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ABSTRACT 

GROWTH AND REPRODUCTION OF SOUTHERN FLOUNDER (PARALICHTHYS 

LETHOSTIGMA) IN THE NORTH-CENTRAL GULF OF MEXICO 

by Morgan Marie Corey 

August 2016 

Southern Flounder Paralichthys lethostigma is the most commonly harvested 

flatfish in the north-central Gulf of Mexico (GOM) and supports a major inshore 

recreational fishery, yet knowledge of the species’ life history is greatly limited. The 

objective of this research was to describe the growth and reproduction of Southern 

Flounder in the Mississippi stock. Fish were collected during September 2014 to March 

2016 using primarily recreational fishing techniques. Otoliths (n = 313) were sectioned to 

estimate age, and multiple length-at-age models were fit to total length (TL, mm) and age 

estimate (y) data. Gonadal tissue samples (n = 221) were preserved for histological 

analysis and used to classify reproductive phases. Length-at-age model fit was evaluated 

using Akaike information criteria, revealing that the three-parameter von Bertalanffy 

growth function best described the female-specific data (L∞ = 509 mm, k = 0.70 y-1, t0 = -

0.46 y). By fitting a logistic model to binomial maturity data, the mean length-at-50% 

maturity was estimated as 303 mm TL and mean age-at-50% maturity was estimated as 

one year for females. Histological indicators and gonadosomatic index (GSI) data were 

used to estimate that the spawning season lasts from November to January, and to 

classify Southern Flounder as batch spawners. These results will inform future stock 

assessments and management decisions for the GOM Flounder fishery.  
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CHAPTER I  – BACKGROUND 

Southern Flounder Paralichthys lethostigma is the most commonly harvested 

flatfish species that occurs in the north-central Gulf of Mexico (GOM) (Hensley and 

Ahlstrom 1984). Southern Flounder are distributed as far north as Albermarle Sound, 

North Carolina on the U.S. Atlantic coast and throughout the GOM to northern Mexico, 

and exhibit a geographic break around the southernmost Florida peninsula (Hensley and 

Ahlstrom 1984, Enge and Mulholland 1985, Reagan and Wingo 1985). However, the 

Atlantic and GOM populations are separated geographically around the southernmost 

Florida peninsula. There is evidence for genetic distinction between the Atlantic and 

GOM Southern Flounder populations, and some small-scale genetic differences have 

been reported within the GOM (Blandon et al. 2001, Anderson and Karel 2012).  

Southern Flounder are a euryhaline, estuarine-dependent species that exhibits 

seasonal migration patterns (Deubler 1960, Etzold and Christmas 1979). Southern 

Flounder migrate to offshore waters in winter months and spawn pelagic eggs that 

undergo hydration, a process that makes the eggs buoyant for effective transport to 

nursery habitats (Benson 1982). Larvae undergo metamorphosis and settlement in lower 

salinity estuarine waters during late winter and spring months, where feeding and growth 

occurs (Stokes 1977, Shepard 1986, Ditty et al. 1988). Southern Flounder also inhabit 

freshwater environments, which is supported by otolith microchemistry analyses in the 

Mobile-Tensaw River Delta of Alabama and in Texas coastal waters (Lowe et al. 2011, 

Farmer et al. 2013, Nims and Walther 2014). Residency patterns of Southern Flounder 

have been studied in the Atlantic using a tagging approach, and results indicated limited 

movement during winter estuarine residency with extensive movement of larger 
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individuals during spawning migrations to the southeastern U.S. continental shelf (Craig 

et al. 2015). However, little is known about the spawning habitats of Southern Flounder 

in the GOM.  

The Southern Flounder stock is a valuable marine resource in the GOM 

supporting both a recreational and commercial fishery. Although Southern Flounder and 

Gulf Flounder Paralichthys albigutta are managed as a single stock, Southern Flounder is 

the more abundant of the two species harvested from Alabama to Texas in the GOM 

(Adkins et al. 1998). Flounder species are primarily harvested recreationally using hook-

and-line fishing or gigging (GSMFC 2015) with the Gulf-wide recreational harvest 

averaging over 400,000 kg per year for the past decade (NOAA National Marine 

Fisheries Service, 2015). However, long-term declines in population size have been 

observed in Texas between 1975 and 2008 (Froeschke et al. 2011). Despite the economic 

value of this species and evidence for overfishing, life-history information for Southern 

Flounder in the north-central GOM is limited. An understanding of life history improves 

the ability to manage a population sustainably (Adams 1980, Winemiller and Rose 1992). 

Further research on the life history of Southern Flounder is therefore beneficial for 

informing management of the stock.  

The objective of this research is to describe the growth (Chapter II) and 

reproduction (Chapter III) of Southern Flounder in the north-central GOM followed by a 

synthesis of management considerations (Chapter IV). A sampling effort was conducted 

using multiple gear types to collect fish between September 2014 to March 2016. Size 

measurements and otoliths were collected from each fish to estimate female-specific 

length-at-age parameters. Reproductive tissue samples were processed using histological 
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techniques to estimate age- and length-at-maturity and to describe spawning seasonality 

for female Southern Flounder. Finally, the results of this study were compared to results 

reported in previous studies of Southern Flounder growth and reproduction. The 

knowledge gained from this research will improve the understanding of Southern 

Flounder life history and the ability to manage the north-central GOM stock.
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CHAPTER II – AGE AND GROWTH DYNAMICS OF SOUTHERN FLOUNDER 

Introduction 

Southern Flounder Paralichthys lethostigma supports a major inshore recreational 

fishery in Mississippi with mean annual harvests over 90,000 kg for the past decade 

(NOAA National Marine Fisheries Service, 2016). Despite the economic value of the 

Southern Flounder fishery, age and growth information for Southern Flounder in the 

north-central Gulf of Mexico (GOM) is limited. Growth is a fundamental life-history 

characteristic that influences population dynamics, and therefore, an understanding of 

growth is necessary for fisheries management (Adams 1980, Denney et al. 2002). The 

Southern Flounder fishery is independently managed by state agencies, and currently 

there is a 12-inch (305 mm) minimum size limit enacted in Mississippi (GSMFC 2015). 

Characteristics of Southern Flounder age and growth have not been described in 

Mississippi waters. Thus, there is a need for understanding the local population dynamics 

of Southern Flounder.  

Previous life-history studies have described the growth of Southern Flounder in 

the Atlantic (Wenner et al. 1990, Fitzhugh et al. 1996) as well as the Gulf coast of Texas 

(Stunz et al. 2000, Glass et al. 2008), Louisiana (Fischer and Thompson 2004), and 

Florida (Nall 1979, Frick 1988). Based on past research, Southern Flounder exhibit 

relatively fast growth and has a maximum reported age of ten years (Nall 1979). The 

longest mean theoretical length (L∞) for Southern Flounder was estimated as 1461 mm 

standard length in Florida (Nall 1979). However, this estimate is far greater than the 

longest observed length from any location in the GOM. Southern Flounder also exhibit 

sexually dimorphic growth with faster growth rates, older maximum ages, and greater 
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maximum lengths reported for females (Wenner et al. 1990, Stunz et al. 2000, Fischer 

and Thompson 2004). Consequently, females make up the primary harvest of the fishery 

(Takade-Heumacher and Batsavage 2009). Female-specific estimates of L∞ for Southern 

Flounder reported in Texas (Stunz et al. 2000) and Louisiana (Fischer and Thompson 

2004) are based on validated age estimates and range from 483 to 556 mm total length. 

Growth parameter estimates for Southern Flounder are spatially variable within 

the GOM, although there are no apparent patterns in spatial variability. Midway et al. 

(2015) used a hierarchical Bayesian model fitting process to show that growth parameter 

estimates are variable within GOM states, and hypothesized that differences are due to 

spatially-distinct environmental conditions. Although there is no evidence for 

independent stocks within the GOM, small-scale genetic structuring has been reported 

(Blandon et al. 2001). However, because Southern Flounder is a fast-growing, estuarine-

dependent species, growth may be more influenced by environmental variability than 

genetic differences (Midway et al. 2015). The results reported by Midway et al. (2015) 

indicate that local estimates of growth parameters should be used to assess the stock of 

interest and inform state-level management. The length-at-age relationship is necessary to 

inform age-structured stock assessment models (Quinn and Deriso 1999), yet current 

estimates of length-at-age parameters are lacking for Southern Flounder in the north-

central GOM.  

The Southern Flounder length-at-age relationship has been described previously 

using the von Bertalanffy growth function (Nall 1979, Frick 1988, Wenner et al. 1990, 

Stunz et al. 2000, Fischer and Thompson 2004). However, this model is not always the 

most appropriate model for describing ontogenetic growth of a given species (Cailliet et 
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al. 2006). The approach of fitting multiple models and comparing candidate models can 

help reduce model selection uncertainty and improve parameter estimates (Burnham and 

Anderson 2002, Katsanevakis 2006). Multi-model approaches for describing the length-

at-age relationship are widespread in the marine fisheries literature (Mercier et al. 2011, 

Harry et al. 2013, Higgins et al. 2015, Dippold et al. 2016), but the approach has not been 

widely used for describing Southern Flounder growth (Fischer and Thompson 2004, 

Midway et al. 2015).  

The overall goal of this research is to describe the age and growth of Southern 

Flounder in the north-central GOM. Specifically, the following objectives were 

developed: 1) to validate the formation of annuli in Southern Flounder otoliths and 

evaluate factors that influence otolith growth; 2) to describe the female-specific length-at-

age and weight-at-length relationships for Southern Flounder; 3) to compare growth 

parameter estimates to published growth parameter estimates for Southern Flounder; and 

4) to evaluate seasonal changes in relative condition of Southern Flounder. 

Accomplishing these objectives will allow for a better understanding of Southern 

Flounder life history and enable better management of the north-central GOM stock. 

Methods 

Southern Flounder were collected and processed from September 2014 to 

February 2016 in the north-central GOM, primarily within Mississippi waters (Figure 1). 

The most common sampling methods employed were gigging and hook-and-line fishing, 

but fish were also collected using trawls, gill nets, bow fishing, crab traps, seines, and 

cast nets. Additional fish were obtained from local recreational fishing tournaments and 
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from fishery-independent research surveys. Fish were immediately placed on ice 

following collection and processed in the laboratory.  

Each fish was measured for total length (TL, mm), standard length (SL, mm) and 

wet body weight (g), and its otoliths removed for aging. The paired sagittal otoliths were 

removed from each fish by exposing the brain cavity with a transverse cut. Otoliths were 

rinsed to remove membranous tissue and stored in a labeled envelope. The left sagittal 

otolith was processed for age estimation from a subsample of fish (n = 367) selected to 

represent all 50 mm TL size bins collected in this study. The otolith was embedded in a 

mold with Epoxicure resin and allowed to harden for a minimum of 24 hours. Once the 

resin hardened, the resin block was marked to target the otolith core and several sections 

were cut at a thickness of about 0.4 mm with a Buehler diamond blade saw. Otolith 

sections were then polished to increase the visibility of annuli and mounted on slides with 

Crystalbond and Flo-Texx mounting mediums. To evaluate a sufficient sample size of 

otoliths processed for age estimation, I used a resampling procedure where the two-

parameter von Bertalanffy growth function (VBGF) was fit to the age estimate and TL 

data with each iteration increasing the sample size by n = 1. The coefficient of variation 

was estimated for both parameters with increasing sample size. 

Age estimates were determined using otolith annuli counts and the frequency of 

annuli deposition was validated using marginal increment analysis (MIA). Annuli were 

counted from images taken at 2× to 5× magnification under transmitted light with a Stemi 

2000-C microscope. Two independent readers reported an age estimate by counting fully-

formed annuli, and the age estimate was excluded from analysis if an agreement was not 

reached between readers. The percent agreement (PA) was calculated to compare 
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assignments of age estimates, and the standard deviation (SD) and coefficient of variation 

(CV) were calculated. The otolith radius (µm), annuli width (µm), and translucent area 

formed on the outer edge margin (µm) were measured from images using i-Solution Lite 

software. Otoliths were assigned a categorical margin code (one = 0% translucent area, 

two = 33%, three = 66%, four = 99%) based on the percentage of outer margin width 

relative to the width of the last fully-formed annuli, where a margin code of one indicates 

opaque ring formation (VanderKooy 2009). I conducted MIA using aggregated data from 

age-one otolith samples collected by the Mississippi Department of Marine Resources 

(2007, 2009 to 2013, n = 233) and age-one otolith samples collected for this study (2014 

to 2015, n = 165) to increase sample size. The proportion of annuli formed (i.e., measured 

outer margin width as a proportion of the measured first annuli width) was examined as a 

function of capture month to estimate the timing of annuli deposition. A “biological” age 

estimate was then assigned:  

Age =
[(annuli count ∙ 365) + (month − 1) ∙ 30]

365
 , 

using the annuli count and month of capture, assuming January 1 as the birth date and 

April 1 as the annuli formation date (Nieland et al. 2002). The age estimate was adjusted 

based on the margin code, where individuals captured before or during April with a 

margin code of 3 or 4 were advanced by one year and individuals captured after April 

with a margin code of 1 or 2 were reduced by one year.  

A multiple linear regression analysis was used to examine factors responsible for 

variability in otolith growth. The dependent variable in the model was proportion of 

annuli formed in age-one otoliths collected during 2007 to 2014 by the Mississippi 

Department of Marine Resources (2007, 2010 to 2013, n = 57) and collected for this 
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study (2014, n = 41). These data were collected during September to November of each 

year and were selected because representative samples were available across years for 

each month. Candidate models were evaluated using a stepwise forward selection 

approach with AIC comparison (Burnham and Anderson 2002). The independent 

variables evaluated were mean monthly sea surface temperature (SST, °C), year of 

capture, otolith radius (µm), and month of capture. Mean monthly SST data at a four km2 

spatial resolution were obtained from MODerate resolution Imaging Spectroradiometer 

(MODIS) sensors (www.oceancolor.gsfc.nasa.gov). A time series (January 2007 to 

December 2014) of the mean monthly SST value was constructed by averaging SST 

values across the study region, which was defined using a polygon covering the entire 

Mississippi Sound area (Figure 2). The continuous predictor variables, otolith radius and 

mean monthly SST, were scaled using two standard deviations and centered to the mean 

(Gelman 2008). I also examined the pairwise Pearson’s product moment correlation 

between all predictor variables to remove highly correlated independent variables. The 

data were tested for normality with a Shapiro-Wilk test and for homogeneity of variance 

with a Bartlett’s test. If the assumptions of a parametric test were met, an ANOVA test 

was used to determine if predictor variables had a significant effect on proportion of 

annuli formed. 

The length-at-age relationship of female Southern Flounder was described using 

multiple non-linear models. A three-parameter VBGF (von Bertalanffy 1938) was used to 

estimate length-at-age: 

 Lt =  𝐿∞(1 − 𝑒−𝑘(t−𝑡0)), 
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where t represents age (y), Lt is the length (mm, TL) at a given age, 𝐿∞ is the mean 

hypothetical maximum length (mm, TL), k  is the growth coefficient (y-1), and 𝑡0 is the 

theoretical age at length of zero (y). Other candidate models used to describe length-at-

age, including the two-parameter VBGF, Gompertz growth model, and logistic model, 

were also fit to the data. The two-parameter VBGF is: 

Lt =  𝐿∞(1 − 𝑒−𝑘t). 

The Gompertz growth model (Gompertz 1825) is:  

Lt =  𝐿∞ e(−
1

𝑘
 𝑒−𝑘(t−

1

𝑘
 𝑙𝑛𝜆)), 

where λ is the theoretical initial relative growth rate at age zero (y-1) and k is the rate of 

exponential decrease of the relative growth rate with age (y-1). The logistic length-at-age 

model (Ricker 1975) used is: 

Lt =  
1

𝐿∞(1+𝑒−𝑘(t−𝑡𝑖))
 , 

where k is a relative growth rate parameter (y-1) and ti corresponds to the age where the 

growth rate is at a maximum. These candidate length-at-age models were evaluated for 

goodness-of-fit and parsimony using Akaike information criterion (AIC). AIC values 

were compared to determine the best-fit model, indicated by the lowest AIC value. The 

ΔAIC and Akaike weight (ωi) were calculated for model comparison and to evaluate 

relative model support. The 95% confidence intervals were calculated for each mean 

parameter estimate and used to compare results to published mean parameter estimates. 

Published mean values that were within the 95% confidence interval range of the mean 

parameter estimates reported in this study were interpreted as not significantly different. 

The weight-at-length relationship was modeled using a power function: 

W = 𝑎L𝑏, 
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where W is wet weight (g), L represents TL (mm), a is a coefficient term and b is an 

exponent describing change in length relative to weight. The 95% confidence intervals 

were calculated for each mean parameter estimate. There was insufficient data to describe 

a male-specific weight-at-length relationship for Southern Flounder, so only female-

specific data were used. 

The relative condition of individuals and temporal changes in relative condition 

were evaluated using a variation of Fulton’s condition factor. Relative condition (Krel) (Le 

Cren 1951), was calculated based on the relationship between observed wet weight (W) 

and expected mean weight predicted by the female weight-at-length relationship (Wexp): 

𝐾rel =
W

Wexp
 . 

A relative condition value of one indicates perfect agreement between the observed 

weight and the expected mean weight predicted by the weight-at-length model. The 

significance level for all analyses was 0.05. All analyses were conducted using R 3.1.1 (R 

Core Team 2015).  

Results 

From September 2014 to February 2016, 522 Southern Flounder specimens (436 

female, 52 male, 34 unsexed) were collected using various sampling methods. Fish were 

collected during all months of sampling, although sample sizes were limited during 

December, January, and March (Table 1). The majority (84%) of fish were captured 

within Mississippi waters, but others were collected from offshore Louisiana and Texas 

using trawls. A total of 204 fish were collected with gigs, 157 were collected with hook 

and line, 106 were collected with trawls, 23 were collected with gill nets, 13 were 
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collected by bow fishing, nine were collected with crab traps, eight were collected with 

seines, and two were collected with cast nets.  

I processed a subsample of 367 otoliths for age estimation ranging in age from 

zero to four-plus years, and measured 398 age-one otoliths for marginal increment 

analysis. Using a resampling procedure, I observed that the coefficient of variation 

decreased as the sample size was increased from 50 to 350 (Figure 3), which shows that 

an increase in sample size decreases the variance of mean parameter estimates 

exponentially. The coefficient of variation was stabilized by about 350 samples for both 

parameter estimates, indicating that a sufficient total number of samples were processed 

for age estimation. Age estimates were in agreement between readers with a percent 

agreement of 82% or greater for each age class (Table 2). Within age-one otoliths, there 

was high individual variability in annuli deposition. I observed decreasing median 

proportion values between March and July with the minimum proportion in May, 

indicating that annuli formation occurred during these months (Figure 4). However, I 

observed the greatest decrease in median proportion values between March and April, 

and thus estimated that annuli formation occurs in April. There was a strong seasonal 

trend in the proportion of annuli formed, suggesting that annuli formation occurs once per 

year in Southern Flounder otoliths.  

A stepwise multiple linear regression analysis indicated that mean monthly SST 

and year of capture have a significant effect on proportion of annuli formed in Southern 

Flounder otoliths. After candidate models were evaluated with AIC using a stepwise 

forward selection procedure, both of the significant predictor variables improved the fit 

of the model, indicated by a decreased ΔAIC value and an increased ωi (Table 3). 
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However, the increase in ωi was marginal compared to the models including otolith 

radius and month of capture as predictor variables (Table 3). Because TL and otolith 

radius were highly correlated (radius = 5.49 TL + 616.95, p << 0.001, R2 = 0.74), only 

otolith radius was included as a predictor variable (Figure 5). An ANOVA analysis 

indicated that year and mean monthly SST have a significant effect on proportion of 

annuli formed (Table 4). Inter-annual variation in annuli proportion was observed within 

data collected from September to November, with the lowest median proportion observed 

in 2010 (Figure 6). Mean monthly SST had a negative effect on proportion of annuli 

formed (Figure 7), indicated by the negative slope coefficient in the linear relationship 

between SST and proportion (proportion = -0.010 SST + 0.76, p << 0.001, R2 = 0.39). 

The four models used to describe the length-at-age relationship for female 

Southern Flounder were all similar in mean length-at-age predictions (Figure 8). Where 

TL data were unavailable, SL measurements were converted to TL using the following 

relationship: TL = 1.14 SL + 18.94 (p < 0.001, R2 = 0.97). There were insufficient data to 

fit a male-specific model, and the three-parameter VBGF model was the best-supported 

model to describe female-specific length-at-age (Table 5). The Gompertz and logistic 

model had lower model support than the three-parameter VBGF, and the two-parameter 

VBGF was not well supported. Because the three-parameter VBGF was the best 

supported candidate model and the most commonly reported model in the Southern 

Flounder literature, I compared the mean parameter estimates from this model to those 

reported at other locations using 95% confidence intervals (Table 6). None of the female-

specific published mean parameter estimates from the GOM were significantly different 

from those reported in this study. However, there were significant differences between 
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female-specific mean parameter estimates and estimates from the Atlantic population, 

with a significantly lower L∞ and higher k reported in this study.  

All available female-specific weight and TL data collected in this study were used 

to describe the weight-at-length relationship for female Southern Flounder. The female 

weight-at-length relationship was described by the power function parameters a = 

2.82e10-6 (95% CI: 1.90e10-6 to 4.17e10-6) and b = 3.24 (95% CI: 3.17 to 3.30). There 

were insufficient data to fit a male-specific model, although there was dimorphism in 

observed TL ranges between male and female Southern Flounder and all fish greater than 

352 mm TL were female (Figure 9).  

There was a weak seasonal trend in relative condition observed with elevated 

median values in the fall months preceding the winter spawning season. Specifically, the 

median monthly relative condition was greater than one during September through 

November (Figure 10). Median monthly relative condition was less than one during 

December through March, and May through August.  

Discussion 

In this study, I present a description of Southern Flounder age and growth in the 

north-central GOM and report growth parameter estimates specific to the Mississippi 

stock. Annuli deposition in Southern Flounder otoliths is variable but occurs between 

March and July annually and is influenced by inter-annual temporal variability in the 

environment. Southern Flounder growth is sexually dimorphic, and males are not a major 

component of the recreational fishery. Female-specific length-at-age parameter estimates 

were not significantly different from those reported at other locations in the GOM. 

Finally, there was intra-annual variation in relative condition. The results of this study 
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will help to inform state-level management of Southern Flounder in the GOM by 

providing knowledge of individual growth dynamics from the Mississippi stock.  

Results indicate an annual frequency of otolith annuli deposition and support the 

conclusions from previous studies on Southern Flounder age and growth that validated 

the frequency of annuli deposition (Stunz et al. 2000, Fischer and Thompson 2004). The 

marginal increment analysis technique is an appropriate age validation method for 

Southern Flounder because this species is fast growing and has relatively few year classes 

(Fischer and Thompson 2004). Marginal increment analysis is preferable for use in 

young, fast-growing fish because annuli width decreases with age, and there is greater 

subjectivity associated with discerning narrowly spaced annuli in older, slow-growing 

fish (Campana 2001). However, age estimation is inherently subject to uncertainty and 

aging error can have negative effects on age-structured model parameter estimates 

(Quinn and Deriso 1999, Eklund et al. 2000). Growth parameter estimates could be 

improved by accounting for aging error in length-at-age models (Cope and Punt 2007). I 

also used marginal increment analysis to estimate that annuli formation occurs in April, 

which reduced the uncertainty of assigning age estimates and cohorts within a wide 

period of annuli deposition. This approach did not account for temporal variability in 

annuli deposition and included data from age-one individuals collected across multiple 

years. Considering inter-annual variability in annuli deposition rates may be an additional 

approach to reduce aging error (Pilling et al. 2007).  

My results indicate that temporal variation in annuli deposition is driven in part 

by variation in environmental processes. In this study, the significant factors affecting 

proportion of annuli formed in age-one Southern Flounder otoliths were year of capture 
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and mean monthly SST. Otolith growth rates are known to be influenced by multiple 

factors, including fish size (Neilson and Geen 1982, Jones 1992), metabolism and feeding 

activity (Moksness et al. 1995), temperature, salinity, and dissolved oxygen concentration 

(Campana 1984, Hales and Able 1995). Although multiple environmental factors are 

responsible for inter-annual variability (Jobling 2002), temperature is most often cited as 

a factor affecting individual growth and, consequently, deposition rates of otoliths in both 

cold-water (Mosegaard et al. 1988, Otterlei et al. 2002) and in warm-water species (Black 

et al. 2011). Short-term fluctuations in water temperature can be detected in daily growth 

increments using laboratory experimentation (Campana 1984, Neilson and Geen 1982, 

Mosegaard et al. 1988, Bestgen and Bundy 1998). Long-term studies on the effects of 

temperature on annual otolith growth using field-collected samples are rarely reported in 

the literature. In one example, SST was correlated with otolith increment width across 

multiple decades of data from Red Snapper Lutjanus campechanus and Gray Snapper 

Lutjanus griseus in the GOM (Black et al. 2011). My results also indicate inter-annual 

variability in otolith increment width and suggest that SST has a negative effect on the 

proportion of annuli formed in age-one otoliths. Similarly, Pilling et al. (2007) 

demonstrated that elevated sea surface temperatures had a significant negative effect on 

annuli deposition rate in adult Atlantic Cod Gadus morhua otoliths. Understanding the 

effects of temperature variation on otolith growth has become increasingly critical due to 

climate change, particularly in commercially- and recreationally-harvested species for 

which accurate aging methods are needed for effective management (Eklund et al. 2000, 

Black et al. 2011).  
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This study demonstrates that Southern Flounder exhibit sexual dimorphism. 

Given this species’ known sexual dimorphism in growth (Wenner et al. 1990, Stunz et al. 

2000, Fischer and Thompson 2004) and limited male-specific data, only female-specific 

models were used to describe the length-at-age and weight-at-length relationships. 

Although I cannot address male-specific growth, the TL range of males was much 

smaller than that of females. Therefore, the use of female-specific growth parameter 

estimates in the present study may lead to overestimation of production in stock 

assessment models. However, I also observed that the majority of fish collected were 

female and very few fish collected inshore of the Mississippi Sound barrier islands were 

male. Many of the samples collected in this study were collected recreationally and thus 

were constrained by a 12-inch minimum length limit in Mississippi waters (GSMFC 

2015). The female-biased sampling suggests that the selectivity associated with gear used 

in this study precluded the capture of smaller males. Other studies have suggested that 

there may be spatial differences in the distributions of Southern Flounder sexes (Midway 

et al. 2015), but there is insufficient data from the north-central GOM to support this 

hypothesis.  

The use of multiple models to describe the length-at-age relationship is a recent 

trend in the fisheries literature (Burnham and Anderson 2002, Katsanevakis 2006), and 

thus, I used a multi-model approach to provide robust estimates of Southern Flounder 

length-at-age parameters. Only one previous study compared multiple models in 

describing sex-specific Southern Flounder growth (Fischer and Thompson 2004). In this 

study, the three-parameter VBGF was well supported to describe this species’ growth, 

which supports the widespread use of this model in previous research. Although the 
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three-parameter VBGF had the lowest ΔAIC value, the top three models were all well 

supported models with ΔAIC values less than four (Burnham and Anderson 2004). In 

contrast, the two-parameter VBGF received very little relative model support compared 

to the other candidate models evaluated in this study, likely due to the limited number of 

fish captured smaller than 200 mm TL. The lack of smaller individuals is one potential 

source of bias in length-at-age parameter estimates, and the parameter estimates from this 

study may not be appropriate for describing early growth of larvae and juveniles. The 

length-at-age relationship description would be improved with the addition of smaller 

individuals to better reflect early growth (Pardo et al. 2013). In future research, a more 

rigorous resampling procedure could be used to evaluate whether sample size was 

sufficient across all age- and size-classes to describe growth through ontogeny.   

The parameter estimates reported in this study are comparable to those reported at 

other locations, and no significant differences in the mean length-at-age parameter 

estimates were observed within the GOM. Female-specific estimates of L∞ and k were 

significantly different from those reported in the Atlantic, with a lower L∞ and higher k 

mean parameter estimates in this study compared to those reported in South Carolina 

(Wenner et al. 1990). However, length-at-age parameter estimates are variable within the 

GOM, which may be caused by several factors. Midway et al. (2015) suggests that there 

are spatial differences in Southern Flounder growth due to adaptations to local 

environmental conditions. However, there are also differences in sampling among studies 

(e.g., variable sample sizes and age ranges, gear types). In this study, I employed multiple 

gear types to collect samples from different sized individuals. The approach of using 

multiple sampling gears is advantageous for reducing bias associated with the selectivity 
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of a single gear type and increasing the precision of length-at-age parameter estimates 

(Wilson et al. 2015). Southern Flounder is primarily harvested using recreational gear 

types, so the sampling design appropriately replicated recreational fishing pressure on the 

Mississippi stock.   

This study is the first to examine temporal variation in the relative condition of 

Southern Flounder females. Condition is a metric used to evaluate fitness of an individual 

and to observe temporal changes in growth dynamics (Le Cren 1951, Froese 2006). 

Southern Flounder individual growth likely varies intra-annually due to feeding activity 

and energetic investment in reproduction during the winter spawning season (Reagan and 

Wingo 1985, Shepard 1986, Fischer 1995). Although median relative condition was 

elevated in the months preceding the Southern Flounder spawning season, only slight 

variations in relative condition were observed during this study. Similarly, condition 

remained constant in another flatfish species, the Dab Limanda limanda, throughout the 

spawning season (Htun-Han 1978). Given the morphometrics of flatfish with a relatively 

small body-cavity size compared to overall body size, these results suggest that condition 

may not be useful for detecting intra-annual variation in flatfish growth.  

Overall, this study provides a comprehensive description of Southern Flounder 

growth in the north-central GOM. This study provides critical knowledge about the local 

Southern Flounder population since this species’ growth was not previously described in 

the north-central GOM. A species’ individual growth dynamics influence how the 

population responds to fishing and are thus considered in management of the fishery 

(Adams 1980). Therefore, I expect that these results will be useful for the management of 

the Southern Flounder fishery in Mississippi and the broader GOM. 
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Appendices 

Table 1  

Monthly sample size summary table 

Month Female n Male n Mean TL TL Range 

January 7 0 372 324 to 420 

February 35 6 283 190 to 457 

March 17 0 350 306 to 400 

April 30 0 343 281 to 382 

May 58 0 398 165 to 520 

June 70 4 369 108 to 522 

July 33 2 375 149 to 540 

August 35 1 396 193 to 597 

September 43 4 364 128 to 502 

October 49 17 352 77 to 552 

November 39 14 351 75 to 576 

December 20 4 321 150 to 442 

Total 436 52   

 

Monthly sample size (n), mean total length (TL, mm), and range of TL values for female and male Southern Flounder collected in the 

Mississippi Sound from September 2014 to February 2016. 
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Table 2  

Summary statistics for age estimation 

Age (y) n PA Mean TL SD  CV Expected TL 

0 83 96 287 52.1 18.2 106 

1 209 87 369 40.1 10.9 315 

2 60 97 449 52.4 11.7 416 

3 11 82 483 43.6 9.0 465 

4 4 100 494 22.1 4.5 488 

 

Summary statistics for female and male Southern Flounder age estimation analysis (n = 367), including number of samples (n), 

percent agreement between readers (PA, %), mean observed total length (TL, mm), standard deviation (SD, mm), coefficient of 

variation (CV), and expected TL (mm) based on the three-parameter von Bertalanffy growth function for each age class. 
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Table 3  

Multiple linear regression candidate models 

Candidate Model ΔAIC ωi 

Proportion ~ SST + Year 0 0.35 

Proportion ~ SST + Year + Radius + Month 0.13 0.32 

Proportion ~ SST + Year + Radius 0.14 0.32 

Proportion ~ SST 7.49 0.01 

Proportion ~ 1 16.23 > 0.01 

 

Candidate models evaluated using a forward stepwise AIC comparison procedure to describe proportion of annuli formed, defined as 

the measured outer margin width (µm) as a proportion of the measured first annuli width (µm), in age-one Southern Flounder otoliths. 

The independent variables evaluated were mean monthly sea surface temperature (SST, °C), year of capture, otolith radius (µm), and 

month of capture. ΔAIC is a measure of model support relative to the best candidate model and AIC weight (ωi) represents the relative 

weight of model support. 
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Table 4  

Linear regression model statistics 

Coefficients df Sum Sq Mean Sq F-Value p-Value β Estimate β SE 

Year 5 0.26 0.05 3.87 < 0.01   

SST 1 0.15 0.15 11.06 < 0.01 -0.06 0.018 

Residuals 91 1.23 0.01         

 

ANOVA statistics and parameter estimates for the linear regression model describing proportion of annuli formed, defined as the 

measured outer margin width (µm) as a proportion of the measured first annuli width (µm), in age-one Southern Flounder otoliths. 

The independent variables included in this model were year of capture and mean monthly sea surface temperature (SST, °C). 
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Table 5  

Length-at-age model parameters 

Model Parameter Mean Parameter Estimate 95% CI ΔAIC ωi 

Three-parameter VBGF L∞ 513.70 483.64 to 564.78 0.00 0.62 

 k 0.67 0.46 to 0.90   

 t0 -0.50 -0.94 to -0.21   

Gompertz  L∞ 501.53 475.99 to 542.07 1.65 0.27 

 k 0.87 0.63 to 1.14   

 λ 0.90 0.58 to 1.40   

Logistic  L∞ 493.63 468.18 to 519.01 3.39 0.11 

 k 1.07 0.80 to 1.34   

 ti 0.38 0.25 to 0.50   

Two-parameter VBGF L∞ 473.38 459.57 to 488.28 15.13 0.00 

  k 1.13 1.03 to 1.23     

 

Multiple models describing the length-at-age relationship for female Southern Flounder collected in Mississippi waters (n = 274). The mean model parameters are reported with 95% 

confidence intervals. ΔAIC is a measure of model support relative to the best candidate model and AIC weight (ωi) represents the relative weight of model support. The parameter L∞ is the 

mean hypothetical maximum TL (mm), k is the growth rate coefficient (y-1), t0 is a theoretical age-at-length zero in the three-parameter VBGF, λ is the theoretical initial relative growth rate at 

age zero (y-1) in the Gompertz model, and ti corresponds to the age where the growth rate is at a maximum in the logistic model. 
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Table 6  

Past research length at age parameter estimates 

Study Location Sex n L∞ (mm) k t0 

Nall 1979 Florida combined 153 1461 0.03 1.86 

Frick 1988 Florida/Alabama female 139 540 0.47 0.1 

Wenner et al. 1990  South Carolina female 708 759 0.23  -0.57 

  male 573 518 0.25 -1.07 

Stunz et al. 2000 Texas female 718 483 0.75 -0.31 

  male 144 384 0.5 -1.38 

Fischer and Thompson 2004 Louisiana female 1128 556 0.51 -0.62 

  male 137 332 1.03 -0.25 

this study Mississippi female 274 513.70 0.67 -0.50  

   95% confidence intervals       483.64 to 564.78 0.46 to 0.90  -0.94 to -0.21 

 

Summary of reported sample size (n) and length-at-age mean parameter estimates for Southern Flounder collected in Atlantic and Gulf of Mexico waters. In the three-parameter von 

Bertalanffy growth function, L∞ is the mean hypothetical maximum TL (mm), k is the growth rate coefficient (y-1), and t0 is a theoretical age-at-length zero. The mean parameter estimates and 

95% confidence intervals reported in this study are indicated in bold for comparison. 
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Figure 1. Map of Mississippi sampling area 

Map of locations where Southern Flounder (n = 440) were collected using various gear types between September 2014 and February 

2016. Size of the circles represents the relative magnitude of samples collected at each location. 
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Figure 2. Map of temperature data study region 

Polygon of the defined study region for which mean monthly sea surface temperature (SST, °C) data were extracted at a four km2 

spatial resolution from MODerate resolution Imaging Spectroradiometer (MODIS) sensors.  
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Figure 3. Sufficient sample size analysis 

Coefficient of variation for the mean parameter estimates of L∞ and k in the two-parameter von Bertalanffy growth function as a 

function of increasing sample size. The parameter L∞ is the mean hypothetical maximum TL (mm) and k is the growth rate coefficient 

(y-1). 
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Figure 4. Marginal increment analysis 

Boxplot of monthly measured marginal increment widths (µm) as a proportion of the last formed annuli from age-one otoliths (n = 

398) collected during January (1) to December (12) from 2007 to 2016. Data were aggregated from otolith samples collected by the 

Mississippi Department of Marine Resources (2007, 2009 to 2013) and in this study (2014 to 2016). Dark bands indicate the median 

proportion, box edges indicate the 25% and 75% quartiles, and open circles indicate outliers in the data. 
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Figure 5. Otolith size linear regression 

Linear regression between Southern Flounder total length (TL, mm) and otolith radius (µm) described by the relationship otolith 

radius = 5.49 TL + 616.95 (p << 0.001, R2 = 0.74). 
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Figure 6. Inter-annual variation in annuli proportion 

Boxplot of inter-annual variation in proportion of annuli formed, defined as the measured outer margin width (µm) as a proportion of 

the measured first annuli width (µm), in age-one otoliths (n = 98) collected during January (1) to December (12) from 2007 to 2014. 

Data were aggregated from otolith samples collected by the Mississippi Department of Marine Resources (2007, 2010 to 2013) and in 

this study (2014). Dark bands indicate the median proportion, box edges indicate the 25% and 75% quartiles, and open circles indicate 

outliers in the data. 
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Figure 7. Linear regression temperature effect 

Linear regression describing proportion of annuli formed, defined as the measured outer margin width (µm) as a proportion of the 

measured first annuli width (µm), as a function of mean monthly sea surface temperature (SST, °C) The line is described by the 

relationship proportion = - 0.010 SST + 0.76 (p << 0.001, R2 = 0.39). 
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Figure 8. Length-at-age relationship multiple models 

Multiple models describing the length-at-age relationship for female Southern Flounder (n = 274), including the three-parameter von 

Bertalanffy growth function (VBGF), two-parameter VBGF, logistic model, and Gompertz growth model. Models were fit to total 

length (mm) and adjusted age estimate (y) data. 
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Figure 9. Weight-at-length relationship 

The weight-at-length relationship for female (n = 436) Southern Flounder (open circles), where the line is a power function fit to 

female-specific data. There was insufficient data to fit a model for male (n = 52) Southern Flounder (closed circles). 
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Figure 10. Relative condition variation 

Boxplot of monthly variation in relative condition factor (Krel) for sexually mature females (n = 277) collected during January (1) to 

December (12). Krel is defined as the relationship between observed weight and expected mean weight predicted by the weight-at-

length relationship (indicated by the dotted horizontal line at Krel = 1). Dark bands indicate the median Krel, box edges indicate the 

25% and 75% quartiles, and open circles indicate outliers in the data. 
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CHAPTER III – REPRODUCTIVE BIOLOGY OF SOUTHERN FLOUNDER 

Introduction 

Southern Flounder Paralichthys lethostigma is a flatfish species in the family 

Paralichthyidae distributed throughout the Gulf of Mexico (GOM) (Hensley and 

Ahlstrom 1984). Southern Flounder are known to migrate to offshore continental shelf 

waters in the winter to spawn (Bailey et al. 2005), but an understanding of this species’ 

reproductive biology is uncertain in the GOM. Specifically, Southern Flounder 

maturation and gonadal development are poorly understood in the north-central GOM. In 

fisheries science, an understanding of reproductive biology is essential because 

reproduction greatly influences fish population dynamics and the resilience of stocks 

(Beverton and Holt 1957, Lowerre-Barbieri et al. 2011a). Length- and age-at-maturity are 

particularly critical to describe because these estimates are used in stock assessment 

models (O’Brien et al. 1993, Murawski et al. 2001). Thus, having knowledge of 

reproductive biology is necessary to make informed management decisions based on 

estimates of spawning stock biomass.   

There are few estimates of length-at-maturity and age-at-maturity for Southern 

Flounder reported in the GOM, and results from previous studies in the Atlantic indicate 

that Southern Flounder reach sexual maturity rapidly. Estimates of length-at-50% 

maturity (L50) indicate that females in the Atlantic Southern Flounder population are 

mature at a total length (TL) between 345 and 408 mm (Monaghan and Armstrong 2000, 

Midway and Scharf 2012). All reported age-at-50%-maturity estimates are between one 

and two years (Stokes 1977, Monaghan and Armstrong 2000, Midway and Scharf 2012). 

Southern Flounder in Mississippi first reach sexual maturity around 230 mm TL and all 
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were mature by 340 mm TL (Etzold and Christmas 1979). Southern Flounder exhibit 

sexual dimorphism in length-at-maturity with greater length-at-first maturity and length-

at-100% maturity observed in females than in males (Wenner et al. 1990). However, 

previously reported estimates of Southern Flounder maturity in Mississippi were not sex-

specific and did not estimate the L50 parameter (Etzold and Christmas 1979), which is a 

parameter used to define maturity in stock assessment models (Trippel 1995, Lowerre-

Barbieri et al. 2011a).  

Southern Flounder spawning occurs in the winter season following an offshore 

migration (Stokes 1977, Benson 1982). The Southern Flounder winter spawning season 

has been described using the gonadosomatic index (GSI) and histological indicators. 

Gonad weight can be used as an indicator of spawning preparedness (Htun-Han 1978), so 

monthly GSI values are often used to describe annual reproductive development. For 

Southern Flounder collected in Louisiana, GSI values were elevated from August through 

November and declined in December, which indicate that increasing gonadal 

development occurred prior to spawning in December (Shepard 1986). Shepard (1986) 

recorded GSI from May to December, and this limited period of observation does not 

fully describe the annual trends in maturation for Southern Flounder. In another study, 

Fischer (1995) used both GSI and ovarian histology to determine that the Southern 

Flounder spawning season lasts about 60 days and occurs from December through 

January in Louisiana.  

Southern Flounder reproductive strategy has not been recently described in the 

GOM. Batch spawning was observed in laboratory-reared Southern Flounder, and each 

female spawned more than three times throughout the spawning season duration (Arnold 
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et al. 1977). However, spawning behavior in a laboratory setting likely does not reflect 

spawning in a natural population (Conover and Kynard 1984). The presence of different 

oocyte stages throughout the spawning season was indicative of batch spawning in 

Southern Flounder collected from Louisiana waters (Fischer 1995). This is the only 

known example of batch spawning documented in wild-caught Southern Flounder. A 

description of Southern Flounder spawning dynamics is needed because the frequency of 

spawning affects lifetime fecundity, and consequently, population dynamics (Lowerre-

Barbieri et al. 1998).  

The purpose of this research is to describe the reproductive biology of Southern 

Flounder in the north-central GOM. Therefore, the following objectives were developed: 

1) to estimate the mean length-at-50% maturity and age-at-50% maturity for female 

Southern Flounder based on histological phase classifications; 2) to estimate the duration 

of the spawning season using mean GSI values and histological indicators; and 3) to 

describe the spawning dynamics and gonadal development of female and male Southern 

Flounder using histological analysis. The knowledge gained from this research will 

improve understanding of Southern Flounder life history and management of the GOM 

stock.  

Methods 

Southern Flounder were collected in the north-central GOM from September 2014 

to February 2016. Hook and line fishing, gigging, and trawling were the most common 

sampling methods used. Sampling occurred at multiple locations primarily within the 

Mississippi Sound (Figure 1), but samples from fish caught in other Gulf states and 

offshore locations were also included (Figure 9). Additional samples were obtained from 
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local fishing tournaments and from fishery-independent research surveys. Fish were 

immediately placed on ice following collection and processed in the laboratory within 24 

hours to preserve gonad tissues.   

The sex of each fish was determined by macroscopic examination of gonads and 

gonadal tissue was preserved for histological analysis. Each specimen was measured for 

TL (mm) and total weight (g). Whole gonads were removed, weighed to the nearest 0.01 

g, and evaluated macroscopically for reproductive phase (Table 7 & 8). A cross section 

no larger than 1 cm3 from the middle of one gonad was placed into a histology cassette 

and fixed in 10% neutral buffered formalin for at least one week. A 1:20 volumetric ratio 

of tissue to formalin was used to ensure adequate penetration and preservation of the 

gonadal tissue.  

Gonadal tissue samples were processed using standard histological techniques. 

The sample cassettes were rinsed overnight with low-flowing tap water to prepare for 

dehydration of the gonad samples and embedding in paraffin. After rinsing, samples were 

placed in 60% ethanol for two hours, drained, placed in 70% ethanol for two hours, 

drained, and replaced in 70% ethanol for a minimum of two hours. Next, the preserved 

gonad samples were dehydrated using various dilutions of ethanol up to 100%, cleared 

using Shandon Xylene substitute, and impregnated with Paraplast Plus in a Shandon 

Excelsior Tissue Processor (Table A1). All steps were performed under vacuum to 

maximize the penetration of reagents into the tissues. Tissues were embedded within one 

hour of cycle completion using a Shandon Histocentre 2 Embedding Center. To embed 

tissues, a small amount of Paraplast was placed in the bottom of a stainless-steel mold 

and the gonad tissue was positioned in a manner to obtain the best cross-section. The 
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tissue was secured by briefly cooling the paraffin, and the cassette base was placed on top 

of the mold. The mold was then completely filled with Paraplast. The cooled Paraplast 

and tissue block were removed from the mold and the excess paraffin trimmed off. To 

prepare for tissue sectioning, an S/P Brand Tissue Flotation Bath was filled with distilled 

water. One cap-full of Surgipath STAY ON, a tissue section adhesive, was added and the 

bath heated to 37-42°C. Prior to sectioning, the blocks were placed on ice. Blocks were 

sectioned at a thickness of 4 µm using an AO Rotary Microtome with a disposable Accu-

Edge Low Profile Microtome Blade. Sections were placed in the water bath and the best 

two from each specimen floated onto a slide. Each slide was labeled and placed on a slide 

warmer for a minimum of two hours to completely dry. The staining process included 

removing the paraffin, rehydrating the sample, staining the various tissue components, 

and then dehydrating the section in a sequence of solutions with varying soak times 

(Table A2). Slides were stained following a regressive method of hematoxylin staining 

(Luna 1968) using Hematoxylin 2 and counterstained with Eosin Y (Richard-Allan 

Scientific). Solution baths were rotated or discarded and replaced as needed. Slides were 

cover-slipped using a mounting medium (Richard-Allan Scientific) and allowed to dry 

completely.  

Tissue samples were examined from the anterior, middle, and posterior sections 

of both the left and right gonad in three spawning capable females to determine if oocyte 

development was homogenous throughout the gonad. The percent coverage of each stage 

present in individual tissue sections was determined from images taken using a Nikon 

Eclipse 50i compound microscope with DXM 1200C camera and ACT-1C software. The 

entire tissue section was imaged and three photos were randomly selected from each slide 
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for oocyte examination using an Image J software point grid. The number of grids 

covering each stage were then counted and divided by the total number of grid points, 

resulting in a percentage of total area for each stage (modified from Tomkiewicz et al. 

2011). A Pearson’s Chi-square test was used to identify differences in distribution of 

oocyte stages between the left and right ovaries, and among the anterior, middle, and 

posterior regions of the ovary (α level = 0.05). When significant differences were 

detected, a pairwise comparison was made using multiple Chi-square tests with a 

Bonferroni adjusted critical value (α = 0.05 / number of tests).  

Individuals were assigned to a developmental phase following the reproductive 

phase classification described by Brown-Peterson et al. 2011 (Table 7 & 8) and coded as 

immature (0) or mature (1). Females were classified as sexually mature when fish enter 

the developing phase and cortical alveoli oocytes are observed (Brown-Peterson et al. 

1988, Brown-Peterson et al. 2011, Lowerre-Barbieri 2011b). Non-reproductively active 

females in the regenerating phase were identified using histological indicators (Table 7) 

and classified as mature. Mean length-at-50% maturity was estimated for female 

Southern Flounder (n = 332) using a two-parameter logistic model: 

𝑀𝑇𝐿 =  
1

1+𝑒−𝑟(TL−𝐿50) , 

where r is the instantaneous rate of change and L50 is the TL-at-50% maturity. Age-at-

maturity was back calculated using the length-at-age relationship of female Southern 

Flounder reported in Chapter II. The 95% confidence intervals of the mean parameter 

estimates were also calculated and reported. The significance level was 0.05. All analyses 

were conducted using R 3.1.1 (R Core Team 2015). 
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The spawning season duration was estimated using a combination of GSI data and 

histological examination of gonadal development. The GSI value was calculated for each 

individual using the following equation:  

GSI = (
GW

GFBW
) ∙ 100 , 

where GW is the gonad weight (g) and GFBW is the gonad-free body weight of the fish 

(g). A linear regression of GSI and GFBW was conducted to confirm that GSI is an 

indicator of reproductive development independent of body size (Jons and Miranda 

1997). Mean monthly GSI values were calculated for sexually mature individuals and 

reported with standard error. For histological analysis, the percent coverage of each stage 

present in individual tissue sections was determined from images taken at 10x 

magnification for females and 40x magnification for males, and analyzed using Image J 

software as described above. Gonadal development of males was further described using 

histological assessment of the spermatogenic maturity index (SMI). The SMI method 

involves estimation of the area fractions of various tissue categories characterized by 

progressive spermatogenic development stages in histological sections of the testes 

(Tomkiewicz et al. 2011). The mean SMI was calculated for each male using the 

following equation:  

SMI = 0.0FTs + 0.4FSg + 0.6FSc + 0.8FSt + 1.0FSz , 

where F is the frequency of occurrence for the indicated cell type (Ts = testicular somatic 

cells, Sg = spermatogonia, Sc = spermatocytes, St = spermatids, Sz = spermatozoa). The 

index weighs the volume fractions of the different tissues (somatic cells and germ cell 
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stages) and describes testis development on a scale of 0 to 1. Males were classified as 

sexually mature when fish enter the developing phase, and primary spermatocytes are 

observed (Brown-Peterson et al. 2011). Mean monthly SMI values were calculated for 

mature individuals and reported with standard error.  

Results 

Samples from 369 Southern Flounder (332 females, 37 males) were collected 

from September 2014 to February 2016. A total of 142 fish were collected with gigs, 126 

were collected with hook and line, 70 were collected with trawls, 19 were collected with 

gill nets, six were collected with seines, and six were collected with crab traps. Of these 

fish, 58 were collected from locations outside the Mississippi Sound (Figure 11).  

The homogeneity of oocyte development between and within ovaries was 

assessed to support the sampling protocol used in this study. There were no significant 

differences in female oocyte stage distribution between the left and right ovaries (χ2 = 

7.19, p > 0.05), indicating that oocyte distribution was homogenous. However, there were 

significant differences in oocyte stage distribution among the anterior, middle, and 

posterior regions of the ovaries (χ2 = 26.78, p = 0.0083). To identify which regions were 

homogenous in oocyte stage distribution, I used three Chi-square tests to make pairwise 

comparisons between regions and compared p-values to a Bonferroni adjusted critical 

value (α = 0.017). There were no significant differences between the anterior and 

posterior regions (χ2 = 15.31, p = 0.018) or between the middle and posterior regions (χ2 

= 2.72, p = 0.84), but significant differences were detected between the middle and 

anterior regions (χ2 = 19.491, p = 0.0034). Thus, sampling from the mid-posterior region 

of the ovary was an appropriate method used in this study.  
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The smallest mature female Southern Flounder collected was 245 mm TL and all 

were mature by 368 mm TL. There were insufficient data to estimate L50 for males, but 

the smallest mature male collected was 150 mm TL and all were mature by 335 mm TL. 

Based on the two-parameter logistic function (Figure 12), the r mean parameter estimate 

was 0.0412 mm-1 (95% CI: 0.033 to 0.053 mm-1) and the L50 mean parameter estimate 

was 303.80 mm TL (95% CI: 295.53 to 310.82 mm TL) for females. The age-at-50%-

maturity was estimated as one year by back calculation using the three-parameter von 

Bertalanffy growth function mean parameter estimates reported in Chapter II. The mean 

parameter estimate of L50 was significantly higher than L50 estimates reported in 

Louisiana and significantly lower than L50 estimates reported in the Atlantic (Table 9).  

Spawning seasonality of Southern Flounder was described initially using GSI and 

SMI data. There was a weak linear relationship observed between GSI and GFBW (R2 = 

0.09, p < 0.001) in sexually mature females. In reproductively active mature females, the 

linear relationship between GSI and GFBW, although significant, explained little of the 

variance in GSI (R2 = 0.06, p = 0.04). Female mean GSI values remained constant during 

January to September and were elevated in October to December (Figure 13). The highest 

mean GSI value was observed in November, and several individuals had elevated mean 

GSI values in December. Results from a one-factor ANOVA test indicated monthly 

differences in mean GSI for females, and mean GSI in November was significantly 

higher than mean GSI values in all other months (post hoc Tukey HSD test: p < 0.05). 

Increasing male GSI values were observed in September to October, and the highest 

mean GSI value was observed in November (Figure 14). Male GSI remained elevated 

from October to December and in February. Similarly, increasing SMI values were 
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observed in September to December, and the highest mean SMI value was observed in 

December (Figure 15). The results of these analyses indicate that spawning likely occurs 

from November to January and ceases in February.  

The Southern Flounder spawning season duration was further defined using 

histological classification of reproductive phase. Five reproductive phases were observed 

in both females and males, including the early developing subphase in females and males, 

and the early-, mid-, and late- germinal epithelium (GE) subphases in spawning capable 

males. However, no actively spawning individuals were collected for either sex. The 

percent agreement between macroscopic and histological phase classification was 39% 

for females and 29% for males. The developing phase was most accurately identified by 

macroscopic examination with 94% agreement. In contrast, the immature and 

regenerating phases were poorly classified by macroscopic examination with 23% and 

26% agreement, respectively. Immature and regenerating females were observed 

throughout the year. The greatest percentages of early developing and developing females 

were observed in October, indicating the beginning of the reproductive season (Table 10). 

Spawning capable females were most frequently observed in November and regressing 

females were observed in January and February. Immature and regenerating males were 

observed throughout all months in which collection occurred. The greatest percentages of 

early developing and developing males were observed in September and October, 

respectively (Table 11). Spawning capable males were observed from October through 

December, and regressing males were observed in February. The histological results 

support the November through January spawning season indicated by GSI and SMI data.   
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Each reproductive phase was described histologically for female Southern 

Flounder. Female fish were classified as immature when 100% of oocytes were in the 

primary growth stage (Table 12), and primary growth oocytes were tightly packed with 

interstitial tissue and a thin ovarian wall (Figure 16). Female fish were also classified as 

regenerating when 100% of oocytes were in the primary growth stage, but the presence of 

various sized perinucleolar primary growth oocytes as well as reduced interstitial tissue 

indicated the regenerating phase rather than the immature phase (Figure 17). Primary 

growth and cortical aveolar oocytes were most abundant in early developing females, 

with only 3.97% of oocytes in the primary vitellogenic stage (Table 12, Figure 18). 

Compared to early developing females, a greater mean percentage of all vitellogenic 

oocyte stages were observed in developing females (Figure 19). The majority of oocytes 

were in secondary and tertiary vitellogenic stages for spawning capable females (Table 

12, Figure 20). Because various stages of oocytes were observed simultaneously within 

an individual ovary, Southern Flounder can be classified as batch spawners with 

asynchronous oocyte development. Regressing females were identified by the presence of 

atresia and post-ovulatory follicle complexes, indicative of recent spawning (Figure 21).  

The reproductive development of male Southern Flounder was described 

histologically. Male fish were classified as immature based on the presence of 100% 

primary spermatogonia (Table 13) and the absence of lumens in the testicular tissue 

(Figure 22). The regenerating phase was distinguished from the immature phase in males 

by the presence of empty lumens with spermatogonial proliferation near the periphery of 

the tissue (Figure 23) and the presence of residual spermatozoa (Table 13). The majority 

of tissue was spermatogonia in early developing males, and all spermatogenic stages 
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were present in developing males (Table 13, Figure 24). Spawning capable males were 

identified by the presence of spermatozoa in the lumens (Figure 25 & 26). The early-, 

mid-, and late-GE subphases were differentiated by increasing percentages of 

spermatozoa (Table 13) as well as an increasing number of lobules with discontinuous 

GE. Specifically, the presence of continuous GE throughout lobules was used to identify 

early GE subphase males (Figure 25), and discontinuous GE throughout lobules was used 

to identify late GE subphase males (Figure 26). Regressing males were characterized by 

reduced spermatogenesis with residual spermatozoa present (Figure 27).  

Discussion 

This research provides a description of Southern Flounder reproduction in the 

north-central GOM. The results of this study indicate that Southern Flounder mature 

rapidly and mean estimates of L50 were significantly different from previous estimates 

reported for this species. Histological evidence and GSI were used to demonstrate that the 

Southern Flounder spawning season duration is from November to January. Results from 

histological analysis suggest that Southern Flounder exhibit a batch spawning strategy 

with asynchronous oocyte development. Finally, the gonadal development of males and 

females is described in detail using histological indicators. The information reported in 

this study will greatly improve understanding of Southern Flounder life history and 

management of the GOM stock.  

Female Southern Flounder in the north-central GOM reach maturity between 245 

and 368 mm TL and within one to two years. The current estimate of L50 was 

significantly higher than previously described in the GOM (Fischer 1995), although L50 in 

this study is about equal to the current 12-inch (305 mm) minimum length limit in 



 

58 

Mississippi (GSMFC 2015). The description of maturity reported by Fischer (1995) 

indicates that female Southern Flounder in Louisiana grew rapidly to 50% maturity by 

229 mm TL but all females were mature by 509 mm TL. Estimates of female Southern 

Flounder L50 from this study were significantly lower than previously reported estimates 

in the Atlantic. Differences in L50 are likely due to different population dynamics between 

the GOM and Atlantic stocks (Midway et al. 2015) and indicate that Southern Flounder 

in the GOM are faster to reach maturity. Maturity is a fundamental life-history trait that 

varies in response to population-level influences (Adams 1980, Shuter 1990). Age- and 

size-at-maturity of temperate flatfish species are influenced by multiple factors, such as 

environmental variation and fishing pressure (Roff 1982). For example, decreases in age-

at-maturity have been related to increasing exploitation rates in multiple commercially 

harvested flatfish stocks, including American Plaice Hippoglossoides platessoides in 

Grand Banks (Trippel 1995). Thus, variation in Southern Flounder L50 estimates could be 

related to spatial differences in environment conditions and historic levels of fishing 

mortality. Female age-at-50% maturity was estimated as one year in this study, which is 

in agreement with results reported in the Atlantic (Monaghan and Armstrong 2000, 

Midway and Scharf 2012). However, observations by Monaghan and Armstrong (2000) 

demonstrated that 73.5% of age-one fish were mature but age-one females did not exhibit 

increasing GSI before the spawning season. Although age-one females are able to grow 

to maturity, age-two females may be more likely to migrate offshore during the spawning 

season (Stokes 1977).    

The use of histology in this study provides a detailed assessment of Southern 

Flounder maturation and gonadal development. Previous studies in the GOM have not 
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used histological phase classification to estimate Southern Flounder maturity (Stokes 

1977, Etzold and Christmas 1979), with the exception of Fischer (1995). Histological 

classification of maturity is preferable to macroscopic classification because defining 

characteristics of reproductive phases can be clearly identified (Hunter and Macewicz 

1985, West 1990, Lowerre-Barbieri et al. 2011a). The misidentification of reproductive 

phases can have implications for estimation of biological reference points and, 

consequently, for management (King and McFarlane 2003). For example, the estimates 

of L50 increased by 33 mm TL for the Southern Flounder stock in North Carolina when 

using histological phase assignment methods compared to macroscopic phase assignment 

(Midway and Scharf 2012). Increasing L50 from the previously reported L50 value using 

histological phase assignment caused a 10% decrease in predicted spawning potential 

ratio. In this study, the percent agreements between macroscopic and histological 

classification were low for both sexes, indicating the value of using histology to 

categorize reproductive development (West 1990). Although macroscopic classification 

of reproductive phase is commonly used as a rapid assessment method, Midway and 

Scharf (2012) demonstrate that the resulting error in maturity estimates can contribute to 

shifts in biological reference points from spawning stock biomass per recruit models.  

Several results from this study indicate that Southern Flounder spawn from 

November to January in the north-central GOM. First, mean GSI values were elevated 

during the months preceding November and mean SMI remained elevated through 

February in males. These results are in agreement with previous studies, which also 

observed peak GSI values in November and December (Shepard 1986, Fischer 1995). 

The mean GSI values reported in this study are lower in magnitude, but the trend of 
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increasing GSI leading up to November is similar to trends reported in past studies. 

Gonadal development is expected to increase prior to the spawning season and decrease 

as spawning activity diminishes (West 1990), although GSI may remain elevated in 

indeterminate batch spawning fish species. The use of GSI may be biased when 

comparing samples from different sized fish, but GSI should be independent of body size 

to reflect reproductive development (Le Cren 1951, West 1990). In Southern Flounder 

there was a weak linear relationship observed between GSI and GFBW that explained 9% 

of the variance in GSI. Further, for reproductively active mature females GFBW 

explained 6% of the variance in GSI, which supports the use of GSI data as an indicator 

of reproductive development in this study. Second, histological indicators were used to 

identify reproductive phase throughout annual reproductive development. Specifically, 

spawning capable individuals were observed in November indicating spawning 

preparedness, and regressing individuals were observed in February indicating the end of 

the spawning season. Results from this study not only support the conclusions from 

previous studies that reported a December to January spawning season in the GOM 

(Shepard 1986, Fischer 1995), but also indicate that spawning activity begins as early as 

November and may continue into February. The absence of actively spawning individuals 

collected in the winter is a limitation to the conclusions from these data. Therefore, the 

duration of the spawning season was inferred based on the presence of spawning capable 

individuals in November and regressing individuals in February.  

Batch spawning and asynchronous oocyte development in Southern Flounder was 

supported by the presence of oocytes in various developmental stages within female 

ovaries (Wallace and Selman 1981, Lowerre-Barbieri et al. 2011b). This result supports 
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the conclusions of studies focused on both laboratory-spawned (Arnold et al. 1977) and 

natural spawning Southern Flounder (Fischer 1995). Batch spawning is common in other 

flatfish species, including the North Sea Dab Limanda limanda (Htun-Han 1978), Dover 

Sole Microstomus pacificus (Hunter et al. 1992), Tasmanian Greenback Flounder 

Rhombosolea tapirina (Barnett and Pankhurst 1999), and Summer Flounder Paralichthys 

dentatus, in the Middle Atlantic Bight (Morse 1981). A multiple spawning strategy, with 

asynchronous development of oocytes throughout the spawning season, may represent an 

adaptation to maximize reproductive potential (Murua and Saborido-Rey 2003). Southern 

Flounder is a warm-water species, so an extended spawning season with multiple 

spawning events could increase lifetime fecundity (Morse 1981). The documentation of 

batch spawning in Southern Flounder is useful because batch fecundity estimates inform 

annual fecundity estimates, which are used in stock assessment models of spawning stock 

biomass (McEvoy and McEvoy 1992, Goodyear 1993).  

Based on the analysis of data collected in this study, female and male Southern 

Flounder exhibit dimorphic reproductive development patterns and distributions before 

the spawning season. Males were observed in the developing phase in September and in 

the spawning capable phase as early as October. In contrast, females were observed in the 

spawning capable phase starting in November. This difference in timing indicates that 

males may start developing earlier in the year and have a longer period in the spawning 

capable phase than females. Differential development patterns between sexes is expected 

because females have a relatively greater energetic investment in the production of 

offspring than males (Trivers 1972, Rijnsdorp and Witthames 2005). Sex-specific 

differences observed in this study may also be related to spatial distributions of males and 
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females. Because female Southern Flounder grow faster and reach larger sizes than males 

(Chapter II), females were more vulnerable to the primarily recreational sampling 

techniques used and were captured more frequently during all months of sampling. 

However, all spawning capable male Southern Flounder were captured at offshore 

locations and spawning capable females were collected only at inshore locations prior to 

offshore migration at the start of the spawning season. These results support the 

hypothesis that males migrate offshore earlier than females and may remain in offshore 

locations (Wenner et al. 1990, Midway and Scharf 2012).  

In conclusion, this research provides a description of Southern Flounder 

reproduction, including a female-specific estimation of length- and age-at-maturity, 

estimation of the spawning season duration, identification of batch spawning strategy, 

and a histological description of male and female gonadal development. However, there 

are still outstanding research needs to understanding the reproductive biology of Southern 

Flounder. Collection of actively spawning females during the winter spawning season 

would allow for estimation of fecundity and spawning frequency, as well as classification 

of fecundity type. The management of stocks for resilience against disturbance is a 

critical goal of fisheries science, and thus, an understanding of how reproductive potential 

affects population productivity is valuable for effective management (Lowerre-Barbieri et 

al. 2011a). Because current research on Southern Flounder reproduction in the north-

central GOM was lacking before this study, these results will be useful to inform future 

stock assessments for this species.  
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Appendices 

Table 7  

Female reproductive phase terminology 

Phase Definition Macroscopic Description Histological Description 

Immature Never spawned. Small ovaries, clear with 

no distinct blood vessels. 

Contains only oogonia and primary growth oocytes, has a thin 

ovarian membrane and little space between oocytes with 

interstitial tissue present. 

Developing Gonads in 

preparation to spawn. 

Enlarging ovaries, blood 

vessels more distinct. 

Gonad can contain primary growth, cortical alveolar, and early 

and mid vitellogentic oocytes. Late vitellogenic oocytes rare. 

Some atresia possible but no postovulatory follicles. 

Early Developing Developing 

subphase. 

 Gonad composed only of primary growth and cortical alveolar 

oocytes. May have early vitellogentic oocytes. 

Spawning Capable Fish will spawn 

during the spawning 

season. 

Large ovaries, blood 

vessels prominent. 

Abundance of late vitellogenic oocytes present. Gonad may also 

contain primary growth, cortical alveolar, postovulatory 

follicles, and atresia of vitellogenic and/or hydrated oocytes. 

Early stages of oocyte maturation may be present. 

Actively Spawning Fish is spawning, has 

spawned within 12 

hrs, or will spawn 

within 12 hrs. 

 Separated from spawning capable fish by evidence of 

widespread oocyte maturation indicated by lipid and/or yolk 

coalescence, germinal vesicle migration, and/or hydration of 

oocyte. Postovulatory follicles ≤12 hrs can be present. 

Regressing Fish will not spawn 

again this season. 

Flaccid ovaries, blood 

vessels prominent. 

Atresia at any/all stages present and abundant. Primary growth 

oocytes becoming more abundant with most vitellogenic 

oocytes undergoing atresia. Postovulatory follicles possible. 

Regenerating Mature fish not 

reproductively 

active. 

Small ovaries, blood 

vessels reduced but 

present.  

Gonad contains oogonia and primary growth oocytes 

(perinucleolar stage common) and has a thick ovarian wall with 

reduced interstitial tissue. May have atresia or muscle bundles 

present. 

 
Female classification terminology adapted from Brown-Peterson et al. (2011). 
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Table 8  

Male reproductive phase terminology 

Phase Definition Macroscopic Description Histological Description 

Immature Never spawned. Small testes, often clear 

and threadlike. 

Contains only primary spermatogonia, no lumen in lobules. 

Developing Gonads in 

preparation to 

spawn. 

Enlarging testes, color 

becomes translucent. 

Gonads may contain secondary spermatogonia, primary and secondary 

spermatocytes, spermatids, and spermatozoa in spermatocysts. 

Spermatozoa not present in lumen of lobules or in sperm ducts. Germinal 

epithelium continuous. 

Early Developing Developing 

subphase. 

 Gonad composed only of primary spermatogonia, secondary 

spermatogonia, and primary spermatocytes. 

Spawning Capable Fish will spawn 

during the 

spawning season. 

Large testes, translucent 

white in color. 

Spermatozoa in lumen of lobules and/or sperm ducts. All stages of 

spermatogenesis present. Spermatocysts throughout testes, and active 

spermatogenesis. Germinal epithelium can be continuous or discontinuous. 

Actively Spawning Fish is spawning, 

has spawned 

within 12 hrs, or 

will spawn within 

12 hrs. 

Release of milt with gentle 

pressure on abdomen. 

Macroscopic identification only. 

   Early GE  Histological only. Continuous GE in all lobules throughout the testes. 

   Mid GE  Histological only. Continuous GE in all lobules at testes periphery, discontinuous GE in 

lobules near ducts. 

   Late GE  Histological only. Discontinuous GE in all lobules throughout the testes. 

Regressing Fish will not 

spawn again this 

season. 

Flaccid testes reduced in 

size. 

Residual spermatozoa present in lumen of lobules and in sperm ducts. 

Widely scattered spermatocysts near periphery containing secondary 

spermatocytes, spermatids, and spermatozoa. Spermatogonial regeneration 

of germinal epithelium in testes periphery. 

Regenerating Mature fish not 

reproductively 

active. 

Small testes, translucent 

white in color.  

No spermatocysts present. Lumen of lobule often nonexistent. Proliferation 

of spermatogonia and germinal epithelium continuous throughout. Residual 

spermatozoa present in lumen of lobules and in sperm ducts. 
Male classification terminology adapted from Brown-Peterson et al. (2011). 
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Table 9  

Past research maturity estimates 

Study Location Sex n Age50 (y) Lfirst (mm) L50 (mm) L100 (mm) 

Stokes 1977 Texas combined  2    

Etzold and Christmas 1979 Mississippi combined  3 230  340 

Wenner et al. 1990 South Carolina female 377  320  380 

  male 318  230  310 

Fischer 1995 Louisiana female   200 229 509 

Monaghan and Armstrong 

2000 North Carolina female  1  345  

Midway and Scharf 2012 North Carolina female 451 1  408  

this study Mississippi female 332 1 245 303.8 368 

95% confidence intervals           295.53 to 310.82   

 

Summary of reported maturity estimates for Southern Flounder collected in Atlantic and Gulf of Mexico waters, including sample size (n), age-at-50% maturity (y), length-at-first maturity 

observed (Lfirst, mm), length-at-50% maturity (L50, mm), and length-at-100% maturity (L100, mm).   
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Table 10  

Monthly reproductive phase summary for females 

Month   Immature Developing Spawning Capable Regressing Regenerating 

  n      Early Developing        

January 7 0 0 0 0 14.29 85.71 

February 38 57.89 0 0 0 13.16 28.95 

March 17 23.53 0 0 0 0 76.47 

April 21 9.52 0 0 0 0 90.48 

May 33 6.06 0 0 0 0 93.94 

June 47 6.38 0 0 0 0 93.62 

July 21 19.05 0 0 0 0 80.95 

August 20 0 0 0 0 0 100 

September 29 6.90 0 0 0 0 86.21 

October 43 2.33 58.14 20.93 0 0 18.60 

November 36 2.22 16.67 11.11 38.89 0 11.11 

December 20 35.00 15.00 5.00 5.00 0 40.00 

Total 332       

Monthly percentages of samples and sample size (n) for female Southern Flounder collected in the north-central Gulf of Mexico from September 2014 to February 2016. 
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Table 11  

Monthly reproductive phase summary for males 

Month   Immature Developing Spawning Capable Regressing Regenerating 

  n   Early Developing   EGE MGE LGE     

January 0 0 0 0 0 0 0 0 0 

February 4 0 0 0 0 0 0 50.00 50.00 

March 0 0 0 0 0 0 0 0 0 

April 0 0 0 0 0 0 0 0 0 

May 0 0 0 0 0 0 0 0 0 

June 3 100 0 0 0 0 0 0 0 

July 2 0 0 0 0 0 0 0 100 

August 1 100 0 0 0 0 0 0 0 

September 4 0 50.00 0 0 0 0 0 50.00 

October 9 11.11 0 33.33 33.33 22.22 0 0 0 

November 10 30.00 0 0 20.00 20.00 10.00 0 20.00 

December 4 25.00 0 25.00 0 25.00 25.00 0 0 

Total 37         

 

Monthly percentages of samples and sample size (n) for male Southern Flounder collected in the north-central Gulf of Mexico from September 2014 to February 2016. Spawning capable 

males are classified by early- (EGE), mid- (MGE), and late- germinal epithelium (LGE) subphases. 
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Table 12  

Reproductive phase summary by percent oocyte stage 

Phase n % PG % CA % Vtg1 % Vtg2 % Vtg3 % POF % Atresia 

Immature 1 100 0 0 0 0 0 0 

Developing 13 30.15 35.19 30.49 3.72 0.15 0 0.39 

     Early Developing 5 49.56 46.36 3.97 0 0 0 0.11 

Spawning Capable 15 10.14 13.93 22.71 18.48 32.28 0 2.83 

Regressing 3 73.16 6.32 0 0 0 6.58 13.95 

Regenerating 2 100 0 0 0 0 0 0 

Total  39        

 

Sample size (n) of individuals examined (three images per individual) and mean percentages of oocytes in each stage for reproductive phases observed in female Southern Flounder from the 

north-central Gulf of Mexico. Oocyte stages include primary growth (PG), cortical aveolar (CA), primary vitellogenic (Vtg1), secondary vitellogenic (Vtg2), tertiary vitellogenic (Vtg3), post-

ovulatory follicle complex (POF), and atresia. 
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Table 13  

Reproductive phase summary by spermatocyte stage 

Phase n % SG % SC % ST % SZ 

Immature 5 100 0 0 0 

Developing 3 19.51 56.40 20.43 3.66 

       Early Developing 2 66.50 32.52 0.97 0 

Spawning Capable      

       Early GE 5 7.17 43.41 30.81 18.60 

       Mid GE 6 5.72 28.25 34.14 31.89 

       Late GE 2 7.69 21.89 23.08 47.34 

Regressing 4 14.13 0 0 85.87 

Regenerating 6 75.09 18.05 0 3.25 

Total 33     

 

Sample size (n) of individuals examined (three images per individual) and mean percentages of spermatocytes in each stage of 

spermatogenesis for reproductive phases observed in male Southern Flounder from the north-central Gulf of Mexico. Spermatogenic 

stages include primary and secondary spermatogonia (SG), primary and secondary spermatocytes (SC), spermatids (ST), and 

spermatozoa (SZ). 
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Figure 11. Map of Gulf of Mexico sampling area 

Map of locations where Southern Flounder (n = 369) were collected using various gear types between September 2014 and February 

2016. Size of the circles represents the relative magnitude of samples collected at each location. See Chapter II for a detailed map of 

Mississippi Sound sampling locations. 
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Figure 12. Length-at-maturity logistic model 

Logistic model describing the length-at-maturity for female Southern Flounder (n = 332) from the north-central Gulf of Mexico, 

where L50 represents the mean parameter estimate for total length-at-50% maturity. Individuals were assigned a binomial maturity 

code indicating immature (0) or mature (1) status.   
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Figure 13. Monthly GSI for females 

Mean monthly gonadosomatic index (GSI) for sexually mature female Southern Flounder (n = 277) collected during January (1) to 

December (12). Error bars indicate the standard error of the mean monthly GSI value. 

 

 

 

 

 

 

 

 

 



 

79 

 

 

Figure 14. Monthly GSI for males 

Mean monthly gonadosomatic index (GSI) for mature male Southern Flounder (n = 23) collected during January (1) to December 

(12). Error bars indicate the standard error of the mean monthly GSI value. 
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Figure 15. Monthly SMI for males 

Monthly spermatogenic maturity index (SMI) for mature male Southern Flounder (n = 31) collected during January (1) to December 

(12). Error bars indicate the standard error of the mean monthly SMI value. 
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Figure 16. Immature female histology image 

Histology sample imaged at 10x magnification from an immature female Southern Flounder (239 mm TL) caught in November 2014. 

Immature females were identified by the presence of small, tightly-packed primary growth oocytes (PG) with a thin ovarian wall and 

interstitial tissue.  
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Figure 17. Regenerating female histology image 

Histology sample imaged at 10x magnification from a regenerating female Southern Flounder caught in September 2014. 

Regenerating females were identified by the presence of primarily perinucleolar primary growth oocytes (PG) of various sizes. 

Chromatin nucleolar PG oocytes were also observed with reduced interstitial tissue compared to immature females.  
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Figure 18. Early developing female histology image 

Histology sample imaged at 10x magnification from an early developing female Southern Flounder caught in October 2014. Early 

developing females were identified by the presence of primary growth oocytes (PG) and cortical aveolar oocytes (CA). 
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Figure 19. Developing female histology image 

Histology sample imaged at 10x magnification from a developing female Southern Flounder caught in October 2014. Developing 

females were identified by the presence of primary vitellogenic oocytes (Vtg1) with some primary growth oocytes (PG) and cortical 

aveolar oocytes (CA). 
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Figure 20. Spawning capable female histology image 

Histology sample imaged at 10x magnification from a spawning capable female Southern Flounder caught in November 2015. 

Spawning capable females were identified by the predominance of tertiary vitellogenic ooctyes (Vtg3) with some primary (Vtg1) and 

secondary vitellogenic oocytes (Vtg2), primary growth oocytes (PG), and cortical aveolar oocytes (CA). 
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Figure 21. Regressing female histology image 

Histology sample imaged at 10x magnification from a regressing female Southern Flounder caught in January 2016. Regressing 

females were identified by the presence of alpha atresia and post-ovulatory follicle complexes (POF) with primary growth oocytes 

(PG) predominant.   
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Figure 22. Immature male histology image 

Histology sample imaged at 40x magnification from an immature male Southern Flounder (235 mm TL) caught in December 2014. 

Immature males were identified by the presence of primary spermatogonia (Sg1) and absence of lumens in the lobules. 
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Figure 23. Regenerating male histology image 

Histology sample imaged at 40x magnification from a regenerating male Southern Flounder caught in July 2015. Regenerating males 

were identified by the presence of empty lumens with proliferation of primary spermatogonia (Sg1) near the periphery. 
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Figure 24. Developing male histology image 

Histology sample imaged at 40x magnification from a developing male Southern Flounder caught in September 2014. Developing 

males were identified by the presence of all stages of spermatogenesis, including primary (Sg1) and secondary spermatogonia (Sg2), 

primary (Sc1) and secondary spermatocytes (Sc2), spermatids (St), and the absence of spermatozoa (Sz) in the lumens of lobules. 
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Figure 25. Early spawning capable male histology image 

Histology sample imaged at 40x magnification from an early germinal epithelium (EGE) subphase spawning capable male Southern 

Flounder caught in December 2014. EGE spawning capable males were identified by the presence of spermatozoa (Sz) both in 

spermatocysts and in the lumen, and by a continuous GE throughout the testes. Other stages of spermatogenesis were also observed, 

including secondary spermatogonia (Sg2), primary (Sc1) and secondary spermatocytes (Sc2), and spermatids (St). 
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Figure 26. Late spawning capable male histology image 

Histology sample imaged at 40x magnification from a late germinal epithelium (LGE) subphase spawning capable male Southern 

Flounder caught in December 2014. LGE spawning capable males were identified by the presence of spermatozoa (Sz) in the lumen 

and a discontinuous GE throughout the testes. Other late stages of spermatogenesis were also observed, including secondary 

spermatocytes (Sc2) and spermatids (St). 
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Figure 27. Regressing male histology image 

Histology sample imaged at 40x magnification from a regressing male Southern Flounder caught in February 2015. Regressing males 

were identified by the presence of residual spermatozoa (Sz) and anastomosing lobules. 
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CHAPTER IV – CONCLUSION 

Research on Southern Flounder life history conducted in the last two decades has 

focused on the Louisiana (Fischer and Thompson 2001, Fischer and Thompson 2004) and 

Texas stocks (Stunz et al. 2000, Glass et al. 2008, Nims and Walther 2014). In the most 

recent Fisheries Management Plan published by the Gulf States Marine Fisheries 

Commission, data from Louisiana and Texas stocks were used to represent the entire 

Southern Flounder fishery in the Gulf of Mexico (GOM) (GSMFC 2015). The scarcity of 

species-specific data in the north-central GOM has historically prevented a Gulf-wide 

stock assessment for the Flounder fishery. By describing growth and reproduction of 

Southern Flounder in the north-central GOM, this study contributes valuable information 

to inform future stock assessments and improve state-level management of the 

Mississippi stock. In conclusion, I will summarize the information presented in previous 

chapters and discuss management considerations for the Flounder fishery. 

In Chapter II, I report Southern Flounder age and growth dynamics in the north-

central GOM and length-at-age parameters specific to the Mississippi stock. Results from 

this research include validation of annuli deposition frequency and an examination of 

factors that influence deposition rates in age-one Southern Flounder otoliths. Following 

age estimation, I described the length-at-age and weight-at-length relationships for 

female Southern Flounder and compared mean parameter estimates to those reported in 

previous studies. There were no significant differences observed between length-at-age 

parameter estimates reported in the GOM, although there was spatial variability 

observed. Finally, I evaluated temporal variation in relative condition and found that 
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intra-annual relative condition did not greatly vary. The age and growth dynamics of 

Southern Flounder in Mississippi were previously undescribed. Given that Southern 

Flounder is a state-managed fishery and growth is variable within the GOM (Midway et 

al. 2015), local estimates of growth parameters are critical for evaluating population 

productivity and accomplishing management objectives.   

In Chapter III, I describe the reproductive biology of Southern Flounder in the 

north-central GOM. Specifically, this study includes an estimation of female-specific 

length- and age-at-50% maturity parameters and a report of first maturity for females and 

males. Although length-at-age parameters did not greatly differ among GOM states, 

estimated length-at-50% maturity was significantly different from previously reported 

parameters in Louisiana. After describing maturation, I estimated the duration of the 

Southern Flounder spawning season using GSI data and histological phase classification. 

Finally, a histological description of gonadal development for both sexes and a 

classification of Southern Flounder spawning frequency were reported. The absence of 

actively spawning individuals captured during the sampling period is a major limitation 

to understanding the reproductive potential of this species. Nonetheless, this study 

represents the most recent comprehensive review of Southern Flounder reproduction in 

both the GOM and the Atlantic.  

Southern Flounder exhibit a seasonal migration for spawning, and the spatial 

dynamics of this estuarine-dependent species have implications for management (Secor 

2005). Although I was able to estimate spawning seasonality in this research, I did not 

collect evidence of where spawning occurred at offshore locations. Given the uncertainty 
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surrounding offshore migration in terms of spawning habitats used, the degree of mixing 

between state-managed stocks is undefined. Recently, there has been interest in 

understanding the stock structure of Southern Flounder. Past research has focused on 

using genetics (Blandon et al. 2001, Anderson et al. 2012), otolith morphometrics 

(Midway et al. 2014), tagging methods (Furey et al. 2013, Craig et al. 2015), and models 

of growth variability (Midway et al. 2015) to better describe Southern Flounder stock 

structure. Genetic studies reported that there is homogeneity in the Southern Flounder 

population with little structuring among or within states in the GOM (Anderson et al. 

2012), and similar observations were reported based on otolith morphometric variation 

(Midway et al. 2014). In a tag-recapture study examining habitat use and movement 

patterns of Southern Flounder in the Atlantic, limited movement was reported during the 

spring and summer while fish resided in estuaries and spring recaptures of estuarine 

residents were near initial release sites (Craig et al. 2015). These results indicate that 

mixing occurs offshore during spawning, but also that small-scale environmental factors 

may be drivers of variability in demographic traits, such as growth and reproduction, 

during estuarine residency. Monitoring of growth and reproduction is beneficial for 

fisheries management because shifts in these biological parameters may indicate a 

population-level response to changes in fishing pressure or the environment (Trippel 

1995, Shin et al. 2004). Thus, there is a need for local estimates of life-history parameters 

that reflect the current state of the fishery to inform stock assessments and resulting 

management decisions.  
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My thesis research substantially contributes to the understanding of Southern 

Flounder life history in the north-central GOM. Because management regulations are 

variable within the GOM and there is offshore mixing among state-managed stocks, 

multiple state and federal administrations mange the Southern Flounder population 

(GSMFC 2015). By describing the age and growth dynamics and reproductive biology of 

a popular recreationally harvested species, this thesis provides a comprehensive 

examination of Southern Flounder life history with information specific to the 

Mississippi stock. I expect that the results reported will serve as a scientific basis for 

regulations by state management agencies in the GOM. 
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APPENDIX A – Histology Processing 

Table A1.  

Histological processing sequence  

Step Solution Duration 

1 70% EtOH hold  

2 80% EtOH 1:00 hour 

3 95% EtOH 0:40 hour 

4 95% EtOH 0:40 hour 

5 95% EtOH 0:40 hour 

6 100% EtOH 1:00 hour 

7 100% EtOH 1:00 hour 

8 100% EtOH 1:00 hour 

9 Xylene Substitute 1:00 hour 

10 Xylene Substitute 1:00 hour 

11 Xylene Substitute 1:00 hour 

12 Paraplast Plus 0:40 hour 

13 Paraplast Plus 0:40 hour 

14 Paraplast Plus 0:40 hour 

 

Processing was completed using a Shandon Histocentre 2 Processor. 
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Table A2.  

Tissue staining process outline 

Step Solution Duration 

1 Xylene Substitute 3:00 min 

2 Xylene Substitute 3:00 min 

3 Xylene Substitute 3:00 min 

4 100% EtOH 10 dips 

5 100% EtOH 10 dips 

6 95% EtOH 10 dips 

7 95% EtOH 10 dips 

8 80% EtOH 10 dips 

9 80% EtOH 10 dips 

10 50% EtOH 10 dips 

11 Distilled Water 1:00 min 

12 Hematoxylin 2 3:00 to 6:00 min 

13 Water rinse 

14 Acid Water 2 dips 

15 Water rinse  

16 Blueing Water 0:30 sec 

17 Water rinse 

18 95% EtOH 10 dips 

19 Eosin Y  1:00 to 1:30 min 

20 Blot Blot Blot N/A 

21 95% EtOH 10 dips 

22 95% EtOH 10 dips 

23 95% EtOH 10 dips 

24 100% EtOH 1:00 min 

25 100% EtOH 1:00 min 

26 100% EtOH 1:00 min 

27 Xylene Substitute 1:00 min 

28 Xylene Substitute 1:00 min 

29 Xylene Substitute 1:00 min 

30 Xylene Substitute 1:00 min 
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APPENDIX B – IACUC Approval Letter 
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