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ABSTRACT 

ASYMMETRIC SYNTHESIS OF Cα-METHYL- γ- AND δ-AMINO ACIDS FROM  

A COMMON SYNTHON AND EVALUATION OF THIONYL CHLORIDE 

ASSISTED PEPTIDE ESTERIFICATIONS 

by Emily Rose Vogel 

December 2015 

 Cα-methyl-γ- and δ-unnatural amino acids (UAAs) are important class of 

biomolecules used extensively as structural scaffolds, peptidomimetics, and in 

the development of pharmaceuticals.  Due to steric congestion surrounding the 

quaternary center, asymmetric preparation of α,α-disubstituted UAAs are 

synthetically challenging.  Herein, two methods for the synthesis of chiral 

synthons to prepare Cα-methyl-γ- and -δ-UAAs are reported.  A crucial step in 

both strategies includes an enzymatic hydrolysis of prochiral malonic esters with 

pig liver esterase (PLE).  The first method utilizes the Meyer Schuster 

rearrangement to prepare α,β-unsaturated diesters synthons, but the preparation 

of the precursor propargyl alcohol decomposes into uncontrollable retro-aldol 

products.  Alternatively, synthons 3-(hydroxymethyl)-3-methylpyrrolidin-2-one 

and piperidin-2-one, are prepared via a phthalimide deprotection and 

stereoselective cyclization of the free amine toward an activated ester.  This 

cyclization strategy allows for the preparation of both enantiomers through steric 

or electronic controls.  Conversion of intermediate γ- or δ-lactams into mesylates, 

nucleophilic substitution, and ring opening led to the formation of γ2,2 and δ2,2-

serine, -azido, and -cysteine analogues.  General application of the cyclization 
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strategy was found to be limited by sterics imposed by the neopentyl 

intermediate resulting in longer reaction times and inability to substitute some 

nucleophiles. 

 The esterification of oxidized glutathione with thionyl chloride and various 

alcohols was monitored for completeness using electrospray ionization mass 

spectrometry.  Oxidized glutathione was found to be highly compatible with an 

excess of methanol and ethanol, but slow and incomplete with 2-propanol.  The 

thionyl chloride esterification was applied to other small peptides to evaluate the 

limitations with various amino acid side chains.  The results show 

incompatibilities with peptides containing both serine and cysteine but well 

tolerated with the remaining natural amino acids.  
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CHAPTER I 

INTRODUCTION 

 The basic monomer unit of proteins and peptides are the 20 unique amino 

acids provided by nature.  These naturally occurring amino acids all contain the 

same core backbone but structurally their side chains differ.  The structural 

diversity of amino acid side chains are responsible for their unique chemical and 

physical properties.  Over the last fifty years, chemically modified versions of 

amino acids have emerged with non-natural variations opening a new class of 

amino acids deemed unnatural amino acids (UAAs).1-3 

 The incorporation of UAAs into peptides/proteins has important 

implications such as stabilizing biological structures, resistances to enzymatic 

degradation, and improved biological functions.  As a result, UAAs are promising 

research leads as peptidomimetics, foldamers, antibiotics, and 

pharmaceuticals.4-8  UAAs are also valuable as asymmetric catalysts, structural 

scaffolds, and as reaction intermediates in synthesis of natural products.1,9  γ- 

and δ-UAAs are an important class of UAAs gaining considerable attention over 

the last decade.  These UAAs have methylene units inserted into the carbon 

backbone (Scheme 1).10-12  In comparison to α-amino acids, the homologated 

γ/δ-UAA backbone allows these molecules to mimic dipeptides with increased 

flexibility to form secondary structures.  Another promising class of UAAs are α,α-

disubstituted UAAs with Cα-methyl substitution.  The replacement of the 

quaternary hydrogen with a methyl group increases the in vivo half life, improve 

bioavailabilities, and restrict the conformational backbone freedom.13  Marriage 
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between both the homologated and α,α-disubstituted backbone represents a 

novel class of UAAs worthy of synthetic exploration and value. 

NH2
HO

NH2

O

HO

O

R HR H

Natural 
Amino AcidUAAs

NH2
HO

O

R CH3

R= Any Amino Acid Side Chain
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 -Disubstituted 
UAAs

HO
NH2
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R CH3

Disubstituted 
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HO

O

R CH3
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UAAs

NH2
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O

R H
NH2

UAAs

+

 

Scheme 1.  Illustration of the classes of γ/δ-disubstituted UAAs studied. 

 Currently synthesis of disubstituted γ/δ-UAAs has not been thoroughly 

explored.  Moreover, there are no reports of a method capable of preparing 

multiple derivatives of both enantiomers of γ- and δ-disubstituted UAAs.  One of 

the goals set forth by The National Research Council is to, “develop methods that 

will enable synthesis of all important molecules in reasonable yields using 

compact synthetic schemes, so that no useful compound is inaccessible to 

practical synthesis.”14  The aim of this work is to make access to Cα-methyl-γ- 

and δ-UAAs easily accessible by developing chiral synthons to prepare these 

biomolecules.  Additionally, The National Research Council also emphasized the 

importance of using enzymes to prepare molecular intermediates.14  A crucial 

synthetic step in this work includes an enzymatic hydrolysis with Pig Liver 

Esterase (PLE) to prepare enantioenriched chiral half esters from prochiral 

malonic esters.  Other UAAs synthesis often draw from scarce or expensive 
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chiral catalysts, chiral auxiliaries, or natural resources.  In comparison, the PLE 

method is inexpensive and tunable to a specific enantiomer.15  The goals of this 

research are: 

 The development of γ/δ-UAAs common synthons from an enantioenriched 

PLE hydrolysis; 

 Demonstrate the versatility of the common synthon by preparing multiple 

γ/δ-UAA analogues; 

 The evaluation of thionyl chloride in the esterification of glutathione and 

other small peptides. 

Applications and Uses of Unnatural Amino Acids 

 The past several decades α-UAAs have been used in peptidomimetics, 

foldamers, antibiotics, and as pharmaceuticals.11,16,17  They have also been used 

as intermediates in the synthesis of chemical scaffolds, chiral auxiliaries, and as 

asymmetric organocatalysts.1,9  Recently, interest in these molecules has 

expanded to include homologated γ/δ-UAAs.  These homologues have greater 

flexibility and chemical diversity, due to the inserted methylene units, but still 

function as their α-counterparts. 

UAAs as applied to the field of peptidomimetics 

 Peptidomimetics are used to mimic natural peptides in both structure and 

function while maintaining essential pharmacophore properties.  As biomolecules, 

peptidomimetics have improved bioavailabilities,18 improved receptor 

selectivities,19 and are stable toward proteolysis.20,21  These features make 
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peptidomimetics respectable candidates for drug discovery functioning as 

enzyme inhibitors.22-24 

 Homologated UAAs closely resemble dipeptides, therefore, γ/δ-UAAs are 

used as dipeptide peptidomimetics.  The difference between the two molecules is 

one less peptide bond on the γ/δ-UAA peptidomimetic.  This makes the γ/δ-UAA 

peptidomimetic less susceptible to enzyme hydrolysis improving their in vivo half 

lives.  Frackenpohl et al. demonstrated the stability of aliphatic substituted γ2, γ3, 

γ4, and γ2,3,4 and found no degradation occurred after incubation with active 

enzymes pronase, proteinase K, penicillin amidase, and β-lactamase (Figure 

1).25  Unnatural γ-homologues were also used as somatostatin peptidomimetics.  

Somatostatin’s natural 14-amino acid cyclic disulfide hormone sequence is 

mimicked with an open chain γ-analogue containing only three amide bonds.26 

H2N
OH

O

H2N
OH

O
H2N

OH

O

R

R

R

2 3 4

H2N
OH

O

R1

2,3,4

R2

R3

R= aliphatic groups  

Figure 1.  γ-UAAs studied by Frackenpohl et al. with active enzymes. 

Foldamers composed of unnatural amino acids 

Peptides and proteins containing well-defined conformational secondary 

and tertiary structures are responsible for many biological effects found in vivo.  

In order to function properly, peptides must maintain specific conformations 

either in solution or when bound to receptors.  The major problem in designing 

peptides is they lack the stabilization necessary for the formation of secondary 
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structures.  As a result, scientists interested in biologically active peptides 

explored the properties needed to stabilize particular conformations and foldamer 

research was born.27  Early studies focused on creating foldamers strictly with α-

UAAs, as it was generally assumed that the increased flexibility associated with 

UAA homologues without conformational restrictions in the backbone would lack 

the stabilization necessary to form secondary structures.  This belief was 

discredited by both Seebach and Gellman who showed β-UAAs are capable of 

forming stable helices, turns, and sheets.7,28-31 

Foldamer studies have since expanded to include γ-homologues.  

Hinterman et al. was the first to show hexamers composed of aliphatic mono-

substituted γ-UAAs formed stable right handed helices in solution.28  The 

stabilizing hydrogen bonds form between the carbonyl of i and the NH group of 

every (i +3) residue.  Hanessian et al. later found only four amino acids residues 

are needed to stabilize a helix.  The important findings of homologated peptides 

are summarized as follows:30,32  

 γ-homologues fold into stabilized helices in as little as four amino 

acid residues in both methanol and pyridine solutions, or in solid 

state; 

 The stability of the helices increases from α-, to β-, to γ-peptides, 

while the number of hydrogen bond decreases; 

 The helicity reverses for each homologue; Right handed 3.613-α-, 

310-α-, 2.614-γ-helicies and left handed for 314-β-helices; 
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 In each homologue, the direction of the macrodipole reverses 

pointing N- to C- in both α-, and γ-peptides and C- to N- in β-

peptides. 

 γ-UAAs also form other secondary structures.  Schreiber et al. reported 

α,β-unsaturated γ4-UAAs (Figure 2, Type A) formed parallel sheets and α,β-

unsaturated γ2,4 (Figure 2, Type B) formed antiparallel sheets.33  The 

conformational side chain orientations are also important factors dictating 

secondary structures stability.  The anti-γ2,4 (Figure 2, Type C) conformations 

stabilize structures where as syn-γ2,4 (Figure 2, Type D) destabilized secondary 

structures.34  Additionally, Hanessian showed that stereochemistry plays an 

important role in secondary structure determination by demonstrating (α-S)-

cinnamyl γ-amino acid tetrapeptide adopts a helical structure, whereas, (α-R)-

cinnamyl tetrapeptide forms a reverse turn in solution.35  Other observed 

secondary structures included β-hairpins stabilized between a disulfide formed 

between two β-SH-γ-amino acids.36  These examples demonstrate the 

importance of position in the substitution of the amino acid side chain and the 

need for asymmetric preparation of these biomolecules. 

H2N
OH

O

R1 R2

H2N
OH

O

R1 R2

H2N
OH

O

R

-Unsaturated 2,4

A B

H2N
OH

O

R

C D  

Figure 2.  Types of γ-UAAs inducing or stabilizing conformational structures. 
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 Since δ-UAAs represent a true isosteric replacement of dipeptides, δ-

UAAs are often used as β-turns mimics.10,37,38  Shankaramma et al. showed 

antiparallel β-sheets formed when δ-aminovaleric acid was inserted at the turn.39  

Gellman et al. demonstrated the importance of a rigidified backbone by 

introducing trans δ-UAA alkenes as a β-turn mimic (Figure 3).40  Gardner et al. 

also showed δ2,5-UAAs induce β-turns.37,38  All of these studies, including the 

mentioned γ-UAA studies, outline the importance of conformational restriction 

and/or specific substitution patterns along the UAA-backbone to induce stable 

turn mimetics. 

N
H

N
H

O O
N

HN

O

H

N

N
OO

O

H

-UAA -turn mimic

 

Figure 3.  Gellman et al. β-turn mimetic using δ-unsaturated UAAs. 

Pharmaceuticals and antibiotics composed of unnatural amino acids 

 The ability of UAAs to act as peptidomimetics and foldamers has led to the 

development of many pharmaceutical leads.  Some of these are peptide-based 

drugs, whereas others are antifungal,41,42 antibacterial,43 and tumor reducing 

agents.44  -UAAs as pharmaceuticals alone are studied extensively for their 

ability to mimic -aminobutyric acid (GABA), a central nervous system (CNS) 

neurotransmitter.11,12  Currently, GABAergic drugs and prodrugs are used to treat 

Huntington’s and Parkinson’s disease, epilepsy, and aliments of psychiatric 
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disorders.11,12  The flexibility and polarity of GABA’s structure makes GABA 

incapable of crossing the blood brain barrier, therefore it is not administered 

orally (Figure 4).  In order to gain entry, GABA analogues are designed with 

lipophilic and constrained moieties as seen in (R)-Baclofen, GABApentin, (S)-

Vigabatrin, (S)-Pregabalin.  The additional hydrocarbons and aromatic 

components make these drug candidates non-polar and more accessible to 

cross the blood brain barrier.45,46 

Cl

CO2H

NH2

GABOB Analogues

GABApentin

GABA Analogues

GABA

HO
NH2

O

NH2

CO2H

HO
NH2

O

(S)-Vigabatrin(R)-Baclofen

HO
NH2

O

(S)-Pregabalin

HO
NH2

O OH

(R)-GABOB

O
NMe3

O OH

(R)-Carnitine

OH

NH2

OOH

Statine

iBu NH

O

O

H
N

NHO

OH

H
N

O

HN

O

OH

HO O

Pepstatine  

Figure 4.  Current examples of γ-UAAs used as pharmaceuticals and inhibitors. 

Another interesting class of γ–UAAs are 4-amino-3-hydroxy-butyric acid 

(GABOB) derivatives (Figure 4).  GABOB is a naturally occurring marine 

microsclerodermin possessing both antitumor, antibacterial properties, and acts 

as an agonist to GABA.  A N-methylated derivative, (R)-Carnitine, was developed 

to mimic GABOB.  Similar in structure to GABOB is statine, a key component to 

natural hexapeptide pepstatine.  Pepstatine is both an antibiotic and aspartic acid 

protease inhibitor.  Aspartic acid proteases are responsible for the onset of aids, 
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hypertension, malaria, and Alzheimer’s disease.11,47-49  Key to peptstatine’s 

inhibitory effect is both the syn relationship between the hydroxy and amine 

groups of statine.  If the syn relationship is missing pepstatine is not able to 

tightly bind and inhibit aspartic acid proteases.49  Norstatine, cyclohexylstatine, 

and isostatine have emerged as peptide therapeutics derived from statines which 

include the hydroxy biological active component.47 

Strategies for the Synthesis of γ/δ-Unnatural Amino Acids 

 The synthesis of γ/δ-UAAs is complex and highly customized.  The 

amount of backbone substitution, degree of steric hindrance, and desired chirality 

must be considered when designing a synthesis.  The synthesis γ/δ-UAAs has 

been reviewed extensively.11,12,49  Herein, a few strategies to homologate the 

backbone are discussed.  The asymmetric methods reported rely heavily on 

transition metal catalysts, chemoenzymatic routes, asymmetric catalysts, and/or 

draw from established chiral sources.50 48,51,52  Generally, these methods are 

specific to a particular amino acid side chain and require optimization of another 

method if different analogues are desired. 

Due to the medicinal importance of GABA and GABOB analogues, 

considerable research is devoted to synthesizing γ-UAAs with β-substitutions.  D. 

Aguirre et al. reported a stereoselective synthesis of (R)-γ-amino-β-benzyl-β-

methylbutyric acid starting from chiral α-cyanoester (Scheme 2).53  Chirality was 

established by a stereoselective α-alkylation of chiral 2-cyanoesters.  The amino 

acid backbone was homologated after an Arndt-Eistert synthesis, and Wolff 

rearrangement of the diazoketone.  Finally, the nitrile group reduced, cyclized, 
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and ring opened under acidic conditions to afford γ3,3-amino acid.  The Arndt-

Eistert synthesis, Wolff rearrangement, and/or reduction of a nitrile is 

representative of one of the common approaches γ/δ-amino acids.28  However, 

any steric hindrance prevents the formation of diazoketones limiting the Arndt-

Eistert, Wolf rearrangements to uncongested substrates.54 

H3C CN

CO2R*

H3C CN

CO2R*
Ph

H3C CN

CO2H
Ph

H3C CN

Ph

CHN2O

H3C CN

Ph

CO2CH3

H3C

Ph
NH

O

H3C

Ph

CO2H

NH2

i ii iii

iv v vi

100% 93% 98%

95% 90% 80%

d.r. 82/12

 

Scheme 2.  Aguirre et al. approach to synthesizing β,β-disubstituted γ-UAAs. 
Reagents and conditions: (i) K2CO3, BnBr, acetone; (ii) KOH, MeOH, D; (iii) 
ClCO2, iBu, NMM,THF,-20 °C, then dry CH2N2 in ether; (iv) AgBzO, Et3N, MeOH, 
THF; (v) H2, Ni (Ra), NH3/MeOH, 35 °C; (vi) HCl. 

 Adam et al. reported a similar asymmetric synthesis reducing a nitrile to 

create α-propyl-γ-serine.55  Often, nitrile reductions are implemented to prepare 

disubstituted γ/δ-UAA analogues.  Adam et al. used the nitrile group to prepare 

α-propyl-γ-serine and Doris et al. to prepare γ2,2,3 substituted derivatives 

(Scheme 3).55,56 
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Scheme 3.  Doris et al. synthesis of γ2,3,3 substituted amino acids. 

 Other strategies to prepare γ/δ-UAA backbone include a Hoffman or 

Curtius rearrangements.  Kambourakis et al. reported the low yielding chemo-

enzymatic synthesis of γ2,3 and γ3,4 β-hydroxy analogues using ketoreductase 
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enzyme and a Hoffman/Curtius rearrangement (Scheme 4).57  The additional 

chemical hydrolysis/esterification step prepared γ3,4 derivatives, and an 

enzymatic hydrolysis produced the γ2,3 derivatives. 

O

EtO

O

OEt

O
R-X

O

EtO

O

OEt

O

R

Ketoreductase

EtO

O

OEt

O

R

OH

HO

O

OH

O

R

OH

H2N
OEt

O

R

OH1.Protection
2.Rearrangement

Chemical 
Hydrolysis Chemical or 

Enzymatic 
Hydrolysis

HO

O

OEt

O

R

OH

EtO

O

OH

O

R

OH

NH2
EtO

O

R

OH

 2,3

1.Protection
2.Rearrangement

 

Scheme 4.  Kambourakis enzymatic desymmetrization rearrangement to β-
hydroxy γ-analogues. 

 Several methods use nitrooxazolines to prepare the carboxylic acids from 

oxazolines and amines from nitro groups.58,59  Furanose sugars are 

stereoselective ring opened into both γ/δ-UAAs following a regiospecific reaction 

with periodate and azide reduction.60  Garrido et al. described both a 

diastereoselective and enantioselective synthesis via an Ireland-Claisen 

rearrangement of a Baylis-Hilmann adducts and Michael addition of a chiral 

lithium amides to δ3,4 analogues (Scheme 5). 
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Scheme 5.  Garrido et al. method to prepare δ3,4 amino acids. 
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 Other strategies capable of preparing both γ/δ-UAAs have used 

Meldrum’s acid as a scaffold (Scheme 6).61,62  Finally, also common are Wittig 

olefination chemistries and nucleophilic aziridine ring openings.28,63-67 
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Scheme 6.  Casimir et al. synthesis of δ4 UAAs. 

 The number of synthetic methods to both γ/δ-UAAs are diverse.  Many 

strategies involve a combination of either a ring opening, reduction of a 

nitrile/nitro group, and/or a rearrangement reaction.  However, missing from all 

these strategies are methods capable of preparing a diverse array of α,α-

disubstituted amino acids from a common synthon. 

Influences of Cα,α-Disubstitution in Unnatural Amino Acids 

 The goal of biomimetic research is to design novel peptides with 

enhanced properties complementing natural peptides.  One method to mimic 

peptides is to replace the chiral quaternary α-hydrogen with a methyl group.  

These substituted derivatives are called α-methyl amino acids.  In comparison to 

a natural peptide, α–methyl amino acids restrict the conformational rotation of the 

backbone to add rigidity, increase metabolic stability, and hydrophobicity.68,69  

Initial studies containing α-methyl amino acids incorporated achiral 2-

methylalanine analogues (Aib) into peptides.  These studies found that Aib was a 
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strong helix inducers, contained restricted rotation about the N-Cα (Φ) and Cα-C’ 

(Ψ) bonds, and had limited Ramachandran torsion angles.70,71  Overall the 310-

helix is stabilized in a as few as eight residues, whereas the α-helix requires an 

average of 9-20 residues.70  However, the missing stereogenic carbon of Aib 

results in a lack of helical screw sense, therefore the handiness is determined by 

the other amino acids in the peptide sequence. 

 The ability of Aib to stabilize secondary structures prompted other 

investigations into α-methyl amino acids.  Altmann and Mutter72 utilized (R)/(S) 2-

methylaspartic acid incorporated into the i/(i +4) ends of a 16 amino acid residue 

peptide.  They found chirality of the monomers plays a role in the helix inducing 

potential of α-methyl substituted amino acids.  Other α-methyl amino acids 

capable of inducing helices or β-turns include derivatives of alanine, valine, 

leucine, and serine.73 

 In addition to inducing secondary structures, literature has shown α-methyl 

amino acids are effective enzyme inhibitors.73  The methyl group increases 

receptor affinities by inducing binding conformations.74  Examples of the inhibitor 

effects are documented with α-methyl-tyrosine, -tryptophan, and -aspartic acid.73-

75  As structural scaffolds α-methyl amino acids are used as intermediates in the 

synthesis of NK1/NK2 receptor antagonists,76 tubulysin analogues,77 and for acyl 

hydrolases fluorophore detection probes.78  In summary, the ability of the 

disubstituted stereocenter to restrict the rotation of the backbone and as act as 

potent enzyme inhibitors make the synthesis of these biomolecules highly 

desirable.  
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Current synthetic methods  

 The synthesis of chiral α-methyl amino acids are considered a synthetic 

challenge.  Direct methylation of amino acids result in a racemic mixtures and are 

not convenient approaches of establishing stereocenters.  Two extensive reviews 

examining the asymmetric synthesis α,α-disubstituted α-amino acids have 

appeared.69,73  In these reviews, there is a strong dependence on asymmetric 

catalysts and chiral auxiliaries.  Generally, these methods are expensive and/or 

rely on established chiral pools of molecules not always available.  Enzymes 

have recently emerged as an alternative to prepare chiral α-methyl amino acid 

analogues.23,79,80  Masterson et al. reports the preparation of enantioenriched 

analogues of α-methyl cysteine, serine, lysine, and α-methyl-β-proline following 

an enzymatic hydrolysis with PLE (Scheme 7).  The PLE method is also tunable 

for a particular enantiomer either by the addition of various co-solvents or using 

one of the six isolated PLE isoenzymes.15,81  Since the PLE strategy is capable of 

resolving prochiral esters from inexpensive starting materials, and the method 

compliments the ideas set forth by The National Research Council the PLE 

method was used to prepare α,α-disubstituted - and -amino acid common 

synthons. 

EtO OEt

O O
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O O
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R R
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Scheme 7.  Masterson et al. generic PLE strategy to orthogonal protected α-
amino acids. 
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Project Overview 

 The proceeding sections outlined the benefits of UAAs as important 

biomolecules.  Evident from the discussion is the emphasis placed of γ- and -

UAAs, however, the synthesis of each analogue is expensive and time-

consuming placing a bottleneck on the direct application of these biomolecules.  

Currently these amino acids are often prepared as a racemic mixture, draw from 

a chiral pool of molecules, or use expensive chiral catalysts.  A review of current 

literature revealed there are no compact methods capable of preparing a variety 

of chiral - and -amino acid analogues.  Additionally, conformational restricted α-

methyl amino acids are important compounds because they induce secondary 

structures, improve bioavailabilities, and prevent enzymatic degradation.  

Therefore, the aim of this research is to develop an asymmetric synthesis with 

access to α,α-disubstituted - and -amino acids via a common synthon.  This 

synthon should be easily obtained in a short compact synthesis, enantioenriched, 

and stable to wide ranging chemistries for further transformations to other amino 

acids. 

Hypotheses 

 Hypothesis 1 postulates a γ-amino acid backbone can be prepared by 

utilizing the Meyer-Schuster rearrangement as a synthetic tool to form α,β-

unsaturated diesters as a common intermediates in the synthesis of γ-unnatural 

amino acids.  Chapter II focuses on the synthesis of the proposed intermediate 

following a chemoenzymatic PLE and Meyer-Schuster rearrangement strategy. 
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 Hypothesis 2 postulates 3-(methylhydroxy)-3-methyl–γ/δ-lactams can be 

prepared via an intramolecular cyclization/reduction strategy and used as a 

common synthon in the synthesis enantioenriched Cα,α-disubstituted γ/δ-UAAs.  

Chapter III focuses on the chemistries associated with the stereoselective 

cyclization and functionalization of the lactam intermediates using substitution 

chemistry. 

 Hypothesis 3 postulates that esterification of small peptides with thionyl 

chloride can be used to completely esterify free carboxylic acids into methyl 

esters with limited side reactions and no purification.  Chapter IV evolved during 

the synthesis of an unnatural glutathione peptide.  Inefficient esterifications were 

observed following standard methods, and the discovery of thionyl chloride 

esterification proved to be highly efficient method not well documented.  

Therefore Chapter IV focuses on the compatibility of the esterification with 

various alcohols and other peptides. 
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CHAPTER II 

APPLICATION OF THE MEYER SCHUSTER REARRANGEMENT TO 

PREPARE α,β-UNSATURATED DIESTERS AS A COMMON INTERMEDIATE 

IN γ-UNNANTURAL AMINO ACID SYNTHESIS 

Hypothesis 1 

 A γ-amino acid backbone can be prepared by utilizing the Meyer-Schuster 

rearrangement as a synthetic tool to form α,β-unsaturated diesters as a common 

synthon in the synthesis of γ-unnatural amino acids. 

Introduction 

 In the previous chapter, the properties, applications, and general synthetic 

strategies of UAAs were reviewed.  Evident from this review is the need for 

homologated UAAs, but few general synthetic strategies are available.  Moreover, 

none of these strategies are capable of preparing multiple analogues of Cα-

methyl-γ-UAAs enantioselectively.  This chapter focuses on meeting the 

challenges of The National Research Council in developing a compact synthesis 

to prepare biologically relevant Cα-methyl-γ-UAAs from a common synthon. 

Designing a common synthon 

 The first step toward meeting The National Research Council’s challenge 

was designing a synthon.  The ideal candidate should be easily functionalized 

into both simple and complex analogues of γ-UAAs.  In addition, self-imposed 

requirements dictated the compound be prepared asymmetrically through a PLE 

hydrolysis, be high yielding over a condensed multistep synthesis, and 

accessible to a general audience.  Due to the variety of synthetic transformations 
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alkenes can undergo, intermediate 1, an α,β-unsaturated diester, was proposed 

(Figure 5).  This analogue contains the desired chiral quaternary center and is 

prepared through established PLE protocols. 
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Figure 5.  Proposed Cα-methyl- α,β-unsaturated γ-UAA common intermediate. 

 The disadvantages of 1 as a synthon are the early commitment to specific 

side chains, and the need for a PLE active prochiral diester.  However, those 

disadvantages are minor in comparison to the many higher ordered γ-derivatives 

capable of adding across the double bond.  A generic overview of the synthetic 

transformations 1 can undergo are outlined in Figure 5.  These syntheses 

included:  

 The synthesis γ2,2 and γ4,4 analogues via  hydrogenation;82 

 The synthesis of vinylogous α,β-unsaturated γ4,4-UAAs following a 

hydrolysis/Curtius reactions; 

 The nucleophilic addition to the electron deficient β-carbon forming γ2,2,3-

UAAs with Michael additions83-87 and organocopper Gilman’s reagents;88,89 
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 The addition to the α-carbon producing γ2,2,4-UAAs following a sequential 

silyl addition to the β-carbon, nucleophilic attack at the α-carbon, and 

desilylation;90 

 The synthesis of γ2,2,3,4- and γ2,3,4,4-UAAs prepared via silyl chemistry and 

the addition of two equivalents of nucleophile; 

Additionally, since, the designed intermediate are enantioenriched all additions 

follow a stereoinduced addition across the alkene.  After addition, the compound 

is converted into an amino acids via standard hydrolysis/Curtius protocols.  Use 

of the proposed synthon could access various enantioenriched α,α-disubstituted 

γ-UAAs in as little as 3 to 6 steps.  The value of having a synthon with wide 

applicability is important to the scientific community and the synthesis of 1 is 

documented within this chapter. 

Other applications of the intermediate 

 The α,β-unsaturated diester synthon also has been used for other bio-

relevant purposes such as the preparation of aminoglutethimide AG-1 

analogues.91,92  Additionally, conversion of 1 into an α,β-unsaturated amino 

esters are promising leads for the synthesis of natural products with antimalarial 

and anticancerous properties.93-96  These amino ester are also used as inhibitors 

for serine and cysteine proteases.87,97  For synthetic purpose α,β-unsaturated 

amino esters are used as substrates in Diels-Alder reactions,63 epoxidations,97 

and 1,4-conjugate additions.86,87  Due to the restricted backbone, these 

derivatives are also extremely desirable in foldamer research.33,64,65  Schreiber et 

al. was the first to report the formation of parallel and anti-parallel sheet like 
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structures with vinylougous amino acids.33  Grison et al. showed the ability to 

insert vinylogous glycine for GLY3 of Leu-enkephalin.65  In a later report, Grison 

found Z-vinylogous derivatives could form β-turn mimetics.64  As research has 

shown proposed synthon 1 is highly a desirable compound with many potential 

biological applications. 

Synthesis of γ-UAAs via olefination 

 In order to synthesize α,β-unsaturated diesters, traditional olefination 

processes were considered.  Typical olefinations require an aldehyde/ketone and 

a customized organophosphorus reagent.  Classic examples of these processes 

include Wittig,63,92,98 Horner-Wadsworth-Emmons (HWE), 99 Julia,100 and 

Peterson methods.101,102  The most utilized olefination for the preparation of α,β-

unsaturated compounds are the adaptations of HWE protocols.  In these 

reactions, phosphonate ylide intermediates are generated from alkali metals.  

Then the yliides undergo a stereoselective decomposition leading predominately 

E-isomers.  This method was first employed in the synthesis of α,β-unsaturated 

γ-amino acids by Seebach’s group (Scheme 8).28  After struggling to make 

analogues via the Arndt-Eistert homologation Seebach opted to use a HWE 

synthesis.  Their synthesis converted boc-protected amino acids into Weinreb 

amides, reduced the Weinreb amides into aldehydes using lithium aluminum 

hydride, and reacted the aldehydes with trimethyl phosphonoacetate over sodium 

hydride.  This three step synthesis fostered a 22% combined yield of the α,β-

unsaturated amino esters selective for the E-isomers.  Finally, the vinylogous 

amino esters were reduced with palladium to the N-boc-protected γ-amino acids. 
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Scheme 8.  Seebach HWE method to synthesizing vinylogous γ-amino acids. I. 
DCC, HOBt, Et3N, MeONHMe,·H2O.  II. LAH  III.  NaH, (PhO)2P(O)CH2CO2Me. 

 Grison et al. also used HWE reagents to prepare unsaturated-γ-UAAs 

(Scheme 9).64,65  Unlike Seebach, Grison was capable of making both E- and Z-

isomers by varying the alkali base used.  The E-analogues were prepared using 

dilithiated dianions of 2-diethylphosphonpropanoic.  Grison also showed the Z-

olefin could be prepared by using a combination of potassium hydride/ethyl 2-

bis(trifluoroethyl)-phosphonopropanoate or BuLi/ethyl 2-

diethylphosphonopropanoate.  Overall, the potassium hydride combination gave 

the highest Z-selectivity and was not affected by the size of R group or the nature 

of R2 group.  The selectivity was explained by the low temperature 

decomposition of the kinetic adduct and the reduced ability of potassium to form 

counter ion complexes.  The lithiated base selectivity was only enhanced when 

R1=F.  While these methods provided an efficient way of making vinylogous γ-

UAAs their methods were limited to monosubstituted substrates without bulky 

side chains. 
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Scheme 9.  Grison et al. HWE method of preparing both E/ Z-γ- Vinylogous 
UAAs. 

 Gopi et al. established a similar method using Wittig reagents (Scheme 

10).  Like Seebach and Grison, Gopi reduced a Weinreb amide to form an amino 

aldehyde, and reacted it with the ylide formed by 

(triphenylphophoranylidiene)acetate.  The reaction proceeds with a 100% E-

selectivity to the N-boc protected α,β-unsaturated alanine amino ester in 93% 

yield.  The same conditions prepared α-methylalanine in 75% yield.  Only one 

variation, a Horner-Emmons reaction, emerged since Gopi’s work to produce the 

same disubstituted compound,99 but the advantage of Gopi’s method is the 

compatibility with both boc- and fmoc-protected analogues. 
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Scheme 10.  Gopi synthesis using traditional Wittig chemistry and their proposed 
transition states. 

 The strategies described were successful at making simple α-substituted 

UAAs but several limitations were encountered preparing disubstituted 

analogues.  First, both the Horner and Witting reactions require expensive 

designer organophosphorus reagents.  Typically, these reagents are synthesized 

individually and are bulky reagents.  Moreover, mass is wasted and is not atom 

economical or affordable on a bulk scale.  In addition, phosphorus reagents are 

notoriously hard to purify, sometimes requiring multiple columns to remove 

noxious byproducts completely.  Finally, these olefination methods are limited to 

steric congestion surrounding the reacting ketones or aldehdyes.  Those 

strategies preparing UAAs from vinylogous analogues resorted to using chiral 

catalysts82 in order to reduce the double bond and avoided disubstituted α-

carbons.  Therefore, any chemistry used to prepare 1 must accommodate a 

congested chiral center. 

 All of the mentioned strategies involve the conversion of an amino 

aldehyde to the vinylogous amino ester.  After a literature review it is obvious 

very few strategies are capable of synthesizing C α,α- disubstituted-unsaturated 
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diesters.92,103-108  Some of these methods used traditional Witting92 and HWE109 

methods, while others used non-traditional olefination chemistries.  The Meyer 

Schuster rearrangement was considered as an alternative strategy to avoid the 

challenges associated the synthesis of α,α-disubstituted with traditional 

olefination chemistries.  

Meyer Schuster rearrangement 

 Recently, the Meyer Schuster rearrangement gained significant attention 

as chemists continue to develop greener alternative chemistries.110  The Meyer 

Schuster rearrangement is not limited by sterically hindered ketones/aldehydes.  

The only requirement to promote the reaction is a propargyl alcohol and a 

catalytic amount of Brønsted acid.  Once activated, the propargyl alcohol 

undergoes a 1,3-hydroxyl shift and tautomerization to an α,β-unsaturated ketone 

(Scheme 11).111,112 
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Scheme 11.  Mechanism of the Meyer Schuster rearrangement. 



25 
 

 
 

 The Meyer Schuster reaction is not without limitations, and the biggest 

challenge is selectively promoting the desired rearrangement over competing 

pathways (Scheme 12).113-116  The Rupe rearrangement, a 1,2-hydroxy shift, is 

the major competitor due to a lower energy transition state.  However, the Rupe 

pathway only occurs if a β-hydrogen is located adjacent to the propargyl 

alcohol.115,116  There is also potential for an internal redox process with a 

simultaneous oxidation of the alcohol and reduction of the C≡C bond.  Early on 

limitations of using the Meyer Schuster rearrangement was the harsh refluxing 

acidic reaction conditions needed to effect transformation and lack of 

regioselectives.  Today, these limitations are overcome using new transition-

metal catalysts. 
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Scheme 12.  Possible competing reactions of Meyer Shuster rearrangement. 

 Original Meyer Schuster catalysts included oxides and oxo-complexes 

centered on activating hydroxyl groups.116  One of the first successful transition 

metal catalysts used were vanadium metal complexes.117  Still, lack of 

stereocontrol and high reaction temperatures offset the low to moderate reaction 
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yields.  In 2006, Engle and Dudley screened late transition-metal soft Lewis acids 

and found 5 mol % gold (III) chloride catalysts could promote the desired 

reaction.118  The high affinity for gold to coordinate acetylenic π-bonds enabled 

the rearrangement to proceed under milder reaction conditions (Figure 6).  This 

mode of activation differed from traditional Brønsted main group elements and 

early transition-metal Lewis acids which bound preferentially to harder Lewis 

basic sites. 
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Figure 6.  Hard/soft Lewis acid activation of Meyer Schuster rearrangements. 

 Dudley’s group continued to optimize reaction conditions for increased 

stereoselectivities under milder reaction conditions using cheaper 

catalysts.116,119,120  Dudley’s results are summarized below: 

 AuCl/AgSbF6 affects the E/Z selectivity; 

 5.0 equivalents of ethanol solvent promotes 1,3-hydroxyl migration;  

 A solvent mixture of THF-CH2Cl2 (1:1) was E-selective;  

 1 mol% catalyst loading of either copper(II) triflate, indium(III) chloride, or 

scandium(III) triflate produces higher yields. 
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These observations allowed them to synthesize several α,β-unsaturated ester in 

under a hour at room temperature.  Yields were greater than 70% with an E/Z 

ratio ranging from 40:60 to 100:0.  

 Dudley’s Meyer Schuster protocol inspired the synthesis of 1 as a key step 

in the synthesis of the common synthon.  By using the Meyer Schuster 

rearrangement reaction organophosphorus reagents are avoided, the chemistry 

is atom economical, and steric problems are eliminated.  Moreover, since the 

precursor propargyl alcohol contains no β-hydrogen the favorable Rupe 

rearrangement is not a potential pathway.  The results of the adaption of the 

Meyer Schuster method are documented below. 

Results and Discussion 

 The preparation of the common synthon was optimized using (S)-α2,2-

serine analogues, because previous research in the Masterson Research Group 

showed high enantioselectivities of this substrate toward PLE.23,121  The PLE 

method has become a staple in the Masterson Research Group as it allows for 

easy access to UAAs containing α-methyl substitution from readily available and 

cheap diethyl methylmalonate.  In addition, the tunability of PLE with serine 

analogue 3 (Scheme 13), is influenced by the careful choice of co-solvent.122  γ-

serine analogues contain the important alcohol functionality and represent 

potential pharmaceutical leads as GABOB and statine derivatives which are the 

most widely synthesized class of γ-UAAs.12 
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Scheme 13.  Synthesis of α,β-unsaturated diester common intermediate. 

Optimization of the common synthon 

 The synthesis of (S)-diethyl 2-((benzyloxy)methyl)-2-methylmalonate was 

carried out following documented procedures (Scheme 13).23,121  An enolate 

formed over sodium hydride was added to diethyl methylmalonate, 2, and 

refluxed with benzyl chloromethyl ether to 3.  The prochiral diester was 

hydrolyzed with PLE in 0.1 M phosphate buffer at pH 7.4.  The progress of the 

reaction was monitored on an automatic titrator set to deliver 1.0 M NaOH as the 

acid formed.  These studies were conducted without co-solvents but previous 

reports had shown the addition of 10% isopropyl alcohol increases the 

enantioselectivity up to 97% ee at the expense of lower reaction yields.122  After 

the addition of one mole equivalent of base, the reaction was complete 

(approximately 24 h), and half ester 4 was isolated (69% yield, 70% ee). 

 In order to form the needed precursor propargyl alcohol, carboxylic acid 4 

was converted into an aldehyde following a reduction/oxidation sequence.  First, 

primary alcohol 5 was prepared by converting 4 into a mix anhydride with methyl 

chloroformate in the presence of triethylamine.123  The slow addition of sodium 

borohydride was followed by the addition of one equivalent of methanol over 2 
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hours.  The mild reduction selectively reduced the activated anhydride to 5 

leaving the ethyl ester intact.  Intermediate 5 was oxidized using pyridinium 

chlorochromate (PCC), but required multiple columns, long reaction times, and 

resulted in low yields (30% overall yield), of a toxic byproducts.  A Swern 

oxidation was picked as an alternative method based on the overall quicker 

reaction times and reduced toxicity.  The Swern Oxidation proceeded via an in 

situ generation of dimethylchlorosulphonium ion from the reaction of dimethyl 

sulfoxide and oxalyl chloride.  To the solution was added 5 at -78 °C forming a 

sulfur ylide which decomposed into aldehdye 6 (63% yield after column 

purification). 

 In a two-step reaction, the aldehyde was converted to the propargyl 

alcohol 7.  First, N-butyllithium was added to ethyl ethnyl ether at -78 °C to form 

the nucleophilic acetylide anion.  Then, via syringe, the acetylide anion was 

added to a chilled solution of 6 at -60 °C, warmed to room temperature, stirred for 

3 hours, and quenched with ammonium chloride.  However, after workup 7 was 

not isolated and no indication of the rearranged Meyer Schuster product 8 was 

present.  Instead, crude 1H-NMR showed a mixture of starting material and a side 

product.  After a preparative TLC, ethyl 3-(benzyloxy)-2-methylpropanoate, 9 was 

isolated.  The observance of 9 indicates the propargyl alcohol formed, but prior to 

isolation decomposed into products 9 and 10 (Scheme 14).  Aldol reactions 

produce beta-hydroxy ketones from the addition of an enolate to an aldehyde.  

Since the propargyl alcohol contained the structural scaffold of an aldol product, 

a beta-hydroxy ester moiety, the reverse aldol reaction was occuring.  This 
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means the bond between the α-carbon and β-hydroxy carbon cleaved to form 

both 9 and 10.  However, compound 10 was never isolated likely due to the 

volatility and/or reactivity of the substrate.  These results prompted further 

investigation into optimizing the conditions to minimize decomposition.  
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Scheme 14.  The decomposition of the propargyl alcohol into the retro aldol 
products. 

Propargyl alcohol isolation studies 

 In attempts to isolate the desired propargyl alcohol, a series of reaction 

conditions were varied.  Previously, the acetylide anion was drawn into a dry 

syringe and added directly to the solution.  This technique may have quenched 

some anion in the process.  In addition, the internal reaction temperature was not 

monitored, and the solution could have warmed significantly during the addition.  

These experimental techniques were addressed by using a cannula under an 

inert atmosphere of nitrogen gas to deliver the acetylide to the aldehyde while 

maintaining the solution temperature at -78 °C ± 5 °C.  After stirring at room 

temperature for 3 hours the reaction was quenched.  Unfortunately, these 

adjustments had no influence in the observed product, and the reaction and 

quenching temperature were varied.  In a second attempt, the reaction stirred for 

30 minutes at -78 °C ± 5 °C and quenched with saturated ammonium chloride 

after acetylide addition.  This time considerable amounts of starting material was 

isolated.  The reaction was setup again and allowed to react longer (3 hours) 
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before quenching.  Initially the mass corresponding to 7 was present in the ESI 

MS, but re-examination of the isolated fraction showed the sample had 

completely decomposed into the thermodynamically more stable retro aldol 

product.  It was concluded that the propargyl alcohol was too thermodynamically 

unstable to be isolated in significant quantities and will decompose into aldol 

products upon storage. 

 In a final attempt, without isolating the intermediate propargyl alcohol, the 

serine diester was made.  Without characterization of the propargyl alcohol, the 

reaction was taken immediately to the Meyer Schuster rearrangement following 

Dudley’s reported scandium (III) triflate catalyzed method.  After 3 hours of 

stirring at room temperature the reaction was worked up.120  Surprisingly, this 

modification resulted in the formation of the desired α,β-unsaturated diester 8, 

but yields still remained low.  After column purification, a 3:1 mixture of (E):(Z) 

isomer was isolated (less than 5% overall yield).  At this point it was concluded 

further optimization with the serine diester would not yield significant amounts of 

the desired α,β-unsaturated diester.  Since these results suggested the Retro-

aldol product was more stable than the propargyl alcohol, a new analogue was 

devised limiting the ability of the diester to act as good leaving group. 
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Optimization of the vinylogous amino ester 
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Figure 7.  Proposed propargyl alcohol intermediates studied to control the retro-
aldol decomposition. 

  Previously, the propargyl intermediate, 7, contained an ethyl ester.  It was 

hypothesized this ethyl ester activated the compound toward the rearrangement 

and if replaced with an electron donating group decomposition could be avoided 

(Figure 7).  Additionally, the lithium salts formed during the acetylide addition 

were capable of coordinating the β-hydroxy alcohol and carbonyl facilitating the 

rearrangement.  Since the end goal is to make amino acids, in the long run, 

converting the ester into nitrogen seemed beneficial (Scheme 15).  The amino 

group would not act as a good leaving group, due to nitrogen’s donation of 

electron density, therefore avoiding the retro aldol reaction.124 
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Scheme 15.  Synthesis of the α,β-unsaturated amide. 
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 The modified procedure starts with half ester 4 formed from the PLE 

hydrolysis and was reacted under Curtius protocol.  After formation of the acyl 

azide the intermediate was quenched with 4-methoxybenzyl alcohol to form the 

moz protected carbamate 11 in good overall yield (86%).  The ester was 

hydrolyzed to 12, and reduced and oxidized to 14.  Unlike the reduction of β-

hydroxy ester 5, the synthesis of the amino ester 13 was challenging.  Reduction 

under mixed anhydride conditions resulted in low yields of 13, while both 

reductions via dimethylsulfide-borane and borane-tetrahydrofuran complex gave 

no reduced product.  At this point, the low-yielding mixed anhydride protocol was 

followed and oxidation to aldehyde 14 was completed under Swern conditions 

(70% yield after purification). 

 The optimized procedures used previously to form the propargyl alcohol 

were followed to prepare 15.  Due to the presence of an acidic amide proton, an 

added equivalent of acetylide acted as a sacrificial base in the reaction.  One 

acetylide served as a nucleophile adding to the carbonyl of the aldehyde and the 

other deprotonated the amide hydrogen.  Thus, the acetylide anion was added, 

reacted, and quenched at -78 °C.  Immediately after workup, the crude material 

was taken on to the Meyer Schuster rearrangement.  After a 3-hour reaction time 

with 1 mol% scandium (III) triflate catalyst no evidence of 16 was observed.  At 

this point the inability to control the competing side reaction forced the 

abandonment of the Meyer Schuster rearrangement as a tool to form the 

common synthon. 
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Future Directions 

 At the time of these experiments, there was no literature precedence of 

similar amino substrates.  Since then, a few example have emerged.  One 

example showed that propargyl amines, instead of alcohols, are capable of 

promoting the Meyer Schuster rearrangement.124  Another example 

demonstrated an intramolecular cyclization of β- and γ-amino-ynones into a 

hemi-aminal propargylic intermediates rearranging into to vinylogous pyrrolidine 

analogs.125  Key to this reaction was the addition of methanesulfonic acid with 

varying amounts of co-solvent methanol.  These two examples also were only 

successful when the amine was tertiary.  If future investigations into the Meyer 

Schuster rearrangements are conducted then conversion of the amino group into 

tertiary amines should be considered.  This means only one equivalent of the 

acetylide anion is needed and less chance of competing side reactions with the 

excess of alkynyl reagents.  Another consideration would be trapping the formed 

propargyl alcohol.  Zanoni et al. showed the ability to trap the alcohol as a 

propargylic acetate.  These Meyer Schuster rearrangement reactions were 

mediated with expensive gold.126  In theory, the ability to trap, isolate the 

intermediate alcohol, and still show reactivity toward the Meyer Schuster is 

important even at the expenses of an additional step to remove the trapping 

agent. 

Conclusions 

 Due to uncontrollable formation of reverse aldol products during the 

synthesis of the propargyl alcohol, the Meyer Schuster rearrangement is not a 
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viable method of preparing γ-UAAs.  Attempts at eliminating the side reaction via 

reaction conditions and electronic effects were unsuccessful.  Evidence of the 

desired product came only when the Meyer Schuster reaction was performed 

consecutively allowing no time for isolation of the propargyl alcohol.  This was 

confirmed by a crude 1H-NMR where the α,β-unsaturated diester was isolated 

along with residual starting material (less than 5% yield).  Based on these results 

it appears as if the Meyer Schuster rearrangement is capable of occurring but the 

rate of degradation to the reverse aldol product is significantly faster and product 

more thermodynamically stable.  These results forced consideration of an 

alternative synthon discussed in Chapter III. 

Experimental 

General Experimental 

 All reagents were used as received from commercial vendors, unless 

otherwise noted.  Tetrahydrofuran, methylene chloride, 1,2-dichloroethane, 

diethyl ether, N,N-dimethylformamide, and triethylamine were obtained from a 

solvent system dried over a column of activated alumina.  Solutions of N-

butylithium were titrated prior to use using the Gilman protocol.127  Crude PLE 

was purchased directly from Sigma and used as received.  All enzymatic 

hydrolyses were performed on a 798 MPT Titrino or a Radiometer Analytical TIM 

854 Automatic Titrator.  High Pressure hydrogenation was conducted on a Parr 

Pressure Reaction Apparatus.  Flash chromatography was performed using P-60 

silica gel.  TLC analysis was conducted on Aluminum backed 200 µm Silica XG 

TLC Plates.  The TLC plates were visualized using UV light, phosphomolybdic 
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acid, bromocresol green, ninhydrin, or potassium permanganate stains.  High 

Resolution Mass Spectra were obtained from Old Dominion University and 

analyzed on a Bruker 12 Tesla APEX –Qe FTICR-MS with and Apollo II ion 

source.  NMR spectra were acquired with a Bruker Avanced III 400 MHz or 

Varian Mercury 300 MHz spectrometer and referenced to TMS or other residual 

solvent protons.  IR spectra were acquired with a Thermo-Nicolet Nexus 470-FT-

IR using a diamond anvil ATR accessory.  Optical rotation measurements were 

recorded with a 1 dm cell at ambient temperature on a Rudolph Research 

Autopol III autopolarimeter or a Rudolph Research Autopol IV Automatic 

Polarimeter.  Melting points were determined using a Thomas Hoover capillary 

melting point apparatus.  

Diethyl 2-((benzyloxy)methyl)-2-methylmalonate (3): 

 The title compound was synthesized according to documented literature 

procedure and confirmed with the characterization data.23,122 

(R)-2-(ethoxycarbonyl)-3-(benzyloxy)-2-methylpropanoic acid (4): 

 The title compound was synthesized according to reported literature 

procedure, and isolated material was confirmed with reported characterization 

data.23,122 

(S)-ethyl 3-(benzyloxy)-2-(hydroxymethyl)-2-methylpropanoate (5): 

 In a three-neck round bottom flask under N2 atmosphere 4 (48.3 mmol, 

12.8 g) was dissolved into 200 mL of dry THF.  The solution was cooled to -15 °C 

and triethylamine (53.2 mmol, 7.4 mL) was slowly added.  After 15 min, methyl 

chloroformate (50.7 mmol, 3.92 mL) added, and stirred for an additional 15 min.  
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The white solids formed were removed over a sintered glass filter, filtrate placed 

back into the reaction flask, and cooled to -10 °C.  In one portion NaBH4 (144 

mmol, 5.48 g) was added at 0 °C followed by the slow addition of methanol (31.8 

mL) via a syringe pump over 1.5 h.  After the addition, the solution was kept at 

0 °C for 2 h, and stirred at rt for 12 h.  The reaction was quenched with 10% HCl 

over an ice bath, and concentrated under reduced pressure to remove the THF.  

The solution was extracted with Et2O (3×100 mL), organic layers combined, and 

extracted with saturated NaHCO3 (3×50 mL), 10% HCl (3×25 mL), and a 

saturated brine solution (3×25 mL).  The final organic layer was dried over 

MgSO4, filtered, and was concentrated under reduced pressure.  A short column 

eluting with 40:60 EtOAc:Hexanes led to 7.11 g of 5 (28.1 mmol, 58% yield) as a 

pure oil.  Rf =0.17 (30:70 Et2O:Hexanes).  The isolated material was confirmed 

with reported characterization data.123,128 

(R)-ethyl 3-(benzyloxy)-2-formyl-2-methylpropanoate (6): 

 A flask containing oxalyl chloride (8.72 mmol, 0.75 mL) was dissolved into 

25 mL of CH2Cl2.  The solution was cooled on a 2-propanol bath to -60 °C using 

an immersion chiller.  DMSO (15.9 mmol, 1.13 mL) was added to the solution 

and stirred for 15 min.  To the flask dissolved into 10 mL of CH2Cl2 was added 5 

(15.9 mmol, 2.00 g) and stirred for 15 min.  Then triethylamine (36.0 mmol, 5.0 

mL) was added and warmed to rt over an hour.  The reaction was quenched with 

50 mL of H2O and the aqueous layer extracted with CH2Cl2 (5×25 mL).  The 

organic layers were combined and extracted with H2O (3×10 mL), a saturated 

brine solution (1×25 mL), dried over MgSO4, filtered, and concentrated under 
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reduced pressure.  A silica gel column eluting with 30:70 Et2O:Hexanes solution, 

Rf =0.53 (30:70 Et2O:Hexanes), resulted in 6 (1.25 g, 5.00 mmol, 42% yield).  

The compound was stored under nitrogen at -4 °C.  1H-NMR (CDCl3, 400 MHz): 

δ 9.82 (s, 1H), 7.37 – 7.24 (m, 5H), 4.52 (s, 2H), 4.22 (q, J = 7.1 Hz, 2H), 3.86 (d, 

J = 9.0 Hz, 1H), 3.69 (d, J = 9.0 Hz, 1H), 1.33 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). 

(S)-diethyl 4-((benzyloxy)methyl)-4-methylpent-2-enedioate (8): 

 In a 3-neck round bottom flask under N2 atmosphere ethyl ethynyl ether 

(1.76 mmol, 0.41 mL) was dissolved into 5.0 mL of dry THF and cooled to -78 °C 

on a 2-propanol bath with an immersion chiller.  An acetylide anion was formed 

upon the addition of 1.39 M n-butyllithium (1.09 mL) via syringe, warmed to 0 °C 

for 90 min, and chilled back down to -78 °C.  In a separate flask 6 (1.60 mmol, 

0.40 g) was cooled to -78 °C.  The acetylide solution was added via cannula, 

stirred 4 h, and quenched with 1.0 mL of saturated ammonium chloride.  The 

crude material was dissolved into Et2O, extracted with H2O (3×5 mL), saturated 

NaHCO3 (3×5 mL), and a saturated brine solution (1×5 mL).  The organic layers 

were combined, dried over MgSO4, filtered off, and concentrated under reduced 

pressure.  The crude material was used immediately without further purification. 

 In an open flask, crude 7 and 7.8 mg of Sc(OTf)3 (1 mol%) catalyst was 

suspended into a solution of 4:1 CH2Cl2:EtOH.  The solution stirred 3 h and 

concentrated under vacuum.  The crude material was purified on a silica gel 

column eluting with 30:70 Et2O:Hexanes.  Compound 8 elutes as a mixture with 

starting material (10 mg of mixture isolated, less than 5% yield).  Rf = 0.30 (30:70 

Et2O:Hexanes).  1H-NMR results indicate the formation of both E/Z isomers along 
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with unreacted starting material.  Based on the ratios of the alkene protons the 

(E/Z)-ratio is 3:1.  Additional purification was not attempted and 1H-NMR values 

are reported as a mixture of isomers.  1H-NMR (400 MHz, CDCl3) δ 7.39 – 7.23 

(m, 5H), 7.10 (d, J = 16.1 Hz, 1H), 6.27 (d, J = 12.1 Hz, 1H), 5.90 (d, J = 16.1 Hz, 

1H), 5.88 (d, J = 12.1 Hz, 1H), 4.52 (d, J = 3.7 Hz, 2H), 4.26 – 4.15 (m, 4H), 3.70 

(d, J = 8.6 Hz, 1H), 3.55 (d, J = 8.7 Hz, 1H), 1.48 (s, 3H), 1.20 (t, J = 7.1 Hz, 6H).  

LRMS (ESI-MS) m/z: [M+Na]+ calcd for C18H24O5Na 343.2; Found 343.3. 

ethyl 3-(benzyloxy)-2methylpropanoate (9): 

 The title compound was isolated as a product from the synthesis of 8.  The 

1H-NMR spectra confers with the reported literature data.129 

4-methoxybenzyl (S)-2-(ethoxycarbonyl)-1-(benzyloxy)propan-2-ylcarbamate (11): 

 The title compound was synthesized according to reported literature 

procedure, and isolated material confirmed with reported characterization data.23 

Serine, [[(94-methoxyphenyl]methoxy]carbonyl]-2-methyl-O-(phenylmethyl) (12):  

 In a flask containing 11 (2.49 mmol, 1.0 g) dissolved into 40:60 EtOH:H2O 

(v/v) solution LiOH (9.96 mmol, 0.238 g) was added.  The reaction stirred open to 

the atmosphere at rt for 36 h.  The EtOH layer was concentrated and crude 

material extracted with Et2O (3×50 mL).  The combined organic layers were set 

aside.  The aqueous layer was acidified to a pH=2.0 with 4.0 N HCl, and 

extracted with Et2O (3×50 mL).  All of the organic layers were combined, dried 

over MgSO4, and concentrated under reduce pressure.  The crude material was 

purified on a gradient silica gel column eluting with a mobile phase of 30:70 

EtOAc:Hexanes (Rf =0.07).  Pure 12 was isolated after two columns (0.800g, 
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2.14 mmol, 86% yield) and crystallized after several weeks in storage.  1H-NMR 

(400 MHz, CDCl3) δ 7.61 (s, 1H), 7.37 – 7.21 (m, 8H), 6.87 (d, J = 8.7 Hz, 2H), 

5.74 (s, 2H), 5.02 (s, 2H), 4.52 (s, 2H), 3.79 (s, 3H), 1.58 (s, 3H).  13C-NMR (100 

MHz, CDCl3) δ 159.67, 155.78, 137.28, 129.97, 128.50, 128.28, 127.95, 127.74, 

113.98, 73.61, 72.56, 66.77, 59.96, 55.30, 20.36.  LRMS (ESI-MS) m/z: [M+Na]+ 

calcd for C20H23NO6Na 396.1; found 396.0. 

4-methoxybenzyl (R)-3-(benzyloxy)-1-hydroxy-2-methylpropan-2-ylcarbamate 

(13): 

 In a flask under N2 atmosphere was dissolved of 12 (5.6 mmol, 2.09 g) 

into 20 mL of dry THF.  The solution was cooled to -15 °C and triethylamine (11.2 

mmol, 1.56 mL) was added.  After 15 min of stirring, methyl chloroformate (5.88 

mmol, 0.45 mL) was added, and stirred for 15 min.  A white solid formed was 

removed over a sintered glass filter.  The filtrate was placed back into the flask, 

and cooled to -10 °C.  In a single portion NaBH4 (16.8 mmol, 0.635g) was added.  

A syringe pump was set to deliver 3.70 mL of methanol over 1.5 h at 0 °C.  After 

the addition, the solution was kept at 0 °C for 2 h and rt for 12 h.  The reaction 

was quenched with 10% HCl over an ice bath, and THF was concentrated under 

reduced pressure.  The remaining aqueous portion was extracted with Et2O 

(3×20 mL), organic layers combined, and extracted with saturated NaHCO3 

(3×20 mL), a 10% HCl (3×20 mL), and a saturated brine solution (3×20 mL).  The 

final organic layer was dried over MgSO4, filtered, and concentrated under 

reduced pressure.  After a short column eluting with 30:70 EtOAc:Hexanes pure 

13 (1.32 mmol, 0.474 g, 23% yield) was isolated as an oil.  Rf = 0.33 (30:70 
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EtOAc:Hexanes)  IR (cm-1) = 3325 br, 2961, 2455 br, 2068, 1642.  1H-NMR 

(CDCl3, 400 MHz): δ 7.37 – 7.26 (m, 7H), 6.88 (d, J = 8.7 Hz, 2H), 5.39 (s, 1H), 

4.99 (s, 2H), 4.50 (s, 2H), 3.80 (s, 3H), 3.71 (d, J = 6.9 Hz, 1H), 3.61 (d, J = 9.2 

Hz, 1H), 3.60 (d, J = 10.5 Hz, 2H), 3.50 (d, J = 9.2 Hz, 1H), 1.26 (s, 3H).13C-NMR 

(CDCl3, 100 MHz): δ 159.61, 156.13, 137.63, 129.93, 128.50, 127.89, 127.65, 

113.96, 74.47, 73.63, 68.44, 66.40, 56.53, 55.29, 19.78.  

Synthesis of 4-methoxybenzyl (S)-1-(benzyloxy)-2-formylpropan-2-ylcarbamate 

(14): 

 In a flask under inert N2 atmosphere at -65 °C, oxalyl chloride (1.38 mmol, 

0.108 mL) was added to 5.0 mL of CH2Cl2 followed by DMSO (2.77 mmol, 0.19 

mL) and stirred for 25 min.  A solution of 13 (1.12 mmol, 0.449 g) dissolved in 5.0 

mL of CH2Cl2 was added, stirred for 15 min. before triethylamine (3.15 mmol, 

0.436 mL) was added.  The reaction warmed to -40 °C, stirred for an additional 

90 min., warmed to rt, and quenched with 10 mL of H2O.  The aqueous layer was 

extracted with CH2Cl2 (3×15 mL), and organic layers were combined, extracted 

with 10% HCl solution (5×15 mL), and rinsed with a saturated brine solution 

(3×15 mL).  The resulting organic layer was dried over MgSO4, filtered, and 

concentrated under reduced pressure isolating 14 (0.322g, 0.90 mmol, 65% yield) 

as a pure liquid.  The compound was stored under nitrogen at 4 °C.  1H-NMR 

(CDCl3, 400 MHz): δ. 9.49 (s, 1H), 7.31 (dddd, J = 21.5, 19.3, 8.9, 4.2 Hz, 8H), 

6.88 (d, J = 8.7 Hz, 2H), 5.62 (s, 1H), 5.02 (s, 2H), 4.47 (d, J = 3.3 Hz, 2H), 3.80 

(s, 3H), 3.67 (s, 2H), 1.40 (s, 3H).13C-NMR (CDCl3, 100 MHz): δ 199.9, 159.7, 
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155.5, 137.3, 130.0, 128.5, 128.3, 128.0, 127.7, 114.0, 73.6, 71.3, 66.7, 63.1, 

55.3, 17.4. 
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CHAPTER III 

THE PREPARATION OF Cα-METHYL-γ- AND δ-AMINO ACID ANALOGUES VIA 

3-(METHYLHYDROXY)-3-METHYL-γ/δ-LACTAM SYNTHONS 

Hypothesis 2 

 3-(methylhydroxy)-3-methyl–γ/δ-lactams can be prepared via an 

intramolecular cyclization/reduction strategy and used as a synthon in the 

synthesis enantioenriched Cα,α-disubstituted γ/δ-UAAs.   

Introduction 

 After limited success in optimizing the Meyer Schuster rearrangement, a 

new intermediate containing a core pyrrolidin-2-one was designed.  Unlike the 

Meyer Schuster synthesis, this method establishes the γ-backbone before 

functionalizing the side chain.  This would avoid problems associated with late 

stage homologation and prevent unwanted side reactions observed previously.  

Like the Meyer Schuster synthon, the new synthon also follows the same self-

imposed characteristics discussed in chapter II.  Since a cyclization strategy to 

prepare ethyl 3-methyl-2-oxopyrrolidine-3-carboxylic acid had already been 

established,130 γ-lactam-alcohol 17 was picked as the new synthon.  As a 

synthon, the reactivity of the alcohol group would serve as a site for further 

functionalization (Scheme 16).  In comparison to the initially-proposed α,β-

unsaturated intermediate, the γ-lactam intermediate has the advantage of being 

functionalized into many types of Cα,α-disubstituted γ-UAAs.  The previous α,β-

unsaturated diester synthon was limited to PLE compatible substrates.  In 
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addition, the cyclization strategy is also capable of preparing both enantiomers of 

γ-UAAs through steric and stereoelectronic control of the cyclization. 
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Scheme 16.  Proposed γ-lactam intermediate for the synthesis of α,α-γ-UAAs. 

 As an intermediate 17 can be functionalized by: 

 Oxidation of 17 to the aldehyde, nucleophilic substitution, dehydration, 

and ring opening into amino acids with unsaturated side chains. 

 The use of SN2 chemistries by converting 17 into a good leaving group, 

nucleophilic substitution, and ring opening to a variety of functional groups. 

 The alcohol group of 17 can be converted into other ethers following a 

Williamson ether synthesis and ring opening.  

Moreover, the same synthetic sequence can be applied to the synthesis of δ-

UAAs expanding the methodology to another important class of biomolecules.  

The following introduction will focus strictly on the applications and general 

synthetic strategies of preparing lactams.  In addition, a short overview of lactam 
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functional group transformations and lactam ring opening strategies are briefly 

discussed. 

Introduction 

Lactams as synthetic intermediates  

 Both γ- and δ-lactams occur frequently in nature and the synthesis of 

lactams provides access to many biologically relevant compounds.  These 

include the synthesis of inhibitors of lactacystin,131,132 hepatitus C,133  type II 

diabetes,134 and various cancer inhibitors.135-138  In addition, lactams are used as 

intermediates to prepare photo switchable ligands in inonotropic glutamate 

receptors.139,140  Synthesis of 3,3-disubstituted pyrrolidones/piperidone 

derivatives (Figure 8) are documented to a lesser extent but have been used in 

natural products synthesis and as organocatalysis.141  Disubstituted lactams 

have served as enzymes inhibitors, peptidomimetics of nipecotic acid and β-

proline, and as potent GABA analogues.141-144  The above examples demonstrate 

the potential use of optically pure Cα,α-disubstituted γ/δ lactams as synthetic 

intermediates of biomolecules with medicinally important functions.  The 

synthesis of intermediates with multiple purposes keeps with the ideas 

established by The National Research Council and is valuable to the scientific 

community.  
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Figure 8.  The class of α,α-disubstituted γ/δ-lactams. 
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Current state of synthesis of γ/δ-lactams 

 The synthesis of lactams varies widely and includes both asymmetric and 

non-asymmetric variants of intramolecular and intermolecular cyclizations.  

Recently, interest in palladium catalyzed directed C(sp3)-H bond carbonylation 

with carbon monoxide has been reported.145,146  The most current example 

(Scheme 17) was documented by Wang et al. in the synthesis of 2-pyrrolidones 

with oxidant 2,2,6,6-tetramethylpiperidinyloxy (TEMPO).146  While not an 

asymmetric strategy, the racemic synthesis was used to prepare pregblain, a 

GABA analogue.  Other intramolecular cyclization strategies include palladium 

catalyzed allylations,147 atom transfer radical cyclizations,148 ruthenium catalyzed 

metathesis and Mannich cascade reactions,149 and reductive cyclizations.150 

H
N R3

R2
R1

H
R4

+ CO
N

O

R3

R4R2 R1

Pd(OAc)2 
TEMPO

O
N

O

N

 

Scheme 17.  Wang et al. transition metal catalyzed carbonylation with carbon 
monoxide synthesis of 2-pyrrolidones. 

 Zhou recently published an efficient method for the preparation of 3-

hydrozyl-5-substituted 2-pyrrolidones following an oxidative cyclization(Scheme 

18).151 
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Scheme 18.  Zhou oxidation/cyclization and Grignard ring opening. 
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 Park et al. showed γ-lactam rings could be expanded following a β-lactam 

cleavage and cyclization strategy (Scheme 19).152 

BnN
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Scheme 19.  Park et al. β-lactams ring expansion into γ-lactams. 

 Asymmetric intermolecular examples also appear.  Gesmundo et al. 

reported a photo-oxidant radical reaction between alkenes and conjugated 

carbamates (Scheme 20).153  Their research showed electron deficient amide 

protecting group selectively produces substituted lactams over imidates. 
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Scheme 20.  Gesmundo et al. polar radical lactam formation. 

 Tan et al. reported a strategy to prepare substituted pyrrolidones following 

a one-pot generation of an imines and cyclization with chiral disubstituted 

anhydrides (Scheme 21).154,155  Younai et al. also used imines and anhydride 

cyclization to prepare sulfur pyrrolidone analogues.156  
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Scheme 21.  Tan et al. Imines formation and cyclization strategy. 
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 Many strategies also exist to synthesize δ-lactams and are similar to those 

to prepare γ-lactams.  Synthetic preparation of δ-lactams include intramolecular 

cyclization with Lewis acid catalysts,157,158 palladium-catalyzed 

hydroamidations,159 ring expansion with N-heterocyclic carbine 

organocatalysts,160 and addition of β-ketoamides to alkenes.161  Vervisch et al. 

recently reported both chemical and enzymatic synthesis of δ-lactams using 

nitrilase (Scheme 22).162 
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Scheme 22.  Vervisch et al. enzymatic synthesis of δ-lactams. 

 The synthesis of α,α-disubstituted lactams are documented to a lesser 

extent.  The most recent example comes from Sternativo et al. following a 

Michael addition and cyclization with vinyl selenone; however, the reaction 

produces both lactams and cyclic imidates as products and is not 

enantioselective (Scheme 23).163 
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Scheme 23.  Sternativo et al. Michael addition/cyclization strategy. 

 Marivet et al. showed the internal reductive cyclization of a malonic diester 

and nitro group to prepare phosphodiesterase inhibitors (Scheme 24).150 
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Scheme 24.  Marivet et al. reductive cyclization strategy. 

 There are three synthesis documented to make ethyl, 3-methyl-2-

oxopyrrolidine-3-carboxylate, the proposed ethyl ester intermediate (Scheme 

25)130,164,165  Khouhki et al. prepared the pyrrolidone as a racemic mixture 

following the reduction of a γ-azido ester and cyclization.  Budny et al. showed 

diethylmethyl malonate enolates could react with aziridines to form the lactam.  

Banerjee et al. is the only example of an asymmetric synthesis following a 

stereoselective cyclization of optical enriched amino diesters.  They showed 

cyclization was selectively controlled by steric and stereoelectronic effects.130  

The cyclization strategy proposed by Banerjee represents a novel access to α,α-

disubstituted lactams and the strategy was used to prepare common synthon 17. 
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Scheme 25.  Reported literature methods to prepare ethyl, 3-methyl-2-
oxopyrrolidine-3-carboxylate. 

Strategies to Functionalize Lactams 

 Skeletal backbone substitutions of lactams are generally established prior 

to or during lactam formation.  However, addition to the lactam framework is 

possible through a handful of functional group transformations.  The lactam 

scaffold frequently used for derivatization is an α,β-unsaturated lactam, because 

they undergo nucleophilic additions at the 4 position, electrophilic addition at the 

3 position, and cycloaddition reactions.166  The problem with α, β-unsaturated 

lactams is their inability to make the desired Cα,α-disubstituted γ/δ-lactam.  

Another method reported by Oguri et al. followed a Curtius rearrangement of a 
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carboxylic acid and deprotection of carbamate to form amino lactams.  The α,α-

disubstituted lactams were later used as natural product scaffolds (Scheme 

26).141 
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Scheme 26.  Oguri et al. method of functionalizing lactams. 

 Minami et al. reported an asymmetric synthesis of α,α-hydroxy δ-lactam 

via a dihydroxylation to serve as D-Phe-L-Pro surrogates (Scheme 27).167  While 

not a direct example of functionalizing α,α-disubstituted lactams, chiral 

disubstituted lactams were formed in the process.  Moreover, addition across the 

double bond represents a standard method for adding chemical complexities. 
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Scheme 27.  Minami et al. strategy to prepare α,α-disubstituted δ-lactams. 

 Recently Fleury reported the synthesis of a neprilysin inhibitor via an 

addition of dihydropyran to an alcohol (Scheme 28).136,137  Tetrahydropyranyl 

ethers are general used as acid labile protecting groups of alcohols.  Fleury’s 

example represents one of the few instances where addition occurs adjacent to a 

sterically congested stereocenter.  The lack of literature precedence to 
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functionalize α,α-disubstituted lactams makes the development of synthon 17 

worthy of exploration.  

NH
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HO NH
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O p-MeC6H4SO3H
+

 

Scheme 28.  Fleury et al. neprilysin inhibitor intermediate. 

Ring opening of lactams  

 Ring opening of lactams is a common practice previously used in the 

preparation of UAAs,168-172 GABA,173,174 Daptomycin,175 and Tubulysin 

analogues.77  Lactam ring opening is also used in the controlled released drug 

delivery of polyvinylpyrolidone-drug conjugates.176  There are two different 

strategies commonly used to open lactams depending on the desired product.  

These strategies are acid/base hydrolysis,177,178 and/or nucleophilic ring cleavage 

(Scheme 29).170,179-181  Early studies showed that hydrolysis of unprotected 

lactams undergo ring opening under harsh acidic/basic reflux.  Overtime it was 

found that activation of the amide with electron deficient carbamates would allow 

for milder reaction conditions.182  Nucleophilic ring cleavage is also a possible 

pathway. 
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Scheme 29.  Ring opening strategies of lactams. 

 The above discussion outlined the use of lactams in the synthesis of 

natural products.  Additionally, ring opening of lactams into biomolecules is well 
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documented and a common method to prepare both γ/δ-UAAs.  However, a large 

gap remains in the ability to quickly convert chiral disubstituted lactams into other 

useful functionalized derivatives conveniently. 

Results and Discussion 

Synthesis of γ-backbone following a 2-carbon phthalimide strategy 

 A different strategy was envisioned prior to preparing 17 as a common 

synthon.  Both strategies used diethyl 2-methyl-2-(2-(1,3-dioxoisoindolin-2-

yl)ethyl)malonate,19, as a basis to establish the γ-backbone but lactam 

cyclization was not originally part of the plan (Scheme 30).  First, an enolate was 

formed with diethyl methyl malonate, and reacted with 1,2-dibromoethane to form  

18 after distillation (91% yield).  Diester 18 was heated to 90 °C with potassium 

phthalimide using Gabriel’s conditions and 19 isolated in good yield (86% after 

recrystallization).  Alternatively, 19 could be prepared in a one-step synthesis 

directly from diethyl methyl malonate and 2-(2-bromoethyl)isoindoline-1,3-dione.  

However, reaction yields were low (25% yield) due to an elimination occurring on 

the side chain.  Under these conditions, a two-step Gabriel’s reaction was more 

efficient (79% overall yield).  The prochiral diester was hydrolyzed with PLE and 

20 was isolated (71% yield and 92% ee).130  



54 
 

 
 

EtO

O OH

N

O

O

EtO

O O

N

O

O

OHEtO

O O

N

O

O

OEt

EtO

O O

OEt EtO

O O

OEt

Br

+

EtO

O OH

N

OH

O

N

O

O

K

1. NaH

86%

91%

PLE

1. MeOOCCl, 
    NMM
2. NaBH4

71%, 92% ee

18

19 20 21 22

Br(H2C)2N

O

O

1. NaH

2.

28%

2. BrCH2CH2Br

25%

2

Not Isolated

 

Scheme 30.  Synthesis of γ-UAAs from (R)-2(ethoxycarbonyl)-2-methyl-4-(1,3-
dioxoisooindolin-2-yl)butanoic acid. 

 The reduction of 21 was a challenge because all attempts led to over 

reduced phthalimide 22.  Initially, methyl chloroformate and triethylamine were 

used to form the mixed anhydride and reduced with sodium borohydride.  

However, only 10% of product was isolated and over reduced 22 dominated the 

reaction.  The reduction was repeated varying reaction conditions by controlling 

the temperature, isolating the triethylammonium salts formed prior to reduction, 

and changing the number of equivalents of sodium borohydride used.  None of 

these parameters increased product yields.  Upon literature review, a patent was 

found using a similar mixed anhydride protocol to successful in reduce (S)-3-

((benzyloxy)carbonyl)-2-(1,3-dioxoisoindolin-2-yl)proppanoic acid.183  This 

procedure was intriguing because it required a less nucleophilic base N-

methylmorpholine (NMM), a solution of sodium borohydride in water, and a 

reaction time of less than 5-minutes.  These conditions were replicated with 20 
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and increased the overall yield to 28%.  Unfortunately, the side product 22 was 

still present, and minimizing reaction times to 2-minutes failed to produce the 

desired compound.  

Synthesis of common intermediate 3-(hydroxymethyl)-3-methyl-pyrrolidone via a 

stereoselective cyclization strategy 

 Previously, the Masterson Research Group reported the stereoselective 

synthesis of γ-lactams from PLE resolved carboxylic acid 20 with an electron 

withdrawing ester (Scheme 31).130  The activated ester was cyclized following 

deprotection of phthalimide and nucleophilic attack of the free amine toward the 

more electrophilic ester carbonyl.  Hammett plot studies indicated substrate 23 

containing a p-nitrobenzyl ester provided the best cyclized selectivity.  After 

cyclization ethyl ester 24 was isolated over the p-nitrobenzyl ester 25 in a 78:1 

ratio.  This strategy is used as the foundation to prepare common intermediate 

17.  The opposite amino acid enantiomer could be prepared by switching the 

electron withdrawing ester to a sterically hindered tert-buty ester.  This time 

stereoselective cyclization to the least hindered ester carbonyl was observed.130  

In order to prepare tert-butyl ester 26 isobutylene is added to 20 under acid 

catalyzed conditions.  After phthalimide deprotection, the amine attacks the 

carbonyl of the ethyl ester forming tert-butyl ester 27 over ethyl ester 24 in a 9:1 

ratio.  Since the ability to form both enantiomers had already been established, 

the synthesis using the bulky tert-butyl group was not carried out.  Synthesis of 

intermediate 17 was reduced to 24 following an in situ generation of calcium 

borohydride.  After purification 17 was isolated in 83% yield. 
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Scheme 31.  Cyclization strategy outline by Banerjee et al. and reduction to the 
lactam alcohol common synthon. 

Synthesis of Fmoc/DMT-γ-serine analogue 

 A three-step synthesis from 17 was designed to prepare a serine 

analogue (Scheme 32).  A solution of 8.0 N KOH ring opened the γ-lactam 

alcohol to 28 via a hydrolysis.  The harsh basic conditions and the polarity of the 

newly formed amino acid made isolating the compound from water and 

potassium salts difficult.  In order to make the synthesis more appealing to 

peptide chemists the amino group of 28 was protected with 9-

fluorenylmethyloxycarbonyl (Fmoc.  After the addition of Fmoc-Succinimide, 29 

was formed (37% isolated yield) and protected with 4,4 dimethoxy triphenymethyl 

chloride to 30.  However, the compound deprotected while purifying 30 on a C18 
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HPLC column, and less than 5% of compound was isolated.  While this method 

was capable of producing the desired analogue, the end product was too 

unstable and the overall synthesis-inefficient (<1% combined reaction yields).  

These results prompted an alternative strategy in which isolation of intermediate 

products was easier and stable toward Solid phase peptide synthesis (SPPS) 

conditions.  
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Scheme 32.  Fmoc protected synthesis of γ-serine. 

Attempted synthesis of boc/t-butyl protected of γ-serine via benzylation strategy 

 Since ring opening to unprotected 28 was inconvenient substrate to 

manipulate, a lactam/alcohol protection strategy was designed.  Previously, 

Banerjee et al. observed increased organic solubility, easier purifications, and 

higher reaction yields by inserting a benzyl group onto the amide of α-methyl-β-

proline.130  This benzyl protection strategy was applied 24 in the synthesis of 36 

(Scheme 33).  
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Scheme 33.  Benzyl protection strategy for the synthesis of Boc/t-butyl γ-serine. 

  Starting from 24, benzyl bromide was added under basic conditions to 

protect the amide to 31 and reduced to 32 with calcium borohydride.  Isobutylene 

was used to tert-butyl protect the alcohol to 33.  At this point the anticipated 

strategy was to deprotect the benzyl group to 34, ring open to the free amine 35 , 

and N-boc protect to 36.  However, the removal of the benzyl group under 

standard palladium on carbon reduction was not sufficient.  Classic Bouveault 

Blanc reduction with sodium metal also was unsuccessful.  Initially, these results 

were surprising but according to literature amide N-debenzylation of lactams are 

notorious for withstanding reduction conditions.184  Successful N-debenzylations 

only occurred with limited successes under extreme conditions using Birch 

reductions (Na/NH3),185 napthalene catalyzed lithiations,186 or carbanion-

mediated oxidative deprotections with butyllithium.187  Since these methods were 

beyond the labs capabilities and are inconvenient, the reduction was deferred 

until after ring opening.  However, a hydrolysis to 37 in refluxing 8.0 N KOH did 

not produce the desired compound.  These results provided insight into the 
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electronic factors dictating the ring opening of the lactam.  Since the benzyl 

group acts by donating electron density into the lactam, the carbonyl is 

deactivated toward hydrolysis.  In order to activate the system, a protecting group 

capable of withdrawing electron density away from the amide nitrogen was 

needed to increase the electrophilicity of the carbonyl.  This would make the 

carbonyl carbon electrophilic increasing the rate of lactam hydrolysis.  This new 

strategy was applied and results are described below.  

Synthesis of N-boc/tert-butyl protected γ-serine analogue 

 The synthesis of N-boc protected lactam was developed after noting the 

N-benzyl group deactivated the system (Scheme 34).  In order to prepare the γ-

serine analogue, common intermediate 17 was tert-butyl protected with a 

catalytic amount of sulfuric acid and condensed isobutylene.  This formed 

protected alcohol 38 in good yield (77 % isolated yield) which was reacted with 

di-tert-butyl dicarbonate to N-boc protected 39.  The activated lactam was 

hydrolyzed using 1.0 M LiOH at room temperature where after a short workup 

pure 40 was isolated.  Over three steps the (S)-α-methyl-α-tert-butyl serine γ-

UAA was prepared in a 47% yield.  Since the analogue was also prepared from 

the stereoselective PLE cyclized the opposite enantiomer could be synthesized. 
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Scheme 34.  Synthesis of α-methyl-γ-serine using the N-boc/tert-butyl strategy. 
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Synthesis of N-boc/t-butyl protected δ-serine analogue 

 Shortly after the discovery of the cyclization strategy the same strategy 

was applied to diester 41.  Addition of the phthalimide side chain to diethyl methyl 

malonate formed 41, and was PLE hydrolyzed to 42 (97% ee, R) isolating the 

half ester in 71% yield.  To the enantiomerically enriched chiral half ester p-

nitrobenzyl bromide was added under basic K2CO3 conditions to form the 

activated ester 43 in 87% yield.  After phthalimide deprotection, the free amine 

formed, attacked the electronic deficient carbonyl, and cyclized to 44 selectively 

over the p-nitrobenzyl ester 45 in a 60:1 ratio.  However, unlike the γ- lactam, the 

formation of the δ-lactam required the removal of the formed phthalhydrazide and 

the addition K2CO3 to assist in the cyclization process.  Once again, the opposite 

enantiomer can be prepared by converting to tert-butyl ester 46 and cyclizing to 

47 as the only isolated product. 
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Scheme 35.  Synthesis of α-methyl-δ-serine. 

Synthesis of N-boc γ/δ-unnatural amino acids via SN2 substitution 

 At this point, the same series of reactions used to prepare the γ-serine 

amino acid were applied to the synthesis of the δ-serine analogue.  The common 
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synthon was prepared by the reduction of the lactam to 48 (91% yield), and then 

protected to tert-butyl ether 49.  This compound was boc-protected to 50, and 

ring opened to 51 with LiOH isolating δ-serine in 78% yield.  The three step 

reaction from intermediate 48 proceeded in a modest 36% overall yield. 
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Scheme 36.  Synthesis of γ/δ-UAAs using SN2 chemistry. 

 In order to make common synthons 17/48 versatile, substitution (SN2) 

chemistries were applied (Scheme 36).  First, the alcohol groups of 17/48 were 

converted into good leaving groups with treatment of methanesulfonyl chloride to 

52, and the amides were N-boc-protected to 53 in good yields.  At this point 53a 

and 53b were used to explore SN2 chemistries with small nucleophiles (Table 1).  

Traditionally, SN2 chemistry requires primary substrates with unhindered access 

to the carbon’s anti-bonding molecular orbitals adjacent to the leaving group.  

Any steric congestion near the site of substitution limits the rate of reaction, but 

does not necessarily prevent substitution.  Since 53a/53b are neopentyl, they 

were not expected to behave as typical primary substrates.  Instead, the 

quaternary centers would limit the nucleophiles approach and reaction rates were 

expected to be slow.  Therefore, SN2 studies on substrates 53a/53b were 

explored using small, linear, and strong nucleophiles to minimize steric 

interactions. 
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 Recently, amino acids incorporating azides and alkynes as side chains 

have been used to tether peptides together to form stabilized secondary 

structures.188,189  Therefore, the first nucelophiles tested were azides and 

acetylides which undergo “click” chemistry together to form 1,2,3-triazoles and 

and staple peptides together.  In a sealed tube, 53a/53b was added to sodium 

azide (2 equiv.) and monitored by both TLC, and 1H-NMR.  The reaction was 

complete in 5-days.  After purification, 54a was isolated in 68% yield and 54b 

was isolated in 46% yield.  Due to the higher yields observed with the γ-lactam, it 

was used optimize all other nucleophilic substitution conditions. 

Table 1 

Small linear nucleophilic substitution of the γ/δ-mesylate intermediates. 

NBoc

OOMs

( )n
NBoc

ONu

( )n

53a n=1
53b n=2

54-56a n=1
54-56b n=2

Nucleophile

Nu = Nucleophile

 
Entry Reactant Nu Product Time 

(h) 
Nucleophile 
(mol equiv.) 

Solvent Yields 
(%) 

1 53a -N3 54a 120 2 DMF 68 

2 53b -N3 54b 120 2 DMF 46 

3 53a -CCH 55a 72 2.5 DMSO ND 

4 53a -CN 56a 120 
1.1 

DMSO ND 

5 53a -CN 56a 120 
1.1 

DMF ND 

6 53a -CN 56a 120 4 DMF ND 
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 A solution of lithium acetylide, ethylenediamine complex was used to 

synthesize the alkynyl derivative 55a.  After 72 hours 55a was not detected.  

Since the acetylide anion is both a good nucleophile and base these results were 

unexpected.  The inability to form 55a was attributed to the ethylenediamine 

complex added to prevent polymerization.  Unfortunately, the in situ generation of 

acetylide required costly equipment not available to our lab and potassium 

cyanide was considered as an alternative nucleophile. 

 A few bimolecular applications examples had shown the “clickable” nature 

of azides with nitriles to form tetrazoles.188,190  Thus, substitution of a nitrile group 

could serve as both a small linear nucleophile and peptide staple.  However, 

reaction of potassium cyanide with 53a produced no observable detection of 56a.  

A series of reactions optimizations were attempted, but change of solvent (Entry 

5), additional mole equivalents of nucleophile (Entry 6), and increased 

temperature produced the same results.  Despite the lack of functionalization 

with small linear nucleophiles the substituted azide was successfully ring opened 

(Scheme 37) to amino acids 57 under mild basic conditions. 
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Scheme 37.  Synthesis of γ- and δ-azido UAAs. 

 In order to rationalize the observed results, x-ray quality crystals of 53a 

and 53b were grown and sent off to Dr. Douglas Powell.  The returned CIF files 

were analyzed in Spartan ’08 molecular modeling program (Figure 9 and Figure 



65 
 

 
 

10).  Evident from the x-ray crystals was a sterically hindered carbon adjacent to 

the methylsulfonate leaving group.  Since steric hindrance was already 

considered as one of the factors limiting the reaction rate, an energy profile 

modeling the associated energies was calculated as it was rotated about a 360° 

dihedral angle.  Each data point reflects the calculated lowest energy 

conformation and associated 3D gas phase model of the molecule at the 

particular dihedral angle.  The energy of these models was plotted against the 

dihedral angle (degree of rotation) for each of the calculated models.  The lowest 

and highest energy 3D models were extracted and used as a qualitative 

assessment to compare the relative hindrance toward an approaching 

nucleophile.  Evident in the lowest energy models of both the γ- and δ-lactams 

was the obstructed approach to the nucleophile.  Interestingly, the highest energy 

models, in which steric hindrance is minimized, make these conformation better 

suited for nucleophilic substitution.  Since both the higher energy conformations 

exhibit unhindered access to the anti-bonding molecular orbital’s nucleophilic 

substitutions is not completely excluded.  Instead, the substitution reactions may 

require increased energy or longer reaction times. 
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Figure 9.  Conformational energies associated with the geometry optimized 
computed models of the constrained dihedral angles of 53a. 
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Figure 10.  Conformational energies associated with the geometry optimized 
computed models of the constrained dihedral angles of 53b. 

 As a final challenge to the mesylate intermediate, a cysteine analogue 

was proposed (Scheme 38).  In contrast to the small linear nucleophiles studied, 
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cytsteine’s sulfur atom is bigger, polarizable, and a weak base.  The γ-cysteine 

derivative was synthesized by adding sodium hydride to benzyl mercaptan and 

reacting the sulfur anion with mesylate intermediate 53a.  Surprisingly, all starting 

material disappeared within 6 hours and 58a isolated after purification.  The thiol 

lactam was ring opened under mild 1.0 N LiOH to provide 59 in 79% yield.  The 

same procedure was repeated with the δ-lactam, but the result was not the same.  

Instead, excess benzyl mercaptan displaced the mesylate and attacked the 

lactam carbonyl forming a ring opened thioester 60 as a minor product.  After 

purification, N-boc deprotected lactam 61 was isolated as the major component.  

Overall, the reaction was low yielding (37%).  The thioester initially was 

hydrolyzed with K2CO3; however, it was not basic enough to promote the reaction, 

therefore solid KOH was added to the solution.  This promoted the hydrolysis to 

62 where it was isolated in a 65% yield.  
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Scheme 38.  Synthesis of γ/δ-cysteine UAAs. 

Summary of the common synthon to prepare γ/δ-UAAs 

 The synthesis of intermediates 17/48 were easily prepared from the 

stereoselective cyclization and reduction strategy.  The three-step process to 

synthesize γ/δ-serine-UAAs and the four step synthesis to synthesize γ/δ-azido-, 

and γ/δ-cysteine UAAs were isolated in reasonable overall yields (Figure 11).  

The highest overall yields were found during the synthesis of the γ/δ-serine 

analogues.  The three-step synthesis benefited from being two atom away from 

the quaternary center and the unnecessary need to form the mesylate 

intermediate.  Both serine analogues were isolated as (S)-enantiomers where γ-

serine was isolated in 54% and δ-serine in 36% overall yields.  The additional 
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step and increased time needed to prepare the azido analogues led to 

diminished yields but isolations of both γ/δ-azido(S)-enantiomers occurred in 28% 

overall yields.  At this time, it is still unclear as to why the cysteine analogues 

proceeded through different pathways.  Regardless both pathways led to the (R)-

enantiomers of the desired cysteine compounds where γ-cysteine was made in 

29% and δ-cysteine was prepared in 15% overall yields.  All of the synthesized α-

methyl γ/δ-amino acids are novel and having been prepared from PLE are 

enantiomerically enriched.  Finally, the stereoselective cyclization to the lactams 

esters makes this process enantiodivergent.  
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Figure 11.  Overall yields from the common synthon to prepare γ/δ-serine, -azido, 
and -cysteine UAAs. 

Future Directions 

 There is still considerable work needed to optimize the lactams for use as 

a common synthon.  Alternative pathways to functionalize the lactams via the 

Williamson ether synthesis and conversion to an aldehyde have been attempted, 
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but isolation of either product has not been successful.  Repeated attempts and 

alternative methods are needed before eliminating either of these pathways. 

Improvements to the SN2 substitution chemistry 

 Additional work is still needed to elucidate all factors governing the SN2 

chemistry with the mesylate lactams.  Further exploration using nucleophiles of 

different sizes and strengths will be considered.  The long reaction times for the 

linear nucleophiles and short reaction times with the thiol nucleophile contradict 

expected results.  Moreover, carbon nucleophiles, such as the acetylides and 

cyanides, were completely unreactive whereas heteroatom nucleophiles of the 

azides and thiols worked well.  Thus a series of heteroatomic and carbon 

nucleophiles containing both bulky and linear components would help establish 

the factors governing the nucleophilic substitution. 

 The difference in reactivates between the γ- and δ-cysteine is also 

puzzling.  Both mesylate intermediates appear to be equally hindered from the 

conformation modeling studies.  Repeated attempts to replicate the nucleophilic 

attack at the carbonyl will be performed.  In addition, a comparison of the 

reactivates observed with different leaving groups, such as a series of sulfonate 

esters (mesylate, tosylates, triflates), would also be beneficial. 

Potential applications and uses for the synthesized γ/δ-UAAs analogues 

 All of the synthesized γ/δ-UAAs are valuable analogues which could easily 

be studied as peptidomimetic, pharmaceutical, or foldamers.  The cysteine 

analogues could be used to form disulfide bonds stabilizing β-hairpins.  The 
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serine analogues could be studied as potential GABA, GABOB, and statine 

derived analogues. 

 The azides ability to undergo functionalization into triazoles and tetrazoles 

makes amino acids containing azido functional groups valuable synthetic 

intermediates.  Recently Hung et al. reported the synthesis of two tripeptide 

peptidomimetics of insulin like growth factor I with amino acid sequence GPE.190  

The synthesized tripeptides replaced one of the carboxylic acids of glutamic acid 

with a tetrazole moiety.  The result was a tetrazole substituted γ-glutatmic acid 

derivative at both α- and γ-positions (Figure 12).  Since the tetrazole moiety 

serves as a carboxylic acid surrogate and improves metabolic stability, it would 

be interesting to see if Cα-methyl-α-azido-γ- and δ-analogues have the same 

structural activity relationship. 
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Figure 12.  Insulin like growth factor I peptide mimics synthesized by Hung et al. 

Conclusions 

 Initial studies conducted prior to cyclization of the γ-backbone resulted in 

an uncontrollable reduction of phthalimide.  These results prompted the 

investigation into the phthalimide deprotection/cyclization strategy where γ- and 
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δ-lactams are formed stereoselectively and reduced to 3-(methylhydroxy)-3-

methyl-γ/δ-lactam intermediates.  The inconvenience of ring opening an 

unprotected γ-lactam led to the development two different lactam protection 

strategies.  First, N-benzyl lactams were utilized, but difficulties removing the 

benzyl group led to the implementation of a N-boc protecting strategy.  N-boc 

protection of the lactams proved to be an essential to ring opening the synthons 

into protected serine, azido, and cysteine γ/δ-UAAs.  The limitation imposed by 

the sterically hindered neopentyl nature of the mesylate substrates severely limits 

the general application toward SN2 chemistries.  Future work will focus on 

exploring other methods of functionalizing the synthons and incorporating the 

synthesized amino acids into relevant biomolecules. 

Experimental 

(S)-3-(hydroxymethyl)-3-methyl pyrrolidin-2-one (17): 

 In a flask, 24 (2.92 mmol, 0.500 g) was dissolved into 10 mL of MeOH 

followed by CaCl2 (3.5 mmol, 0.388 g).  The solution was placed on an ice bath at 

0 °C, under N2 atmosphere while solid NaBH4 (3.5 mmol, 0.132 g) was added in 3 

equal portions over 30 min.  The reaction stirred at 0 °C for 2 h, warmed to rt  for 

12 h, and quenched with 6 M HCl until a pH=2.0.  The formed solids were filtered 

over a Buchner funnel and discarded.  The filtrate was concentrated, dissolved 

into MeOH, and triturated with CH2Cl2 until no solids fell out of solution.  The 

solids were isolated and the solution concentrated.  The crude material was 

purified on a silica gel column eluted with 5:95 MeOH:CH2Cl2   (Rf = 0.33,10:90 

MeOH:CH2Cl2).  After purification, 0.312 g of 17 was isolated as a solid (2.42 
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mmol, 83%).  [𝛼]𝐷
22 = - 5.8 (c =1, MeOH).  mp = 122 °C.  IR (cm-1) = 3325 br, 

3235, 3962, 2862, 1648.  1H-NMR (CDCl3, 400 MHz): δ 6.26 (s, 1H), 3.68 (dd, J 

= 10.9, 7.2 Hz, 1H), 3.54 (dd, J = 10.9, 4.6 Hz, 1H), 3.37 (ddd, J = 5.3, 4.0, 1.9 

Hz, 2H), 2.93 (s, 1H), 2.24 (dt, J = 12.7, 8.1 Hz, 1H), 1.85 (ddd, J = 12.4, 6.9, 4.6 

Hz, 1H), 1.19 (s, 3H).  13C-NMR (CDCl3, 100 MHz):  δ 182.21, 67.85, 44.59, 

39.13, 31.20, 19.53.  LRMS (ESI-MS) m/z: [M+Na]+ Calcd for  C6H11NO2Na 

152.1; Found 152.1. 

Diethyl 2-(2-bromoethyl)-2-methylmalonate (18): 

 The title compound was prepared according to reported literature 

procedures, and confirmed with characterization data.130,191 

Diethyl 2-methyl-2-(2(1,3-dioxoisoindolin-2-yl)ethyl)malonate (19): 

 The title compound was first synthesized according to reported literature 

procedures.80  A more efficient method was discovered shortly after, and all 

isolated material was confirmed with reported characterization data.130 

(R)-2-(ethoxycarbonyl)-2-methyl-4-(1,3-dioxoisoindolin-2-yl)butanoic acid (20): 

 The title compound was prepared according to reported literature 

procedures, and confirmed with characterized data.80,130 

(R)-ethyl-2-(hydroxymethyl)-2-methyl-4-(1,3-dioxoisoindolin-2-yl)butanoate (21): 

 In a 3-neck round bottom flask under N2 atmosphere 20 (1.56 mmol, 0.500 

g) was dissolved into 7.7 mL of dry THF.  The solution was cooled to -15 °C, N-

methylmorpholine (1.56 mmol, 1.72 mL) added, followed by methyl chloroformate 

(1.56 mmol, 0.121 mL).  After 5 min of stirring NaBH4 (4.68 mmol, 0.177 g) 

dissolved in 0.71 mL of water was added via syringe, stirred for 2.5 min, and 
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quenched with 8.0 mL of MeOH.  The crude material was suspended into CH2Cl2, 

filtered over a pasture pipette packed with glass wool, and concentrated.  A 

column packed with 4:96 MeOH:CH2Cl2  eluted 0.138 g of 21 (0.451mmol, 28% 

yield) as pure oil.  Rf = 0.54 (4:96 MeOH:CH2Cl2)  [𝛼]𝐷
23 = -0.82 (c =2, CH2Cl2).  

IR (cm-1) = 3499 br, 2979, 2940, 1770, 1701.  1H-NMR (CDCl3, 400 MHz): δ 7.87 

(m, 2H), 7.74 (m, 2H), 4.22 (m, 2H), 3.82 (m, 4H), 2.45 (t, J = 6.8 Hz, 1H), 2.06 

(m, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.27 (s, 3H).  13C-NMR (CDCl3, 100 MHz): δ 

176.0, 168.1, 133.9, 132.1, 123.2, 67.9, 61.1, 46.5, 34.0, 33.9, 19.8, 14.1.  LRMS 

(ESI-MS) m/z: [M+Na]+ Calcd for C16H19NO5Na 328.1; Found 328.1. 

(S)-1-(4-nitrobenzyl) 3-ethyl 2-methyl-2-(2-(1,3-dioxoisoindolin-2-

yl)ethyl)malonate (23): 

 The title compound was prepared according to reported literature 

procedures, and confirmed with characterization data.130 

(R)-ethyl 3-methyl-2-oxopyrrolidine-3-carboxylate (24): 

 The title compound was prepared according to reported literature 

procedures, and confirmed with characterization data.130 

(S)-4-nitrobenzyl 3-methyl-2-oxopyrrolidine-3-carboxylate (25): 

 The title compound was prepared according to reported literature 

procedures, and confirmed with characterization data.130 

(S)-1-tert-butyl 3-ethyl 2-methyl-2-(2-(1,3-dioxoisoindolin-2-yl)ethyl)malonate (26): 

 The title compound can be synthesized according to reported literature 

procedure.130 
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(S)-tert-butyl 3-methyl-2-oxopyrrolidine-3-carboxylate (27):  

 The title compound can be synthesized according to reported literature 

procedure.130 

(S)-4-amino-2-(hydroxymethyl)-2-methylbutanoic acid (28): 

 In a flask containing 17 (2.42 mmol, 312 mg) dissolved into 8 mL of MeOH 

was added 15 mL of 8 N KOH, and brought to a reflux.  After 16h the reaction 

was acidified to pH 7.0 with 4N HCl.  The salts were filtered off and the filtrate 

concentrated under reduced pressure.  The crude material was triturated with 2:1 

MeOH:CH2Cl2 solution, washed with pentanes, and left under vacuum for 24 h 

with concentrated H2SO4.  After drying 0.270 g of 28 (1.83 mmol, 75%) was 

isolated.  Rf = 0.01 (10:90 MeOH:CH2Cl2).  [𝛼]𝐷
23 = +10.8 (c =1, MeOH).  IR (cm-1) 

= 3287 br, 2929, 2872, 1664.  1H-NMR (MeOD, 400 MHz): COOH, NH, & OH 

peaks not present δ 3.51 (q, J = 10.7 Hz, 2H), 2.67 (t, J = 8.0 Hz, 2H), 1.79 – 

1.69 (m, 1H), 1.68 – 1.58 (m, 1H), 1.10 (s, 3H).  13C-NMR (MeOD, 100 MHz): 

183.25, 68.46, 46.64, 39.88, 37.60, 20.27.  LRMS (ESI-MS) m/z: [M+Na]+ Calcd 

for C6H11NO3Na 168.1; Found 168.1. 

(R)-4-[[(9H-fluoren-9-ylmethoxy)carbonyl]amino]-2-(hydroxymethyl)-2-

methylbutanoic acid (29): 

 In a flask 0.240 g of 28 (1.63 mmol) and 0.257 g of NaHCO3 (3.0 mmol) 

was dissolved into 6.0 mL of H2O at 0 °C.  The pH adjusted to 7 by the dropwise 

addition of 0.100 M HCl.  A solution of Fmoc-OSu (2.12mmol, 0.716 g) dissolved 

in 6.0 mL of dioxane was dripped into the flask.  After the addition, the reaction 

was warmed to rt, stirred for 20 h, and diluted with 10 mL of H2O.  The crude 
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material was acidified to pH=3.0 with 1M NaHSO4, and extracted with CH2Cl2  

(3×15 mL).  The organic layer combined, extracted with H2O (10×15 mL), dried 

with 1M NaH2SO4, filtered, and concentrated.  A gradient column (0:100 

MeOH:CH2Cl2 to 10:90 MeOH:CH2Cl2) eluted 29 (209 mg, 0.596 mmol, 37%).  Rf 

= 0.36 (10:90 MeOH:CH2Cl2).  [𝛼]𝐷
23 = +2.58 (c =1, MeOH).  IR (cm-1) = 3326 br, 

2942, 1693.  1H-NMR (MeOD, 400 MHz): δ 7.80 (d, J = 7.5 Hz, 2H), 7.65 (d, J = 

7.4 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 4.33 (d, J = 6.9 Hz, 

2H), 4.20 (t, J = 6.9 Hz, 1H), 3.66 (d, J = 11.3 Hz, 2H), 3.36 (s, 2H), 3.18 (dd, J = 

15.2, 9.0 Hz, 2H), 1.90 – 1.78 (m, 1H), 1.72 – 1.62 (m, 1H), 1.20 (s, 3H).  δ 13C-

NMR (MeOD, 100 MHz): δ 178.37, 157.32, 143.94, 141.18, 127.35, 126.73, 

124.77, 119.50, 67.45, 66.29, 48.46, 47.08, 36.64, 34.91, 18.44.  LRMS (ESI-MS) 

m/z: [M+Na]+ Calcd for C21H23NO5Na 392.2; Found 392.1. 

2-[bis(4-methyoxyphenyl)phenylmethoxy]-4-[[9H-fluoren-9-

ylmethoxy]carbonyl]amino]-2-methylbutanoic acid (30): 

 In a flask containing a solution of 29 (0.23 mmol, 88 mg) dissolved into 2.0 

mL of pyridine freshly distilled was added 4,4'-Dimethoxytrityl chloride (0.30 

mmol, 105 mg) and stirred for 16 h.  The product was purified on Rigel 5 µm C18 

10x250mm HPLC column, but was not isolated (product deprotect on column).  

HPLC conditions used: Flow rate of 3 mL/min, mobile phase programmed to 

pump 60:40 H2O:MeCN to 0:100 H2O:MeCN in 20 minutes.  A 1.0 mL sample 

loop was installed and 500 µL injected.  The UV detector was set to 254 nm and 

zeroed prior to injection.  A 5.0 mg/mL solution of crude material was dissolved 
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into a solution of 60:40 H2O:MeCN and filtered through a Whatman13mm 0.2 µm 

PP filter.  Product elutes at Rf = 16.3 m. 

(R)-ethyl 1-benzyl-3-methyl-2-oxopyrrolidine-3-carboxylate (31): 

 The title compound was prepared according to reported literature 

procedures, and confirmed with reported characterization data.130  

(S)-1-benzyl-3-(hydroxymethyl)-3-methylpyrrolidin-2-one (32): 

 In a dry flask under N2 atmosphere, a solution of 31 (1.11 mmol, 0.290g) 

was dissolved into 2.22 mL of MeOH followed by CaCl2 (1.11 mmol, 0.123 g).  

The temperature was adjusted to 0 °C and NaBH4 (2.22 mmol, 0.084 g) added.  

The reaction was warmed to rt, stirred for 16h, and quenched with 3.0 N citric 

acid (pH~3.5).  The MeOH was removed and solution extracted with CH2Cl2 (4×5 

mL).  The organic layers were combined, dried over MgSO4, filtered, and 

concentrated to a viscous oil.  The crude material was purified on silica gel 

column eluting with a mobile phase of 20:80 EtOAc:Hexanes resulting in 0.157 g 

of 32 (0.715 mmol, 64%).  Rf = 0.22 (20:80 EtOAc:Hexanes).  [𝛼]𝐷
21 = +3.5 (c =1, 

CH2Cl2).  IR (cm-1) = 3290 br, 2913,2871, 1656.  1H-NMR (CDCl3, 400 MHz): δ 

7.32 (dt, J = 14.4, 7.7 Hz, 3H), 7.24 – 7.19 (m, 2H), 4.45 (q, J = 14.7 Hz, 2H), 

3.70 (dd, J = 10.8, 7.6 Hz, 1H), 3.56 (dd, J = 10.8, 4.5 Hz, 1H), 3.26 – 3.15 (m, 

2H), 2.80 (dd, J = 7.5, 4.6 Hz, 1H), 2.07 (ddd, J = 12.7, 7.6, 3.8 Hz, 1H), 1.72 

(ddd, J = 12.7, 7.6, 3.8 Hz, 1H), 1.21 (s, 3H).  13C-NMR (CDCl3, 100 MHz): δ 

178.45, 136.31, 128.76, 127.96, 127.63, 68.22, 46.66, 45.59, 43.67, 28.74, 19.71.  

HRMS (ESI-MS) m/z: [M+Na]+ Calcd for  C13H17NO2Na 242.1152; Found 

242.1153. 
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(S)-3-(tert-butoxymethyl)-1-benzyl-3-methylpyrrolidin-2-one (33): 

 In a sealed tube 32 (2.71 mmol, 0.746 g) 0.224 mL of concentrated H2SO4 

was dissolved into 11.2 mL of CH2Cl2 and placed on an ice bath.  In a separate 

container isobutylene (23.5 mmol, 2.25 mL) was condensed at -15 °C, poured 

into the sealed tube, capped, and warmed to rt.  After 12 h the sealed tube was 

opened, stirred 2 h, and concentrated.  The crude material was purified on a 

silica gel column eluting with 20:80 EtOAc:Hexanes (Rf = 0.13 ) isolating 0.622 g 

of 33 (2.4 mmol, 70%) as a pure oil.  [𝛼]𝐷
21 = +19.3 (c =1, CH2Cl2).  IR (cm-1) = 

2970, 2927, 2869, 1682.  1H-NMR (CDCl3, 400 MHz): δ 7.34 – 7.21 (m, 5H), 4.47 

(dd, J = 168.5, 14.9 Hz, 2H), 3.54 (d, J = 8.2 Hz, 1H), 3.26 – 3.19 (m, 1H), 3.17 

(d, J = 8.2 Hz, 1H), 3.08 (td, J = 9.1, 4.4 Hz, 1H), 2.21 (ddd, J = 12.9, 8.7, 4.4 Hz, 

1H), 1.74 (ddd, J = 12.6, 9.0, 6.4 Hz, 1H), 1.14 (s, 12H).  13C-NMR (CDCl3, 100 

MHz): δ 177.91, 136.71, 128.46, 127.95, 127.23, 72.59, 67.66, 46.83, 45.27, 

44.21, 29.54, 27.45, 20.95.  HRMS (ESI-MS) m/z: [M+Na]+ Calcd for  

C17H25NO2Na 298.1778; Found 298.1778. 

(S)-3-(tert-butoxymethyl)-3-methylpyrrolidin-2-one (38): 

 In a sealed tube containing 20 mL of a solution of CH2Cl2:CHCl3 1:1  v/v 

was dissolved 17 (2.81 mmol, 0.364 g) and chilled to -10 °C.  A catalytic amount 

of H2SO4 (2.04 mmol, 0.109 mL) and 2.5 mL of condensed isobutylene (26.1 

mmol) was added, and stirred at rt.  After 12 h the reaction was opened to the 

atmosphere, stirred for 1 h, and concentrated.  The crude material was 

suspended into 20 mL of Et2O and extracted with 1% KOH solution (3×10 mL).  

The organic layers were combined, dried over MgSO4, filtered, and concentrated 



80 
 

 
 

to 0.3115 g of pure 38 (1.68 mmol, 60% yield).  Rf = 0.15 (45:55 EtOAc:Hexanes).  

[𝛼]𝐷
21 = -6.48 (c =1, CHCl3).  IR (cm-1) = 3249, 2967, 2931, 2900, 2869, 1650.  

1H-NMR (CDCl3, 400 MHz): δ 5.62 (s, 1H), 3.47 (d, J = 8.4 Hz, 1H), 3.37 – 3.29 

(m, 1H), 3.28 – 3.21 (m, 1H), 3.18 (d, J = 8.4 Hz, 1H), 2.34 (ddd, J = 12.9, 8.3, 

4.8 Hz, 1H), 1.86 (ddd, J = 12.7, 8.6, 6.2 Hz, 1H), 1.15 (s, 9H), 1.12 (s, 3H).  13C-

NMR (CDCl3, 100 MHz):δ 181.48, 72.60, 67.03, 44.07, 39.31, 32.07, 27.45, 

20.45.  HRMS (ESI-MS) m/z: [M+Na]+ Calcd for C10H19NO2Na  208.1308; Found 

208.1310. 

Synthesis of (S)-tert-butyl 3-(tert-butoxymethyl)-3-methyl-2-oxopyrrolidine-1-

carboxylate (39): 

 A flask containing 38 (1.62 mmol, 0.300 g) was dissolved into 8.0 mL of 

CH2Cl2 and cooled to 0 °C under N2 atmosphere.  To the solution was added 

DMAP (0.162 mmol, 19 mg), triethylamine (4.86 mmol, 0.677 mL), and di-tert-

butyl dicarbonate (2.43 mmol, 0.558 mL).  The reaction warmed to rt, stirred 12h 

and concentrated.  The crude material was purified on a gradient column eluting 

with 15:85 EtOAc:Hexanes increasing the polarity to 20:80 EtOAc:Hexanes (Rf 

=0.20, 20:80 EtOAc:Hexanes).  After purification, 0.328 g of 39 was isolated as a 

solid (1.27 mmol, 78 %).  [𝛼]𝐷
23 = -24.9 (c =1, CH2Cl2).  mp = 60 °C.  IR (cm-1) = 

2975, 2933, 2873, 1768,1691.  1H-NMR (CDCl3, 400 MHz): δ 3.69 (ddd, J = 10.4, 

8.5, 7.0 Hz, 1H), 3.60 (ddd, J = 10.4, 8.8, 4.9 Hz, 1H), 3.49 (d, J = 8.4 Hz, 1H), 

3.19 (d, J = 8.4 Hz, 1H), 2.20 (ddd, J = 13.2, 8.5, 4.9 Hz, 1H), 1.71 (ddd, J = 8.8, 

6.4, 1.9 Hz, 1H), 1.53 (s, 9H), 1.13 (s, 12H).  13C-NMR (CDCl3, 100 MHz): δ 

177.79, 150.57, 82.45, 72.84, 67.43, 47.06, 43.84, 28.59, 28.08, 27.37, 20.53.  
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HRMS (ESI-MS) m/z: [M+Na]+ Calcd for  C15H27NO4Na 308.1832; Found 

308.1837. 

(S)-4-[[(1,1-dimethylethoxy)carbonyl]amino]-2-(1,1-dimethylethoxy)-2-methyl-

butanoic acid (40): 

 In a flask at rt was dissolved 39 (4.97 mmol, 1.42 g of) into a 24.8 mL of 

THF followed by the addition of 3 equivalents of a 1.0 N LiOH solution (14.9 

mmol).  The solution stirred 6 h, concentrated, and acidified to pH=4.0 with 10% 

acetic acid solution.  The crude material was extracted with Et2O (4×20 mL), 

dried over MgSO4, filtered, and concentrated under high vacuum pressure.  The 

crude material was purified on a silica gel column eluted with 30:70 

EtOAc:Hexanes (Rf =0.02, 55:45 EtOAc:Hexanes).  After purification 1.346 g of 

40 (3.87 mmol, 78% yield) was isolated.  [𝛼]𝐷
24 = +5.70 (c =1, CH2Cl2).  IR (cm-1) 

= 3332 br, 2973, 2932, 2874, 1697.  1H-NMR (CDCl3, 400 MHz): COOH peak not 

present δ 4.90 (s, 1H), 3.42 (s, 2H), 3.29 – 3.10 (m, 2H), 1.83 (d, J = 4.9 Hz, 2H), 

1.41 (d, J = 21.7 Hz, 9H), 1.22 (s, J = 12.7 Hz, 9H), 1.21 (s, 3H).  13C-NMR 

(CDCl3, 100 MHz): δ 178.64, 155.95, 79.16, 74.63, 66.18, 45.24, 36.61, 35.57, 

28.43, 27.28, 20.65.  HRMS (ESI-MS) m/z: [M+Na]+ Calcd for  

C15H29NO5Na326.1938; Found 326.1939. 

diethyl 2-methyl-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)malonate(41): 

 The title compound was prepared according to reported literature 

procedures, and confirmed with reported characterization data.191 
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(R)-2-(ethoxycarbonyl)-2-methyl-5-(1,3-dioxoisoindolin-2-yl)pentanoic acid (42): 

 The title compound was prepared according to reported literature 

procedures, and confirmed with reported characterization data.191 

(S)-1-(4-nitrobenzyl) 3-ethyl 2-methyl-2-(3-(1,3-dioxoisoindolin-2-

yl)propyl)malonate (43): 

 The title compound can be synthesized according to reported literature 

procedure.191 

(R)-ethyl 3-methyl-2-oxopiperidine-3-carboxylate (44): 

 The title compound can be synthesized according to reported literature 

procedure.191 

(S)-(hydroxymethyl)-3-methylpiperidin-2-one (48): 

  In a flask containing 7.0 mL of MeOH was dissolved 44 (3.24 mmol, 0.600 

g) followed by CaCl2. (3.88 mmol, 0.431 g).  The solution was placed on an ice 

bath at 0 °C under N2 atmosphere and solid NaBH4 (6.48 mmol, 1.08 g) added in 

3 equal portions over 30 min.  The reaction stirred at 0 °C for 2 h, warmed to rt, 

and quenched after 12 h with 6 M HCl until a pH=2.0.  The solid formed was 

filtered off over a Büchner funnel, and discarded.  The filtrate was concentrated, 

suspended into MeOH, and triturated with CH2Cl2, and concentrated again once 

no more solid fell out of solution.  The crude material was purified on a silica gel 

column and eluted in a 5% MeOH in CH2Cl2  (Rf = 0.42, 10:90 MeOH:Hexanes).  

Pure 48 (2.93 mmol, 91%, 0.424 g) was isolated as a solid.  [𝛼]𝐷
22 = - 47.0 (c =1, 

CH2Cl2).  mp = 79 °C.  IR (cm-1) = 3313Br, 3251, 2969, 2945, 2898, 2869, 1639.  

1H-NMR (MeOD, 400 MHz): OH peak not present δ 3.67 (d, J = 10.6 Hz, 1H), 
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3.28 – 3.19 (m, 2H), 3.18 – 3.12 (m, 2H), 2.02 – 1.87 (m, 1H), 1.79 – 1.68 (m, 

2H), 1.50 – 1.37 (m, 1H), 1.02 (s, 3H).  13C-NMR (CDCl3, 100 MHz): δ 178.41, 

69.88, 42.39, 42.18, 30.79, 22.12, 18.93.  LRMS (ESI-MS) m/z: [M+Na]+ Calcd 

for C7H13NO2Na 166.1; Found 166.1. 

(S)-3-(tert-butoxymethyl)-3-methylpiperidin-2-one (49): 

 In a sealed tube on an ice bath containing 48 (2.96 mmol, 0.424 g), 0.127 

mL of concentrated H2SO4 dissolved into 15 mL of CH2Cl2 was added 1.25 mL of 

isobutylene (13.0 mmol) at -10 °C.  The tube was capped, warmed to rt, and 

stirred.  After 12 h the cap was removed and stirred for 1 h.  The solution was 

concentrated, suspended into Et2O, and extracted with 2% KOH solution.  The 

organic layer was dried over MgSO4, filtered, and concentrated isolating 0.431 g 

of 49 (2.17 mmol, 73%) as a pure solid.  Rf = 0.08 (20:80 EtOAc:Hexanes)  [𝛼]𝐷
22 

= - 15.7 (c =1, CH2Cl2).  mp = 77 °C.  IR (cm-1) = 3281, 3187, 3063, 2971, 2863, 

1650.  1H-NMR (MeOD, 400 MHz): NH group not present δ 3.53 (d, J = 8.1 Hz, 

1H), 3.13 (dd, J = 7.3, 4.9 Hz, 2H), 3.00 (d, J = 8.1 Hz, 1H), 2.07 – 1.98 (m, 1H), 

1.77 (dddd, J = 8.2, 4.9, 3.5, 1.5 Hz, 1H), 1.72 – 1.61 (m, 1H), 1.42 (ddd, J = 13.2, 

6.7, 3.4 Hz, 1H), 1.06 (s, 9H), 1.01 (s, 3H).  13C-NMR (CDCl3, 100 MHz): δ 

176.58, 72.45, 68.09, 42.91, 42.63, 31.13, 27.49, 22.88, 19.78.  HRMS (ESI-MS) 

m/z: [M+Na]+ Calcd for  C11H21NO2Na 222.1465; Found 222.1466. 

(S)-tert-butyl 3-(tert-butoxymethyl)-3-methyl-2-oxopiperidine-1-carboxylate (50): 

 A flask containing 49 (2.17 mmol, 0.4325 g), DMAP (0.217 mmol, 26 mg), 

triethylamine (6.51 mmol, 0.907 mL), 0.710 g of di-tert-butyl dicarbonate (3.25 

mmol, 0.907 mL) was dissolved into 12 mL of CH2Cl2 at 0 °C under a N2 
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atmosphere.  The reaction was warmed to rt, stirred 12 h, and concentrated.  The 

crude material was purified on a 20:80 EtOAc:Hexanes silica gel column isolating 

0.279 g of 50 (1.40 mmol, 64%) as a pure solid.  Rf =0.44, 20:80 EtOAc:Hexanes.  

[𝛼]𝐷
23 = -49.8 (c =1, CH2Cl2).  mp = 60 °C.  IR (cm-1) = 2972, 2871, 1769, 1708.  

1H-NMR (CDCl3, 400 MHz): δ 3.68 (dddd, J = 12.0, 5.9, 4.8, 1.4 Hz, 1H), 3.60 (d, 

J = 8.1 Hz, 1H), 3.54 (ddd, J = 12.4, 9.3, 4.4 Hz, 1H), 3.17 (d, J = 8.1 Hz, 1H), 

2.13 – 2.02 (m, 1H), 1.93 – 1.85 (m, 1H), 1.81 – 1.70 (m, 1H), 1.57 – 1.52 (m, 

1H), 1.51 (s, 9H), 1.18 (s, 3H), 1.13 (s, 9H).  13C-NMR (CDCl3, 100 MHz): δ 

176.27, 153.49, 82.32, 72.59, 68.77, 47.50, 46.03, 31.56, 28.06, 27.44, 23.23, 

20.10.  HRMS (ESI-MS) m/z: [M+Na]+ Calcd for C16H29NO4Na 322.1988; Found 

322.1990. 

5-[[1,1-dimethylethoxy]carbonyl]amino -2-[2(1,1-dimethylethoxy)methyl]- 2-

methyl-pentanoic acid (51): 

 In a flask, 39 (1.1 mmol, 0.279 g) was dissolved into a 5.5 mL of THF 

followed by the addition of 1.0 N LiOH (3.3 mmol. 3.35 mL) at rt.  After 6 h the 

THF layer was removed, remaining aqueous layer acidified to a pH of 4.0 with 4 

N HCl, and extracted with Et2O (4×20 mL).  The organic layers were combined, 

dried over MgSO4, filtered, and concentrated under high vacuum pressure, 

resulting in 0.272 g of 51 (0.858 mmol, 78%).  Rf =0.00, (20:80 EtOAc:Hexanes).  

[𝛼]𝐷
23 = +2.62 (c =1, CHCl3).  IR (cm-1) = 3336 br, 2973, 2932, 2872, 1700.  1H-

NMR (CDCl3, 400 MHz): COOH not present δ 4.60 (s, 1H), 3.39 (q, J = 8.7 Hz, 

2H), 3.11 (d, J = 5.6 Hz 2H), 1.74 – 1.61 (m, 1H), 1.61 – 1.40 (m, 3H), 1.44 (s, 

9H), 1.23 (s, 9H), 1.17 (s, 3H).  13C-NMR (CDCl3, 100 MHz):δ 178.14, 155.99, 
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79.15, 74.63, 66.26, 45.93, 40.77, 32.98, 28.42, 27.29, 24.85, 20.10.  HRMS 

(ESI-MS) m/z: [M+Na]+ Calcd for C16H31NO5Na 340.2094; Found340.2095. 

((S)-3-methyl-2-oxopyrrolidin-3-yl)methyl methanesulfonate (52a): 

 In a flask was dissolved 17 (3.00 mmol, 0.387 g) and triethylamine (6.00 

mmol, 0.83 mL) into 6.0 mL of dry CH2Cl2.  The solution was cooled to 0 °C, 

methanesulfonyl chloride (3.3 mmol, 0.255 mL) added, and warmed to rt.  After 2 

h the reaction was extracted with 2.0 M HCl (3×3.0 mL), water (3×3.0 mL), and 

saturated sodium bicarbonate (3×3.0 mL).  After each extraction, the aqueous 

layer was back extracted with CH2Cl2.  All organic layers were combined, washed 

with saturated brine, and dried over MgSO4.  The crude material was 

concentrated, and recrystallized from cold ether isolating 0.450 g of 52a as a 

white solid (2.17 mmol, 72%).  Rf = 0.38 (9% MeOH/EtOAc)  [𝛼]𝐷
24 = - 3.63 (c =1, 

CHCl3).  mp = 79 °C.  IR (cm-1) = 3255 br, 3018, 2973, 2936, 1689, 1654.  1H -

NMR (400 MHz, CDCl3) NH not observed δ 6.17 (s, 1H), 4.29 (d, J = 9.7 Hz, 1H), 

4.10 (d, J = 9.7 Hz, 1H), 3.43 – 3.33 (m, 2H), 3.03 (d, J = 4.7 Hz, 3H), 2.43 (dt, J 

= 13.1, 7.8 Hz, 1H), 2.01 – 1.91 (m, 1H), 1.21 (d, J = 3.8 Hz, 3H).  13C-NMR (100 

MHz, CDCl3) δ 178.66, 73.26, 43.65, 38.63, 37.06, 30.48, 19.60.  HRMS (ESI-

MS) m/z: [M+Na]+ Calcd for C7H13NO4SNa 230.0457; Found 230.0458. 

((S)-3-methyl-2-oxopiperidin-3-yl)methyl methanesulfonate (52b): 

 In a flask was dissolved 48 (4.36 mmol, 0.625 g) and triethylamine (8.73 

mmol, 1.21 mL) into 10 mL of dry CH2Cl2.  The reaction was placed onto an ice 

bath at 0 oC and methanesulfonyl chloride (4.36 mmol, 0.337mL) was added over 

5 min. and warmed to rt for 2 h.  The solution was extracted with 2.0 M HCl 
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(3×3.0 mL), water (3×3.0 mL), and saturated sodium bicarbonate (3×3.0 mL).  

After each extraction, the aqueous layer was back extracted with CH2Cl2.  All 

organic layers were combined, washed with saturated brine, and dried over 

MgSO4.  The resulting material was concentrated, and recrystallized from cold 

ether where 0.802 g of 52b (3.6 mmol, 83%) was isolated as a white solid.  Rf = 

0.26 (9% MeOH/EtOAc).  [𝛼]
𝐷
22

 = - 26.5 (c =1, CHCl3).  mp = 93°C. IR (cm-1) = 

3186 br, 3070, 2958, 2938, 2873, 1643.  1H-NMR (CDCl3, 400 MHz): δ 5.83 (s, 

1H), 4.54 (d, J = 9.2 Hz, 1H), 3.96 (d, J = 9.2 Hz, 1H), 3.34 (ddd, J = 8.6, 5.8, 2.4 

Hz, 2H), 3.02 (s, 3H), 2.13 (ddd, J = 13.6, 10.8, 5.0 Hz, 1H), 1.98 – 1.83 (m, 2H), 

1.69 – 1.63 (m, 1H), 1.25 (s, 3H). 13C-NMR (CDCl3, 100 MHz):173.9, 75.4, 42.7, 

36.9, 30.1, 22.1, 19.1. LRMS (ESI-MS) m/z: [M+Na]+ Calcd for C8H15NO4SNa  

244.0; Found 244.1. 

((S)-1-(tert-butoxycarbonyl)-3-methyl-2-oxopyrrolidin-3-yl)methyl 

methanesulfonate (53a): 

 In a round bottom flask, 52a (1.9 mmol, 0.400 g) was dissolved into 15.0 

mL of anhydrous CH2Cl2 under a N2 atmosphere.  To the solution was 

sequentially added Et3N (6.25 mmol, 0.871 mL), DMAP (0.19 mmol, 23.3 mg), 

0.654 g of di-tert-butyl-dicarbonate (2.85 mmol).  The reaction stirred for 20 h at 

rt, concentrated, and purified on a column packed in 25:75 EtOAc:Hexanes.  

After purification 0.4980 g of 53a (1.62 mmol, 85.0%) was isolated as a pure 

white solid.  Rf =0.08 (25:75 EtOAc:Hexanes)  [𝛼]𝐷
22 = -10.00 (c =1, CH2Cl2).  mp 

=106°C.  IR (cm-1) = 2979, 2935, 1766, 1690.  1H-NMR (CDCl3, 400 MHz): δ 4.32 

(d, J = 9.8 Hz, 1H), 4.10 (d, J = 9.8 Hz, 1H), 3.84 – 3.74 (m, 1H), 3.66 (dt, J = 
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10.9, 8.1 Hz, 1H), 3.03 (d, J = 0.5 Hz, 3H), 2.31 (dt, J = 13.0, 8.8 Hz, 1H), 1.82 

(ddd, J = 13.0, 7.8, 3.4 Hz, 1H), 1.54 (s, 9H), 1.22 (s, 3H).  13C-NMR (CDCl3, 100 

MHz):δ 175.06, 149.87, 83.42, 72.63, 46.38, 42.85, 37.12, 28.01, 26.81, 19.66.  

HRMS (ESI-MS) m/z: [M+Na]+ Calcd for C12H21NO6SNa 330.0981; Found 

330.0980. 

((S)-1-(tert-butoxycarbonyl)-3-methyl-2-oxopiperidin-3-yl)methyl 

methanesulfonate (53b): 

 In a flask was dissolved 52b (0.927 mmol, 205 mg) into 15.0 mL of 

anhydrous CH2Cl2 under a N2 atmosphere, and sequentially was added Et3N 

(1.85 mmol, 0.257 mL), DMAP (9.2 µmmol, 11.3 mg), di-tert-butyl-dicarbonate 

(1.85 mmol, 0.425 g).  The solution stirred 20 h at rt, concentrated, and purified 

on a gradient column eluting 20:80 EtOAc:Hexanes to 35:65 EtOAc:Hexanes.  

After purification 0.226 g of 53b (0.704 mmol, 75.0%) was isolated as a pure 

white solid.  Rf =0.65 (5:95 MeOH:CH2Cl2).  [𝛼]𝐷
22 = -24.5 (c =1, CH3Cl).  mp = 

59 °C. IR (cm-1) = 2954, 1753, 1668.  1H-NMR (400 MHz, CDCl3) δ 4.54 (d, J = 

9.3 Hz, 1H), 3.97 (d, J = 9.3 Hz, 1H), 3.77 (dtd, J = 12.6, 4.6, 1.6 Hz, 1H), 3.60 – 

3.48 (m, 1H), 3.02 (s, 3H), 2.19 – 2.10 (m, 1H), 1.96 – 1.84 (m, 2H), 1.70 – 1.62 

(m, 1H), 1.52 (s, 9H), 1.28 (s, 3H).  13C NMR (100 MHz, CDCl3) δ 173.61, 152.68, 

83.26, 75.52, 47.37, 45.05, 36.95, 30.53, 27.98, 22.67, 19.43.  LRMS (ESI-MS) 

m/z: [M+Na]+ Calcd for C13H23NO6SNa 344.1; Found 344.1. 

(S)-tert-butyl 3-(azidomethyl)-3-methyl-2-oxopyrrolidine-1-carboxylate (54a): 

 In a sealed tube was dissolved 53a (1.00 mmol, 0.307 g) and sodium 

azide (6.00 mmol, 0.395 g) into 2 mL of DMF.  The tube was capped, stirred at 
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90 °C for 5 days, and extracted with CH2Cl2 (3×7 mL).  The organic layers were 

combined, extracted with H2O (5×5 mL), dried over MgSO4, filtered, and 

concentrated.  The crude material was purified on a silica gel column eluting in 

20:80EtOAc:Hexanes (Rf =0.28) to yield 0.186 g of pure 54a (0.732 mmol, 73%).  

[𝛼]𝐷
22 = +8.99 (c =1, CH3Cl).  mp = 66 °C.  IR (cm-1) = 2972, 2928, 2095, 1766, 

1689.  1H NMR (400 MHz, CDCl3) δ 3.77 (ddd, J = 11.0, 9.0, 4.1 Hz, 1H), 3.71 – 

3.59 (m, 2H), 3.34 (d, J = 12.1 Hz, 1H), 2.17 (ddd, J = 13.0, 8.9, 7.8 Hz, 1H), 

1.78 (ddd, J = 12.9, 8.0, 4.1 Hz, 1H), 1.55 (s, 9H), 1.22 (s, 3H).  13C NMR (101 

MHz, CDCl3) δ 175.89, 150.18, 83.20, 57.16, 46.92, 42.90, 28.01, 27.97, 20.96.  

HRMS (ESI-MS) m/z: [M+Na]+ Calcd for C11H18N4O3Na 277.1271; Found 

277.1270. 

(S)-tert-butyl 3-(azidomethyl)-3-methyl-2-oxopiperidine-1-carboxylate (54b): 

 In a sealed tube 0.200 g of 53b (0.786 mmol) and 0.121 g of sodium azide 

(1.86 mmol) was dissolved into 3 mL of DMF.  The reaction was capped and 

stirred at 90 °C.  After 7 days, the reaction was extracted with CH2Cl2 (3×7 mL).  

The organic layers were combined and extracted with H2O (5×5 mL), dried over 

MgSO4, filtered, and concentrated.  The crude material was purified on a silica 

gel column eluting in 40:60EtOAc:Hexanes (Rf =0.59)  to yield 0.100 g of pure 

54b (0.372 mmol, 60%).  [𝛼]𝐷
21 = -1.7 (c =1, CH3Cl).  IR (cm-1) = 2977, 2935, 

2872, 2100, 1766, 1712.  1H NMR (400 MHz, CDCl3) δ 3.81 (d, J = 11.8 Hz, 1H), 

3.75 (dtd, J = 12.5, 4.7, 1.6 Hz, 1H), 3.53 (ddd, J = 12.5, 8.4, 6.1 Hz, 1H), 3.21 (d, 

J = 11.8 Hz, 1H), 2.05 – 1.96 (m, 1H), 1.92 – 1.83 (m, 2H), 1.64 – 1.56 (m, 1H), 

1.52 (s, 9H), 1.25 (s, 3H).  13C NMR (100 MHz, CDCl3) δ 174.66, 153.21, 83.02,  
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59.51, 47.35, 45.72, 31.44, 27.99, 23.93, 19.59.  HRMS (ESI-MS) m/z: [M+Na]+ 

Calcd for C12H20N4O3Na 291.1, observed = 291.1. 

(S)-2-(azidomethyl)-4-[[(1,1-dimethylethoxy)carbonyl]amino]-2-methyl-butanoic 

acid (57a): 

 In a flask containing 54a (0.786 mmol, 0.200) dissolved into 4 mL of THF 

was added 2.36 ml of 1.0 M LiOH.  The reaction stirred 5 h, quenched with 1.0 M 

HCl until the pH=3.0, and extracted with Et2O (3×15 mL).  The organic layers 

were combined and extracted with saturated NaHCO3 (3×5 mL), and saturated 

brine (3×5 mL), dried over anhydrous MgSO4, and concentrated under reduced 

pressure to yield 71.8 mg of 57a (0.534 mmol, 68%).  Rf = 0.13 (30:70 

EtOAc:Hexanes).  [𝛼]𝐷
21 = -6.10 (c = 2.3, CHCl3).  IR (cm-1) = 3320 br,2977, 2932, 

2101, 1700.  1H-NMR (MeOD, 400 MHz): COOH and NH peaks not present δ 

3.47 (d, J = 12.1 Hz, 1H), 3.31 (d, J = 12.1 Hz, 1H), 2.97 (dt, J = 9.2, 5.7 Hz, 2H), 

1.69 (ddd, J = 15.7, 9.3, 6.5 Hz, 1H), 1.58 (ddd, J = 13.5, 9.2, 6.6 Hz, 1H), 1.33 

(s, 9H), 1.11 (s, 3H).  13C-NMR (MeOD, 100 MHz): δ 13C NMR (101 MHz, MeOD) 

δ 178.37, 158.29, 80.00, 59.35, 46.66, 37.36, 28.76, 20.81.  HRMS (ESI-MS) m/z: 

[M+Na]+ Calcd for C11H20N4O3Na 295.1376; Found 295.1374. 

(S)-2-(azidomethyl)-5-[[[(1,1-dimethylethoxy)carbonyl]amino]propyl]-2-methyl-

pentanoic acid (57b) 

 A solution of 54b (0.343 mmol, 92 mg) dissolved into 2 mL of THF was 

added to 1.02 ml of 1.0 M LiOH.  The reaction stirred for 5 h, quenched with 1.0 

M HCl until the pH=2.0, and extracted with CH2Cl2 (5×5 mL).  The organic layers 

were combined and extracted with water (3×5 mL), brine (3×5 mL), dried over 
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anhydrous MgSO4, and concentrated under reduced pressure to yield 87 mg of 

57b as a clear gum (0.30 mmol, 88%).  Rf = 0.22 (40:60 EtOAc:Hexanes)  [𝛼]𝐷
23 = 

-4.1 (c =1, MeOH).  IR (cm-1) = 3329, 2976, 2933, 2100, 1700, 1653.  1H-NMR 

(MeOD, 400 MHz): COOH and NH peaks not present δ  3.57 (d, J = 12.1 Hz, 1H), 

3.38 (d, J = 12.1 Hz, 1H), 3.02 (t, J = 6.6 Hz, 2H), 1.70 – 1.57 (m, 1H), 1.56 – 

1.47 (m, 2H), 1.45 – 1.40 (m, 1H), 1.44 (s, 9H), 1.19 (s, 3H).  13C-NMR (MeOD, 

100MHz): δ 178.86, 158.54, 79.89, 59.40, 47.69, 41.56, 34.95, 28.77, 25.99, 

20.83.  LRMS (ESI-MS) m/z: [M+Na]+ Calcd for C12H22N4O3Na 309.1; Found 

309.1. 

(R)-3-((benzylthio)methyl)-3-methylpiperidin-2-one (58a) 

 A flask containing NaH (0.586 mmol, 14.0 mg) was washed with pentane 

under inert atmosphere, and replaced with 0.5 mL of DMF on an ice bath.  To the 

solution benzyl mercaptan (0.586mmol, 68 µL) was added slowly and stirred 5 

min.  A solution of 53a (0.325 mmol, 100 mg) dissolved in 0.5 mL of DMF and 

added to the reaction over 10 min.  After the addition the reaction was stirred at rt 

for 12 h, quenched with 0.4 mL of 4 N HCl, and extracted with Et2O (5×5 mL).  

The combined organic layers were dried over MgSO4, filtered, and concentrated 

under vacuum.  The crude material was purified on a silica gel column eluting 

with 20:80 EtOAc:Hexanes isolating 65 mg of 58a (0.190 mmol, 57%).  Rf = 0.21 

(20:80 EtOAc:Hexanes)  IR (cm-1) = 2974, 2928, 1779, 1743, 1712.  1H-NMR 

(COD, 400 MHz): δ 7.34 – 7.28 (m, 4H), 7.26 – 7.21 (m, 1H), 3.74 (q, J = 13.3 Hz, 

2H), 3.69 – 3.53 (m, 2H), 2.65 (dd, J = 34.3, 13.1 Hz, 2H), 2.08 (ddd, J = 12.9, 

8.6, 7.4 Hz, 1H), 1.73 (ddd, J = 12.8, 7.9, 4.7 Hz, 1H), 1.53 (s, 9H), 1.21 (s, 3H).  
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13C-NMR (MeOD, 100 MHz): δ 177.18, 150.35, 138.16, 129.01, 128.52, 127.12, 

82.95, 47.03, 43.00, 39.04, 37.78, 29.48, 28.04, 22.73.  LRMS (ESI-MS) m/z: 

[M+Na]+ Calcd for C18H25NO3SNa 358.1; Found 358.1. 

(R)-4-[[[(1,1-dimethylethoxy)carbonyl]amino]propyl]-2-methyl-2-

[[(phenylmethyl]thio]methyl]-butanoic acid (59): 

 In a flask containing 2.7 mL of THF was added 58a (0.177 mmol, 59 mg) 

followed by 1.0 M LiOH (1.02 mL).  After 6 h the solution was concentrated and 

acidified to pH=3.0 with 4N HCl.  The aqueous layer was extracted with Et2O 

(5×5 mL) and extracts washed with saturated brine (3×5 mL).  The organic layer 

was dried over anhydrous MgSO4, filtered, and concentrated under reduced 

pressure to yield 49.7 mg of 59 as a gum ( 0.140 mmol, 79%).  Rf = 0.06 (5:95 

MeOH:CH2Cl2)  1H-NMR (MeOD, 400 MHz):  COOH and NH peaks not observed 

δ 7.31 – 7.06 (m, 5H), 3.64 (s, 2H), 3.00 – 2.80 (m, 2H), 2.59 (dd, J = 59.0, 12.9 

Hz, 2H), 1.72 (ddd, J = 13.8, 10.1, 6.0 Hz, 1H), 1.57 (ddd, J = 13.4, 10.0, 5.8 Hz, 

1H), 1.32 (s, 9H), 1.09 (s, 3H).  13C-NMR (MeOD, 75 MHz): δ 158.27, 140.06, 

130.09, 129.41, 127.95, 79.92, 47.03, 41.56, 39.13, 38.65, 37.79, 37.72, 28.79, 

22.13.  LRMS (ESI-MS) m/z: [M+Na]+ Calcd for C18H27NO4SLi 360.1; Found 

360.1. 

tert-butyl (S)-4-((benzylthio)carbonyl)-5-(benzylthio)-4-methylpentrylcarbamate 

(60): 

 In a dry flask under a N2 atmosophere NaH (0.896 mmol, 35.8 mg) was 

washed with pentane, and replaced with 1.0 mL of DMF on an ice bath at 0 °C.  

To the solution benzyl mercaptan (0.896 mmol, 0.10 mL) was added and stirred 
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for 5 min.  A solution of 53b (0.497 mmol, 0.160 g) was dissolved into 1.0 mL of 

DMF and added over 10 min.  The reaction was stirred for 12 h at rt, quenched 

with 0.8 mL of 4 N HCl, and extracted with Et2O (5×5 mL).  The combined 

organic layer was dried over MgSO4, filtered, and concentrated under vacuum.  

This crude material was purified on a silica gel column eluting with 20:80 

EtOAc:Hexanes isolating 60 as an oil (0.184 mmol, 37.0%).  Rf = 0.30 (20:80 

EtOAc:Hexanes)  [𝛼]
𝐷
23

 = -11.2 (c =1, CHCl3).  IR (cm-1) = 3359, 2973, 1671 br.  

1H-NMR (CDCl3, 400 MHz): δ 7.33 – 7.20 (m, 10H), 4.40 (s, 1H), 4.10 (s, 2H), 

3.64 (s, 2H), 2.99 (dd, J = 12.3, 6.0 Hz, 2H), 2.68 (dd, J = 65.4, 12.8 Hz, 2H), 

1.72 – 1.62 (m, 1H), 1.56 – 1.47 (m, 1H), 1.44 (s, 9H), 1.35 – 1.18 (m, 2H), 1.26 

(s, 3H). 13C-NMR (CDCl3, 100 MHz): δ 204.01, 155.88, 138.18, 137.47, 128.97, 

128.92, 128.58, 128.48, 127.25, 127.07, 79.13, 53.72, 40.44, 37.96, 35.95, 33.24, 

28.43, 24.78, 21.59.  LRMS (ESI-MS) m/z: [M+Na]+ Calcd for C26H35NO3S2Na 

496.1; Found 496.1.  

(R)-3-((benzylthio)methyl)-3-methylpiperidin-2-one (61): 

 The title compound was isolated (59 mg, 0.236 mmol, 47%) as a product 

in the synthesis of 60.  Rf = 0.02 (20:80 EtOAc:Hexanes).  [𝛼]𝐷
23 = -52.5 (c =1, 

CHCl3).  IR (cm-1) = 3199, 3060, 2933, 1653.  1H-NMR (CDCl3, 400 MHz): δ 7.45 

– 7.15 (m, 5H), 5.89 (s, 1H), 3.76 (q, J = 13.2 Hz, 2H), 3.39 – 3.16 (m, 2H), 2.96 

(d, J = 12.8 Hz, 1H), 2.54 (d, J = 12.8 Hz, 1H), 2.10 – 1.97 (m, 1H), 1.88 – 1.72 

(m, 2H), 1.61 (dd, J = 31.5, 6.3 Hz, 1H), 1.60 – 1.50 (m, 1H), 1.25 (s, 3H).  13C-

NMR (CDCl3, 100 MHz): δ 176.29, 138.66, 128.98, 128.44, 126.93, 42.90, 42.83, 
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41.60, 37.95, 32.16, 25.61, 19.44.  LRMS (ESI-MS) m/z: [M+Na]+ Calcd for 

C14H19NOSNa 272.1; Found 272.2.  

(R)-5-[[[(1,1-dimethylethoxy)carbonyl]amino]propyl]-2-methyl-2-

[[(phenylmethyl]thio]methyl]-pentanoic acid (62): 

 In a flask 60 (0.1667 mmol, 79 mg) was dissolved into a solution of 4:1 

THF:water, and K2CO3 (1.447mmo, 200 mgl).  The reaction stirred at rt under a 

N2 atmosphere for 4 h.  The pH was adjusted with KOH (0.71 mmol, 45 mg) to 

bring the pH=11.  After 24 h the reaction was concentrated, acidified to pH=3 

with 4 N HCl, and extracted with Et2O (5×12 mL).  The combined organic layers 

were dried over MgSO4, filtered, and concentrated under reduced pressure to 

yield 40 mg of 62 as a light brown gum (0.1088 mmol, 65% yield).  Rf = 0.04 

(20:80 EtOAc:Hexanes).  [𝛼]𝐷
24 = -0.144 (c =1, CHCl3).  IR (cm-1) =3326, 2974, 

2928, 1697 br.  1H-NMR (CDCl3, 400 MHz): δ. 7.36 – 7.16 (m, 5H), 5.89 (s, 1H), 

4.55 (s, 1H), 3.72 (s, 2H), 3.05 (s, 2H), 2.68 (dd, J = 54.0, 12.8 Hz, 2H), 1.65 (td, 

J = 12.6, 4.9 Hz, 1H), 1.57 – 1.48 (m, 1H), 1.42 (s, 9H), 1.40 – 1.30 (m, 2H), 1.21 

(s, 3H). 13C-NMR (CDCl3, 100 MHz): δ 181.15, 156.00, 138.26, 128.96, 128.50, 

127.07, 79.26, 46.72, 40.66, 39.85, 37.94, 35.14, 28.42, 25.14, 21.61.  LRMS 

(ESI-MS) m/z: [M+Na]+ Calcd for C19H29NO4SNa 390.1; Found 390.1. 
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CHAPTER IV 

ESI-MS STUDIES ON THE ESTERIFICATION OF GLUTATHIONE AND OTHER 

SMALL PEPTIDES WITH THIONYL CHLORIDE 

Hypothesis 3 

 The esterification of small peptides with thionyl chloride can be used to 

completely esterify free carboxylic acids into methyl esters with limited side 

reactions and no purification. 

Introduction 

 Esterification of peptides play an important role in peptide detection, 

isolation, and synthesis of peptidomimetics.  A variety of methods exists to 

complete the transformation of carboxylic acids into their respective esters.192-194  

Classically, methanolic HCl has been the standard in C-terminal peptide 

methylation, but those reactions are plagued with competing side reactions, long 

reaction times, and incomplete conversion to products.  Several esterification 

methods including a thionyl chloride assisted esterification are described.  In 

addition, the significance as it pertains to mass spectrometry and the synthesis of 

an unnatural glutathione analogue are discussed. 

Overview of peptide esterification methods 

 Esterification of carboxylic acids is an important tool to synthetic and 

peptide chemists.  The conversion of an acid into an ester makes isolation and 

chromatographic separations easier due to increased organic solubility, lower 

boiling point, and increased volatility.  Peptides are diverse in their chemical 

composition, therefore modifications, are synthetically challenging.  Side 
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reactions such as amino acid side chain modification, peptide bond hydrolysis, 

and oxidation/reduction reactions are often observed.  Therefore, the chemical 

composition must be considered when designing a synthesis surrounding 

peptides. 

 Earlier esterifications followed standard Fischer Esterification methods.  

These esterifications require a saturated solution of peptides, coat of HCl gas, 

and an excess of alcohol to drive the equilibrium to completion (Scheme 39, 

reaction a).195  The disadvantages of this method are incompletely formed 

products, long reaction times at 0 °C, and the formation of multiple side products.  

In addition, the side reactions are destructive toward tryptophan.  Other studies 

found the Fischer esterification incompatible with amino acids arginine, histidine, 

and tyrosine.195  Today, these methods are used for the synthesis of organic 

compounds, but use of Fischer esterification in peptide has been replaced with 

modern methods. 
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Scheme 39.  Various peptide esterification methods. 

 The second method frequently utilized is the generation of HCl via the 

alcoholysis of acetyl chloride.  The foundation of this esterification was developed 

by Fraenkel-Cohrat and Olcott.192  Together they outlined a mild protocol using 

0.05 to 0.2 N aqueous HCl or acetyl chloride to catalyze the esterification of 

various proteins(Scheme 39, reaction b).192  They determined only catalytic 

amounts of HCl were needed to esterify proteins, and found smaller quantities of 

HCl eliminated most side reactions.  Additionally, they proposed acetyl chloride 

was reacting with the dry alcohol to liberate HCl to catalyze the reaction.  

Modernized methods have replaced the acetyl chloride method with methanolic 

HCl.  However, commercially available methanolic HCl is still prepared via 

generation of HCl in the presence of acetyl chloride and methanol. 

 Fraenkel-Cohrat and Olcott also investigated the esterification with 

different alcohol solvents.  Methanol esterification was the quickest and most 
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complete.  After 6 days, other higher ordered primary alcohols (ethanol, n-

propanol) were capable of esterifying proteins but not completely.  Secondary 

alcohol 2-propanol also was tested but inefficient (less than 5% of isolated 

product).  Since Fraenkel-Cohrat and Olcott’s publication new adaptations of the 

in situ generation of HCl method have emerged.196-198 

 Thionyl chloride esterification is an alternative esterification used less 

frequently (Scheme 39, reaction c).  Instead of the acid catalyzed Fischer 

esterifications, thionyl chloride converts the carboxylic acid into a reactive acyl 

chloride and the chloride leaves once displaced with the methanol solvent.  

Unlike the Fisher esterifications, equilibrium of the thionyl chloride esterification is 

non-reversible due to the formation of easily removed gaseous byproducts.  A 

study using thionyl chloride to esterify amino acids with n-propanol determined 

temperature was more important than the molar concentration of thionyl 

chloride.199  Frequently,  experiments with thionyl chloride call for solvent reflux 

but these conditions lead to the formation of pyrrolidones with amino acids and 

hydrolysis of peptide bonds.200   This method has been adapted in organic 

synthesis including the esterification of gelatin,201 palmitic acid,202 and aromatic 

carboxylic acids.203  Generally, due to harsh acidic conditions, thionyl chloride is 

considered peptide incompatible with acid labile protecting groups and potential 

for oxidative transformations.  However, thionyl chloride is used in peptide 

coupling of amino acids employing an Fmoc-protection strategy so the use of 

thionyl chloride should not be completely ruled out as an esterification reagent. 
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Applications of peptide esterification  

 C-terminal esterification has played a central role in the detection of amino 

acids and peptides.  In mass spectrometry, esterification is used to 

chromatographically resolve peptides, elucidate and quantify proteins in complex 

mixtures, and enhance the detection of the secondary ion yields of hydrophilic 

peptides.196  Esterification is also crucial to immobilized metal affinity 

chromatography (IMAC) of unphosphorylated peptides.204  By derivatizing the 

free carboxylic acids to esters the negative charge is removed which increasing 

the specificity for enriching phosphorylated peptides.205  As a tool for elucidating 

peptide structure, methyl esterification has been used to profile crustacean 

neuropeptidome.206,207  However, during elucidation chemical artifacts of modified 

peptides were misidentified as occurring naturally.208  These peptides were linked 

back to the methanolic HCl sample preparation.  Therefore, having a method to 

quickly convert peptides into esterified products is a valuable tool for mass 

spectrometry detection. 

 The use of thionyl chloride as an esterification reagent in mass 

spectrometry has been well documented.  Some of these application include LC-

MS pharmacokinetic studies,209 fatty acid GC-MS, and IMAC 

phosphoproteomics.210,211  Unfortunately, the esterification protocol for many of 

these compounds called for a 2 hour reflux, where others are conducted at 

ambient temperature.  Due to the delicate nature of peptides these conditions are 

prohibitive for peptide analysis and modified decomposed peptides are expected.  

Craig and Fischer at the Salk Institute are the only ones who have published a 
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short case study to compare the compatibility of methanolic HCl to thionyl 

chloride.212  However, their study was limited to two peptides and the application 

of thionyl chloride to small molecule peptides was not explored. 

Esterification of glutathione analogues 

 Interest in thionyl chloride esterification developed out of a synthetic need 

to prepare a mixed disulfide analogue of oxidized glutathione (GSSG, 63, Figure 

13).  Currently, new anti-malarial treatments are considered a global health 

priority,213,214 and glutathione analogues represent a novel class of molecules 

with potential therapeutic leads.215,216  One of the first lines of defense against 

malarial parasites is oxidative stress which is regulated by glutathione reductase 

(GR).  Important for cellular health, GR maintains the balance between GSSG to 

reduced glutathione (GSH, 64, Figure 13) by catalyzing the reduction of GSSG to 

give GSH.  Significant research has gone into designing potent GR inhibitors, 

because Inhibition of GR decreases the amount of invasion by malarial 

parasites.217-219  



100 
 

 
 

OH
H
N

N
H

HO

O

O

O

NH3

O
S

HO N
H

H
N

OH

O

O

O

NH3

O
S

OH
H
N

N
H

HO

O

O

O

NH3

O
S

HO N
H

H
N

OH

O

O

O

NH3

O
S

OH
H
N

N
H

HO

O

O

O

NH3

O
S

HO N
H

H
N

OH

O

O

O

NH3

O
S

63

65 66

GSSG

mGSSG Mixed Disulfide

HO N
H

H
N

OH

O

O

O

NH3

O
SH

GSH

64

 

Figure 13.  Glutathione and glutathione analogues. 

 Kedrowski et al. synthesized L-γ-glutamyl-2-methyl-L-cysteinyl-glycine 

disulphide, (mGSSG,65), to study how enzymes catalyze reactions of disulfides 

in peptides.79,220,221  They found the mGSSG analogue consisting of two 

methylated cysteine residues,65, bond to the enzyme’s active site and was a 

mild competitive inhibitor of GR; however the distorted disulfide bond was 

attributed for GR inability to reduce mGSSG.  Therefore, Kedrowski et al. 

proposed to replace one cysteine on GSSG with an unnatural cysteine analogue, 

66, in hopes the dihedral angle of C-S-S-C would be less distorted and fit the 
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primary binding spot of the enzyme to inhibit GR.  The challenge of synthesizing 

66 was taken on by Masterson and Jackson.222 
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Scheme 40.  Fischer esterification and N-boc protection of GSH. 

 Esterified GSH, 67 (Scheme 40), was needed as an intermediate during 

the process of preparing, 66.  The ester functions as a convenient protecting 

group for carboxylic acids and was required for the coupling between natural and 

unnatural cysteine.  Initially, a reported two-step synthesis was attempted to 

prepare 68.223  Unfortunately, under an atmosphere of HCl at 0 °C over 80 hours, 

multiple side products were observed making purification difficult.224,225  

Additionally, the material was extremely hygroscopic and low yielding.  A 

repeated attempt at the esterification showed no improvement and an alternative 

approach was followed. 



102 
 

 
 

Boc2O, 
NaHCO3

THF/H2O

OH
H
N

N
H

HO

O

O

O

NHBoc

O
S

HO N
H

H
N

OH

O

O

O

NHBoc

O
S

O
H
N

N
H

O

O

O

O

NHBoc

O
S

O N
H

H
N

O

O

O

O

NHBoc

O
S

CH2N2

THF, 0 °C

69

70
Boc2O, 

NaHCO3

THF/H2O

OCH3

H
N

N
H

H3CO

O

O

O

NH3

O
S

H3CO N
H

H
N

OCH3

O

O

O

NH3

O
S

71a

SOCl2, 
MeOH

0 °C,15 h

63

Method A

Method B

 

Scheme 41.  Two synthetic pathways proposed to prepare the natural cysteine 
component of for the mixed disulfide bond of GSSG.  Method (a) N-Boc 
protection and diazomethane esterification of GSSG.  Method (b) Thionyl 
chloride methyl esterification and N-boc protection of GSSG. 

 GSSG, is significantly cheaper than GSH, and lacks the reactive sulfhydryl 

functional group responsible for the side reactions observed previously.  

Therefore, two methods for the synthesis of the natural component of the mixed 

disulfide bond were devised (Scheme 41).  First, following Method A, GSSG was 

N-boc protected to 69, and then esterified using diazomethane to give 70.  

However, diazomethane is toxic, potentially explosive, and required specialized 

glassware not readily available.  An alternative approach (Method B) was to 

convert the carboxylic acids into acyl chlorides with thionyl chloride and react it 

with an excess of methanol to form 71a, and N-boc protect to 70.  Surprisingly, 

thionyl chloride esterification was highly efficient and 71a was isolated without 
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purification.  In comparison to the commercial cost of the tetra ester ($1290 per 

100 mg), the quantitative recovery of 71a using the thionyl chloride made the 

commercial price seem inflated.  The thionyl chloride esterification economic 

value alone is worthy of recognition. 

 A literature review reveals that only a few references documented the 

synthesis of methyl esterified GSSG.  Many followed the inefficient methanol HCl 

esterification and column purification process.223,225,226  Only one research group 

used the the modified HCl and acetyl chloride esterification route.227  Another 

reference reported using TMS-Cl in methanol.228,229  Su et al. was the only 

reference documenting a thionyl chloride methyl esterification.230  After these 

experiments were completed, a similar method using oxalyl chloride emerged.231  

Esterified GSSG analogues have been used in photoactivated GSH/glutathione 

transferase tags,228,229 protein refolding reagents,232-234 screening of Wnt 

signaling inhibitors/activators,235 GSH pseudopeptide analogues,236,237 and the 

examination of metallothionein GSSG/GSH complexes.227   The broad 

applications of GSSG analogues are clearly demonstrated and having methods 

such as the thionyl chloride esterification available is of value to the extended 

scientific community. 

Results and Discussion 

 As evident from the literature review, interest in esterified GSSG 

analogues is widespread.  During the process of preparing a GSSG tetra ester 

the thionyl chloride method was highly efficient.  However, investigation into the 

exact time needed for complete esterification was missing.  As a result, a study 
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was setup to monitor the relative GSSG rate of esterification using electrospray 

ionization mass spectrometry (ESI-MS).  Additionally, since methyl esters are not 

the only esters of synthetic value, the compatibility of different alcohol solvents 

were explored (Scheme 42).  Finally, in order to evaluate the compatibility with 

amino acids, the thionyl chloride esterification was applied to other peptides.  
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Scheme 42.  Thionyl chloride GSSG MS studies with methanol, ethanol, and 
isopropyl alcohol. 

Study of thionyl chloride esterification on GSSG with various alcohols 

 In order to monitor the esterification, a soft ionization method via ESI-MS 

was developed to quantify the esterified compounds (Figure 14).  All reactions 

were conducted at 4 °C on 250 mg of GSSG and reacted with a 3.44 M thionyl 

chloride solution in anhydrous methanol.  At various time points 1.0 mL samples 

were drawn from the reaction, concentrated, and suspended into 1.0 mL of a 1% 

acetic acid solution of 1:1 methanol:water v/v.  The reaction progress was 

quantified by comparing the relative signal intensity of the tetra esters to the sum 

of all esterified and unreacted GSSG detected.  Graphs comparing the percent of 

GSSG tetra ester against time was plotted (Figure 15).  Once the percentage of 

tetra ester plateaued experimental data collection was stopped and the reaction 
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deemed complete.  All alcohol esterification reactions were repeated in triplicate.  

In all GSSG samples, the observed masses correlated directly to the [M+H]+ 

esterified products.  No evidence of dimers or side products were observed.  
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Figure 14.  Illustration of the ESI-MS method used in the thionyl chloride 
esterification studies of GSSG. 

 The esterification of GSSG with methanol went to 82% completion in 16 

hours before plateauing.  After 24 hours, a 1H-NMR was recorded, and revealed 

the sample to be completely esterified.  Anhydrous ethanol was also capable of 

esterifying GSSG to 71b, but the reaction progress was significantly slower (144 

h).  The isopropyl alcohol esterification differs significantly from the methanol and 

ethanol studies where conversion to 71c (144 h) went only a 14% completion 

along with the appearance of several side products.  Other secondary and 

tertiary alcohols were not studied, given the incompatibility of isopropyl alcohol. 
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Figure 15.  Plot of the observed esterification rate of GSSG with methanol and 
ethanol as determined by ESI-MS.  Graph (a) is the esterification with thionyl 
chloride and methanol, and graph (b) is the thionyl chloride esterification with 
ethanol. 

Studies of thionyl chloride methanol esterification with small peptides 

 In order to extend the application of the thionyl chloride method a series of 

methanol esterifications were conducted on other peptides (Table 2).  All 

peptides were commercially obtained and of similar molecular weight to GSSG.  

All amino acids were represented to examine the general compatibility as a tool 

for peptide analysis.  These reactions were scaled down for economical 

purposes and reaction progress was not monitored.  Instead, 1.0 mg of peptide 
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was dissolved into a 3.44 M thionyl chloride methanol solution, concentrated after 

24-hour incubation at 4 oC, and analyzed on the ESI-MS. 

Table 2  

Thionyl chloride peptide esterification study with methanol 

Entrya Peptide Esterified 
Peptide 

Peptide 
Sequence 

Number  
of 

COOH 

Estimated % 
Conversionc 

1 
L-glutathione 
oxidized 

71a 2ECGb 4 100 

2 
L-glutathione 
reduced 

67 ECG 2 26 

3 
Fibronectin 
fragment 

72 GRADSPK 2 23 

4 Bradykinin (1-7) 73 RPPGFSP 1 63 

5 Necrofibrin, rat 74 WTVPTA 1 64 

6 
[D-Ala2,D-Met5]-
Enkephalin 

75 YAGFM 1 90 

7 
Angiotensin II, 
human 

76 DRVYIHPF 2 100 

8 
Thymopentin (TP-
5) 

77 RKDVY 2 100 

9 Neurotensin (9-13) 78 RPYIL 1 100 

10 
[Ile3]-Pressinoic 
acid 

79 CYIQNCb 1 94 

Notes (a) Reaction conditions of the peptides were run using 3.44 M thionyl chloride in methanol at 4 oC for 24 h.  (b) 

Peptide contains a disulfide bridge between the two cysteine residues.  (c) Estimate based on the relative abundance 

of product(s) compared to total relative abundance of all fragments. 
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 In many peptides (Table 2), the reaction proceeded smoothly (Entries 1 & 

6-10) with near complete conversion to esterified product.  Other peptides 

(Entries 2-5) were not as tolerant to the reaction conditions.  Common to both 

Entry 3 and Entry 4 was a fragment with 18 AMU addition from the expected 

esterified mass and a signature 3:1 chlorine isotopic ratio.  Based on this 

evidence it was concluded that both peptides were esterified but serine residues 

were chemically modified to an alkyl chloride (Figure 16).238-240  Since thionyl 

chloride is a chlorinating reagent, these results were not surprising.  Still, the 

esterified mass containing the unaltered serine was present indicating the 

potential for reaction optimization.  Moreover, the estimated conversion is 

significantly different between Entry 3 and Entry 4.  In the case of the fibronectin 

fragment, chlorinated compound 80 was the major component but in bradykinin 

81 was the minor product.  It is true these results could be the difference in 

ionization of the peptides.  However, in comparison to bradykinin, the spectra of 

fibronectin contained many other unidentified fragments suggesting location of 

the serine in sequence may be a contributing factor.  On both peptides, proline is 

attached to the C-terminus of serine but differ in their N-terminus attachments.  

The fibronectin fragment contains two basic (lysine and arginine) and one acid 

(aspartic acid) amino acid in its sequence.  Apart from serine, bradykinin only has 

arginine at the N-terminus and overall is more hydrophobic than fibronectin 

making bradykinin less prone to reactivity.  Unfortunately, additional studies of 

the serine residues were not explored and are left for future studies.  Other 

amino acids containing alcohol side chains, threonine and tyrosine, were also 
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analyzed.  Interestingly, both underwent smooth conversion to the ester with no 

evidence of the alkyl chloride.  
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Figure 16.  Observed modifications of fibronectin and bradykinin by thionyl 
chloride. 

 Another peptide demonstrating incomplete formation of the tetra ester was 

necrofibrin (Entry 5).  The expected mono ester was observed in 64% with two 

impurities.  These impurities were traced back to masses present on the supplied 

manufactures certificate of analysis and not an impurity arising from thionyl 

chloride esterification.  The only other incompatibility arose from the free 

sulfhydryl of cysteine on GSH (Entry 2) where minor amounts of esterified GSH 

were observed.  In addition, the reaction contained significant amounts of 

oxidized GSSG and other unidentified species.  However, methionine of 

Enkephalin and the disulfide of [Ile3]-Pressinoic acid and GSSG were cleanly 

converted to their respective esters.  Additionally, aspartic acid and glutamic acid 
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were both esterified without side reactions.  All other proteinogenic amino acids 

were tolerant with thionyl chloride reaction conditions.  

Future Directions 

 After completing this short study many questions have evolved.  Literature 

suggests higher temperatures could be used to increase the reaction rate with 

higher ordered alcohols.199  If GSSG is capable of withstanding increased 

temperatures what are those limits?  If higher temperatures are possible then 

higher order alcohols could be studied and shorter reaction times would be 

expected.  Also, a complete investigation of reaction rates would include varying 

the proportions of each reactants.  Since this study strictly focused on replicating 

the initially discovered 3.44 M thionyl chloride concentration it was held constant.  

Based on other research212 this thionyl chloride concentration seems excessive, 

but yet effective.  How will the increase/decrease of thionyl chloride concentration 

affect the observed rate?   

 The small peptide esterifications were not repeated in triplicate; therefore, 

good analytical practices dictates these studies should be repeated.  First, a 

scale up, isolation, and complete characterization of the esterified peptides would 

eliminate any experimental error in these studies.  Additionally, physically 

isolating the peptides will eliminate any discrepancy in the observed side 

products.  If these results agree with the recorded mass data then further 

analysis is unnecessary.  However, it would be interesting to see if alkyl chloride 

formation could be controlled on the peptides containing serine.  The different 

proportion of chlorinated serine suggests that control of the chlorination may be 
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possible.  It is possible that the location of the serine residue in the peptide 

sequence may govern the extent of the formed alkyl chloride.  Finally, other 

cysteine containing peptides should be considered.  Since the free sulfhydril can 

readily undergo oxidation, the addition of β-mercaptoethanol could prevent the 

formation of the oxidized disulfide.  

Conclusions 

 In conclusion, GSSG methyl esters were esterified with thionyl chloride 

and methanol in high yields requiring no purification.  GSSG ethyl esters also 

were prepared with thionyl chloride but required longer reaction times at the 

expense of increased reaction times.  These conditions were replicated on a 1.0 

mmol scale with small peptides comparable in size to GSSG and found to be 

highly compatible.  The only observed limitations occurred in cases where serine 

and cysteine were present in the peptide sequence.  All other amino acids were 

tolerant of the reactions conditions.   

Experimental 

General experimental 

 NMR spectra were acquired on a Bruker 400 MHz NMR in proton-

decoupled mode.  Residual solvent signal for MeOD was used as an internal 

standard in the NMR experiments.  ESI MS was carried out on a ThermoFisher 

LXQ ESI-Ion trap mass spectrometer using Optima LCMS grade methanol and 

water from Fisher Scientific.  Methanol was distilled from calcium hydride, and 2-

propanol distilled from sodium.  Prior to use, absolute ethanol was stored over 

molecular sieves for 24h.  L-oxidized glutathione and reduced glutathione were 
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purchased directly from Sigma-Aldrich.  American Peptide Company supplied the 

peptides and peptide fragments and were used as received.  Each peptide and 

peptide fragment came furnished with Certificate of Analysis (COA) and some 

contained trace impurities.  Trace impurities are noted in the MS tables in the 

appendix. 

LXQ instrument conditions 

  The LXQ was tuned with a 1.0 mg/mL sample of GSSG dissolved into 1% 

acetic acid 1:1 MeOH:H2O (v/v) solution.  The sample was ionized at 320 °C and 

tuned to detect [M+H]+ of GSSG (m/z = 612).  After a steady signal was obtained, 

the file was saved and used as a tune file for all experiments. 

General thionyl chloride esterification procedures for alcohol studies 

 In a 125 mL Erlenmeyer flask, L-oxidized glutathione (0.408 mmol, 0.250 

g) was added to 50 mL of alcohol, capped with a rubber septum, and cooled to 

0 °C.  Thionyl chloride (34.4 mmol, 2.5 mL) was added slowly; the flask swirled, 

and placed into a refrigerator at 4 °C.  The reaction was monitored by taking 1.0 

mL reaction aliquots, concentrating the samples under reduced pressure at 35 °C, 

and suspending the crude material1.0 mL of a 1% acetic acid 1:1 MeOH:H2O (v/v) 

solution.  All samples were analyzed on the ESI-MS using the GSSG LXQ 

optimized tune file. 

Oxidized glutathione methyl ester (71a): 

 The above general experimental conditions were followed for the 

synthesis of 71a.  Recorded characterization data matched 1H-NMR and 13C-

NMR reported by literature.229  1H-NMR (400MHz, CD3OD) δ 4.67 (m, 2H), 4.05 
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(m, 2H), 3.88 (s, 4H), 3.76 (s, 6H), 3.62 (s, 6H), 3.21 (s, 4H), 2.93-2.81 (m, 2H), 

2.49 (m, 4H), 2.12 (m, 4H).  13C-NMR (100MHz, CD3OD) δ 174.3, 173.0, 171.6, 

170.7, 54.0, 53.9, 53.7, 52.8, 42.0, 41.4, 32.3, 27.0.  LRMS (ESI-MS) m/z: 

[M+H]+ Calcd for C24H44N6O12S2 669.2; Found 669.2. 

Oxidized glutathione ethyl ester (71b): 

 The above general experimental conditions were followed for the 

synthesis of 71b.  Recorded characterization data matched1H-NMR and 13C-NMR 

reported by literature.235  1H-NMR (CDCl3, 400 MHz): δ 4.78 (dd, J = 9.6, 4.6 Hz, 

2H), 4.33 (q, J = 7.1 Hz, 4H), 4.19 (q, J = 7.1 Hz, 4H),4.13(m, 2H), 3.97 (d, J = 

2.2 Hz, 4H), 3.28 (dd, J = 14.0, 4.6 Hz, 2H), 2.99 (dd, J = 13.9, 9.7 Hz, 2H), 2.61 

(t, J = 7.1 Hz, 4H), 2.23 (m, J = 21.7, 14.6, 7.5 Hz, 4H), 1.35 (t, J = 7.1 Hz, 6H), 

1.28 (t, J = 7.2 Hz, 6H).  13C-NMR(100MHz, CD3OD) δ 174.4, 173.0, 171.1, 

170.2, 63.4, 62.4, 53.9, 53.7, 42.1, 41.3, 32.6, 27.0, 14.5, 14.43.  LRMS (ESI-MS) 

m/z: [M+H]+ Calcd for C28H44N6O12S2725.3; Found, 725.3. 

Oxidized glutathione isopropyl ester (71c): 

 The above general experimental conditions were followed for the 

synthesis of 71c.  LRMS (ESI-MS) m/z: [M+H]+ Calcd for C32H57N6O12S2 781.4; 

Found 781.3.  

Reduced glutathione methyl ester (67): 

 The general experimental conditions were followed for the synthesis of 67.  

LRMS (ESI-MS) m/z: [M+H]+ Calcd for C12H22N3O6S 336.1; Found 336.1. 

General thionyl chloride esterification procedures for peptide studies: 
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 The evaluation of the small molecule peptides were scaled down and all 

performed in methanol.  Only 1.0 mg of peptide was used in each of the studies, 

and was incubated at 4 °C for 24 h.  For every carboxylic acid present in the 

peptide, 756 equivalents of MeOH and 105 equivalents of thionyl chloride were 

used to give an overall 3.44 M solution of thionyl chloride in methanol.  At the end 

of the incubation the crude material was concentrated, dissolved into 1% acetic 

acid 1:1 MeOH:H2O solution, and analyzed on the ESI-MS.  

Fibronectin methyl ester (72): 

 A vial containing Fibronectin (1 µmol, 1.0 mg) was dissolved into 

anhydrous MeOH (2.075 mmol, 83.9 µL) and placed on an ice bath at 0 °C.  

Thionyl chloride (0.289 mmol, 21.0 µL) was added slowly, the vial swirled, and 

placed into a refrigerator at 4 °C.  After 24 h the sample was concentrated, 

dissolved into 1.0 ml of 1% acetic acid 1:1 MeOH:H2O (v/v), and analyzed on the 

ESI-MS.  LRMS (ESI-MS) m/z: [M+H]+ Calcd for C31H56N11O11 758.4; Found 

758.4.  

Bradykinin methyl ester (73): 

 A vial containing Bradykinin (1 µmol, 1.0 mg) was dissolved into 40.5 µL of 

anhydrous methanol (1.00 mmol, 40.5 µL) and placed on an ice bath at 0 °C.  

Thionyl chloride (0.14 mmol, 10.1 µL) was added slowly, the vial swirled, and 

placed into the refrigerator at 4 °C.  After 24 h the sample was concentrated 

under reduced pressure, suspended into 1.0 ml of 1% acetic acid 1:1 MeOH:H2O 

(v/v), and analyzed on the ESI-MS.  LRMS (ESI-MS) m/z: [M+H]+ Calcd for 

C36H55N10O9 771.41; Found771.4. 
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necrofibrin, rat methyl ester (74): 

 A vial containing necrofibrin, rat (1 µmol, 1.0 mg) was dissolved into 

anhydrous methanol (1.12 mmol, 45.5 µL) and placed on an ice bath at 0 °C.  

Thionyl chloride (0.156 mmol, 11.4 µL) was added slowly, swirled, and placed 

into a refrigerator at 4 °C.  After 24 h, the sample was concentrated under 

reduced pressure, suspended into 1.0 ml of 1% acetic acid 1:1 MeOH:H2O (v/v), 

and analyzed on the ESI-MS. LRMS (ESI-MS) m/z: [M+H]+ Calcd for C33H50N7O9 

688.37; Found 688.2. 

[DAla2,DMet5] Enkephalin methyl ester (75): 

 A vial containing [DAla2,DMet5] Enkephalin (2 µmol, 1.0 mg) dissolved 

into anhydrous methanol  (1.29 mmol, 52.1 µL) and placed on an ice bath at 0 °C.  

Thionyl chloride (0.18 mmol, 13.0 µL) was slowly added, swirled, and placed into 

a refrigerator at 4 °C.  After 24 h the sample was concentrated under reduced 

pressure, dissolved into 1.0 ml of 1% acetic acid in a 1:1 solution of 

methanol:water, and analyzed on the ESI-MS.  LRMS (ESI-MS) m/z: [M+H]+ 

Calcd for C29H40N5O7S 602.3; Found 602.2.  

angiotensin II, human methyl ester (76): 

A vial containing angiotensin II, human (1 µmol, 1.0 mg) was dissolved 

into anhydrous methanol (1.45 mmol, 58.6 µL) and placed on an ice bath at 0 °C.  

Thionyl chloride (0.20 mmol, 14.6 µL) was slowly added, swirled, and placed into 

a refrigerator at 4 °C.  After 24 h, the sample was concentrated under reduced 

pressure, dissolved into 1.0 ml of 1% acetic acid 1:1 MeOH:H2O (v/v), and 
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analyzed on the ESI-MS.  LRMS (ESI-MS) m/z: [M+H]+ Calcd for C52H76N13O12  

1074.57; Found 1074.6.  

Thymopentin (TP-5) methyl ester (77): 

 A vial containing Thymopentin (TP-5) (1 µmol, 1.0 mg) was dissolved into 

anhydrous methanol (2.22 mmol, 90.1 µL) and placed on an ice bath at 0 °C.  

Thionyl chloride (0.289 mmol, 22.5 µL) was slowly added, swirled, and placed 

into the fridge at 4 °C.  After 24 h the sample was concentrated under reduced 

pressure, dissolved into 1.0 ml of 1% acetic acid 1:1 MeOH:H2O (v/v), and 

analyzed on the ESI-MS.  LRMS (ESI-MS) m/z: [M+H]+ Calcd for C32H54N9O9 

708.4; Found 708.4.  Masses present in starting material from COA: 341(14%), 

680 (100%), 1358(8%). 

Neurotensin methyl ester (78): 

A vial containing Neurotensin (9-13) (1 µmol, 1.0 mg) was dissolved into 

anhydrous methanol (2.22 mmol, 90.1 µL) and placed on an ice bath at 0 °C.  

Thionyl chloride (0.289 mmol, 22.5 µL) was slowly added, swirled, and placed 

into the fridge at 4 °C.  After 24 h, the sample was concentrated under reduced 

pressure, dissolved into 1.0 ml of 1% acetic acid 1:1 MeOH:H2O (v/v), and 

analyzed on the ESI MS.  LRMS (ESI-MS) m/z: [M+H]+ Calcd for C32H54N9O9  

675.4; Found675.4.  

[Ile3] Pressinoic Acid methyl ester (79): 

A vial containing [Ile3] Pressinoic Acid (1 µmol, 1.0 mg) was dissolved into 

anhydrous methanol (1.02 mmol, 41.3 µL) and placed on an ice bath at 0 °C.  

Thionyl chloride (0.14 mmol, 10.3 µL) was slowly added, swirled, and placed into 
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a refrigerator at 4 °C.  After 24 h the sample was concentrated under reduced 

pressure, dissolved into 1.0 ml of 1% acetic acid 1:1 MeOH:H2O (v/v), and 

analyzed on the ESI-MS. LRMS (ESI-MS) m/z: [M+H]+ Calcd for C31H47N8O10S2 

755.2; Found 755.2.  
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APPENDIX 

 

A.  1 1H-NMR of 6. 
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A.  2 Crude 1H-NMR mixture of cis/trans isomers of 8 and unreacted 6. 
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A.  3 a) 1H-NMR of 12; b) 13C-NMR of 12. 
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A.  4 a) 1H-NMR of 13; b) 13C-NMR of 13. 



122 
 

 
 

 

A.  5 a) 1H-NMR of 14; b) 13C-NMR of 14. 
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A.  6 a) 1H-NMR of 17; b) 13C-NMR of 17. 
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A.  7 a) 1H-NMR of 21; b) 13C-NMR of 21. 
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A.  8 a) 1H-NMR of 28; b) 13C-NMR of 28. 
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A.  9 a) 1H-NMR of 29; b) 13C-NMR of 29. 
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A.  10 a) 1H-NMR of 32; b) 13C-NMR of 32. 
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A.  11 a) 1H-NMR of 33; b) 13C-NMR of 33. 
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A.  12 a) 1H-NMR of 38; b) 13C-NMR of 38. 
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A.  13 a) 1H-NMR of 39; b) 13C-NMR of 39. 
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A.  14 a) 1H-NMR of 40; b) 13C-NMR of 40. 
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A.  15 1H-NMR of 48; b) 13C-NMR of 48. 
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A.  16 a) 1H-NMR of 49; b) 13C-NMR of 49. 
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A.  17 a) 1H-NMR of 50; b) 13C-NMR of 50. 
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A.  18 a) 1H-NMR of 51; b) 13C-NMR of 51. 
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A.  19 a) 1H-NMR of 52a; b) 13C-NMR of 52a. 
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A.  20 a) 1H-NMR of 52b; b) 13C-NMR of 52b. 
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A.  21 a) 1H-NMR of 53a; b) 13C-NMR of 53a. 
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A.  22 a) 1H-NMR of 53b; b) 13C-NMR of 53b. 
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A.  23 a) 1H-NMR of 54a; b) 13C-NMR of 54a. 
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A.  24 a) 1H-NMR of 54b; b) 13C-NMR of 54b. 



142 
 

 
 

 

A.  25 a) 1H-NMR of 57a; b) 13C-NMR of 57a. 
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A.  26 a) 1H-NMR of 57b; b) 13C-NMR of 57b. 
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A.  27 a) 1H-NMR of 58a; b) 13C-NMR of 58a. 
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A.  28 1H-NMR of 59; b) 13C-NMR of 59. 
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A.  29 a) 1H-NMR of 60; b) 13C-NMR of 60. 
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A.  30 a) 1H-NMR of 61; b) 13C-NMR of 61. 
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A.  31 a) 1H-NMR of 62; b) 13C-NMR of 62. 
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GSSG thionyl chloride esterification with methanol 

 

A.  32 ESI MS and mass list of 71a.  

GSSG-9-20-12 -25hr_03 #1-100 RT: 0.00-0.35 AV: 100 NL: 3.76E5
T: ITMS + p ESI Full ms [150.00-2000.00]
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612.25526.17176.17 701.17598.25306.67 351.17 753.92469.17263.67 400.08

Observed Mass 
(m/z) 

Relative Abundance 
(%) 

Comments Number of 
Esters 

669.25 100.00% [M +H]+ 4 

655.25 24.50% [M +H]+ 3 

335.17 18.32% [M +2H]2+ 4 

328.17 7.56% [M +2H]2+ 3 
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GSSG thionyl chloride esterification with ethanol 

 

A.  33 ESI MS and mass list of 71b. 

  

ERV03-43-EtOH-144Hr_1 #1-100 RT: 0.00-0.36 AV: 100 NL: 2.42E5
T: ITMS + p ESI Full ms [150.00-2000.00]
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349.17 668.25167.08 568.25213.08 747.33424.08295.92 633.42511.25

Observed 
Mass (m/z) 

Relative Abundance 
(%) 

Comments Number of Esters 

725.25 100% [M +H]+ 4 
363.17 24.00% [M +2H]2+ 4 
697.25 7.05% [M +H]+ 3 
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GSSG thionyl chloride esterification with 2-propanol 

Observed Mass 
(m/z) 

Relative 
Abundance (%) 

Comments Number of Esters 

697.25 100.00% [M +H]+ 2 
349.17 78.04% [M +2H]2+ 2 
739.25 74.30% [M +H]+ 3 
370.17 62.30% [M +2H]2+ 3 
208.83 27.00% UK UK 
781.25 9.00% [M +H]+ 4 
391.17 7.50% [M +H]2+ 4 

UK=unknown 

 

A.  34 ESI MS and mass list of 71c. 

  

ERV03-53-IPA 72H_1 #1-100 RT: 0.00-0.35 AV: 100 NL: 1.60E5
T: ITMS + p ESI Full ms [150.00-2000.00]
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268.75 431.00 836.58613.17 878.58568.25
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GSH thionyl chloride esterification with 2-propanol 

Observed Mass 
(m/z) 

Relative 
Abundance (%) 

Comments Number of Esters 

318.17 100% UK UK 

336.08 56.70% [M +H]+ 2 

669.17a 26.40% [M +H]+ 4 

701.17 13.25% UK UK 

304.17 8.30% UK UK 

655.164a 5.80% [M +H]+ 3 

261.17 5.50% UK UK 

UK=unknown.  (a) M=[C24H44N6O12S2]+, Oxidized Glutathione. 

 

A.  35 ESI MS and mass list of 67. 

  

ERV03-53-GSH-24hr_1 #1-100 RT: 0.00-0.36 AV: 100 NL: 1.29E5
T: ITMS + p ESI Full ms [150.00-2000.00]
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176.17 212.17 733.08351.08 612.17526.17406.17 469.08
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Fibronectin fragment thionyl chloride esterification with methanol 

Observed Mass  

(m/z) 

Relative Abundance 

 (%) 

Comments 

388.75a 100.00% [M+2H]2+ 
776.42a 85.40% [M+H]+ , 35Cl 
758.42 39.66% [M+H]+ 

778.365a 33.97% [M+H]+, 37Cl 
379.75 25.28% [M+2H]2+ 
345.25 22.36 UK 
446.25 20.94 UK 
537.83 9.43% UK 

UK=unknown.  (a) M= C31H55ClN11O10. 

A.  36 ESI MS and mass list of 72.  

  

Peptides 2-26-13 FIB_1 #1-100 RT: 0.00-0.36 AV: 100 NL: 2.13E5
T: ITMS + p ESI Full ms [100.00-2000.00]
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173.17 623.25
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Bradykinin thionyl chloride esterification with methanol 

Observed Mass (m/z) Relative Abundance (%) Comment 

771.42 100.00% [M+H]+ 
789.33a 49.97% [M+H]+, 35Cl 
791.34a 21.34% [M+H]+, 37Cl 
587.33 7.26% UK 

UK=unknown.  (a) M= C36H54ClN10O8. 

 

A.  37 ESI MS and mass list of 73. 

  

Peptides-BRA_1 #1-100 RT: 0.00-0.37 AV: 100 NL: 2.31E5
T: ITMS + p ESI Full ms [100.00-2000.00]
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Necrofibrin, rat thionyl chloride esterification with methanol 

Observed Mass (m/z) Relative Abundance (%) Commentsa 

688.25 100.00% [M+H]+ 
710.33b 37.07% [M+H]+ 

335.678b 18.46% [M+2H]2+ 
344.51 16.51% [M+2H]2+ 

1374.58c 9.4% [M+H]+ 

(a) Impurities present in starting peptide m/z (relative abundance): 674 (55%), 696 (100%), 1346 (19%), 1368 (10%).  

(b) Impurity from starting material undergoing methyl esterification m/z=696  (c) Impurity from starting material 

undergoing two methyl esterifications m/z=1346 

 

A.  38 ESI MS and mass list of 74. 

  

ERVO3-21913 _NEC_2 #1-100 RT: 0.00-0.36 AV: 100 NL: 6.94E5
T: ITMS + p ESI Full ms [100.00-2000.00]
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Enkephalin thionyl chloride esterification with methanol 

Observed Mass (m/z) Relative Abundance (%) Comments 

602.17 100% [M +H]+ 
1202.67 54.00% [2M +H]+ 
616.08 16.54% UK 

UK=unknown.  (a) Impurities present in starting peptide m/z (relative abundance): 411 (8%), 587 (100%), 610 (23%), 

1174 (42%). 

 

A.  39 ESI MS and mass list of 75.  

ERVO3-21913 _ENK_1 #1-100 RT: 0.00-0.36 AV: 100 NL: 5.84E5
T: ITMS + p ESI Full ms [100.00-2000.00]
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Angiotensin II, human thionyl chloride esterification with methanol 

Observed Mass (m/z) Relative Abundance (%) Comments 

1074.58 100.00% [M+H]+ 
537.83 35.34% [M+2H]2+ 

 

A.  40 ESI MS and mass list of 76. 

  

Peptides-ANG II_1 #1-100 RT: 0.00-0.36 AV: 100 NL: 6.19E5
T: ITMS + p ESI Full ms [100.00-2000.00]
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Thymopentin (TP-5) thionyl chloride esterification with methanol 

Observed Mass (m/z) Relative Abundance (%) Comments 

708.42 100.00% [M+H]+ 
354.76 25.40% [M+2H]2+ 

(a) Impurities present in starting peptide m/z (relative abundance): 341(14%), 680 (100%), 1358(8%). 

 

A.  41 ESI MS and mass list of 77. 

  

Peptides 2-26-13 TMY_1 #1-100 RT: 0.00-0.36 AV: 100 NL: 8.28E5
T: ITMS + p ESI Full ms [100.00-2000.00]
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Neurotensin (9-13) thionyl chloride esterification with methanol 

Observed Mass (m/z) Relative Abundance (%) Comment 

675.42 100.00% [M+H]+ 

(a) Impurities present in starting peptide m/z (relative abundance): 661 (100%), 1320 (56%), 1322 (40%). 

 

A.  42 ESI MS and mass list of 78. 

  

ERVO3-21913 _NEU_1 #1-100 RT: 0.00-0.36 AV: 100 NL: 1.46E6
T: ITMS + p ESI Full ms [100.00-2000.00]
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 [Ille3]-pressinoic acid thionyl chloride esterification with methanol 

Observed Mass (m/z) Relative Abundance (%) Comments 

755.25 100.00% [M+H]+ 
777.25 50.00% [M+Na]+ 

1509.08 24.55% [2M+H]+ 
770.212 10.54% UK 

UK=unknown.  (a) Impurities present in starting peptide m/z (relative abundance): 726 (10%), 742 (100%), 764 (21%), 

781 (16%), 1483 (10%), 1522 (20%). 

 

A.  43 ESI MS and mass list of 79.   

Peptides 2-26-13 PRE_1 #1-100 RT: 0.00-0.36 AV: 100 NL: 5.12E5
T: ITMS + p ESI Full ms [100.00-2000.00]
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