γ is Newton’s gravitational constant, σ is the surface mass density and r is the 

distance from a point P to any point on the sphere (see figure 2.1).  From this expression, 

Blakely went on to define the gravitational potential of various geometries such as a 

spherical shell, both inside and out, a solid sphere, which is a special case of a spherical 

shell, as well as the potentials of finite and infinite wires. 
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Figure 2.1 Thin walled spherical shell. 

Reproduction of figure 3.3 from Blakely of a thin walled, spherical shell of radius a with an observation point at P 

 

After a review of the derivations by Blakely of the gravitational potential of these 

simple geometries, attempts at arriving at the same results were made.  Upon successful 

completion, Blakely’s discussion of the application of the Fourier Transform to these 

potentials was also reviewed.  Table 11.1 of Blakely (1995) lists a number of 

gravitational attraction potentials and their Fourier transforms.  Gravitational attraction is 

related to the gravitational potential in that it is simply its gradient (Blakely 1995).  

Below is a systematic derivation of the top four transforms listed in the table per Blakely 

(1995), however, for gravitational potential not attraction. 

2.1 Monopole 

The gravitational potential observed on a horizontal plane at the point z=z0 that is 

caused by a point mass located below the plane is considered and is given by the formula 

 𝑈(𝑃) =
𝛾𝜇

𝑟
  (2.2) 
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where μ is the point mass in question, γ remains the gravitational constant and r is the 

distance to the horizontal plane from the point mass.  Pulling the two constants outside, 

the Fourier transform is then expressed as: 

 ℱ[𝑈] = 𝛾𝜇ℱ [
1

𝑟
]  (2.3) 

However, we know from Blakely (1995) that due to cylindrical symmetry about the z-

axis, after transformation into cylindrical coordinates a Hankel transform of zeroth order 

ensues that result in the following expression: 

 ℱ [
1

𝑟
] = 2𝜋

𝑒|𝑘|(𝑧0−𝑧′)

|𝑘|
, 𝑧′ < 𝑧0, |𝑘| ≠ 0  (2.4) 

Thus,  

 ℱ[𝑈] = 2𝜋𝛾𝜇
𝑒|𝑘|(𝑧0−𝑧′)

|𝑘|
, 𝑧′ < 𝑧0, |𝑘| ≠ 0  (2.5) 

2.2 Vertical Line 

For the case of the vertical line we with start with its potential given by Blakely 

𝑈(𝑃) = 𝛾𝜌∫
1

𝑟

𝑎

−𝑎

𝑑𝑧′ 

where ρ is density and the limits a and –a will be the points z2 and z1, respectively.  

Again, we can note the solution of the Fourier transform of 1/r.  As such, we have the 

following: 

 ℱ[𝑈] = 2𝜋𝛾𝜆 ∫
𝑒|𝑘|(𝑧0−𝑧′)

|𝑘|

𝑧2

𝑧1
𝑑𝑧′, 𝑧2 > 𝑧1  (2.6) 

where λ is the mass per unit length of the wire.  After removal of the constants to outside 

of the integral and then integration, we end up with the solution 

 ℱ[𝑈] =
2𝜋𝛾𝜆

|𝑘|2
𝑒|𝑘|𝑧0(𝑒−|𝑘|𝑧1 − 𝑒−|𝑘|𝑧2)  (2.7) 
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This equation will be used again in a later section. 

2.3 Calculation of Gravitational Potential Anomaly 

The process of inversion of satellite altimetry measurements of marine geoid 

height to seafloor topography, is covered in conjunction by two papers, the theory by 

Robert Parker (1972), “The Rapid Calculation of Potential Anomalies” and the 1997 

Sandwell and Smith paper, “Marine Gravity Anomaly from Geosat and ERS 1 Satellite 

Altimetry.”  A six-step process of this procedure is detailed below. 

The first step is to derive the Newtonian gravitational potential of a vertical line 

segment mass whose density is given by 

 𝜌(𝒓̂) = 𝜆𝛿(𝑥)𝛿(𝑦)  (2.8) 

between z1 and z2 and zero elsewhere, where λ is a finite positive constant, and z1<z2. 

 

Figure 2.2 Coordinate system adopted after Blakely (1996). 

 

We start with the general formula for the Newtonian Potential of mass distribution 

 𝑈(𝑃) = 𝛾 ∭
𝜌(𝑄)

𝑟𝑉
𝑑𝑉  (2.9) 

Substitution of 𝜌(𝑟 ) into the above equation yields: 
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 𝑈(𝑃) = 𝛾 ∭
𝜌(𝑄)

𝑟𝑉
𝑑𝑉 = 𝛾 ∭

𝜆𝛿(𝑥)𝛿(𝑦)

𝑟𝑉
𝑑𝑉  (2.10) 

As, λ is a finite constant, it can move outside of the integrals; and, after conversion of “r” 

to Cartesian coordinates, 

 𝛾𝜆∭
𝛿(𝑥)𝛿(𝑦)

[(𝑥−𝑥0)2+(𝑦−𝑦)2+(𝑧−𝑧0)2]
1
2

𝑉
𝑑𝑉  (2.11) 

However, the triple volume integral is evaluated from negative to plus infinity for x and 

y.  Thus, it can be noted that 

 ∫ 𝛿(𝑥)𝑑𝑥 = 1    
∞

−∞
and ∫ 𝛿(𝑦)𝑑𝑦 = 1    

∞

−∞
      (2.12, 2.13) 

Further, we know that 

 ∫ 𝑓(𝑥)𝛿(𝑥)𝑑𝑥 = 𝑓(𝑎)    
∞

−∞
 (2.14) 

If we consider x and y to be centered at the origin, with the x-y plane at z=0 and set a=0, 

then we can simplify the integral to the form 

 𝑈(𝑃) = 𝛾𝜆 ∫
1

[(𝑥−𝑥0)2+(𝑦−𝑦)2+(𝑧−𝑧0)2]
1
2

𝑑𝑧 =
𝑧2

𝑧1
𝛾𝜆 ∫

1

[(𝑥0
2)+(𝑦0

2)+(𝑧−𝑧0)2]
1
2

𝑑𝑧
𝑧2

𝑧1
  

 (2.15) 

A further simplification was made through the summation of x0
2 and y0

2 to some other 

constant r0
2 yielding 

 𝛾𝜆 ∫
1

[𝑟0
2+(𝑧−𝑧0)2]

1
2

𝑑𝑧
𝑧2

𝑧1
  (2.16) 

Expansion of the denominator and rearrangement of the constant terms gives 

 𝛾𝜆 ∫
1

[𝑧2−2𝑧0𝑧+(𝑟0
2+𝑧0

2)]
1
2

𝑑𝑧
𝑧2

𝑧1
  (2.17) 

which is in the form of an integral whose solution is listed on a standard table of integrals 

 ∫
1

√𝑎𝑥2+𝑏𝑥+𝑐
𝑑𝑥  (2.18) 
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whose solution from Spiegel, (1968) is 

 
1

√𝑎
𝑙𝑛 |2𝑎𝑥 + 𝑏 + 2√𝑎(𝑎𝑥2 + 𝑏𝑥 + 𝑐)|  (2.19) 

Setting z1=-a, z2 =a and z0=0, evaluation of the integral results in 

𝑈(𝑃) = 𝛾𝜆 [𝑙𝑛 |2𝑧2 − 2𝑧0 + 2√𝑧2
2 − 2𝑧0𝑧2 + (𝑟0

2 + 𝑧0
2)| − 𝑙𝑛 |2𝑧1 − 2𝑧0 +

2√𝑧1
2 − 2𝑧0𝑧1 + (𝑟0

2 + 𝑧0
2)|]   (2.20) 

After further reductions (see Appendix C for full steps), the final solution is 

 𝑈(𝑃) = 𝛾𝜆 𝑙𝑛 [
𝑎+√𝑎2+(𝑟0

2+𝑧0
2)

−𝑎+√𝑎2+(𝑟0
2+𝑧0

2)
]  (2.21) 

The requirement is that the potential should vanish at infinity (Blakely, 1995).  In order to 

prevent the potential from approaching infinity, a constant was added to the equation 

(Blakely, 1995). 

 𝑈(𝑃) = 𝛾𝜆 [𝑙𝑛
𝑎+√𝑎2+(𝑟0

2+𝑧0
2)

−𝑎+√𝑎2+(𝑟0
2+𝑧0

2)
− 𝑙𝑛

𝑎+√𝑎2+1

−𝑎+√𝑎2+1
]  (2.22) 

The potential as a → ∞ is then 

 𝑈(𝑃) = 2𝛾𝜆 𝑙𝑜𝑔
1

𝑟
    (2.23) 

Utilizing Wolfram Alpha, the FT of this potential is given as 

 2𝛾𝜆 [
√

𝜋

2

|𝑘|
+ 𝛾∗√2𝜋𝛿(𝑘) −

𝑖𝜋
3

2⁄ 𝛿(𝑘)

√2
−

√
𝜋

2

𝑘
]  (2.24) 

where γ* is the Euler-Mascheroni constant.  If, however, like Parker (1972) we assume 

that density is constant, then the potential may be expressed as 

 𝑈(𝑃) = 𝛾𝜌∫
1

𝑟

𝑧2

𝑧1
𝑑𝑧′  (2.25) 
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Recall equation 2.4 

 ℱ [
1

𝑟
] = 2𝜋

𝑒|𝑘|(𝑧0−𝑧′)

|𝑘|
, 𝑧′ < 𝑧0, |𝑘| ≠ 0   

Thus, 

 ℱ[𝑈(𝑃)] = 2𝜋𝛾𝜆 ∫
𝑒|𝑘|(𝑧0−𝑧′)

|𝑘|

𝑧2

𝑧1
𝑑𝑧′, 𝑧2 > 𝑧1  (2.26) 

 ℱ[𝑈(𝑃)] =
2𝜋𝛾𝜆

|𝑘|
𝑒|𝑘|𝑧0 ∫ 𝑒−|𝑘|𝑧′𝑧2

𝑧1
𝑑𝑧′  (2.27) 

 ℱ[𝑈(𝑃)] =
2𝜋𝛾𝜆

|𝑘|
𝑒|𝑘|𝑧0 [

−𝑒−|𝑘|𝑧′

|𝑘|
]|

𝑧1

𝑧2

 (2.28) 

Thus, the solution is 

 ℱ[𝑈(𝑃)] =
2𝜋𝛾𝜆

|𝑘|2
𝑒|𝑘|𝑧0(𝑒−|𝑘|𝑧1−𝑒−|𝑘|𝑧2)  (2.29) 

 

Parker (1972) considered the gravitational attraction of a layer of material with a 

lower boundary at z = 0 and an upper boundary defined at 𝑧 = ℎ(𝐫 ).  He further required 

that the layer vanish at a finite domain, D such that ℎ(𝐫 ) = 0 if |𝐫 | > 𝑅.  It is also 

assumed that “ℎ” is bounded and integrable.  The Newtonian gravitational potential at 𝐫 0 

due to a layer is 

 𝑈(𝐫 0) = γρ∫
𝑑𝑉

|𝐫 𝟎−𝐫 |𝑉
 =  γρ∫ 𝑑𝑆

𝐷
∫

𝑑𝑧

|𝐫 𝟎−𝐫 |

ℎ(𝐫 )

0
 (2.30) 

Note:  𝐫  is a vector in x-y-z space and its projection onto the x-y plane is  𝑟 .  In spherical 

coordinates:  𝑟  is the source coordinates and 𝑟0⃗⃗  ⃗ is the observation coordinates. 
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Figure 2.3 Geometric coordinate system adopted after Sandwell and Smith (1997). 

 

Geometric coordinate system adopted after Sandwell and Smith (1997). 

1. Define: 𝑧 = 0 to be the mean seafloor within a domain of diameter D << diameter 

of the earth and is centered at the origin of the 𝑥 − 𝑦 plane.  Further, 𝑅 ≡ 𝐷/2.   

2. Any influence of gravitational source outside R to be zero (the layer disappears 

for |𝐫 | > R.   

 

From figure 2.3, the Newtonian gravitational potential from mass density source 𝜌(𝐫 ) at 

the observation point 𝐫 0 from the layer is 

 𝑈(𝜉 0) = 𝛾 ∭[
𝜌(𝐫 )

|𝜉⃗ 𝟎−𝜉⃗ |
] 𝑑𝑥𝑑𝑦𝑑𝑧,  (2.31) 

Note, 𝜉  is the 3D distance from the origin to the source point and 𝜉0
⃗⃗  ⃗ is the 3D distance 

from the origin to the observation point. 
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Note: for consistency, here, the gravitational constant is represented by the lower case γ.  

However, in Parker’s 1972 paper, the upper case Γ is used instead.   

Parker then makes the assumption that 𝜌(𝐫 )=ρ=constant.  Thus,  

 𝑈(𝜉 0) = 𝛾𝜌∭[
𝑑𝑥𝑑𝑦𝑑𝑧

|𝜉⃗ 𝟎−𝜉⃗ |
]  (2.32) 

The z-coordinate is then separated from the x-y plane to arrive at the following: 

 𝑈(𝜉 0) = 𝛾𝜌 ∫ 𝑑𝑥𝑑𝑦 ∫
𝑑𝑧

|𝜉⃗ 𝟎−𝜉⃗ |

ℎ(𝜉)

0𝐷
,  (2.33) 

where the ∫ 𝑑𝑥𝑑𝑦
𝐷

 is the surface integral within the aperture D=2R.  Furthermore, ℎ(𝜉 ) is 

the height of the topography as a function of x and y (ℎ(𝜉 ) = bathymetry(x,y)–regional 

depth(x,y)). 

Applying a 2-D FT for the observation point in cylindrical coordinates 𝜉 0 = 𝑥0𝑥0̂ + 𝑦0𝑦0̂ 

with the form 

  ℱ[f(𝜉 0)] = ∫ 𝑑𝑆0 𝑓(𝜉 0)𝑒
𝑖𝑘⃗ ∙𝜉⃗ 0

𝑋
,  (2.34) 

where 𝑘⃗ = 𝑘𝑥𝑥̂ + 𝑘𝑦𝑦̂ is the 2D wavenumber corresponding to 𝜉 = 𝑥𝑥̂ + 𝑦𝑦̂ in transform 

space.  This is done so that the 3-D vector 𝜉 = 𝑟 + 𝑧𝑧̂ and similarly for 𝜉 0, results in the 

2-D FT being 

 ℱ [𝑈(𝜉 0)]  =  γρ ∫ 𝑑𝑆0𝑋
∫ 𝑑𝑆𝑒𝑖𝑘⃗ ∙𝑟0
𝐷

∫
𝑑𝑧

|𝜉⃗ 𝟎−𝜉⃗ |

ℎ(𝜉)

0
  (2.35) 

After rearrangement the equation becomes 

 ℱ [𝑈(𝜉 0)]  = γρ∫ 𝑑𝑆
𝐷

∫ 𝑑𝑧
ℎ(𝜉)

0
∫ 𝑑𝑆0

𝑒𝑖𝑘⃗⃗ ∙𝜉⃗⃗ 0

|𝜉⃗ 𝟎−𝜉⃗ |𝑋
  (2.36) 

Equation 2.36 is the first equation at the top of page 449 of Parker (1972).  

 



 

20 

2.3.2 Intermediate Calculations 

Although Parker cites Bracewell (1965) for going from Eq. (2.36) to the second 

equation that appears on page 449 of Parker (1972), this derivation is not intuitive.  The 

equation referred to here from Parker is listed as Eq. (2.46) in this paper.  The missing 

mathematical steps are given in this paragraph.  To evaluate Eq. (2.36) the coordinate 

system needs to be in cylindrical coordinates.  For continuity with Parker’s paper, a 

switch is made from 𝜉 to r.  With coordinates given by script characters (𝓇, 𝓏, 𝜗), Eq. Eq. 

(2.36) becomes (Blakely, 1995) 

 ℱ [𝑈(𝐫 0)]  = γρ∫ 𝑑𝑆
𝐷

∫ 𝑑𝓏
ℎ(𝐫 )

0
∫

𝑒𝑖𝑘⃗⃗ ∙((𝑤0+𝓇)𝓇̂

(𝑤0
2+𝑎2)1/2𝑋

𝑤0𝑑𝑤0𝑑𝜗,  (2.37) 

where  

 𝐫 0 – 𝐫  =  (𝓇0 − 𝓇)𝓇̂  + (𝓏0 –  𝓏)𝓏̂  (2.38) 

 |𝐫 𝟎 − 𝐫| = [(𝓇0 − 𝓇)2 + (𝓏0 –  𝓏)2]1/2  (2.39) 

 𝑤0 ≡ 𝓇0 − 𝓇  (2.40)  

 𝑎 ≡ 𝓏0 –  𝓏  (2.41) 

In addition, 𝑑𝑤0 = 𝑑𝓇0, 𝓇0 = 𝑤0 + 𝓇, and 𝑑𝑆 = 𝑤0𝑑𝑤0𝑑𝜗 in Eq. 2.33.  The 

exponential in Eq. Eq. 2.33 can be factored such that  

 exp(𝑖𝑘⃗ ∙ ((𝑤0 + 𝓇)𝑟̂) = exp(𝑖𝑘⃗ ∙ 𝑤0𝑟̂)exp(𝑖𝑘⃗ ∙ 𝓇𝑟̂)  

 = exp(𝑖|𝑘⃗ |𝑤0cos𝜗)exp(𝑖𝑘⃗ ∙ 𝓇𝑟̂)  (2.42) 

Using this result in Eq. 2.33, the factor exp(𝑖𝑘⃗ ∙ 𝓇𝑟̂) may be placed outside the integral 

over 𝑋 to produce 
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 ℱ [𝑈(𝐫 0)]  =  γρ∫ 𝑑𝑆
𝐷

∫ 𝑑𝓏
ℎ(𝑟)

0
exp(𝑖𝑘⃗ ∙ 𝓇𝑟̂) ∫

exp(−𝑖|𝑘⃗ |𝑤0cos𝜗)

(𝑤0
2+𝑎2)1/2𝑋

𝑤0𝑑𝑤0𝑑𝜗 

  (2.43) 

The integral over 𝜗 is 2𝜋𝐽0(|𝑘⃗ |𝑤0) (Eq. 10.9.2 of NIST, 2015). Thus, 

 ℱ [𝑈(𝐫 0)]  =  γρ∫ 𝑑𝑆
𝐷

∫ 𝑑𝓏
ℎ(𝑟)

0
exp(𝑖𝑘⃗ ∙ 𝓇𝑟̂) ∫

2𝜋𝐽0(|𝑘⃗ |𝑤0)

(𝑤0
2+𝑎2)1/2

∞

0
𝑤0𝑑𝑤0  (2.44) 

The integral over 𝑤0 is the Hankel transform of the function 2𝜋(𝑤0
2 + 𝑎2)−1/2 (Eq. 

10.22.76 of NIST, 2015).  From Table 12.2 of Bracewell (1965) or Téllez et. al. (1997), 

(Eq. (2.36) on p. 275), the result is  

 2𝜋 ∫
𝐽0(|𝑘⃗ |𝑤0)

(𝑤0
2+𝑎2)1/2

∞

0
𝑤0𝑑𝑤0 = 2𝜋

exp (−|𝑘⃗ |𝑎)

|𝑘⃗ |
  (2.45) 

Putting this result into Eq. 2.40 produces the second equation on p. 449 of Parker (1972)  

 ℱ [𝑈(𝐫 0)]  =  γρ∫ 𝑑𝑆
𝐷

∫ 𝑑𝓏
ℎ(𝓇𝑟̂)

0
{2π exp (𝑖𝑘⃗ ∙ 𝓇𝑟̂ − |𝑘⃗ |(𝓏0 –  𝓏))} /|𝑘⃗ | 

  (2.46) 

after resubstituting 𝓏0 –  𝓏 for 𝑎. 

 

2.3.3 Obtaining relation between 𝓕[∆𝐠] and 𝓕[∆𝐡] 

Parker (1972)   ℱ[𝑈(𝐫 0)]  =  γρ∫ 𝑑𝑆exp(𝑖𝑘⃗ ∙ 𝓇𝑟̂ −
𝐷

|𝑘⃗ |𝓏0) {exp[|𝑘⃗ |ℎ(𝓇𝑟̂)] − 1}/|𝑘⃗ |
2
  (2.47) 

integrates explicitly over z.  Referring back to equation 2.7, the result is 

Factoring out the upward continuation term, exp(−|𝑘⃗ |𝓏0), from the integral and using 

the Taylor series expansion of exp[|𝑘⃗ |ℎ(𝓇𝑟̂)] produces Parker’s result (his Eq. (2)) 

linking the potential to the topography as an infinite series of Fourier transforms. 
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 ℱ[𝑈(𝐫 0)]  =  2π𝛾𝜌𝑒−|𝑘⃗ |𝑧0  ∑
|𝑘⃗ |

𝑛−2

𝑛!
ℱ[ℎ𝑛(𝑟 )]∞

𝑛=1      (2.48) 

The terrain correction is not the potential but rather the vertical attraction of the material.  

Since 𝑧̂ ∙ 𝐫𝟎⃗⃗  ⃗  >  max {ℎ(𝑟 0)}, the gravitational potential obeys Laplace’s equation 

(Section 2.12 of Hofmann-Wellenhof and Moritz, 2005), ∇2𝑈 = 0.  Under this condition, 

a general solution to Laplace’s equation in Cartesian coordinates is of the form (Sec. 4.12 

of Wyld, 1999; Sec. 13.2 of Boas, 2005) 

 𝑈(𝐫 𝟎)  =
1

4𝜋2
 ∫ 𝑑2 𝑘𝑈 (𝑘⃗ )𝑒(−|𝑘⃗ |𝑧̂∙𝐫 𝟎−𝑖𝑘⃗ ∙𝐫 𝟎)  (2.49) 

where 𝑈̅(𝑘⃗ ) is an unknown function for the moment.  Comparison of this equation with  

Eq. 2.42 shows that  

  ℱ|𝑈(𝑟 0)| = 𝑈(𝑘⃗ )𝑒−|𝑘⃗ |𝑧̂∙𝑟0  (2.50) 

By the definition of potential, the vertical attraction is ∆𝑔 = +
𝜕𝑈

𝜕𝑧
 .  Using this equality in 

Eq. (2.46) produces  

 ℱ|∆𝑔| =  − |𝑘⃗ |ℱ|𝑈|  (2.51) 

Equation 2.51 is possible due to the Fourier Transform’s derivative theorem.  See 

appendix g for the proof as outlined by Bracewell (1965).   

The desired generalized expression where the lower boundary of the layer is not flat but 

instead given by 𝑧 = 𝑔(𝐫 ) and where the density is free to vary with 𝐫  gives the result 

sought. 

 ℱ|∆𝑔| =  −2πγ𝑒(−|𝑘⃗ |𝑧0)  ∑
|𝑘⃗ |

𝑛−1

𝑛!
 ∞

𝑛=1 ℱ[𝜌(𝑟 ){ℎ𝑛(𝑟 ) − 𝑔𝑛(𝑟 )}]  (2.52) 
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2.4 Gibbs Phenomenon 

Given the assumption that some signal f(t) is continuous, the ability for a standard 

FT to represent its frequency content is difficult if time-localization is needed 

(Daubechies, 1992).  Time-localization is possible through windowing, heretofore called 

the windowed Fourier transform (Daubechies, 1992).  However, the wavelet transform 

also provides a time-frequency description but does so with the increased zoom capability 

for “short-lived high frequency phenomena, such as transient signals” (Daubechies, 

1992).  The advantage of the wavelet transform over the windowed FT results from its 

ability to be manipulated to cover different frequency ranges and relocate its time 

localization center (Daubechies, 1992).  As an example, the MHW is well localized in 

both time (or space) and frequency (Daubechies, 1992). 

The periodicity of the sine and cosine functions results in difficulty when 

attempting to accurately represent discontinuous functions such as step functions, saw 

tooth functions and square functions as a Fourier series (Rasmussen 1993).  Removal of 

the highest frequency contributions results in a filtered function that is unable to 

uniformly converge at any interval which contains a discontinuity, overshooting between 

0-17% in the vicinity of said discontinuity (Rasmussen 1993).  This is the Gibb’s 

phenomenon, which was rediscovered by J. Willard Gibbs and discussed in a letter to the 

journal Nature in 1898 (Gibbs 1898).   The step function was used as an example to 

demonstrate this phenomenon.  As the number of coefficient terms increased, the Fast 

Fourier Transform (FFT) more closely approximated the step function but nonetheless, 

continued to overshoot.  See Figure 2.4 below. 
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The occurrence of this phenomenon is critical in the determination of the number 

of coefficients required to recreate a signal (Bracewell 1965).  Figure 2.5 thus 

demonstrates how many coefficient terms are required to effectively diminish the Gibbs 

phenomenon.  For the case of the step function, a minimum of 226 coefficients was 

required.  The calculation was made by taking the square root of the sum of the 

coefficients an and bn.  The results were plotted and a visual inspection was made to 

determine when Gibbs induced error was no longer visible. 

 

Figure 2.4 Gibbs Phenomenon of a Step function. 
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Figure 2.5 Gibbs Error vs. No. of Coefficients. 

Note. Relates how many coefficients are needed to minimize Gibbs phenomenon issues. 

 

This phenomenon also exists for wavelets (Rasmussen 1993).  According to 

Rasmussen, however, wavelets should not overshoot the FFT; and, a wavelet may be 

chosen such that overshoot will not occur (the advantage of time and frequency 

localization by wavelets for short-lived high frequency phenomena).  Figure 2.6 gives a 

comparison of various wavelets against the FFT for a step function.  The step function 

was poorly reproduced by the FFT with all terms (blue line).  The Daubechies wavelets 

performed best, although, the MHW produced a near perfect replication of the step 

function as well (green line).  As can be seen in the figure inset, however, the MHW 
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smoothed the corner of the step function.  It may be determined at least for this basic 

function, that the MHW dramatically outperformed the FFT at reproducing a function at a 

discontinuity.  This could be of significant importance when attempting to predict 

bathymetric features with sharp inclinations, such as ridges, fracture zones and steep sea 

mounts. 

 

Figure 2.6 Gibbs Phenomenon of a step function with respect to the FFT, selected 

discrete wavelets and MHW. 

Another example of a signal with discontinuities is the saw tooth function.  Figure 

2.7 demonstrates the superiority of wavelet transforms over the FFT, however utilizing 

the db6 wavelet developed by Ingrid Daubechies. 
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Figure 2.7 Gibbs Phenomenon of the FFT and db6 wavelet. 

 

It is clear in Figure 2.7 that the analyzing wavelets outperformed the FFT at 

reconstructing the saw-tooth function and that overshoot by the FFT is clearly apparent at 

the discontinuities. 
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CHAPTER III - METHODS 

The following methods will be utilized for this study. 

3.1 Fourier Transforms 

The Fourier Transform is a linear mathematical method used to solve linear 

problems (Bracewell, 1965).  If there is some function f(x), then it can be mapped from 

the time/spatial domain to the frequency/wavenumber domain and then back again 

(David M. Glover 2011).  That is, using an infinite series of sine and cosine pairs 

multiplied by a function containing the sine and cosine coefficients, a function can be 

transformed from one domain to the other (David M. Glover 2011).  Expressing the sine 

and cosine pairs exponentially, the FT of some function f(x) is expressed as (Bracewell 

1965): 

 𝐹(𝑠) = ∫ 𝑓(𝑥)𝑒−𝑖2𝜋𝑥𝑠∞

−∞
𝑑𝑥  (3.1) 

However, if the integral of |f(x)| exists from –infinity to infinity and any discontinuities in 

f(x) are finite, then the Fourier Theorem states that (Bracewell 1965): 

 𝑓(𝑥) = ∫ 𝐹(𝑠)
∞

−∞
𝑒𝑖2𝜋𝑥𝑠𝑑𝑠  (3.2) 

Thus, under the aforementioned conditions, these transforms are cyclical, otherwise 

known as the Fourier Theorem. 

Proof of this theorem, below, is from (Papoulis 1962).  Beginning with the Fundamental 

Theorem: 

 𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)

∞

−∞
𝑒𝑖𝜔𝑡𝑑𝜔,  (3.3) 

where the transform of the function f(t) is F(𝜔) defined as: 

 𝐹(𝜔) = ∫ 𝑓(𝑡)
∞

−∞
𝑒−𝑖𝜔𝑡𝑑𝑡  (3.4) 
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Substitution of the equation for F(𝜔) into the Fundamental Theorem yields: 

 𝑓(𝑡) =
1

2𝜋
∫ 𝑒𝑖𝜔𝑡∞

−∞
𝑑𝜔 ∫ 𝑓(𝑡)

∞

−∞
𝑒−𝑖𝜔𝑡𝑑𝑡      (3.5) 

 
1

2𝜋
∫ 𝑒𝑖𝜔𝑡∞

−∞
𝑑𝜔 = 𝛿(𝑡)  (3.6) 

 ∫ 𝜑(𝑥)
∞

−∞
𝛿(𝑡 − 𝑥)𝑑𝑥 = 𝜑(𝑡)  (3.7) 

After rearrangement and application of the first identity, we arrive at: 

 𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑖𝜔𝑡∞

−∞
𝑑𝜔 =

1

2𝜋
∫ 𝑓(𝑥)

∞

−∞
𝑑𝑥 ∫ 𝑒𝑖𝜔(𝑡−𝑥)∞

−∞
𝑑𝜔 = ∫ 𝑓(𝑥)𝛿(𝑡 − 𝑥)

∞

−∞
𝑑𝑥

  (3.8) 

Recall, however the second identity listed.  Thus,  

 𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑖𝜔𝑡∞

−∞
𝑑𝜔 =

1

2𝜋
∫ 𝑓(𝑥)

∞

−∞
𝑑𝑥 ∫ 𝑒𝑖𝜔(𝑡−𝑥)∞

−∞
𝑑𝜔=∫ 𝑓(𝑥)𝛿(𝑡 −

∞

−∞

𝑥) 𝑑𝑥 = 𝑓(𝑡)   (3.9) 

The following two theorems will also be of particular importance to this study: 

1. The Addition Theorem states that if two functions, f(x) and g(x) have FTs F(s) 

and G(s), respectively, then the sum of the two functions has a FT equal to the 

sum of their respective transforms (Bracewell 1965). 

2. The Derivative Theorem states that for some function f(x) whose transform is 

F(s), then the transform of its derivative, f ’(x) is i2πsF(s) (Bracewell 1965). 

These two theorems, whose proofs are available in Bracewell’s text, will prove 

invaluable towards calculating the FT of gravitational potentials. 

3.2 Wavelet Transforms 

Due to the time-independent frequency content of the sine and cosine basis 

functions that comprise the FT, the analysis of the signal is purely in the frequency 

domain.  However, for the windowed FT and Wavelet Transform (WT), the objective is 
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to conduct an analysis of both time and frequency (Starck 2015).  Starck, 2015 notes the 

introduction of the windowed FT, which is a short-time FT (STFT) by (Gabor, 1946) in 

his 1946 paper, “The Theory of Communications”.  This method allows for the analysis 

of non-stationary signals through the use of a sliding Gaussian window yielding 

information on both time and frequency domains (Starck 2015).  From Starck, 2015, 

begin with the formula for the STFT 

 𝑆𝑇𝐹𝑇(𝜏, 𝜔) = ∫ 𝑠(𝑡)
∞

−∞
𝑔(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡  (3.10) 

A new basis is considered 

 𝑘𝜏,𝜔(𝑡) = 𝑔(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡  (3.11) 

and rewritten with a new window size, a, which will be inversely proportional to the 

frequency 𝜔.  Further, τ is replaced by a positional parameter b resulting in the 

continuous wavelet transform (CWT) 

 𝑘𝑏,𝑎(𝑡) =
1

√𝑎
𝜓∗ (

𝑡−𝑏

𝑎
)  (3.12) 

where, 𝜓* is the complex conjugate of 𝜓.  For the CWT, the basis functions are scaled 

forms of the mother wavelet 𝜓 (Starck 2015).  Taking the second derivative of the 

Gaussian (DOG) function, though, results in the Ricker Wavelet, otherwise known as 

the Mexican Hat Wavelet (MHW) due to its sombrero like shape (Daubechies, 1992; 

Ryan, 1994).  Per Daubechies, 1992, if the second derivative of the Gaussian is 

normalized such that L2 norm is 1, then the formula of the MHW is: 

 𝜓(𝑥) =
2

√3
𝜋−1

4⁄ (1 − 𝑥2)𝑒−𝑥2

2⁄   (3.13) 

Starck, 2015 provides a simplified version of this formula as 

 𝜓(𝑥) = (1 − 𝑥2)𝑒−𝑥2

2⁄   (3.14) 



 

31 

The MHWs are zero-phase that consist of a central peak with two smaller lobes on either 

side; and, they are uniquely specified by a singular frequency parameter, which is its peak 

frequency (Ryan, 1994).  Like the FT, the CWT also has an inverse that can be recovered 

using the formula below (Starck 2015) 

 𝑓(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)𝜒 (

𝑥−𝑏

𝑎
)

+∞

−∞

𝑑𝑎.𝑑𝑏

𝑎2
,

+∞

0
  (3.15) 

where 

 𝐶𝜒 ∫
𝜓̂∗(𝜈)𝜒̂(𝜈)

𝜈
𝑑𝜈

+∞

0
= ∫

𝜓̂∗(𝜈)𝜒̂(𝜈)

𝜈

0

−∞
  (3.16) 

The admissibility condition, however, for reconstruction is that Cχ must be finite, which 

means that the mean of the wavelet function is zero (Starck 2015).  Proof of this cyclical 

property will not be addressed here. 

3.3 Power Spectral Density 

Here, the term power refers to the measure of variance; and, power spectral 

density (PSD), also referred to as the power spectrum, is the measure of variance 

distribution with respect to frequency, wavenumber or scale that is contained within the 

signal in question (David M. Glover 2011).  Through the extraction of variance in a 

signal at specific frequencies or wavenumbers, information regarding the placement of 

peaks and the overall shape of the spectrum can help a researcher determine the nature of 

the signal being studied.  PSD can be defined as (Bracewell 1965) 

 ∫ |𝐹(𝑠)|2𝑑𝑠
∞

−∞
  (3.17) 

Also, per Parseval’s Theorem, regardless of how total power is defined, total power in the 

frequency/wavenumber domain must equal total power in the time/spatial domain (Starck 

2015). 
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 ∫ |𝐹(𝑠)|2𝑑𝑠 =
∞

−∞
∫ |𝑌(𝑥)|2𝑑𝑥

∞

−∞
  (3.18) 

Similarly, the same methodology applies with wavelets, where its PSD may be defined as 

 ∫ |𝜓(𝑥)|2𝑑𝑥
∞

−∞
  (3.19) 

3.4 Histogram 

The frequency-of-occurrence diagram or histogram is a type of graphical plot 

dealing with the concepts of sampling and probability (Thomson 1998).  For a given set 

of sample values, a histogram gives information on the frequency of occurrence of a 

particular value (Thomson 1998).  Here, the area distribution of depth references to 

hypsometry, where the calculated curve may be used as a base for describing a region’s 

morphology and geological evolution (Weatherall 2015). 

3.5 Root Mean Square Error 

The root mean square error (RMSE) is defined as 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑜𝑏𝑠 𝑖−𝑥𝑚𝑜𝑑𝑒𝑙 𝑖)

2𝑛
𝑖=1

𝑛
  (3.20) 

This calculation will give the difference in meters between the original bathymetric and 

reconstructed signals which will allow for the comparison between the FFT and sparser 

basis functions. 

The following MATLAB functions were used for the computation of the FFT and 

wavelets: 

 fft/ifft, where ifft is the inverse Fast Fourier Transform. 

 cwtft/icwtft: Continuous Wavelet Fourier Transform and icwtft is its 

inverse.  Note that the cwtft is the required command if an inverse 

transform is required, per Simulink documentation with the reason given 
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is that computation of continuous wavelets and their inverses are too 

computationally demanding via convolution.  Therefore the computations 

are made in the Fourier domain for speed.  The non-Fourier method 

command for cwt’s is “cwt.”  An inverse cannot be computed for the cwt 

utilizing convolutions in MATLAB. 

 dwt/idwt, where dwt is the Discrete Wavelet Transform and idwt is the 

inverse Discrete Wavelet Transform. 
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CHAPTER IV – RESULTS 

4.1 Initial RMS Error Test 

The first test was the comparison of RMSE for a few different wavelet functions 

with the FT.  The first test utilized a simple function, in this case the step function.  

MATLAB provided a built-in function to create this: “heaviside.m.”  Also, a small data 

set was taken from the Southern East Pacific Rise, utilizing only one longitudinal value (-

108 West) and moving across latitudinally.  The MATLAB “fft” function will utilize all 

coefficients.  As such, reconstruction of the original bathymetric signal utilizing the “fft” 

and “ifft” functions result in a near identical signal reconstruction.  Therefore, utilizing 

the example located in the MATLAB “fft” documentation and the definition of the 

Fourier series as a sum of sines and cosines, the signal was able to be constructed term-

by-term with an increasing number of coefficients.  From Duffy, 1998 

 𝑓(𝑥) =
𝑎0

2
+ ∑ 𝑎𝑛𝑐𝑜𝑠 (

𝜋𝑛𝑥

𝐿
)∞

𝑛=1 + 𝑏𝑛𝑠𝑖𝑛 (
𝜋𝑛𝑥

𝐿
)  (4.1) 

where the DC term a0, an and bn are the Fourier coefficients.  These coefficients 

were calculated directly utilizing the “fft” MATLAB function.  Due to the locality of 

wavelets, a direct comparison of RMSE between them and the FT is not possible unless 

the FT is windowed due to the global nature of the fft.  MATLAB provided the 

“hamming” function to accomplish this.  Afterwards, the RMSE of the original and 

reconstructed signals was calculated for the FT, MHW and the first six Daubechies 

wavelets.  Their RMSE was calculated and then were plotted alongside each other for 

comparison. 
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Figure 4.1 RMSE of the FT, MHW and DB1 wavelets. 

 

Figure 4.1 depicts only three transforms: the Fourier, MHW and db1 wavelet.  

The plot demonstrates that both the continuous and discrete wavelets outperformed the 

FT, resulting in a lower RMSE while utilizing fewer coefficients to compute the signal 

reconstruction.  Notably, the db1 wavelet revealed a dramatic drop in RMSE with only a 

slight increase in the number of coefficients.  A subset of the Southern East Pacific Rise 

(SEPR) sample data set was tested next.  Figure 4.2 similarly demonstrated the 

effectiveness of wavelets at producing a lower RMSE with fewer coefficients, which 

translates into a more economical reconstruction of the signal.  In figure 4.2, only the FT 

and Daubechies wavelets (1-6) are shown. 
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Figure 4.2 FFT Reconstruction of a Step-Function 

Note: This shows the FFT reconstruction of a step function compared to each of the six mentioned discrete wavelet transforms with 

respect to RMSE. 

 

The reconstruction of the signal with only fifty terms demonstrates the inefficiency of the 

FT and its tendency to overshoot.  This is the Gibbs phenomenon.  A few selected 

discrete wavelets utilized the same number of coefficients and did not have the overshoot 

issues of the FT.  Figure 4.3, below, depicts the reconstruction of the step function. 
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Figure 4.3 Reconstruction of a Step Function via the FFT and Continuous and Discrete 

Wavelets. 

Note: This shows the reconstruction of the step function utilizing 50 coefficients for the FT, MHW, the Haar wavelet and three 

Daubechies wavelets. 

 

A 1D-bathymetric signal was tested utilizing the same methodology.  Whereas the Gibbs 

phenomenon is not easily discernible for this particular case, the comparison of RMSE 

gives insight into the efficiency of wavelets over the FT.  Figure 4.4 gives a comparison 

of the MHW and the FT.  Although, there is little difference in their evaluated RMSE, the 

MHW slightly outperformed the FT.  The reason for the MHW not having a significant 

advantage in recreating the signal could be attributed to this particular wavelet’s 

smoothing function.  It is possible that too much detail is removed during the 
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reconstruction process.  However, the discrete wavelet cases did demonstrate a clear 

advantage over the FT (see figure 4.5). 

 

 

Figure 4.4 1D Bathymetric Signal, MHW vs. FFT. 

Note: This plot demonstrates the slight advantage of the MHW over the FT in a 1D bathymetric signal reconstruction through 

comparison of their RMSE. 
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Figure 4.5 1D Bathymetric Signal, DB Wavelets vs. FFT 

Note:  This demonstrates the clear advantage of six selected Daubechies wavelets over the FT in a 1D bathymetric signal 

reconstruction through comparison of their RMSE. 

 

4.2 Noise 

As it makes sense that noise will invariably be included in any raw data set, a 

simple de-noising test was conducted to determine which transform, FFT, CWT and 

Discrete Wavelet Transform (DWT) would perform best at removing noise to achieve a 

better representation of the signal.  The aforementioned SEPR was utilized.  Random 

noise was added until the original signal was sufficiently hidden.  The signal was then 

transformed and then transformed back via the respective inverse transforms.  The FFT 

reconstruction did not remove any discernable noise.  Convolutions were not used here, 

though will be addressed later in the dissertation.  However, continuous wavelets are such 
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that their nature has a built in filter.  Figure 4.6 shows that the FFT reconstruction is 

nearly identical to the noisy signal as all coefficient terms were utilized. 

 

 

Figure 4.6 Noise removal of a signal via FFT filtering. 

 

The MHW, however, due to its smoothing function was able to remove much of the noise 

while losing only a minimal amount of detail of the actual noise free signal.  This 

method, then, is less of true filter and more of smoothing function.  See Figure 4.7 below. 
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Figure 4.7 Noise removal via MHW filtering. 
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Figure 4.8 Depiction of the DWT to remove and add noise from and to a signal. 

 

In order to better demonstrate the ability of wavelets to remove noise from a 

signal, a simple square wave function is used as an example.  As can be seen in figure 

4.9, both a continuous wavelet (MHW) and a discrete wavelet (db1) were able to remove 

noise while the FFT did not.  Although it is not shown here, discrete wavelets do have a 

superior method of noise removal via a tree-like method where one can add as much 

detail coefficients to the absolute coefficients as desired.  This capability is well 

documented function in MATLAB. 
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Figure 4.9 Noise Removal for a Step Function by the FFT, db1 and MHW 

 

4.3 Feasibility of an Analytical Solution of the CWT of the Gravitational 

Potential 

Prior to testing the applicability of the CWT in bathymetric prediction from 

satellite altimetry outright, an analytical solution in accordance with the methods of 

Parker was first considered.  However, due to the extra complexity of the CWT in 

comparison to the FT, a simple test case was considered:  the aforementioned potential of 

the monopole. 

Recall: 

 𝑈(𝑃) =
𝛾𝜇

𝑥
 (4.2) 
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The MHW (1D) will be applied 

 𝜓(𝑥) = ∫
2

√3𝑠𝜋
1

4⁄
(1 −

𝑥2

𝑠2) 𝑒
−𝑥2

2𝑠2⁄∞

−∞
  (4.3) 

Taking the CWT (MHW) of the monopole potential results in 

 𝜓[𝑈(𝑥)] = ∫
𝛾𝜇

𝑥

∞

−∞

2

√3𝑠𝜋
1

4⁄
(1 −

𝑥2

𝑠2) 𝑒
−𝑥2

2𝑠2⁄
  (4.4) 

After distribution and removal of constants outside the transform, this integral may be 

broken up into two parts 

 𝜓[𝑈(𝑥)] =
2𝛾𝜇

√3𝑠𝜋
1

4⁄
[∫

𝑒
−𝑥2

2𝑠2
⁄

𝑥
𝑑𝑥 − ∫

𝑥2𝑒
−𝑥2

2𝑠2
⁄

𝑥
𝑑𝑥

∞

−∞

∞

−∞
]  (4.5) 

After integration by parts, the second integral can be shown to converge to zero.  The first 

integral, though, results in an Exponential integral (Ei) function, thus the CWT of the 

monopole potential results in the following 

 𝜓[𝑈(𝑥)] =
𝛾𝜇

√3𝑠𝜋
1

4⁄
(𝐸𝑖 (

−𝑠𝑥2

2
))  (4.6) 

as computed in Mathematica.  Although, this is a closed form solution, it is not 

necessarily useful.  As such, another attempt was made at solving the problem using the 

methods of Argueso et al., (2006).  This method calls for the FT of the MHW.  Their 

procedure for this calculation is outlined below in detail. 

The FT of the MHW is set forth as 

 ℱ[𝜓𝑛(𝑥)] = 𝜓𝑛̂(𝑘) = ∫ 𝑑𝑥 𝑥 𝐽0(𝑘𝑥)𝜓𝑛(𝑥)
∞

0
,  (4.7) 

where 𝜓𝑛(𝑥) =
(−1)𝑛

2𝑛𝑛!
∆𝑛𝜑(𝑥), 𝜑(𝑥) =

𝑒
−𝑥2

2⁄

2𝜋
 and J0 is the Bessel function. 

Note:  𝜑(𝑥) =
𝑒

−𝑥2
2⁄

2𝜋
 is the 2-D Gaussian. 
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We now have 

 ℱ[𝜓𝑛(𝑥)] = ∫ 𝑑𝑥 𝑥 𝐽0(𝑘𝑥)
(−1)𝑛

2𝑛𝑛!
 ∆𝑛

𝑒
−𝑥2

2⁄

2𝜋
,

∞

0
  (4.8) 

where ∆𝑛 is the derivative function.  For the R2 case where n=1 (standard MHW), 

∆𝑛 becomes the second derivative which applied to the 2-D Gaussian results in 

 
𝑑2

𝑑𝑥2
[𝑒

−𝑥2

2⁄ ] = 𝑥2𝑒
−𝑥2

2⁄ − 𝑒
−𝑥2

2⁄   (4.9) 

Thus, 

 ℱ[𝜓1(𝑥)] = ∫ 𝑑𝑥 𝑥 𝐽0(𝑘𝑥)
−1

2
(

𝑥2𝑒
−𝑥2

2⁄ −𝑒
−𝑥2

2⁄

2𝜋
)

∞

0
  (4.10) 

Removing the constants to outside of the integral and further separating into two integrals 

gives 

 ℱ[𝜓1(𝑥)] =
−1

4𝜋
[∫ 𝑑𝑥 𝑥 𝐽0(𝑘𝑥) (𝑥2𝑒

−𝑥2

2⁄ ) − ∫ 𝑑𝑥 𝑥 𝐽0(𝑘𝑥) (𝑒
−𝑥2

2⁄ )
∞

0

∞

0
] 

  (4.11) 

Applying the gravitational potential of the monopole results in 

 ℱ[𝜓1(𝑥)] =
−1

4𝜋
[∫ 𝑑𝑥 𝑥 𝐽0(𝑘𝑥) (𝑥 𝑒

−𝑥2

2⁄ ) − ∫ 𝑑𝑥 𝑥 𝐽0(𝑘𝑥) (
𝑒

−𝑥2
2⁄

𝑥
)

∞

0

∞

0
] 

  (4.12) 

Utilizing, Tables of Integral Transforms (Bateman, 1954) a solution to the above 

integrals was found.  From page 9 of volume 2 

 𝑥2𝜇−3
2⁄ 𝑒−𝑥2

2⁄  𝑅𝑒 𝜇 > 0 (4.13) 

Per the table, the solutions are Hankel transforms; and, for the last integral setting μ = 1 

gives the result 

 Γ(1)𝑦
1

2⁄  1𝐹1 (1; 1;−
1

2
𝑦2) , 𝑦 > 0 (4.14) 



 

46 

For the first integral setting μ = 2 gives the result 

 2 Γ(2)𝑦
1

2⁄  1𝐹1 (2; 1;−
1

2
𝑦2) , 𝑦 > 0 (4.15) 

Thus, application of the Fourier transformed standard MHW to the potential of a 

monopole resulted in 

 [
−1

2𝜋
 Γ(2)𝑦

1
2⁄  1𝐹1 (2; 1;−

1

2
𝑦2)] − [

−1

4𝜋
Γ(1)𝑦

1
2⁄  1𝐹1 (1; 1;−

1

2
𝑦2)] , 𝑦 >

0  (4.16) 

 

4.4 Application of the FT(MHW) to the Gravitational Potential 

Robert Parker’s 1972 paper, “The Rapid Calculation of Potential Anomalies,” 

demonstrated the effectiveness of Fourier Transforms (FT) to compute gravitational or 

magnetic potential anomalies caused by uneven, non-uniform layers of material, in 

particular where large data sets are available.  Parker, applied the FT to the Earth’s 

gravitational potential and calculated an analytical solution.  The importance of this 

finding is the relationship of the gravitational potential anomaly and sea-floor 

topography.  As outlined by the 1997 Sandwell and Smith paper, “Marine Gravity 

Anomaly from Geosat and ERS 1 Satellite Altimetry,” a six-step process demonstrated 

how satellite altimetry measurements of marine geoid height is inverted into seafloor 

topography.  The FT is not without issue, though.  FT basis functions are local in 

wavenumber but not in space.  Seafloor features, however, exhibit spatial locality, 

meaning that that the amplitude goes to zero away from the object.  Thus, the FT of 

seafloor topography will have a wide spectrum of wavenumber components, requiring 

computation of many Fourier coefficients, because the components have constant 
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amplitude from −∞ to +∞.  Small changes in the transform will produce changes 

everywhere in the spatial domain (Vidakovic & Mueller, 1991).  As a result, the root-

mean-square (RMS) error in the transform will eventually reach a lower limit that is 

pragmatically unreducible without the use of a different transformation method.  Finally, 

the Gibb’s phenomenon is well known to be an issue with the FT, whereas with wavelets, 

Gibbs is always lower than that of the FT; and, a wavelet can be selected such that this 

phenomenon does not occur (Rasmussen, 1993).  The aim of this paper is to investigate 

the feasibility of sparser base functions, specifically the Mexican Hat Wavelet (MHW) or 

Ricker wavelet. 

Exhibiting locality in both space and time (Vidakovic & Mueller, 1991), the 

concept of wavelets derived from the attempt to localize the FT through windowing 

(Daubechies, 1992).  Further, many different function classes are more compactly 

represented by wavelets than FTs, such as functions with discontinuities and sharp spikes 

(Vidakovic & Mueller, 1991).  Rather than simply apply numerical techniques such as 

from the MATLAB wavelet toolbox, an attempt to analytically model the Wavelet 

Transform (WT) of the gravitational potential is made.  A few considerations were made 

to determine which wavelet family should be applied.  First, the occurrence of seamounts 

throughout the ocean was considered due to their localized behavior, e.g. steep incline.  

The MHW name comes from its resemblance to a Mexican sombrero which is very 

similar in shape to a seamount.  Second, as the likelihood that a pure analytical solution 

of the wavelet approach is low, other calculation techniques had to be considered.  

Argueso et al, (2006), were able to use the MHW family to determine point source 

detection in cosmic microwave background radiation.  To do this, they took the FT of the 
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MHW.  This method allowed for an analytical solution due to the relatively simpler FT.  

It was possible to do this, because the MHW is circularly symmetric.  A 2-D FT of a 

function with circular symmetry will result in a Hankel Transform of order zero 

(Piessens, 2000).  As many of these solutions are known, this method is a sound starting 

point for a solution.  For these reasons, this paper examines the MHW over non-circularly 

symmetric wavelets such as the Haar and Daubechies family. 

As with Parker, (1972), the gravitational potential at some position r0 due to a 

layer is defined as: 

 𝑈(𝐫 0) = γ𝜌 ∫ 𝑑𝑆
𝐷

∫
𝑑𝑧

|𝐫0−𝐫|

ℎ(𝑟)

0
  (4.17) 

where γ is the Newtonian gravitational constant and ρ, per Parker, is a constant density. 

Assumptions: 

 Define: 𝑧 = 0 to be the mean seafloor within a domain of diameter D << diameter 

of the earth and is centered at the origin of the 𝑥 − 𝑦 plane.  Further, 𝑅 ≡ 𝐷/2. 

 Any influence of gravitational source outside R to be zero (the layer disappears 

for |𝐫 | > R. 

 

(The reader is advised to refer back to figure 2.3 for a depiction of the geometry, if 

required.)  We differ here from Parker by applying the MHW as opposed to the FT. 

 𝔚[𝑈(𝐫 0)] = γ𝜌 ∫ 𝑑𝑆
𝐷

∫ 𝑑𝑧
ℎ(𝑟)

0
∫ (𝑟0

2 − 1)𝑒
−𝑟0

2

2
𝑑𝑆0

|𝐫0−𝐫|

∞

−∞
  (4.18) 

As no analytical solution was apparent via traditional integration methods, the choice was 

made to take the FT of the MHW.  Recall equation 4.10 and replace x with r0: 
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 ℱ[𝜓1(𝑟)] = ∫ 𝑑𝑟0 𝑟0 𝐽0(𝑘𝑟0)
−1

2
(

𝑒
−𝑟0

2

2
⁄

(1−𝑟0
2)

2𝜋
)

∞

0
  (4.19) 

Applying to the gravitational potential with constant density, as with Parker, results in 

 ℱ[𝜓1(𝑟0)] =

∫ 𝑑𝑟0 𝑟 𝐽0(𝑘𝑟0)
−1

2
(

𝑒
−𝑟0

2

2
⁄

(1−𝑟0
2)

2𝜋
)

∞

0
∫ 𝑑𝑥𝑑𝑦
𝐷

∫ 𝑑𝑧
ℎ(𝑟)

0

1

|𝑟0−r|
 (4.20) 

Rearranging we have, 

 ℱ[𝜓1(𝑟0)] =
−γ𝜌

4𝜋
∫ 𝑑𝑥𝑑𝑦
𝐷

∫ 𝑑𝑧
ℎ(𝑟)

0
∫ 𝑑𝑟0 𝑟0 𝐽0(𝑘𝑟0)

𝑒
−𝑟0

2

2
⁄

(1−𝑟0
2)

|𝑟0−r|

∞

0
 (4.21) 

Breaking up the last integral into two parts results in 

 ℱ[𝜓1(𝑟0)] =
−γ𝜌
4𝜋

∫ 𝑑𝑥𝑑𝑦
𝐷

∫ 𝑑𝑧
ℎ(𝑟)

0
[−∫ 𝑑𝑟0 𝑟0 𝐽0(𝑘𝑟0) (

𝑟0
2𝑒

−𝑟0
2

2
⁄

|𝑟0−r|
) +

∞

0

∫ 𝑑𝑟0 𝑟0 𝐽0(𝑘𝑟0) (
𝑒

−𝑟0
2

2
⁄

|𝑟0−r|
)

∞

0
]  (4.22) 

As we are integrating with respect to r0, then r may be treated as a constant.  As such, the 

result of the magnitude of (r0-r) is the absolute value of (r0-r). 

 

From (Debnath, 1995), Parseval’s Relation for Hankel transforms states 

 ∫ 𝐹𝜐(𝑠)
∞

0
𝐺𝜐(𝑠)𝑠 𝑑𝑠 =  ∫ 𝑟 𝑔(𝑟)

∞

0
𝑓(𝑟) 𝑑𝑟  (4.23) 

where 𝐹𝜐(𝑠) = ℋ𝑎𝜐{𝑓(𝑟)} and 𝐺𝜐(𝑠) = ℋ𝑎𝜐{𝑔(𝑟)} , (4.24-4.25) 

Where script “H” notes the Hankel transform.  Utilizing table 12.2 of Bracewell (1965) 

and Parseval’s Relation, equation 4.22 becomes slightly less daunting. 

Note:  the Hankel Transform of 1/r is 1/k.  Thus, it is true that the Hankel Transform of 

1

𝑎𝑏𝑠(𝑟0−𝑟)
 is 

1

𝑎𝑏𝑠(𝑘−𝑟)
. 
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Further, from Bracewell table 12.2, 

 𝐹𝜈(𝑘) = ℋ𝑎𝜐 {𝑟0
2𝑒

−𝑟0
2

2
⁄ } = 2(2 − 𝑘2)𝑒

−𝑘2

2⁄   (4.26) 

 𝐺𝜐(𝑘) = ℋ𝑎𝜐 {
1

|(𝑟0−𝑟)|
} =

1

|(𝑘−𝑟)|
  (4.27) 

 𝑄𝜐(𝑘) = ℋ𝑎𝜐 {𝑒
−𝑟0

2

2
⁄ } = 𝑒

−𝑘2

2⁄   (4.28) 

Applying Parseval’s Relation: 

 −∫ 𝑑𝑟0 𝑟0 𝐽0(𝑘𝑟0
) (

𝑟0
2
𝑒

−𝑟0
2

2
⁄

𝑎𝑏𝑠(𝑟0−r)
) + ∫ 𝑑𝑟0 𝑟0 𝐽0(𝑘𝑟0

) (
𝑒
−𝑟0

2

2
⁄

𝑎𝑏𝑠(𝑟0−r)
) = − ∫

2(2−𝑘
2)𝑒

−𝑘2
2⁄

𝑎𝑏𝑠(𝑘−r)

∞

0

∞

0
𝑘𝑑𝑘

∞

0
+ ∫

𝑒
−𝑘2

2⁄

𝑎𝑏𝑠(𝑘−r)
𝑘𝑑𝑘

∞

0
 

  (4.29) 

As noted by Papoulis (1965), it is well known that the more general form of the Gaussian 

Integral 

 ∫ 𝑒−𝑎𝑥2∞

−∞
𝑑𝑥 = √

𝜋

𝑎
  (4.30) 

Similarly from (C. P. Nicholas, 1950), we can show that 

 ∫ 𝑒−𝑥2∞

0
𝑑𝑥 =

√𝜋

2
  (4.31) 

The proof by Nichols is shown in Appendix E. 

Alternatively, the Gaussian function is an even function 

 𝑓(𝑥) = 𝑒−𝑥2
  (4.32) 

That is, f(x) = f(-x), or f(x) – f(-x) = 0. 

So, we can show that indeed 

 ∫ 𝑒−𝑥2∞

−∞
𝑑𝑥 = 2∫ 𝑒−𝑥2∞

0
𝑑𝑥 =  √𝜋   

  (4.33) 

And thus it would follow that 
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 ∫ 𝑒−𝑎𝑥2∞

−∞
𝑑𝑥 = 2∫ 𝑒−𝑎𝑥2∞

0
𝑑𝑥 = √

𝜋

𝑎
  (4.34) 

To solve the more general form of the Gaussian integral (equation 4.35 below), 

differentiation under the integral is applied with respect to the constant “a”. 

We will set n=1 and a=1/2 for equation 4.35, 

 ∫ 𝑥2𝑛𝑒−𝑎𝑥2
𝑑𝑥

∞

0
= (−

𝑑

𝑑𝑎
)∫ 𝑒−𝑎𝑥2

𝑑𝑥
∞

0
  (4.35) 

Recall from equation 4.32, the solution to the Gaussian integral from zero to infinity 

equals the square root of pi over “a” times one-half.  So, we have 

 ∫ 𝑥2𝑒−𝑎𝑥2
𝑑𝑥

∞

0
= (−

𝑑

𝑑𝑎
) (

1

2
√

𝜋

𝑎
) =

√2𝜋

2
  (4.36) 

Equivalently from (Abramowitz, 1964) or (Spiegel, 1968), 

 ∫ 𝑥2𝑛𝑒
−𝑥2

𝑎2⁄
 𝑑𝑥 =

∞

0 √𝜋
(2𝑛)!

𝑛!
(
𝑎

2
)
2𝑛+1

  (4.37) 

And with n=1 and 𝑎 = √2, the same solution from equation 4.36 is reached. 

 ∫ 𝑥2𝑒
−𝑥2

√2
2⁄
𝑑𝑥

∞

0
=

√2𝜋

2
  (4.38) 

4.4.1 Case 1:  r=0 

For r=0 and 𝑘 ∈ ℝ 𝑎𝑛𝑑 𝑘 > 0, 
𝑘

𝑎𝑏𝑠(𝑘−𝑟)
= 1.  That is, the source point resides on the z-

axis (see figure 1).  Thus, 

−2∫ 2(2 − 𝑘2)𝑒
−𝑘2

2⁄  𝑑𝑘
∞

0

+ ∫ 𝑒
−𝑘2

2⁄
∞

0

 𝑑𝑘 = 

 −4∫ 𝑒
−𝑘2

2⁄  𝑑𝑘
∞

0
+ 2∫ 𝑘2𝑒

−𝑘2

2⁄  𝑑𝑘
∞

0
+ ∫ 𝑒

−𝑘2

2⁄
∞

0
 𝑑𝑘 = (−

√2𝜋

2
)  (4.39) 

Thus, with the integrals converging to a numerical answer, equation 4.22 resolves to: 

 ℱ[𝜓1(𝑟0)] =
γ𝜌(√2𝜋)

8𝜋
∫ 𝑑𝑥𝑑𝑦
𝐷

∫ 𝑑𝑧
ℎ(𝑟)

0
  (4.40) 
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Evaluating the integral with respect to z thus results in 

 ℱ[𝜓1(𝑟0)] =
γ𝜌 ℎ(𝑟)(√2𝜋)

8𝜋
∫ 𝑑𝑥𝑑𝑦
𝐷

  (4.41) 

The power of the FT of the MHW thus allows for the convergence of otherwise difficult 

integrals to a simple integral calculation of the wavelet transform of the gravitational 

potential. 

 

Prior to attempting a solution to the right-hand-side of equation 4.29, either analytically 

or numerically, we can study its behavior by varying “r.” 

 

4.4.2 Case 2:  r = k 

∫
𝑒−𝑘2

𝑘2

𝑎𝑏𝑠(𝑘−𝑟)
∙ 𝑘 𝑑𝑘

∞

0
= ∫

𝑒−𝑘2

𝑎𝑏𝑠(𝑘−𝑟)

∞

0
∙ 𝑘 𝑑𝑘 = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑  (4.42) 

4.4.3 Case 3:  r sufficiently larger than k 

∫
𝑒−𝑘2

𝑘2

𝑎𝑏𝑠(𝑘−𝑟)
∙ 𝑘 𝑑𝑘

∞

0
= ∫

𝑒−𝑘2

𝑎𝑏𝑠(𝑘−𝑟)

∞

0
∙ 𝑘 𝑑𝑘 = 0    (4.43) 

Equation 4.43 vanishes as n is odd and the function is an odd function (Conrad).  We may 

thus assume that the behavior of equation 4.29 will give results for only certain values of 

“r.” 
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Figure 4.10 Behavior of equation 28 as “r” varies. 

 

As is seen in figure 4.10, our assumption of the behavior of the general case for 

equation 4.35 is valid.  There is only a small range of values of “r” that yield a value 

greater than zero and that a discontinuity exists where k=r.  Now looking at the behavior 

of the full set of integrals on the right hand side of equation 4.29 with respect to “r”, we 

see that this trend holds.  See figure 4.11 below. 
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Figure 4.11 Behavior of equation 15 with respect to “r.” 

 

4.4.4 Use the FT(MHW) to show end-to-end Prediction for Case r=0: 

As with the Fourier solution that shows end-to-end prediction of bathymetry, we 

will similarly follow the procedure, however, with the FT of the MHW. 

Recall from Moritz: 

 Δ𝑔 = −
𝜕𝑢(𝑥,0)

𝜕𝑧
 and  

𝜕∆𝑔

𝜕𝑧
+ 𝑔0 [

𝜕𝜂(𝑥)

𝜕𝑥
+

𝜕𝜉(𝑥)

𝜕𝑦
] (4.44) 

Now, define both 𝜂(𝑥) and 𝜉(𝑥) utilizing equations (A3 and A4) of Sandwell and Smith 

(1997). 

 𝜂(𝑥) ≅ −
1

𝑔0

𝜕(𝛾𝜌 ∫ 𝑑𝑥𝑑𝑦𝐷 ∫ 𝑑𝑧
ℎ(𝑟)

0
1

|𝐫 𝟎−𝐫 |
)

𝜕𝑥
=≅

γ𝜌 ℎ(𝑟)(√2𝜋)

8𝜋𝑔0
∫ 𝑑𝑦
𝐷

 (4.45) 

 𝜉(𝑥) ≅ −
1

𝑔0

𝜕(𝛾𝜌∫ 𝑑𝑥𝑑𝑦𝐷 ∫ 𝑑𝑧
ℎ(𝑟)

0
1

|𝐫 𝟎−𝐫 |
)

𝜕𝑦
=≅

γ𝜌 ℎ(𝑟)(√2𝜋)

8𝜋𝑔0
∫ 𝑑𝑥
𝐷

 (4.46) 
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Recall from Sandwell and Smith (1997) that 

𝜕

𝜕𝑥
|𝑘⃗ | =

𝜕

𝜕𝑥
(𝑘𝑥

2 + 𝑘𝑦
2)

1
2⁄ =

1

2
(𝑘𝑥

2 + 𝑘𝑦
2)

1
2⁄ ∗ 2𝑘𝑥 =

𝑘𝑥

|𝑘⃗ |
 (4.47) 

Similarly,  
𝜕

𝜕𝑦
|𝑘⃗ | =

𝑘𝑦

|𝑘⃗ |
 (4.48) 

𝔉[𝜓1(𝑈0)] = −𝑔0 [
𝜕𝜂(𝑥)

𝜕𝑥
+

𝜕𝜉(𝑥)

𝜕𝑦
] (4.49) 

Expanding 

 
𝐺𝜌 ℎ(𝑟)(√2𝜋)

8𝜋
∫ 𝑑𝑥𝑑𝑦
𝐷

 =
𝑔0γ𝜌 ℎ(𝑟)(√2𝜋)

8𝜋|𝑘|
[𝑘𝑥 ∫ 𝑑𝑦

𝐷
 + 𝑘𝑦 ∫ 𝑑𝑥

𝐷
]  (4.50) 

Now cancelling like terms results in 

 ∫ 𝑑𝑥𝑑𝑦
𝐷

=
𝑔0

|𝑘|
[𝑘𝑥 ∫ 𝑑𝑦

𝐷
 + 𝑘𝑦 ∫ 𝑑𝑥

𝐷
] (4.51) 

Equation 4.51 thus shows the end-to-end prediction of bathymetry, similar to Sandwell 

and Smith, however, utilizing the FT of the MHW for the case of r=0. 

 

4.4.5 General Case 

As an analytical solution is not plain to see, a numerical integration method is 

applied in order to determine a general case solution.  Due to the Gaussian in the 

integrands as well other functions, “k” and “k3”, the 2 point Gauss-Hermite Quadrature 

rule was chosen.  The formula is as follows: 

 ∫ 𝑒−𝑥2
𝑓(𝑥)𝑑𝑥 = ∑ 𝑤𝑖𝑓(𝑥𝑖)

2
𝑖=1

∞

−∞
  (4.52) 

where, 

 𝑤𝑖 =
2𝑛+1𝑛!√𝜋

[𝐻𝑛
′ (𝑥𝑖)]

2   (4.53) 

and 
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 𝐻𝑛(𝑥) = (−1)𝑛𝑒𝑥2 𝑑𝑛

𝑑𝑥𝑛 (𝑒−𝑥2
) and 𝐻𝑛

′ =
𝑑

𝑑𝑥
(𝐻𝑛(𝑥)) (4.54, 4.55) 

In order to accommodate for the addition of the constant (1/2) in the exponential, 

equation 4.53 is modified per equation 4.30 to be 

 𝑤𝑖 =
2𝑛+1𝑛!√

𝜋

2

[𝐻𝑛
′ (𝑥𝑖)]

2   (4.56) 

Further, as we are integrating from 0 to infinity but the Gauss-Hermite formula is from 

negative infinity to positive infinity, a factor of ½ is added to the computed solution.  

This is valid as mentioned previously because the Gaussian function is even. 

Using equation 4.47, we solve for H2(x): 

 𝐻2(𝑥) = 𝑒
𝑥2

2⁄  
𝑑2

𝑑𝑥2 (𝑒
−𝑥2

2⁄ ) = 𝑥2 − 1  (4.57) 

Setting H2(x) = 0, xk = ±1.  Now we solve for wi: 

 𝑤𝑖 =
22+1 2!√𝜋

[𝐻𝑛
′ (𝑥𝑖)]

2   (4.58) 

where 

 𝐻𝑛
′ =

𝑑

𝑑𝑥
[𝑥2 − 1] = 2𝑥  (4.59) 

Thus, 

 𝐻𝑛
′ (𝑥𝑖) = 2(±1) = ±2  (4.60) 

The solution to equation 4.58 is thus, 

 𝑤𝑖 =
22+1 2!√𝜋

[2]2
= 4√

𝜋

2
  (4.61) 

 𝑤1(𝑓(𝑥1) + 𝑓(𝑥2))  (4.62) 

We substitute xk = plus and minus 1, respectively into equation 4.62 and multiply the 

result by wi, After changing variables from x to k, 
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 ∫ 𝑒
−𝑘2

2⁄  
𝑘

𝑎𝑏𝑠(𝑘−𝑟)
𝑑𝑘 ≅ 4√

𝜋

2
(

1

𝑎𝑏𝑠(1−𝑟)
−

1

𝑎𝑏𝑠(−1−𝑟)
)

∞

−∞
  (4.63) 

We similarly obtain the same result utilizing the computed wi and Hn for the integral 

below 

 ∫ 𝑒
−𝑘2

2⁄  
𝑘3

𝑎𝑏𝑠(𝑘−𝑟)
𝑑𝑘

∞

−∞
  (4.64) 

We now have an estimate to the RHS of equation 4.29 as 

 −2√
𝜋

2
(

1

𝑎𝑏𝑠(1−𝑟)
−

1

𝑎𝑏𝑠(−1−𝑟)
) , 𝑓𝑜𝑟 𝑘 ∈ ℝ 𝑎𝑛𝑑 𝑘 > 0  (4.65) 

 

4.4.5.1 Use the FT(MHW) to show end-to-end Prediction for the General Case: 

For the general case with the conditions of equation 4.65, equation 4.22 becomes: 

 ℱ[𝜓1(𝑟0)] =
γ𝜌(

1

𝑎𝑏𝑠(1−𝑟)
−

1

𝑎𝑏𝑠(−1−𝑟)
)ℎ(𝑟)

2𝜋
√

𝜋

2
∫ 𝑑𝑥𝑑𝑦
𝐷

  (4.66) 

As such, 

𝜂(𝑥) ≅ −
1

𝑔0

𝜕(𝛾𝜌 ∫ 𝑑𝑥𝑑𝑦𝐷 ∫ 𝑑𝑧
ℎ(𝑟)

0
1

|𝐫 𝟎−𝐫 |
)

𝜕𝑥
=

−γ𝜌(
1

𝑎𝑏𝑠(1−𝑟)
−

1

𝑎𝑏𝑠(−1−𝑟)
) ℎ(𝑟)

2𝜋𝑔0
√

𝜋

2
∫ 𝑑𝑦
𝐷

  (4.67) 

 𝜉(𝑥) ≅ −
1

𝑔0

𝜕(𝛾𝜌∫ 𝑑𝑥𝑑𝑦
𝐷 ∫ 𝑑𝑧

ℎ(𝑟)

0
1

|𝐫 𝟎−𝐫 |
)

𝜕𝑦
=

−γ𝜌(
1

𝑎𝑏𝑠(1−𝑟)
−

1

𝑎𝑏𝑠(−1−𝑟)
) ℎ(𝑟)

2𝜋𝑔0
√

𝜋

2
∫ 𝑑𝑥
𝐷

  (4.68) 

and equation 4.51 remains: ∫ 𝑑𝑥𝑑𝑦
𝐷

=
𝑔0

|𝑘|
[𝑘𝑥 ∫ 𝑑𝑦

𝐷
 + 𝑘𝑦 ∫ 𝑑𝑥

𝐷
] 

4.5 Simple numerical examples:  The potentials for the monopole and cone. 
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As a proof of concept for the utility of the MHW versus the FT, two simple potentials, 

for the monopole and cone, were numerically transformed with each method.  Their 

RMSE was then computed and compared.  For the FT, a windowed FT was again used in 

order to compare step by step with the wavelets.  Further, a few other wavelets were also 

used to transform the potentials, namely db1 (discrete) and the Paul wavelet (continuous).  

The results were similar to those determined for the step function (Figure 4.1). 

 

 

Figure 4.12 Comparison of computed RMSEs for the monopole potential. 

 

Again, the wavelet transforms significantly outperformed the FT.  Each of the 

three wavelets used, red (MHW), fuchsia (Paul) and blue (db1) were able to lower RMSE 

much faster with a smaller number of coefficients used.  Similarly for the cone potential, 

these three wavelet transforms outperformed the FT.  In this case, however, the wavelets 
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did not have an appreciable difference between their respective RMSEs.  Figure 4.13 

depicts the geometry of the cone and 4.14 shows the comparison of the four transforms.   

 

Figure 4.13 Geometry of a Cone 
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Figure 4.14 Comparison of computed RMSEs for the potential of a cone. 

 

4.6 Numerical Solution to the Morlet wavelet transform applied to the Newtonian 

Potential 

 

 𝜓(𝑥0) = 𝜋
−1

4⁄  𝑒𝑖𝑠𝜔0
1 𝑥𝑒

−𝑥2

2𝑠2⁄
 (4.69) 

where 𝜔0
1 is frequency.  This value is a constant and the default value used by 

Mathworks, is set to 6.  The value was coded as a soft value, however, the recommended 

default was used in the numerical solution code.  Recall now equation 2.37: 

ℱ [𝑈(𝐫 0)]  = γρ ∫𝑑𝑆

𝐷

∫ 𝑑𝓏

ℎ(𝐫 )

0

∫
𝑒𝑖𝑘⃗ ∙((𝑤0+𝓇)𝓇̂

(𝑤0
2 + 𝑎0

2)1/2

𝑋

𝑤0𝑑𝑤0𝑑𝜗 
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The same equation is utilized, however, the Morlet wavelet is applied and thus the 

numerator in the final integral is appropriately replaced in accordance with equation 4.69. 

 W [𝑈(𝐫 0)]  = γρ ∫ 𝑑𝑆
𝐷

∫ 𝑑𝓏
ℎ(𝐫 )

0
∫

𝜋
−1

4⁄  𝑒𝑖𝑠𝜔0
1 𝑥𝑒

−𝑥2

2𝑠2
⁄

(𝑤0
2+𝑎0

2)1/2𝑋
𝑤0𝑑𝑤0𝑑𝜗  (4.70) 

Integrating with respect to υ first, removing the pi constant to outside the remaining 

integrals and combing the two exponentials results in: 

 W [𝑈(𝐫 0)]  =
2πγρ

𝜋
−1

4⁄
∫ 𝑑𝑆
𝐷

∫ 𝑑𝓏
ℎ(𝐫 )

0
∫

 𝑒
𝑖𝑠𝜔0

1 𝑥−𝑥2

2𝑠2
⁄

(𝑤0
2+𝑎0

2)1/2𝑋
𝑤0𝑑𝑤0  (4.71) 

The variable ‘x’ is now replaced with the term(𝑤0 + 𝓇)𝓇̂, yielding 

 W [𝑈(𝐫 0)]  =
2πγρ

𝜋
−1

4⁄
∫ 𝑑𝑆
𝐷

∫ 𝑑𝓏
ℎ(𝐫 )

0
∫

 𝑒
𝑖𝑠𝜔0

1(𝑤0+𝓇)𝓇̂ −
(𝑤0+𝓇)𝓇̂2

2𝑠2
⁄

(𝑤0
2+𝑎0

2)1/2𝑋
𝑤0𝑑𝑤0  (4.72) 

Rearranging the integrals in order to integrate with respect z, (‘a’) gives 

 W [𝑈(𝐫 0)]  =
2πγρ

𝜋
−1

4⁄
∫ 𝑑𝑆
𝐷

∫ ∫ 𝑑𝓏
ℎ(𝐫 )

0

 𝑒
𝑖𝑠𝜔0

1(𝑤0+𝓇)𝓇̂ −
(𝑤0+𝓇)𝓇̂2

2𝑠2
⁄

(𝑤0
2+𝑎0

2)1/2𝑋
𝑤0𝑑𝑤0 (4.73) 

Recall that a0 = z0-z.  The term in the denominator was integrated with respect to z 

utilizing the online tool, Wolfram Alpha.  The result is: 

 ∫
1

(𝑤0
2+𝑎0

2)1/2

ℎ(𝑟 )

0
𝑑𝑎 = 𝑙𝑛 (√𝑤0

2 + 𝑎0
2 + 𝑎0)|

0

ℎ(𝐫 )

 (4.74) 

After replacing a0 with z0-z, and applying the limits we have: 

 W [𝑈(𝐫 0)]  =
2πγρ

𝜋
−1

4⁄
∫ 𝑑𝑆
𝐷

∫ (𝑒
𝑖𝑠𝜔0

1(𝑤0+𝓇)𝓇̂ −
(𝑤0+𝓇)𝓇̂2

2𝑠2⁄
)

𝑋
𝑙𝑛 (√𝑤0

2 + (𝑧0 − ℎ(𝐫 ))2 +

𝑧0 − ℎ(𝐫 ))+𝑙𝑛 (√𝑤0
2 + 𝑧0

2 + 𝑧0)𝑤0𝑑𝑤0  (4.73) 

With no obvious analytical solution to the integral with respect to w0, a numerical 

approach was made utilizing the trapezoidal quadrature rule, per Phillips and Taylor, 

1996.  Although, this particular quadrature technique is not the most accurate (other 
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methods may achieve a higher degree of accuracy), its simplicity in application made it a 

good choice to apply to such a complex problem.  Further, as a very large number of 

terms can be made in a loop in MATLAB, without much impact on calculation time, any 

potential error is rapidly mitigated.  The following solution was entered into a MATLAB 

routine, with the number of terms used based on the size of the dataset, typically greater 

than 80. 

W [𝑈(𝐫 0)] =
2πγρ

𝜋
−1

4⁄
∫ 𝑑𝑆
𝐷

=

1

2
[((−𝑤0)𝑒

𝑖𝑠𝜔0
1(𝑤0+𝓇)𝓇̂ −

(𝑤0+𝓇)𝓇̂2

2𝑠2⁄
) 𝑙𝑛 (√(−𝑤0)2 + (𝑧0 − ℎ(𝐫 ))2 + 𝑧0 − ℎ(𝐫 )) +

𝑙𝑛(√(−𝑤0)2 + 𝑧0
2 + 𝑧0) +

((𝑤0)𝑒
𝑖𝑠𝜔0

1(𝑤0+𝓇)𝓇̂ −
(𝑤0+𝓇)𝓇̂2

2𝑠2⁄
) 𝑙𝑛 (√(𝑤0)2 + (𝑧0 − ℎ(𝐫 ))2 + 𝑧0 − ℎ(𝐫 )) +

𝑙𝑛(√(𝑤0)2 + 𝑧0
2 + 𝑧0) +

2∑ ((−𝑤0)𝑒
𝑖𝑠𝜔0

1(𝑤0+𝓇)𝓇̂ −
(𝑤0+𝓇)𝓇̂2

2𝑠2⁄
) 𝑙𝑛 (√(−𝑤0)2 + (𝑧0 − ℎ(𝐫 ))2 + 𝑧0 −

𝑤0−1
𝑛=−𝑤0+1

ℎ(𝐫 )) + 𝑙𝑛(√(−𝑤0)2 + 𝑧0
2 + 𝑧0)]  (4.74) 

where “s” is scale. 

 

4.7 Numerical Solution to the Paul wavelet transform applied to the Newtonian 

Potential 

 



 

63 

From Torrence and Compo, 1998, we define the Paul wavelet basis function, including 

scale here as: 

 𝜓(𝑥0) =
2𝑚𝑖𝑚𝑚! 

√𝜋(2𝑚)!
(1 − 𝑖𝑥)−(𝑚+1) (4.75) 

where the variable m has a MATLAB default value of 4.  This value was soft-coded into 

the script, however the default value was used.  Moving ahead to a similar position as 

equation 4.71, albeit with the new wavelet, and the z-integral already solved for (same as 

before) we have 

 W [𝑈(𝐫 0)]  = 2π (
2𝑚𝑖𝑚𝑚! 

√𝜋(2𝑚)!
) γρ ∫ 𝑑𝑆

𝐷
∫

 (1−𝑖(𝑤0+𝓇)𝓇̂)−(𝑚+1)

(𝑤0
2+𝑎0

2)1/2𝑋
𝑙𝑛 (√𝑤0

2 + (𝑧0 − ℎ(𝐫 ))2 +

𝑧0 − ℎ(𝐫 ))+𝑙𝑛 (√𝑤0
2 + 𝑧0

2 + 𝑧0)𝑤0𝑑𝑤0   (4.76) 

Applying the trapezoidal quadrature rule to integrate with respect to w0, 

W [𝑈(𝐫 0)] = 2π (
2𝑚𝑖𝑚𝑚! 

√𝜋(2𝑚)!
) γρ ∫ 𝑑𝑆

𝐷

1

2
[((−𝑤0) (1 − 𝑖((−𝑤0) +

𝓇))
−(𝑚+1)

) 𝑙𝑛(√(−𝑤0)2 + (𝑧0 − ℎ(𝐫 ))
2
+ 𝑧0 − ℎ(𝐫 )) + 𝑙𝑛(√(−𝑤0)2 + 𝑧0

2 + 𝑧0) +

((𝑤0) (1 − 𝑖((−𝑤0) + 𝓇))
−(𝑚+1)

) 𝑙𝑛 (√(𝑤0)2 + (𝑧0 − ℎ(𝐫 ))
2
+ 𝑧0 − ℎ(𝐫 )) +

𝑙𝑛(√(𝑤0)2 + 𝑧0
2 + 𝑧0) + 2∑ ((−𝑤0) (1 − 𝑖((−𝑤0) +

𝑤0−1
𝑛=−𝑤0+1

𝓇))
−(𝑚+1)

) 𝑙𝑛(√(−𝑤0)2 + (𝑧0 − ℎ(𝐫 ))
2
+ 𝑧0 − ℎ(𝐫 )) + 𝑙𝑛(√(−𝑤0)2 + 𝑧0

2 + 𝑧0)] ∗

𝑠 (4.77) 
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4.8 Derivation of the Derivative Theorem for the Mexican Hat, Paul and Morlet 

Wavelets 

Note:  The Mexican Hat and Morlet are both Gaussian based, while the Paul wavelet is 

not. 

Following the proof for the derivative theorem for Fourier Transforms, as outlined 

by Bracewell (1965) (see Appendix G), we begin the proof by making the statement that 

for a function f(x) there exists a wavelet transform W(a,b).  The derivative of the 

function, f‘(x) must also have a transform.  From Starck et. al. 2015, we begin with the 

inverse wavelet transform: 

 𝑓(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)

∞

−∞

∞

0
𝜒 (

𝑥−𝑏

𝑎
)

𝑑𝑎𝑑𝑏

𝑎2  (4.78) 

where χ is the wavelet function to be considered and Cχ is constant given by formula 4.79 

below. 

 𝐶𝜒 = ∫
𝜓̂∗(𝜈)𝜒̂(𝜈)

𝜈
𝑑𝜈 = ∫

𝜓̂∗(𝜈)𝜒̂(𝜈)

𝜈
𝑑𝜈

0

−∞

∞

0
 (4.79) 

We begin with the Mexican Hat wavelet. 

 𝑓(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)

∞

−∞

∞

0
(1 − (

𝑥−𝑏

𝑎
)
2

) 𝑒
−(𝑥−𝑏)2

2𝑎2 𝑑𝑎𝑑𝑏

𝑎2  (4.80) 

We then take the derivative of both sides of the equation. 

 𝑓′(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)

𝑑

𝑑𝑥

∞

−∞

∞

0
[(1 − (

𝑥−𝑏

𝑎
)
2

) 𝑒
−(𝑥−𝑏)2

2𝑎2 ]
𝑑𝑎𝑑𝑏

𝑎2
 (4.81) 

After differentiation of the term in brackets and re-arrangement, we get 

 𝑓′(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)

∞

−∞

∞

0
𝜒 (

𝑥−𝑏

𝑎
) [

(𝑥−𝑏)

𝑎2 −
2(𝑥−𝑏)

(𝑎2−(𝑥−𝑏)2)
]

𝑑𝑎𝑑𝑏

𝑎2  (4.82) 

Χ is the analyzing wavelet that was just differentiated.  As the new term, in brackets, is 

actually in the form ψ(x-b/a), it cannot be removed from the integral.  As such, the 
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inverse wavelet transform of the derivative of the function utilizing the Mexican Hat 

wavelet does not have an analytical solution.  A numerical approach must be made.  Next 

we will similarly evaluate for the Morlet wavelet defined by Torrence and Compo, 

(1998). 

 𝑓(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)

∞

−∞

∞

0
(𝑒𝑖𝜔0

(𝑥−𝑏)

𝑎 𝑒
−(𝑥−𝑏)2

2𝑎2 )
𝑑𝑎𝑑𝑏

𝑎2  (4.83) 

We then take the derivative of both sides of the equation. 

 𝑓′(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)

𝑑

𝑑𝑥

∞

−∞

∞

0
(𝑒𝑖𝜔0

(𝑥−𝑏)

𝑎 𝑒
−(𝑥−𝑏)2

2𝑎2 )
𝑑𝑎𝑑𝑏

𝑎2  (4.84) 

After differentiation of the term in brackets and re-arrangement, we get 

 𝑓′(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)

∞

−∞

∞

0
(𝑒𝑖𝑠𝜔0

(𝑥−𝑏)

𝑎 𝑒
−(𝑥−𝑏)2

2𝑎2 ) (
(𝑥−𝑏)

𝑎2 +

𝑖𝑠𝜔0𝑥

𝑎
)

𝑑𝑎𝑑𝑏

𝑎2   (4.85) 

Rearranging again, 

 𝑓′(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)

∞

−∞

∞

0
𝜒 (

𝑥−𝑏

𝑎
) (

(𝑥−𝑏)

𝑎2 +
𝑖𝑠𝜔0𝑥

𝑎
)

𝑑𝑎𝑑𝑏

𝑎2  (4.86) 

Finally, we will evaluate for the Paul wavelet also defined by Torrence and Compo, 

(1998). 

 𝑓(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)

∞

−∞

∞

0
[
2𝑚𝑖𝑚𝑚!

√𝜋(2𝑚)!
(1 − 𝑖

(𝑥−𝑏)

𝑎
)
−(𝑚+1)

]
𝑑𝑎𝑑𝑏

𝑎2  (4.87) 

We then take the derivative of both sides of the equation. 

 𝑓′(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)

𝑑

𝑑𝑥

∞

−∞

∞

0
[
2𝑚𝑖𝑚𝑚!

√𝜋(2𝑚)!
(1 − 𝑖

(𝑥−𝑏)

𝑎
)
−(𝑚+1)

]
𝑑𝑎𝑑𝑏

𝑎2  (4.88) 

After differentiation of the term in brackets and re-arrangement, we get 

 𝑓′(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)

∞

−∞

∞

0
[
2𝑚𝑖𝑚𝑚!

√𝜋(2𝑚)!
(1 − 𝑖𝑥)−(𝑚+1)] (

𝑖(𝑚+1)

1−𝑖𝑥
)

𝑑𝑎𝑑𝑏

𝑎2  (4.89) 
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Rearranging again, 

 𝑓′(𝑥) =
1

𝐶𝜒
∫ ∫

1

√𝑎
𝑊(𝑎, 𝑏)𝜒 (

𝑥−𝑏

𝑎
)

∞

−∞

∞

0
(

𝑖(𝑚+1)

𝑎−𝑖(𝑥−𝑏)
)

𝑑𝑎𝑑𝑏

𝑎2  (4.90) 

Similar to the result for the derivative of f(x) utilizing the Mexican Hat wavelet, 

the additional terms for the Morlet and Paul wavelets are in the form of ψ(x-b/a).  Thus, 

again an analytical solution cannot be made and a numerical approach must considered.  

It is also important to note, however, that in order for the inverse wavelet transform to 

exist, an admissibility condition must first be met (Starck et al, 2015).  That is, Cχ must 

be finite.  Per Starck, this means that the mean of the wavelet must be zero or similarly 

presented, 

 𝜓̂(0) = 0 (4.91) 

This condition was met for all three wavelets examined here. 

 

4.9 Comparison of results between continuous wavelets and the FT 

 

For the comparison of the two types of transforms, data from the Columbia 

University, Multi-ridge Synthesis Project was used.  The data set provided has units in 

meters.  The data covered the well-known area of the Southern East Pacific Rise due 

to the many seamounts located there.  As has been stated already, wavelets are local 

and FTs are not.  Whereas wavelet reconstructions will examine only those 

coefficients specified for a specific window, the FT will attempt to reconstruct the 

whole signal, making a comparison of the two reconstructions difficult.  Daubechies 

(1992) noted that the concept of wavelets came from windowing the FT; however, 

windowing allows for someone to examine the localized power spectral density of the 
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signal.  It does not help with signal reconstruction as the window chosen is multiplied 

with the signal and thereby results in a function quite different from the signal in 

question.  In order to best compare the reconstructions on a term-by-term basis the 

following procedure was established. 

1. Compute the coefficients for a signal utilizing each transform. 

2. Reconstruct the signal term-by-term creating a matrix where each successive row 

contains one more coefficient than the previous. 

3. Pad each row with zeros so that the length of the row is equivalent to the length of 

the original signal. 

4. Compute the root mean square error for each reconstruction row-by-row. 

 

The examination of the reconstruction begins with a 1D slice at latitude -8 degrees South.  

See figure 4.15. 
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Figure 4.15 Southern East Pacific Rise Topography 

 

The slice of data at -8 degrees latitude runs through two adjacent seamounts.  

Following the procedure just outlined, reconstructions of the data slice by the FT, MHW, 

Paul and Morlet wavelet transforms are compared side-by-side.  See figure 4.16. 
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Figure 4.16 1D Signal Reconstruction 

Reconstruction of the first 60 terms of the original signal (black line) by the MHW (blue 

line), Paul wavelet (red line), Morlet wavelet (cyan line) and FT (green line). 

 

Visibly, it is apparent that FT is much smoother than the three wavelet reconstructions.  

The MHW, although closer in shape to the original signal is much smoother than the 

Morlet and Paul wavelets.  It is important to state that although 60 coefficients are used 

for each basis function in figure 4.16, that is only a small percentage compared to the 

over 1500 data points used in the transect.  Further, the plot is only showing a portion of 
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the entire transect.  RMSE plots are presented to better discriminate between them (figure 

4.17). 

 

 

Figure 4.17 Root Mean Square Error of the 1D signal reconstructions 

RMSE computed for only the first 60 terms. 
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Table 4.1 Student t-test values of the Root Mean Square Error 

(1D dataset) comparison between each transform. 

 

Null Hypothesis 

0 – Accept 

1 – Reject   

P 

(Level of 

Confidence) 

CONFIDENCE 

INTERVAL 

LOWER LIMIT 

CONFIDENCE 

INTERVAL  

UPPER LIMIT 

MHW & FT 0 0.4990 -2.0264 0.9926 

PAUL & FT 0 0.2772 -2.2216 0.6426 

MORLET & FT 0 0.2595 -2.2406 0.6096 

 

Figure 4.17 demonstrates that for the first 60 terms, each of the three tested wavelets 

outperformed the FT by producing lower RMS error.  Per table 4.1, however, a student t-

test calculation reveals that there is no statistical difference between the individual 

transform reconstructions as evidenced by the acceptance of the null-hypothesis 

(Thomson and Emery, 1998).  Nonetheless, the FT is outperformed. 

The examination of the transforms continued with a 2D area in the same region.  

For this test, one specific seamount (-8.45 S, -107.63 E) was isolated.  Using the same 

methodology, a matrix padded with zeros and increasing coefficients was produced and 

then RMS error was computed. 
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Figure 4.18 Seamount from the SEPR Region. 

Untransformed data plot of the seamount in the SEPR region at -8.45 S, -107.63 E.  The accompanying color bar represents height in 

meters, where blue denotes a depression and red elevation, thus zero is the seafloor without feature with units in meters for all similar 

plots. 
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Figure 4.19 FFT reconstruction of the selected seamount. 

Note: Units in are in meters. 
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Figure 4.20 MHW reconstruction of the selected seamount. 

Note:  Units are in meters. 
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Figure 4.21 Paul reconstruction of the selected seamount. 

Note:  Units are in meters. 
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Figure 4.22 Morlet reconstruction of the selected seamount. 

Note:  Units are in meters. 
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Figure 4.23 Root Mean Square Error of the 2D signal reconstructions. 

Note:  Only the first 60 terms are used in the computation. 

 

Table 4.2 Student t-test values of the Root Mean Square Error (2D dataset) 

 

Null Hypothesis 

0 – Accept 

1 – Reject   

P 

(Level of 

Confidence) 

CONFIDENCE 

INTERVAL 

LOWER LIMIT 

CONFIDENCE 

INTERVAL  

UPPER LIMIT 

MHW & FT 0 0.3519 -8.4918 3.0461 

PAUL & FT 0 0.3496 -8.5050 3.0331 

MORLET & FT 0 0.3461 -8.5252 3.0133 
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Performances of the transformations varied.  Overall, the FT did best in 

reconstructing the seamount than the wavelets.  Within the three wavelets, each 

performed better than the other in certain parts of the topography, such as the MHW 

having greater error in the seamount’s peak but better resolution elsewhere.  The opposite 

was true for the Paul and Morlet wavelets.  However, as is seen in figure 4.23, term-by-

term reconstruction errors favored the wavelets.  Further, a student t-test again accepted 

the null-hypothesis, showing little statistical significance between the wavelets and the 

FT.  This completed initial testing of the performance of wavelets and the FT. 

 

4.10 Wavelet and FT calculation of potential anomalies 

With initial deconstruction/reconstruction of a signal via wavelets and the FT 

completed, testing of the wavelet transforms and FT of the gravitational potential 

commenced.  For the FT, the solution from Parker (1973) was used (equation 2.48, here).  

For the FT[MHW], equation 4.66 was used.  Numerical solutions for the MHW, Morlet 

(equation 4.74) and Paul wavelet (equation 4.77) were applied.  It is important to first 

note that a comparison between a straight numerical approximation of the MHW 

transformation of the gravitational potential and the closed-form solution (part analytical, 

part numerical) of the FT[MHW] of the gravitational potential is made.  Later, a straight 

numerical approach to the FT[MHW] is also statistically compared.  The particular data 

set is a 2D area consisting of the same two adjacent seamounts tested in the 1D case.  

Topographical heights are entered into the formulas and then reconstructed.  Figures 

4.24-4.29 were computed utilizing all coefficients. 
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Note

 

Figure 4.24 Two adjacent seamounts in the SEPR region 

Note:  Units are in meters. 
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Figure 4.25 FT reconstruction of the seamounts 

Note: Units are in meters. 
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Figure 4.26 MHW reconstruction of the seamounts. 

Note:  Units are in meters. 
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Figure 4.27 FT[MHW] reconstruction of the seamounts 

Note:  Units are in meters. 
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Figure 4.28 Paul reconstruction of the seamounts 

Note:  Units are in meters. 
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Figure 4.29 Morlet reconstruction of the seamounts 

Note:  Units are in meters. 

 

Some loss in resolution was detected in the FT reconstruction but not in the 

wavelets.  Overall, the wavelets maintained a slight edge in reconstruction when 

compared to the original untransformed plot.  However, due to the size of the 2D dataset 

and computational limitations, a term-by-term reconstruction could not be made and thus 

a RMS error analysis could not be produced either.  A simple percent error between the 

dataset and transformed data has to suffice due to this circumstance. 
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Note:  As the FT[MHW] is a FT, the derivative rule for Fourier transforms should still 

apply.  As such, similar to FT[Δg], FT[MHW][Δg] can be easily computed by simple 

multiplication of the FT[MHW] of the gravitational potential by the wavenumber k.  As 

such, end-to-end prediction was shown.  Similar plots were produced for the FT and 

FT[MHW] of the gravity anomaly as with the potentials, with no significant difference.  

The wavenumber “k” was given the arbitrary value of 2 for this case. 

 

4.11 End to End Prediction 

Prior to demonstrating end-to-end prediction, we must first compute a key 

component, “upward continuation.”  Blakely, 1995, defines upward continuation as the 

transformation of a potential field determined on one surface to another field further 

away from all sources.  It is important to note that Blakely points out that the 

transformation of upward continuation acts to attenuate anomalies with respect to 

wavelength.  Great care should be taken to recognize this point, as it is also pointed out 

by Sandwell and Smith (1997) as one of two key factors that imposes limits on accuracy 

and resolution of gravity field recovery from satellite altimetry data (ocean depth of ~4 

km attenuates short wavelength gravity signals).  The other limiting factor according to 

Sandwell and Smith results from short wavelength noise originating from ocean surface 

waves.  From Blakely, the upward continuation integral is expressed as: 

𝑈(𝑥, 𝑦, 𝑧0 − ∆𝑧) =
∆𝑧

2𝜋
∫ ∫

𝑈(𝑥′,𝑦′,𝑧0)

[(𝑥−𝑥′)2+(𝑦−𝑦′)2+∆𝑧2]
3

2⁄
𝑑𝑥′𝑑𝑦′∞

−∞
, ∆𝑧 > 0

∞

−∞
  (4.92) 

Blakely then notes that the upward continuation may be expressed as a convolution in 

two-dimensions. 
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𝑈(𝑥, 𝑦, 𝑧0 − ∆𝑧) = ∫ ∫ 𝑈(𝑥′, 𝑦′, 𝑧0) 𝜓𝑢(𝑥 − 𝑥′, 𝑦 − 𝑦′, Δ𝑧)𝑑𝑥′𝑑𝑦′∞

−∞

∞

−∞
 (4.93) 

where, 

  𝜓𝑢(𝑥, 𝑦, Δ𝑧) =
∆𝑧

2𝜋

1

(𝑥2+𝑦2+∆𝑧2)
3

2⁄
 (4.94) 

Blakely then represents the convolution using the following formula: 

 ℱ[𝑈𝑢] = ℱ[𝑈]ℱ[𝜓𝑢], (4.95) 

where 𝜓𝑢 is the upward-continued field.  Per Blakely, the analytical computation of the 

FT of the upward continuation field is straight forward.  A conversion from Cartesian to 

cylindrical coordinates is made first resulting in: 

 ℱ[𝜓𝑢] =
−1

2𝜋

𝜕

𝜕∆𝑧
ℱ [

1

𝑟
] (4.96) 

where 1/r is the monopole and whose FT has already been derived in Bracewell, 1967.  

We may now express the FT of the upward-continued field as: 

 ℱ[𝜓𝑢] = 𝑒−∆𝑧|𝑘|, ∆𝑧 > 0 (4.97) 

End-to-end prediction is show in Sandwell and Smith, 1997 appendix A.  Here we will 

follow that procedure albeit in the wavelet domain.  From equation 4.95, we may 

extrapolate the continuous-wavelet transform approach. 

 𝒲[𝜓𝑢] =
−1

2𝜋

𝜕

𝜕∆𝑧
𝒲 [

1

𝑟
] (4.98) 

The continuous wavelet transform of the monopole, will be set up later for each of the 

three tested wavelets, MHW, Paul and Morlet wavelets.  Similar to Fourier convolution 

theorem, there exists a similar theorem for continuous wavelets.  (Antonio F. Perez-

Rendon, 2004) derive and provide the proof of the existence of such a theorem. 

 𝑔̂𝜓𝑔(𝑎, 𝑏) =
1

√𝑎
(𝑓𝜓𝑓⨂2ℎ̂

𝜓ℎ)(𝑎, 𝑏) (4.99) 
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where 𝑓𝜓𝑓⨂2ℎ̂
𝜓ℎ denotes the convolution of the second variable of two wavelet 

transformed functions, 𝑔̂𝜓𝑔(𝑎, 𝑏) is said convolution, a is scale and b is position 

(translation).  We may now express the continuous wavelet transform of the upward 

continuation (equivalent to equation 4.95) as: 

 𝑊[𝑈𝑢] =
1

√𝑎
𝑊[𝑈]𝑊[𝜓𝑢], (4.100) 

We previously numerically solved for W[U] using three wavelets; and, a numerical 

solution will also be required for the wavelet transform of the upward-continued field 

(equation 4.98).  Sandwell and Smith equate the gravity anomaly to the potential’s 

vertical derivative and then define the slope of the geoid in the x-direction (η) and in the 

y-direction (ξ).  The three quantities are related to one another using Laplace’s equation.  

This differential equation may be reduced to an algebraic formula, per Haxby et al. 

(1983), by taking its Fourier Transform.  We may similarly do so with a continuous 

wavelet transform.  From Laplace’s equation we have, 

 
𝜕∆𝑔

𝜕𝑧
= −𝑔0 (

𝜕𝜂

𝜕𝑥
+

𝜕𝜉

𝜕𝑦
) (4.101) 

The continuous wavelet transform of equation 4.101 is then (equation A8 from Sandwell 

and Smith, 1997), 

 𝒲 [
𝜕∆𝑔(𝑎,𝑏,𝑧)

𝜕𝑧
] = −𝑔0[𝒲(𝜂(𝑎, 𝑏)) + 𝒲(𝜉(𝑎, 𝑏))] (4.102) 

Utilizing equation 4.100, we may state 

 Δ𝑔(𝑎, 𝑏, 𝑧) =
1

√𝑎
Δ𝑔(𝑎, 𝑏, 0) 𝑊[𝜓𝑢] (4.103) 

In the Fourier domain, we would take the derivative of the Fourier equivalent of equation 

4.98, evaluate at z=0 and thus relate the FT of the gravity anomaly to the sum of the 
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vertical deflection components. To begin this process in the wavelet domain, we will 

need to first solve for the CWT of the monopole. 

 

4.12 CWT (2D) of the Monopole 

4.12.1 Mexican Hat Wavelet 

 

 𝜓𝑀𝐻𝑊 [
1

𝑟
] = ∫ ∫

1

[𝑥2+𝑦2+(𝑧0−𝑧′)2]
1

2⁄

∞

−∞
(1 −

1

2

(𝑥2+𝑦2)

𝜎2
)

∞

−∞
𝑒

−(𝑥2+𝑦2)
2𝜎2

⁄
𝑑𝑥𝑑𝑦     (4.104) 

Note:  In order to prevent confusion with scale (a) and an upcoming term (a), scale is 

represented as the Greek letter sigma.  See figure 2.2 for a refresher on the geometry of 

this problem.  After conversion to cylindrical coordinates with the following 

substitutions, x=acosθ, y=sinθ and w2 = (z0-z
’)2, we have, 

 𝜓𝑀𝐻𝑊 [
1

𝑟
] = ∫ ∫

1

√𝑎2+𝑤2

∞

0
(1 −

1

2

(𝑎2)

𝜎2 )
2𝜋

0
𝑒

−𝑎2

2𝜎2⁄
𝑎 𝑑𝑎𝑑𝜃 (4.105) 

With all thetas going away, the integral from 0 to 2pi results in a 2pi in front of the 

equation: 

 𝜓𝑀𝐻𝑊 [
1

𝑟
] = 2𝜋 ∫

1

√𝑎2+𝑤2

∞

0
(1 −

1

2

(𝑎2)

𝜎2 ) 𝑒
−𝑎2

2𝜎2⁄
𝑎 𝑑𝑎 (4.106) 

Equation 4.101 does not have an apparent analytical solution and must be solved for 

numerically. 

 

4.12.2 Morlet Wavelet 

We will similarly set up the Morlet problem for the monopole. 

 𝜓𝑀𝑜𝑟𝑙𝑒𝑡 [
1

𝑟
] = ∫ ∫

1

[𝑥2+𝑦2+(𝑧0−𝑧′)2]
1

2⁄

∞

−∞

∞

−∞
𝜋

−1
4⁄  𝑒𝑖𝜔0(𝑥+𝑦)𝑒

−(𝑥2+𝑦2)
2𝜎2

⁄
𝑑𝑥𝑑𝑦  (4.107) 
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where, ω0 is frequency with a default value of six in MATLAB.  After conversion to 

cylindrical coordinates, we have 

 𝜓𝑀𝑜𝑟𝑙𝑒𝑡 [
1

𝑟
] = ∫ ∫

1

√𝑎2+𝑤2

∞

0

2𝜋

0
𝜋

−1
4⁄  𝑒𝑖𝜔0𝑎(𝑐𝑜𝑠𝜃+𝑠𝑖𝑛𝜃)𝑒

−𝑎2

2𝜎2⁄
𝑎 𝑑𝑎𝑑𝜃   (4.108) 

Rearranging, we have 

 𝜓𝑀𝑜𝑟𝑙𝑒𝑡 [
1

𝑟
] = 𝜋

−1
4⁄ ∫

𝑒
−𝑎2

2𝜎2⁄

√𝑎2+𝑤2

∞

0
𝑎 𝑑𝑎 [∫  𝑒𝑖𝜔0𝑎(𝑐𝑜𝑠𝜃+𝑠𝑖𝑛𝜃)2𝜋

0
𝑑𝜃]          (4.109) 

Again, we will have to solve the problem numerically. 

 

4.12.3 Paul Wavelet 

We similarly apply this wavelet to the monopole potential. 

 𝜓𝑃𝑎𝑢𝑙 [
1

𝑟
] = ∫ ∫

1

[𝑥2+𝑦2+(𝑧0−𝑧′)2]
1

2⁄

∞

−∞

∞

−∞

2𝑚𝑖𝑚𝑚!

√𝜋(2𝑚)!
(1 − 𝑖(𝑥 + 1))

−(𝑚+1)
𝑑𝑥𝑑𝑦   (4.110) 

Here, m is the order of the wavelet.  MATLAB uses a default value of m=4. 

Setting m=4 and converting to cylindrical results in 

 𝜓𝑃𝑎𝑢𝑙 [
1

𝑟
] =

384

√𝜋∙8!
∫ ∫

1

√𝑎2+𝑤2

∞

0

2𝜋

0
(1 − 𝑎𝑖(𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃))

−5
𝑎 𝑑𝑎𝑑𝜃     (4.111) 

Rearranging, we are left with, 

 𝜓𝑃𝑎𝑢𝑙 [
1

𝑟
] =

384

√𝜋∙8!
∫

𝑎 𝑑𝑎

√𝑎2+𝑤2
[∫ (1 − 𝑎𝑖(𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃))

−5
 𝑑𝜃

2𝜋

0
]

∞

0
          (4.112) 

A numerical solution will need to be computed here as well. 

 Once the numerical computations of the monopole potential are computed, we may 

proceed back to equation 4.98 to solve for the wavelet transform of the upward-continued 

field.  Taking the derivative with respect to z of equation 4.103 and then evaluating at 

z=0 

 −𝑔0[𝒲(𝜂(𝑎, 𝑏)) + 𝒲(𝜉(𝑎, 𝑏))] =
1

√𝑎
Δ𝑔(𝑎, 𝑏, 0) 𝑊[𝜓𝑢] (4.113) 
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Solving for Δg(a,b,0) we get, 

 Δ𝑔(𝑎, 𝑏, 0) =
−𝑔0√𝑎[𝒲(𝜂(𝑎,𝑏))+𝒲(𝜉(𝑎,𝑏))]

𝜕(𝑊[𝜓𝑢])

𝜕𝑧
|
𝑧=0

  (4.114) 

We have now algebraically related the continuous-wavelet transform of the 

gravity anomaly to the sum of the CWT of the two components of vertical deflection.  As 

with Sandwell and Smith, 1997, the computation of gravity anomalies from a dense 

network of satellite altimeter geoid height profiles may be done through the construction 

of a grid composed of east-west and north-south vertical deflections.  This procedure is 

outlined in Sandwell and Smith, 1997 Appendix B.  We then take the CWT of the grids, 

compute the addition and multiplications of the right-hand-side of equation 4.114 and 

then take the inverse CWT, resulting in the gravity anomaly.  As noted at the end of 

Appendix A of Sandwell and Smith, 1997, the long wavelength gravity may be recovered 

by adding back the spherical harmonic gravity model to the gridded gravity values. 

Further, noted midway through their Appendix A, Sandwell and Smith, 1997 state 

that vertical gravity calculation of their equation A6, (here equation 4.101) does not 

produce edge effects, whereas the FT of the gravity field could produce significant edge 

effects.  The question here is, will the CWT of the gravity field produce edge effects and 

if so, will they be equivalent to, larger or smaller? 

 

4.13 Downward Continuation 

Taking gravity and inverting it to topography will require a downward continuity 

calculation.  Downward continuity is the continuation of measured data to regions that 

are closer to the source, assuming that are no sources in the continued region actually 
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exist, which is helpful as it would act to accentuate source distribution details (Blakely, 

1995).  Downward continuation, however, is considered to be unstable as it is an 

unsmoothing operator, as opposed to smoothing from the upward continuation 

calculation (Blakely, 1995).  Per Blakely, the downward continuation is the inverse of the 

upward continuation and is expressed as: 

 ℱ[𝑈] = ℱ[𝑈𝑢]ℱ
−1[𝜓𝑢] = ℱ[𝑈𝑢]𝑒

+|𝑘|∆𝑧 (4.115) 

It is the exponential, according to Blakely that causes the instability as the shortest 

wavelengths in the data could be greatly amplified.  Despite this risk, numerous 

downward continuation techniques utilize this method.  Per our method of using sparser 

based functions, in particular wavelets, we can set up an equivalent to equation 4.115 in 

the wavelet domain by taking the inverse of equation 4.100. 

 𝑊[𝑈] =
1

√𝑎
𝑊[𝑈𝑢]𝑊

−1[𝜓𝑢], (4.116) 

 

4.13.1 Application of Sparser Functions 

Although theoretically a formula for downward and upward continuity is 

presented, the solution to those formulas is not achievable either analytically or 

numerically due to the integrals of the monopole potentials exploding to infinity very 

quickly.  It is conceivable, though, that a different analytical/numerical approach could be 

made such as was done with the Mexican Hat wavelet transform applied to the 

Newtonian potential.  That work will be left for future research.  As such, downward and 

upward continuation were both computed in the Fourier domain.  A novel methodology 

was then applied by filtering gravity datasets with wavelets prior to those computations 

(Maysam Abedi, 2014).  Those 2D results are now presented.   
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The area of interest is a subset of the data seen in figure 4.15 and includes the 

topography depicted in figures 4.18 and 4.24.  The area selected represents an ocean floor 

with both flat topography and seamounts.  However, as the seamounts are not particularly 

large at only a few hundred meters high, the data was multiplied by a factor of 2.5 in 

order to enhance the feature heights. 

 

 

Figure 4.30 Area of study within the SEPR 

Note: The accompanying color bar represents height in meters.  The seamounts in the upper portion of the plot were previously 

examined (units in meters). 

 

A study of the whole area represented in figure 4.30 will be examined first 

followed by a closer look at the two seamounts in the upper right hand corner.  The 
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selected topographical data set is first converted into gravity data following Newton’s law 

via the built in tools of Generic Mapping Tool (GMT) freely available for download from 

the School of Ocean and Earth Science Technology (SOEST) of the University of Hawaii 

at the following internet address: 

http://gmt.soest.hawaii.edu/ 

The idea of developing a gravity data set from a highly surveyed and studied 

region that utilized multibeam SONAR is to obtain as detailed a gravity signal as 

possible.  Once the gravity signal is converted back into topographical data, a clearer 

picture of the difference between using wavelets and Fourier analysis may be obtained.  

Conversely, sparse gravity datasets, which is what is collected via satellite over the deep 

ocean will not be able to produce any discernable differences.  Following the Smith and 

Sandwell “cookbook” for upward and downward continuation, the gravity signal is 

converted back into topographical data. 

For the FFT, this procedure was simple and followed the steps straightaway.  For 

the wavelets, however, these steps needed to be repeated several times.  For example, for 

the dataset shown in figure 4.30, each of the continuous wavelets studied (Mexican Hat, 

Paul and Morlet) produced thirty-four different scales.  MATLAB will determine the 

number of scales based on the size of the dataset.  A larger amount of data results in a 

higher number of scales.  The steps in the cook book, then, were followed 34 times per 

wavelet, resulting in 34 different solutions, each based on its own scale number.  Once all 

the solutions are collected, MATLAB can inverse transform the individual signals into 

one solution that moves across all the scales.  One of two approached can thus be made.  

Either look at the inverse wavelet transform across all scales or choose a specific scale.  

http://gmt.soest.hawaii.edu/
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The choice of choosing a particular scale could reduce error but will require more time in 

order to determine which works best; and, with increasing number of scales with 

increasing data set sizes, a method of selecting only a few of the many scales would need 

to be developed. 

 

Figure 4.31 MHW predicted bathymetry. 

Note:  Gravity data wavelet filtered prior to downward continuation (units in meters). 
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Figure 4.32 Morlet predicted bathymetry. 

Note:  Gravity data wavelet filtered prior to downward continuation (units in meters). 

 



 

96 

 

Figure 4.33 Paul predicted bathymetry. 

Note:  Gravity data wavelet filtered prior to downward continuation (units in meters). 
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Figure 4.34 FFT predicted bathymetry. 

Note:  Units in meters. 
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Figure 4.35 Error comparison between tested basis functions 

 

For figures 4.31-4.33, a specific wavelet scale was chosen for each of the tested 

wavelets.  Their error was computed using a standard RMS error formula and then 

compared to the RMS error of the Fourier solution.  Although it is difficult to see any 

major differences between the solutions, a careful look does reveal subtle improvements 

in feature details amongst the wavelets over the FFT.  Those subtle improvements are 

further demonstrated in figure 4.35 where RMS error for the wavelets are lower than that 

of the FFT.  Recall that FFTs are great at reproducing flat topography as a flat surface is 

easily reproduced with a sum of sines and cosines.  The region tested (Figure 4.30) has a 

significant amount of flat terrain with some features in it.  The question then is whether 

the performance of the wavelets will increase or decrease, as compared to the FFT, when 
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we zoom in on key features of the area, specifically over seamounts where it was 

hypothesized that wavelets due to their scalability and translation would outperform the 

FFT. 

 

 

Figure 4.36 MHW predicted bathymetry of two side by side seamounts. 

Gravity data wavelet filtered prior to downward continuation (units in meters). 
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Figure 4.37 Morlet predicted bathymetry of two side by side seamounts. 

Note:  Gravity data wavelet filtered prior to downward continuation (units in meters). 
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Figure 4.38 Paul predicted bathymetry of two side by side seamounts. 

Note:  Gravity data wavelet filtered prior to downward continuation (units in meters). 
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Figure 4.39 FFT predicted bathymetry of two side by side seamounts. 

Note;  Units are in meters. 
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Figure 4.40 Error comparison between tested basis functions. 

 

Similar to the whole area covered in figure 4.30, the wavelets outperformed the 

FFT predicted bathymetry.  Again, major improvements are not easily discernable, but 

improvements in feature detail were somewhat apparent.  The wavelets did produce a 

lower error than the FFT.  However, it would have been expected that the wavelets would 

have dramatically outperformed the FFT when focusing in on features such as seamounts.  

A potential reason for the lack of significant improvement is that the features examined 

are data rich and already pre-filtered using a Fourier transform.  It stands to reason that 

another test of performance would be to utilize a sparser data set.  To accomplish this, a 

simple test was formulated.  The already computed predicted bathymetries for each 

wavelet and the Fourier transform were made sparse by first sorting their predicted 

topographical heights with ascending values.  Note that ascending values are required as 

the collected data comes from multibeam SONAR, thus the values are for depth giving 
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lower values to features such as seamounts and higher values for the deeper flatter ocean 

floor.  Once sorted, approximately 95% of the depth values are replaced with zeros.  The 

remaining values are plotted with their respective latitudes and longitudes. 

 

 

Figure 4.41 MHW solution to the area of interest with only 5% of the terms 

.Note:  Units are in meters. 
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Figure 4.42 Morlet solution to the area of interest with only 5% of the terms 

Note:  Units are in meters. 
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Figure 4.43 Paul solution to the area of interest with only 5% of the terms 

Note:  Units are in meters. 
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Figure 4.44 Paul solution to the area of interest with only 5% of the terms 

Note:  Units are in meters. 
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Figure 4.45 Error comparison beween tested basis functions. 

 

Here not only does the Morlet wavelet (figure 4.42) demonstrate an increase in 

detail for the features as compared to the other wavelets and the FFT, it also has the 

lowest RMS error of the tested basis functions.  The Paul wavelet showed less detail than 

the Morlet wavelet, and the Mexican Hat showed a statistical insignificant improvement 

compared to the FFT. 
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Figure 4.46 MHW solution of two side by side seamounts with only 5% of the terms 

Note: Units are in meters. 
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Figure 4.47 Morlet solution of two side by side seamounts with only 5% of the terms 

Note:  Units are in meters. 
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Figure 4.48 Paul solution of two side by side seamounts with only 5% of the terms 

Note:  Units are in meters. 
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Figure 4.49 FFT solution of two side by side seamounts with only 5% of the terms 

Note:  Units are in meters. 
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Figure 4.50 Error comparison between tested basis functions. 

 

Figures 4.46 – 4.48 are similar to figures 4.41 – 4.44 but are focused on the two 

key seamounts in the northeastern corner of the area.  Note:  the red shown in these 

figures does not represent a topographical value.  Red here, simply shows that there is no 

data available.  As percentages of coefficients were used in the residual calculation, 

where coefficients were removed, there is a zero value.  Very little difference was shown 

between the different predictions, with the Morlet giving only a slight improvement in 

feature detail.  It is important to state that the observed increase in error for the zoomed in 

area, as compared to the larger region, is likely due to less data represented as a zero, 

enhancing the overall average height.  Nonetheless, the Morlet wavelet produced a lower 

RMS error than the other basis functions.  Although, there is little statistical difference 
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between them, the Paul wavelet had the next lowest error and the Mexican Hat wavelet 

had the greatest error.  The reason for the FFT outperforming the Mexican Hat is 

unknown and was not predicted.  A guess as to why that was the case is discussed in the 

Discussion/Conclusions section. 

One last analysis was conducted.  Residual plots were made in an effort to 

determine how well the different basis function types, wavelet vs. FT, reproduced the 

signals.  The earlier tests of simple signals is not a good place to test this as wavelets are 

local and the FT is global.  In essence, a difference test will simply show locality for the 

wavelets and global reconstruction for the FT in the simple reconstructions.  However, 

for the previous examples, which follow the Sandwell and Smith six-step method, 

difference plots are great measure of how the basis functions act in producing the 

bathymetric signal.  This is accomplished by plotting the differences for different 

percentages of terms used.  The analysis will begin with 50%, then 25%, 12% and finally 

5% of terms.  The idea of beginning with a larger number of terms is to demonstrate 

which of the basis functions does the best job of identifying the key features as terms are 

removed.  We begin with the smaller area concentrating on two seamounts, as previously.  

With 50% of the terms used, it is visible from the plots below that despite the small 

statistical difference (noted by the Student t-test results and RMS error plots), visually, 

the Morlet wavelet gave more detail and allowed for a better reproduction of the 

seamounts. 
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Figure 4.51 Residual plot with only 50% of terms used for the Paul Transform 

Note:  Units are in meters 
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Figure 4.52 Residual plot with only 50% of terms used for the Morlet Transform 

Note:  Units are in meters. 
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Figure 4.53 Residual plot with only 50% of terms used for the MHW Transform 

Note:  Units are in meters. 
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Figure 4.54 Residual plot with only 50% of terms used for the FFT 

Note;  Units are in meters. 
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Figure 4.55 RMSE comparison of tested basis functions. 

 

Table 4.3 Student t-test Results 

 

Null Hypothesis 

0 – Accept 

1 – Reject   

P 

(Level of 

Confidence) 

CONFIDENCE 

INTERVAL 

LOWER LIMIT 

CONFIDENCE 

INTERVAL  

UPPER LIMIT 

MHW & FT 0 0.8768 -245.4366 287.2201 

PAUL & FT 0 0.5832 -326.7217 184.6388 

MORLET & FT 0 0.9300 -274.1763 250.8338 
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Figure 4.56 Residual plot with only 25% of terms used for the Paul Transform 

Note:  Units are in meters. 
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Figure 4.57 Residual plot with only 25% of terms used for the Morlet Transform 

Note:  Units are in meters. 
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Figure 4.58 Residual plot with only 25% of terms used for the MHW Transform 

Note:  Units are in meters. 
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Figure 4.59 Residual plot with only 25% of terms used for the FFT 

Note:  Units are in meters. 
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Figure 4.60 Error comparison between tested basis functions 

 

Table 4.4 Student t-test Results 

 

Null Hypothesis 

0 – Accept 

1 – Reject   

P 

(Level of 

Confidence) 

CONFIDENCE 

INTERVAL 

LOWER LIMIT 

CONFIDENCE 

INTERVAL  

UPPER LIMIT 

MHW & FT 0 0.8267 -204.1320 255.0109 

PAUL & FT 0 0.3453 -317.6646 112.0618 

MORLET & FT 0 0.8700 -242.9876 205.8208 
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Figure 4.61 Residual plot with only 12% of terms used for the Paul Transform 

Note:  Units are in meters. 
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Figure 4.62 Residual plot with only 12% of terms used for the Morlet Transform 

Note:  Units are in meters. 

 



 

127 

 

Figure 4.63 Residual plot with only 12% of terms used for the MHW Transform 

Note:  Units are in meters. 
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Figure 4.64 Residual plot with only 12% of terms used for the FFT 

Note:  Units are in meters. 
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Figure 4.65 Error comparison between tested basis functions 

 

Table 4.5 Student t-test Results 

 

Null Hypothesis 

0 – Accept 

1 – Reject   

P 

(Level of 

Confidence) 

CONFIDENCE 

INTERVAL 

LOWER LIMIT 

CONFIDENCE 

INTERVAL  

UPPER LIMIT 

MHW & FT 0 0.8012 -150.9011 194.9784 

PAUL & FT 0 0.2500 -253.0583 66.5068 

MORLET & FT 0 0.8402 -185.5193 151.1541 
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Figure 4.66 Residual plot with only 5% of terms used for the Paul Transform 

Note:  Units are in meters. 
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Figure 4.67 Residual plot with only 5% of terms used for the Morlet Transform 

Note:  Units are in meters. 
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Figure 4.68 Residual plot with only 5% of terms used for the MHW Transform 

Note:  Units are in meters. 
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Figure 4.69 Residual plot with only 5% of terms used for the FFT 

Note:  Units are in meters. 
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Figure 4.70 Error comparison between tested basis functions 

 

Table 4.6 Student t-test Results 

 

Null Hypothesis 

0 – Accept 

1 – Reject   

P 

(Level of 

Confidence) 

CONFIDENCE 

INTERVAL 

LOWER LIMIT 

CONFIDENCE 

INTERVAL  

UPPER LIMIT 

MHW & FT 0 0.7912 -102.3501 134.0260 

PAUL & FT 0 0.1911 -180.0912 36.3581 

MORLET & FT 0 0.8112 -128.5732 100.8348 
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Figure 4.71 Residual of plot of larger area with only 50% of terms used for the Paul 

Transform 

Note:  Units are in meters. 
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Figure 4.72 Residual of plot of larger area with only 50% of terms used for the Morlet 

Transform 

Note:  Units are in meters. 
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Figure 4.73 Residual of plot of larger area with only 50% of terms used for the MHW 

Transform 

Note:  Units are in meters. 
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Figure 4.74 Residual of plot of larger area with only 50% of terms used for the FTT 

Note:  Units are in meters. 
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Figure 4.75 Error comparison between tested basis functions 

 

Table 4.7 Student t-test Results 

 

Null Hypothesis 

0 – Accept 

1 – Reject   

P 

(Level of 

Confidence) 

CONFIDENCE 

INTERVAL 

LOWER LIMIT 

CONFIDENCE 

INTERVAL  

UPPER LIMIT 

MHW & FT 0 0.8919 -114.7938 100.0212 

PAUL & FT 0 0.7197 -125.2971 86.7762 

MORLET & FT 0 0.7898 -120.9798 92.2154 
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Figure 4.76 Residual of plot of larger area with only 25% of terms used for the Paul 

Transform 

Note:  Units are in meters. 
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Figure 4.77 Residual of plot of larger area with only 25% of terms used for the Morlet 

Transform 

Note:  Units are in meters. 
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Figure 4.78 Residual of plot of larger area with only 25% of terms used for the MHW 

Transform 

Note:  Units are in  meters. 
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Figure 4.79 Residual of plot of larger area with only 25% of terms used for the MHW 

Transform 

Note:  Units are in meters. 
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Figure 4.80 Error comparison between tested basis functions 

 

Table 4.8 Student t-test Results 

 

Null Hypothesis 

0 – Accept 

1 – Reject   

P 

(Level of 

Confidence) 

CONFIDENCE 

INTERVAL 

LOWER LIMIT 

CONFIDENCE 

INTERVAL  

UPPER LIMIT 

MHW & FT 0 0.9768 -112.3739 109.1174 

PAUL & FT 0 0.2527 -164.5181 43.6767 

MORLET & FT 0 0.6525 -132.7292 83.4457 
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Figure 4.81 Residual of plot of larger area with only 12% of terms used for the Paul 

Transform 

Note:  Units are in meters. 
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Figure 4.82 Residual of plot of larger area with only 12% of terms used for the Morlet 

Transform 

Note:  Units are in meters. 
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Figure 4.83 Residual of plot of larger area with only 12% of terms used for the MHW 

Transform 

Note:  Units are in meters. 
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Figure 4.84 Residual of plot of larger area with only 12% of terms used for the FFT 

Note:  Units are in meters. 
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Figure 4.85 Error comparison between tested basis functions 

 

Table 4.9 Student t-test Results 

 

Null Hypothesis 

0 – Accept 

1 – Reject   

P 

(Level of 

Confidence) 

CONFIDENCE 

INTERVAL 

LOWER LIMIT 

CONFIDENCE 

INTERVAL  

UPPER LIMIT 

MHW & FT 0 0.9078 -96.0080 107.9576 

PAUL & FT 1 0.0385 -186.6395 -5.1559 

MORLET & FT 0 0.5284 -128.8902 66.4961 
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Figure 4.86 Residual of plot of larger area with only 5% of terms used for the Paul 

Transform 

Note:  Units are in meters. 
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Figure 4.87 Residual of plot of larger area with only 5% of terms used for the Morlet 

Transform 

Note:  Units are in meters. 
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Figure 4.88 Residual of plot of larger area with only 5% of terms used for the MHW 

Transform 

Note:  Units are in meters. 
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Figure 4.89 Residual of plot of larger area with only 5% of terms used for the FFT 

Note:  Units are in meters. 
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Figure 4.90 Error comparison between tested basis functions 

 

Table 4.10 Student t-test Results 

 

Null Hypothesis 

0 – Accept 

1 – Reject   

P 

(Level of 

Confidence) 

CONFIDENCE 

INTERVAL 

LOWER LIMIT 

CONFIDENCE 

INTERVAL  

UPPER LIMIT 

MHW & FT 0 0.8000 -65.8268 85.1918 

PAUL & FT 1 0.0022 -164.3492 -37.0061 

MORLET & FT 0 0.4025 -101.0208 40.8345 
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4.14 De-noising with a Weiner Filter 

As a quick aside, an attempt is made to de-noise a signal in both the Fourier and 

Continuous wavelet domains utilizing a Wiener filter.  The procedure set forth by Perez-

Rendon and Robles, 2004, was used.  The second example from authors’ was tested first.  

The signal is non-stationary and one-dimensional.  The signal is first blurred with a 

Gaussian filter with a pre-determined standard deviation and random white noise, both of 

which were implemented via built-in MATLAB functions.  The signal was then restored 

using via deconvolution in both the continuous wavelet and Fourier domains following 

the formulae provided by the authors.  The result differed from that of the authors, in that, 

their results were near identical reproductions of the original test signal and the solution 

here was not.  It is likely that the authors added a few other steps not listed for brevity. 
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Figure 4.91 Reconstruction of a noisy signal via FFT deconvolution 
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Figure 4.92 Reconstruction of a noisy signal via CWT deconvolution 

 

From the two plots, it is apparent that the CWT was better able at identifying the main 

lobe in the degraded signal; and the FFT was not able to do so.  To continue testing this 

method, a 2D signal was tested from the SEPR dataset that included a small seamount.  

See figure 4.93 below. 
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Figure 4.93 Original 2D signal in the SEPR region 

Note:  Units are in meters. 
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Figure 4.94 Degraded signal with a Gaussian blur in the SEPR region 

 

Signal restoration was attempted in both the Fourier and CWT domains, however, as the 

Fourier deconvolution did produced a viable reconstruction, a plot for it is not given.  

Figure 4.95 below is the reconstructed signal in the CWT domain, though. 
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Figure 4.95 Reconstruction of a noisy 2D signal via CWT deconvolution in the SEPR 

region 

 

The CWT deconvolution was clearly able to remove noise and reconstruct the key 

features in the original dataset plot.  In order to better appreciate the CWT reconstruction 

an alternate view of the original (with noise) and reconstructed plots is shown. 
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Figure 4.96 Alternate view of the degraded signal with a Gaussian blur in the SEPR 

region 
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Figure 4.97 Alternate view of the CWT restored signal in the SEPR region 

 

The power of the CWT deconvolution method is apparent.  However, as already 

mentioned previously in this chapter, those calculations are taxing and thus the CWT 

inverse is not computed directly in MATLAB and is instead replaced with CWT in the 

Fourier domain. 
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CHAPTER V – DISCUSSION and C 

5.1 Discussion 

5.1.1 Initial Tests:  Simple 1D Functions 

Prior to analyzing the more complex and robust 2D derived bathymetry problem, 

a simple reconstruction of a basic function was tested, in this case the step function.  As 

mentioned in the results section, in order to show that fewer terms were required by a 

wavelet as opposed to the Fourier transform in the reconstruction of a signal, the Fourier 

transform was expressed as a sum of sines and cosines.  Whereas with the wavelets, the 

transform was taken followed by the inverse transform for an increasing number of terms 

over several iterations.  Further, as wavelets are local in nature while the FT is not, a 

Hamming function was applied to the FT in order to window, and thus provide a more 

comparable side-by-side analysis.  Significant reduction of error was noted between the 

MHW and the FT and more than twice that between the Daubechies-1 wavelet and the 

FT while utilizing fewer reconstruction terms (See figure 4.1).  This was a clear 

advantage in simple reconstruction of a simple geometric function. 

As the Gibb’s phenomenon is a known issue for FTs around discontinuities, an 

experiment was conducted to determine how many terms were required to be included in 

signal reconstruction in order to minimize over shoot.  Maybe of more importance, FT 

overshoot was plotted alongside with continuous and discrete wavelets whose Gibb’s 

effects, though are highly negligible.  Figure 4.3 clearly demonstrated the superiority of 

wavelets over FTs in this regard.  This was an important result as underwater bathymetric 

features such as seamounts and spreading centers could behave like discontinuities 

depending upon their shape and the steepness of their incline/decline. 
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Further comparisons were made between the basis functions, by testing their 

utility of reconstructing the potentials of the monopole and cone, term-by-term.  In both 

cases, wavelets outperformed the FT based on RMS error results (figures 4.12 and 4.14).  

With respect to the monopole potential, RMS error was negligible.  However, for an error 

0.04 cm2s-2 the Daubechies-1 wavelet required 4 terms, Paul 6 terms, Morlet 7 terms, the 

Mexican Hat 8 terms and the FT 16 terms.  For the case of the cone, wavelets had an 

RMS error of 40 (cm2s-2) with about 23 terms, the Morlet with 26 terms while the FT 

needed 33 terms for the same error level.  Although monopole reconstruction RMS error 

showed a clear distinction between the continuous and discrete wavelets, little statistical 

distinction could be made between the wavelets for the case of the cone.  The reason is 

likely due to the following:  due to the nature of the monopole’s geometry, relative error 

differences were slim.  With the cone, a larger relative error was computed.  Thus, the 

difference between the wavelets only appears to be minimal.  Regardless, the results of 

these tests offered further evidence towards supporting the hypothesis that wavelets are 

the better choice for a basis function in the inversion of satellite altimetry to bathymetry. 

With basic testing completed, a data set from the South Eastern Pacific Range was 

examined, first as a slice of data and then as a 2D area.  Prior to actual inversion testing, 

though, an initial test was conducted by transforming the signals and then taking the 

inverse transform.  This was a simple reconstruction effort and was done on a term-by-

term basis.  RMS error results showed wavelets performing better but no longer at 

expected results based on the previous simple examples.  It should be noted that the data 

set was previously filtered via a FFT.  This may have impacted the effectiveness of the 

wavelets.  For the 1D case for an RMS error of 5 meters, the Paul and Morlet wavelets 
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required 4 terms, the Mexican Hat 5 terms and the FT about 7 terms.  As table 4.1 

(Student t-test) suggests (the rejection of the null hypothesis), there was little statistical 

difference between the tested wavelets and the FT.  For the 2D case, for an RMS error 

level of 10 meters, about 8 terms were required for all three tested wavelets and 12 terms 

for the FT.  Similarly for the 2D case, the null hypothesis was accepted, thus showing 

little statistical difference again between the FT and the wavelets. 

The final step was to compute the actual derived bathymetry.  It has been noted 

that a solution to the wavelet of the monopole potential is not currently known and 

software such as GMT does not use wavelets.  As such, a compromise was made to 

utilize the FFT to compute upward and downward continuation while using wavelets as 

filters for the gravity data.  Further, it was not computationally feasible to compute RMS 

error on a term-by-term basis.  To further exacerbate the issue, for the mentioned size of 

the data set, MATLAB computes the wavelet inverse transform across 34 different scales.  

It is true that only one scale and thus one computation required, but all scale 

computations must be computed in order to determine which will best approximate the 

area of interest.  Should the terrain vary throughout the area, then several scales would 

likely be required.  If then, one would like to see RMS error as a function of the number 

of terms used to produce the signal and limit the error test to only the first 60 terms, that 

same computer would need to run for over seventeen hours per continuous wavelet to be 

tested, excluding reset and analysis time.  As such, a measure of error could not be made 

on a term-by-term basis, which may in fact have reduced the true measure of 

effectiveness of the wavelets over the FT. 
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Despite the apparent minimal error difference between the continuous wavelets 

and the FT (with two exceptions), much can still be said about the Morlet transform and 

the FT.  With the large area of figure 4.30 considered, with only 5% of all terms used, a 

100% increase in terms was needed by the FT to reach the same 200m RMS error by the 

Morlet.  That is, the 200m error curve of the Morlet required an approximate 22 terms to 

reach as opposed to the approximate 45 terms by the FT.  Further, for the smaller area 

focusing on the two key seamounts, the Morlet required an approximate 22 terms to reach 

the 400m error curve as opposed to 32 by the FT, a 50% increase in terms.  For the larger 

area, the Morlet did, however, show some statistical difference when only 5 and 12 

percent of the terms were considered.  For these instances, the null hypothesis was 

rejected.  That is, when dealing with sparser data sets, the Morlet transform does provide 

a clear advantage not only over the FT but also the Mexican Hat and Paul wavelets when 

computing derived bathymetry.  Further, even though the rest of the test cases had the 

acceptance of the null hypothesis, P values (from the Student t-test) for the Morlet were 

always lower than those for the other two continuous wavelets. 

The idea of computing residual plots was suggested in order to determine how 

each of the basis functions reconstructs a signal.  The computation is direct.  Take the 

original signal and subtract from it the reconstruction.  It was not necessary to make this 

computation with all the reconstructions, however.  For all the reconstructions previous to 

the six-step Smith and Sandwell inversions, it is plain to see how reconstruction works 

with the FT and wavelet basis functions.  It has been stated that FTs are global functions 

and that wavelets are local in nature.  As such, wavelet reconstructions will require fewer 

terms to achieve lower RMS error, as a signal is constructed one term at a time, following 
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the shape of the signal, while a FT will attempt to produce the whole signal regardless of 

the number of terms.  For the FT, as the number of terms increases, the closer in shape 

you get to the original signal.  This is easily visible with 1D signals and is a clear 

indicator as to why wavelets had lower RMS error with respect to the number of terms 

used in signal reconstruction. 

In 2D signals, such as with the inversion of gravity to bathymetry, this is not so 

clear.  Residual plots, then, allow us to understand how the signal is produced and why 

RMS error, in particular for the Morlet wavelet, was lower than that of the FT.  

Beginning with the larger area (figures 4.71-4.90), a comparison between each of the 

basis function residual plots with 5% of the terms demonstrates, that with only a few 

percent of all the terms, continuous wavelets picked out more features than the FT.  The 

same was true when the smaller area that focused on two seamounts was analyzed.  As 

the colorbar indicated, the ranges of values were similar, but the wavelets again were able 

to better identify the features with fewer terms than the FT.  It is here then, that the 

advantage of locality is demonstrated.  It is becoming increasingly clear that locality 

gives wavelet transforms an edge over FTs in identifying the key features of an area.  We 

must then recall, that at this point wavelets were only used to filter gravity data prior to 

inversion into bathymetry.  The stage is thus set to continue towards a continuity solution 

in the wavelet domain to determine whether or not an even greater advantage is feasible. 

The different basis functions were also tested for their ability to remove noise 

from a signal.  Refer to figures 4.6-4.8 for a visual aid.  A slice of data from SEPR was 

used for this task.  Gaussian noise was added to the signal.  The FT did nothing to remove 

the noise from the signal.  Whereas the Daubechies wavelet family allowed for greater 
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control of noise removal via examination of the approximation and detail coefficients, the 

continuous wavelet, in this case the MHW, quickly and effectively removed the noise and 

produced a fair approximation to the original signal.  Nonetheless, with a little effort, a 

discrete wavelet such Daubechies-1, can excel in this capacity. 

5.1.1.1 Analytical vs. Numerical Solutions 

Numerical solutions are a necessary tool used for computing difficult and 

seemingly unsolvable problems which has enhanced our ability to model a large number 

of phenomena including atmospheric and oceanic currents, engineering problems and 

biological patterns.  It is, however, not without fault as error is always introduced with 

numerical approaches, even as computing power has increased allowing for a greater 

number of terms to be solved, thereby decreasing the amount of error.  With the advent of 

computers and their exponential growth in processing speed, a trend of not attempting to 

analytically approach a problem is quickly increasing as significant amounts of time can 

be shifted to other efforts.  As was reported previously in the results chapter, a 

combination of analytical and numerical modeling can reduce the amount of error 

introduced.  Further, as initial testing demonstrated, the blended analytical/numerical 

approach solution to the Mexican Hat wavelet transform of the Newtonian potential gave 

a smaller error than the two purely numerical approaches computed for a slice of area of 

ocean topography located in the SEPR.  This type of solution also acted as a baseline to 

the result that could be expected when numerical tools from the MATLAB toolbox and 

Generic Mapping Tool (GMT) were used to compute predicted bathymetry for each of 

the three tested continuous wavelet basis functions. 
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Although the hypothesis tested true, it was not at the expected amount of 

reduction of error, as for the most part, there was little to no statistical difference between 

the FFT and the tested continuous wavelets.  The reasons for this, however, are listed.  A 

wavelet solution to upward and downward continuation is as yet believed to be unsolved.  

This is the case as there is no known solution for a continuous wavelet transform of a 

monopole, which is a key component to solving downward continuation.  Certain 

methods can be employed such as followed in this dissertation based on the technique 

employed by Abedi, 2014 (using discrete wavelets), where the wavelets were used to 

filter gravity data prior taking the known FFT based computations of continuity.  

Although there was some success there, it is conceivable that a pure wavelet approach to 

predicted bathymetry is required to achieve the hypothesized reduction of error. 

It is also necessary to look at filtering raw satellite data using wavelets as opposed 

to FFTs.  As was shown by Perez-Rendon and Robles (2004) and the work presented 

here, wavelets, both continuous and discrete, are superior at removing noise from a signal 

compared to the Fourier transform.  Wavelets, however, are computationally more 

expensive and the denoising approach via convolution/deconvolution are taxing.  

Nonetheless, with increased computer processing power, this may soon be an issue of the 

past.  A combination of noise removal via wavelets and a wavelet solution to continuity 

may be the key to not only achieving greater reductions in predicted bathymetry error 

with newer more dense satellite observations but also with older more sparse data sets.  

Once these approaches are complete, they could be applied to other transforms such as 

ridgelets.  The ridgelet transform utilizes the relationship between the radon transform, 

which allows for directional control, and the FFT and continuous wavelets.  Techniques 
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that utilize ridgelets, with the Mexican Hat transform as the basis function, are already 

being employed by geologists studying ocean features (Nathan J. Downey, 2007). 

5.2 Conclusions 

Based off of the results obtained in this study, at every step, wavelet transforms 

demonstrated a clear ability to outperform the Fourier Transform in signal reconstruction 

and later in the computations of inversion from a gravity to a bathymetric signal.  

Although in the latter part of the study, inversion via wavelet filtering produced only 

seemingly small increases in performance, when only 5% of all coefficients were 

considered, the FT required double the terms as the Morlet in order to reach the same 

200m RMS error curve line.  Similarly, for the smaller area, a 50% increase in terms was 

required by the FT to reach a 400m error curve than the Morlet wavelet.  In this case, the 

Morlet wavelet transform demonstrated a clear superiority against the other two tested 

continuous wavelets as well as the FT when dealing with a limited number of terms.  As 

the number of terms increased, that edge slowly disappeared as expected. 

Three hypotheses were tested in this study.  The first hypothesis addressed 

whether sparser basis functions, when applied to satellite altimetry data, would lower 

RMS error when compared to the FT.  The results of this study support acceptance of the 

hypothesis.  In all tested cases, CWTs resulted in a lower RMS error, with only the 

Mexican Hat wavelet failing to do so in a few cases.  It must be stated, however, that in 

these cases, there was little statistical difference between the Mexican Hat wavelet and 

the FT.  The second hypothesis tested if theses same sparser basis functions would also 

increase resolution of predicted bathymetry.  Here, results seem to indicate that in 

particular the Morlet wavelet had the ability to not only have the lowest RMS error with 
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the same number of coefficients but also to increase the level of detail captured in the 

predicted bathymetric images.  Finally, the third hypothesis asked if taking the Fourier 

Transform of a continuous wavelet to compute wavelet coefficients would result in lower 

RMS error and result in an analytical solution to the wavelet transform of the 

gravitational potential anomaly.  This method was applied only to the Mexican Hat 

Transform.  The result was a quasi-analytical solution that indeed resulted in lower RMS 

error compared to the FT approach of computing gravitational potential anomalies. 

Continued research should proceed on this topic in the following way.  Based on 

the performance of the Morlet wavelet, greater efforts should be taken to test this 

transform in a variety of other regions in the ocean.  Upward and downward continuation 

should be computed for at least the three tested continuous wavelets with more emphasis 

being placed on the Morlet wavelet.  Although the Mexican Hat may prove to be easier to 

compute, every opportunity should be taken to solve continuity in the Morlet domain.  

Discrete wavelets were largely not considered in order to reduce the scope of work.  It is, 

however recommended, that discrete wavelets also be considered as a viable option due 

to their well-documented de-noising ability.  Finally, ridgelets should also be considered.  

The key advantage of directionality by ridgelets could be beneficial. 
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APPENDIX A – List of Symbols 

U(P) – is the potential 

γ – Newton’s gravitational constant 

σ – surface density 

µ - point mass 

k – wavenumber 

ρ – density  

λ – mass per unit length 

γ* – Euler-Mascheroni constant 

𝑟0⃗⃗  ⃗ – observation point 

𝑟  – distance from the z-axis to the source point, where 𝑟 = 𝑥𝑥̂ + 𝑦𝑦̂ 

𝜉  – 3D distance from the origin to the source point 

𝜉0
⃗⃗  ⃗ – 3D distance from the origin to the observation point 

J0 – zero-order Bessel function 

Δg – vertical attraction 

ℎ(𝑟 ) – topography height 

ψ – mother wavelet 

ψ* – complex conjugate of ψ 

s – scale 

Ei – exponential integral 

Δn – nth order derivative 

𝜑(𝑥) – 2-D Gaussian 

Γ – Gamma function 



 

173 

ℋ - Hankel Transform 

g0 – average acceleration of gravity 

𝛿(𝑡) – impulse function 

ω – angular frequency 
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APPENDIX B Full Steps Between Equations 2.22 and 2.23 

Starting with equation 2.22 

 𝑈(𝑃) = 𝛾𝜆 [𝑙𝑛 |2𝑧2 − 2𝑧0 + 2√𝑧2
2 − 2𝑧0𝑧2 + (𝑟0

2 + 𝑧0
2)| − 𝑙𝑛 |2𝑧1 − 2𝑧0 +

2√𝑧1
2 − 2𝑧0𝑧1 + (𝑟0

2 + 𝑧0
2)|]   (AB.1) 

Recall that z1 = -a, z2 = a and z0 = 0.  Substituting these values into equation AC.1 results 

in 

 𝑈(𝑃) = 𝛾𝜆 [𝑙𝑛 |2𝑎 + 2√𝑎2 + 𝑟0
2| − 𝑙𝑛 |−2𝑎 + 2√(−𝑎)2 + 𝑟0

2|] (AB.2) 

Utilizing the properties of logarithms and setting –a2 = a2, 

 𝑈(𝑃) = 𝛾𝜆 𝑙𝑛 [
2𝑎+2√𝑎2+𝑟0

2

−2𝑎+2√𝑎2+𝑟0
2
] (AB.3) 

Now factoring out and cancelling 2 we arrive at equation 2.23 

 𝑈(𝑃) = 𝛾𝜆 𝑙𝑛 [
𝑎+√𝑎2+𝑟0

2

−𝑎+√𝑎2+𝑟0
2
] (AB.4) 
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APPENDIX C The Proof of Parseval’s Relation for Hankel Transforms 

The following proof of Parseval’s Relation for Hankel Transforms is taken from Debnath 

(1995). 

The Hankel Transform of some functions f(r) and g(r) are set as: 

 𝑓(𝑘) = ℋ𝑛{𝑓(𝑟)} and 𝑔̃(𝑘) = ℋ𝑛{𝑔(𝑟)} (AC.1, AC.2) 

Thus, 

 ∫ 𝑟 𝑓(𝑟)
∞

0
𝑔(𝑟) 𝑑𝑟 = ∫ 𝑘 𝑓(𝑘)

∞

0
𝑔̃(𝑘) 𝑑𝑘 (AC.3) 

Proof: 

 ∫ 𝑘 𝑓(𝑘)
∞

0
𝑔̃(𝑘) 𝑑𝑘 = ∫ 𝑘 𝑓(𝑘)

∞

0
𝑑𝑘 ∫ 𝑟 𝐽𝑛

∞

0
(𝑘𝑟)𝑔(𝑟) 𝑑𝑟 (AC.4) 

The order of integration is interchangeable, thus rearranging we obtain: 

 ∫ 𝑟 𝑔(𝑟)
∞

0
𝑑𝑟 ∫ 𝑘 𝐽𝑛

∞

0
(𝑘𝑟)𝑓(𝑘) 𝑑𝑘 = ∫ 𝑟 𝑔(𝑟)

∞

0
𝑓(𝑟) 𝑑𝑟 (AC.5) 
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APPENDIX D Proof of Equation 4.33 

Lemma, from Jameson (1994) 

Let 

 𝐼 = ∫ 𝑒−𝑥2∞

−∞
𝑑𝑥  (AD.1) 

We next will set A as the region in the (x,y) plane defined as 

 0 ≤ 𝑧 ≤ 𝑒−𝑥2
, 𝑥 ≥ 0  (AD.2) 

After rotation of the region A about the z-axis, a new 3D region is formed, defined by 

 0 ≤ 𝑧 ≤ 𝑒−𝑥2−𝑦2
 (AD.3) 

Its volume is thus represented as 

 ∫ ∫ 𝑒−𝑥2−𝑦2∞

−∞
𝑑𝑥𝑑𝑦 = 𝐼2

∞

−∞
  (AD.4) 

However, as the volume was formed through the rotation about the z-axis, of the curve 

 𝑥2 = − ln 𝑧, 𝑓𝑜𝑟 0 < 𝑧 ≤ 1  (AD.5) 

It must equal 

 ∫ 𝜋𝑥2𝑑𝑧 = 𝜋 ∫ − ln 𝑧
1

0
𝑑𝑧 = 𝜋

1

0
  (AD.6) 

Recalling equation AE.4, 

 𝐼2 = 𝜋, 𝑡ℎ𝑢𝑠 𝐼 = √𝜋  (AD.7) 
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APPENDIX E Nichols and Yates Proof 

The below proof is taken from Nichols and Yates (1950). 

Assume the following: 

 ∫ 𝑒−𝑥2
𝑑𝑥 = 𝐴

∞

0
, where ∫ = lim

ℎ→∞
∫ ∙

∞

0

∞

0
 (AE.1, AE.2) 

The surface 𝑧 = 𝑒−(𝑥2+𝑦2) is produced by revolving the curve 𝑧 = 𝑒−𝑦2
 about the z-axis. 

The surface z then has the volume: 

 𝑉 = 4∫ ∫ 𝑒−(𝑥2+𝑦2)∞

0

∞

0
𝑑𝑥𝑑𝑦 (AE.3) 

Using the properties of exponents, we can separate the exponential into two parts and 

rearrange the equation as: 

 𝑉 = 4∫ [∫ 𝑒−𝑥2
𝑑𝑥

∞

0
]

∞

0
𝑒−𝑦2

𝑑𝑦 (AE.4) 

Now substituting equation AF.1 into the AF.4: 

 𝑉 = 4∫ 𝐴
∞

0
𝑒−𝑦2

𝑑𝑦 (AE.5) 

Similarly for 𝑒−𝑦2
𝑑𝑦 we may substitute, resulting: 

 𝑉 = 4𝐴2 (AE.6) 

If, however, the method of hollow cylinders is considered: 

 𝑉 = 2𝜋 ∫ 𝑦
∞

0
𝑒−𝑦2

𝑑𝑦 = 𝜋 (AE.7) 

We may then show 

 𝑉 = 4𝐴2 = 𝜋 (AE.8) 

Thus, we can see that 

 𝐴 =
√𝜋

2
 (AE.9) 

We now see that indeed 
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 ∫ 𝑒−𝑥2∞

0
𝑑𝑥 =

√𝜋

2
  (AE.10) 
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