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ABSTRACT 

Measuring the semantic similarity between Gene Ontology (GO) terms is an 

essential step in functional bioinformatics research. We implemented a software named 

GOGO for calculating the semantic similarity between GO terms. GOGO has the 

advantages of both information-content-based and hybrid methods, such as Resnik’s and 

Wang’s methods. Moreover, GOGO is relatively fast and does not need to calculate 

information content (IC) from a large gene annotation corpus but still has the advantage 

of using IC. This is achieved by considering the number of children nodes in the GO 

directed acyclic graphs when calculating the semantic contribution of an ancestor node 

giving to its descendent nodes. GOGO can calculate functional similarities between genes 

and then cluster genes based on their functional similarities. Evaluations performed on 

multiple pathways retrieved from the saccharomyces genome database (SGD) show that 

GOGO can accurately and robustly cluster genes based on functional similarities. We 

release GOGO as a web server and also as a stand-alone tool, which allows convenient 

execution of the tool for a small number of GO terms or integration of the tool into 

bioinformatics pipelines for large-scale calculations. GOGO can be freely accessed or 

downloaded from http://dna.cs.miami.edu/GOGO/. 
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CHAPTER I - INTRODUCTION 

Inferring semantic similarities between Gene Ontology (GO)1 terms is a 

fundamental component in functional bioinformatics research, such as gene clustering2-4, 

protein function prediction5,6 and gene-gene interactions validations7-9. Using protein 

function prediction as an example, it is common that the predicted protein functions of a 

large number of proteins (e.g., ~100,000 proteins for CAFA26) in the format of GO terms 

are needed to be evaluated with the GO terms obtained by experimental approaches. This 

process usually needs to calculate the similarities between a huge number of GO term 

pairs. Therefore, an accurate and fast algorithm for calculating similarities of GO terms is 

essential.  

Gene Ontology1 uses three directed acyclic graphs (DAGs) to define the functions 

of a gene product (such as a protein): molecular function ontology (MFO), biological 

process ontology (BPO), and cellular component ontology (CCO). Every node in a DAG 

represents a GO term; and two connected GO terms are linked by different types of edges 

indicating different relationships. The most commonly used relationships are “is a”, “part 

of”, and “regulates”. Some edges exist between DAGs of different ontologies. For 

example, 1,093 GO terms of MFO are “part of” the GO terms of BPO based on the GO 

definition released on August 11, 2018. 

Methods have been developed to measure the semantic similarity between GO 

terms. These existing methods can be classified into edge- or path-based, information 

content (IC)-based, node-based, and hybrid methods. The edge-based methods measure 

the similarities of two GO terms based on the number of edges between them10, usually 
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the number of edges along the shortest path between two GO terms. For example, Wu & 

Palme11 used the common path from the lowest common ancestor node of the two GO 

terms to define semantic similarity. However, the edge-based approaches are not in favor 

because edges with the same depth in the DAG may not have the same semantic distance; 

and the edges are usually not uniformly distributed in the DAGs12. 

Node-based methods use the properties of the query nodes, and their ancestor or 

descendant nodes to indicate similarities, which represent the most popular direction in 

this area. Resnik uses the IC of the most informative common ancestor (MICA) of two 

GO terms as the semantic similarity13. The lowest common ancestor node and the MICA 

refer to the same ancestor of two GO terms. The former is presented in the context of 

searching common path between GO terms, whereas the latter is presented in the context 

of IC of GO terms. Jiang and Conrath’s14 method and Lin’s15 method consider the IC 

values of the two query GO terms when calculating their semantic similarity. Schlicker et 

al. proposed the relevance similarity measure16, which reflected the location of the query 

GO terms in the DAG by considering the probabilities of MICA17. Li et al.18 introduced a 

new concept called information coefficient based on Lin’s method to integrate DAG 

information of query terms into calculation. Mazandu and Mulder have released 

Nunivers19, a method that normalizes the IC-based semantic similarity to 1 when 

measuring the similarity between the same GO terms. To avoid over-reliance on MICA, 

Couto et al. designed GraSM that could be applied to any IC-based method, in which the 

semantic similarity was calculated by the average IC of the disjunctive common ancestors 

(DCAs) instead of MICA. Moreover, Couto and Silva have implemented DiShIn, which 

identifies DCA by the number of distinct paths from the query GO terms to MICA20. To 
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make the calculation of semantic similarity more efficient, Zhang and Lai built GraSM 

using the exclusively inherited shared information (EISI) that could be applied to any IC-

based method. 

The IC-based methods have an obvious advantage, that is, it uses IC to indicate 

the specificity of a GO term, which avoids the problems of ununiform semantic distance 

and edge density. However, calculating IC from annotation corpora can cause problems. 

As reviewed by Guzzi et al.21, in a corpus, many annotations are shallow in the DAG, 

which are very generic terms without describing particular molecular function, biological 

process, or cellular component. Moreover, since the calculation of IC depends on an 

annotation corpus that links a large number of genes or proteins to GO terms, it has the 

problem that the same GO term may have different IC values when different corpora are 

used. Also, the IC is biased by the research trend12: the GO terms related to popular fields 

tend to be annotated more frequently than the ones related to other unpopular fields; and 

the annotation of some terms may not even be found in the corpus17. These issues largely 

limit the performance and usefulness of the methods that only consider information 

content.  

To avoid the drawbacks of the IC-based approaches, many hybrid methods have 

been developed that consider both edge and node in the DAG. Wang et al.22 published a 

hybrid method that calculated the semantic similarities based on the topology of GO 

DAG. Wang et al. incorporated the concept of semantic contribution, which could be 

considered as the semantic impact an ancestor node gave to its descendent nodes. 

Calculating semantic similarities from the GO DAG instead of IC makes Wang’s method 

do not need to calculate the IC values in advance. It also makes Wang's method more 
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stable than Resnik’s method because of the above-mentioned drawbacks of the IC-based 

methods. GO-universal23,24 calculates semantic similarity by measuring the topological 

position characteristics in the GO DAG that considers the number of children terms 

instead of the frequency of terms from the annotation corpus as IC does. GO-universal 

defines the topological position characteristic of the root to be 1 and calculates the 

topological position characteristic of a non-root GO term by multiplying a ratio based on 

the number of children of all ancestor GO terms. Nagar and Al-Mubaid designed a hybrid 

structural similarity method using the shortest path plus either IC generated from corpora 

or structure-based IC generated from DAG25.  

    The functional similarity between gene products is important in gene 

classification, which is usually measured by semantic similarities between the annotated 

GO terms of each gene. The existing methods can be grouped into two categories, namely 

group-wise and pair-wise methods. Group-wise methods calculate functional similarity 

without considering the semantic similarity between GO terms12. Instead, it calculates 

global similarity between the two gene products12. For example, Mistry and Pavlidis used 

term overlap (also called “TO”)26 to measure the functional similarity between two gene 

products, in which functional similarity was calculated as the number of common GO 

terms from two genes. On the other hand, pairwise methods take advantage of semantic 

similarities between GO terms because they can mix semantic similarities by different 

strategies, such as Average (Avg)27, Best-Match Average (BMA)23,28, Average Best-

Matches (ABM)22,29, Maximum (Max)30, and Best Match Maximum (BMM)16,24. 

Different approaches have been used to evaluate the inferred semantic similarities 

between GO terms, although the standard assessment strategy evaluation is still under 
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debate. Guo et al. evaluated multiple methods’ (Resnik’s, Lin’s, Jiang and Conrath’s) 

abilities of characterizing human regulatory pathways, in which Resnik was found to 

achieve the best performance31. They found that pair-wise methods have a better 

performance than group-wise methods. Wang et al.22 demonstrated that the gene clusters 

generated from their method were more similar to the pathways (based on co-expression 

data) defined in the saccharomyces genome database (SGD)32. However, Wang’s method 

also has disadvantages in some situations compared to the IC-based approaches, which 

will be illustrated later in this paper. Recently, Nagar and Al-Mubaid25 evaluated the 

performances of multiple methods at classifying interacting protein pairs using confusion 

matrix. Specifically, they drew the Receiver Operating Characteristic (ROC) curves and 

calculated the area under the curve (AUC). 

  In this paper, we present GOGO that is also based on GO DAG topology instead of IC 

which means it is stable (the advantage of Wang’s method that avoids the drawbacks of 

using IC). Moreover, GOGO also has the advantages of IC-based methods by considering 

the number of children nodes. This is based on our statistical finding that the number of 

children of a GO term is negatively correlated with the IC value of the GO term. Moreover, 

GOGO can calculate functional similarities between gene pairs or among a list of genes, in 

which each of the genes has one or more GO terms. GOGO can also cluster multiple genes 

based on their functional similarities by using the affinity propagation clustering 

algorithm33. 
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CHAPTER II – RESULTS 

2.1 Correlation between information content and the number of children  

In Figure 1.1, based on the UniProt34 corpus including ~43 million proteins, we 

plotted the relationship between the log of average IC and the number of children nodes 

in the GO DAG. To better illustrate the relationship, we removed some data points with 

extreme values, such as the number of children nodes > 100 (9, 11, and 5 points removed 

for BPO, MFO, and CCO, respectively). These points have low average IC values that 

are close to zero. We found strong negative correlations between the average IC and the 

number of children nodes. Spearman’s rank correlation coefficients are -0.917, -0.825, 

and -0.855 for BPO, CCO, and MFO, respectively. Pearson’s correlation coefficients are 

-0.851, -0.73, and -0.761, respectively. Based on this finding, we used the number of 

children nodes to indicate information content in our method, which avoided calculating 

IC from an annotation corpus. 

 

Figure 2.1 The scatter plot of the log of average IC of GO terms and the number of 

children nodes in GO DAG. 

(A-C) The plots based on BPO, CCO, and MFO, respectively. Spearman’s rank and Pearson’s correlation coefficients are shown in 

the plots. IC is generated from the UniProt corpus including ~43 million proteins. 
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2.2 Examples showing the advantage of GOGO 

Figure 1.2 shows a four-layer DAG containing the root node in MFO 

GO:0003674 and some children nodes in the first three levels below the root (based on 

the GO definition released on September 10, 2016). As shown in Table 1.1, GOGO 

generates 0.387 and 0.529 for GO term pair (GO: 0046572 and GO: 0016829) and pair 

(GO: 0004872, GO: 0031992). IC-based methods (i.e. Resnik, Lin, Li et al., Relevance, 

Nunivers) generate different similarity values: Resnik outputs 0.075 and 0.232, whereas 

Wang’s method generates 0.590 for both pairs (semantic similarities of all methods 

except GOGO were calculated and normalized by A-Da-GO24 with default settings). 

Obviously, Wang’s method cannot distinguish these two pairs, but IC-based methods can. 

GOGO can also tell the difference between these two pairs by considering the number of 

children nodes of the ancestor nodes when calculating semantic contribution. As shown 

in Fig. 1.2, node GO:0003824 has 28 other children nodes, whereas GO:0060089 has no 

other children node. This makes the semantic contribution from GO:0003824 to the pair 

(GO: 0046572, GO: 0016829) much less than the semantic contribution from GO: 

0060089 to pair (GO: 0004872, GO: 0031992). In this regard, GOGO has the advantage 

of IC-based methods but with no need to calculate IC, which makes the semantic 

similarity values stable and saves computational time. 
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Figure 2.2 A partial GO DAG of MFO illustrating examples of calculating semantic 

similarity. 

Table 2.1 Semantic similarities between GO-term pairs in the example of Fig. 1.2. 

 Sim(0046572, 

0016829) 

Sim(0004872, 

0031992) 

Sim(0060089, 

0001618) 

Sim(0060089, 

0004872) 

Resnik 0.075 0.232 0.232 0.232 

Lin 0.121 0.547 0.399 0.730 

Li 0.071 0.445 0.489 0.894 

Relevance 0.092 0.541 0.483 0.884 

Nunivers 0.075 0.414 0.323 0.809  

Wang 0.590 0.590 0.477 0.643 

GOGO 0.387 0.529 0.455 0.592 

IC-based methods (i.e., Resnik, Lin, Li et al., Relevance, and Nunivers) and hybrid method (i.e., Wang) were executed in order to 

compare with GOGO. 

Another example is to compare pair (GO:0060089, GO:0004872) and pair 

(GO:0060089, GO:0001618), which are between a parent node (GO:0060089) and its 

child node (GO:0004872) and between a grandparent node (GO:0060089) and its 
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grandchild node (GO:0001618). Table 1.1 shows that Resnik’ method fails to tell the 

difference of two pairs and generates the same semantic similarities. Other IC-based 

methods, GOGO, and Wang’s method can assign a higher similarity score to pair (GO: 

0060089, GO: 0004872), the parent-children case, which is consistent with human 

perspectives that a parent node and its child node should be semantically closer than the 

grandparent node and its grandchild node. 

2.3 Comparisons between GOGO and other existing methods 

Table 1.2 shows the Pearson’s correlation coefficients between GOGO’s semantic 

similarities and other seven popular methods including Wang’s method22, GO-

universal23,24, Resnik’s method13, Lin’s method15, Li et al.18, Relevance18, and 

Nunivers19. For each gene ontology, the correlation matrix was generated based on 

randomly selected 500 GO-term pairs with semantic similarity greater or equal to 0.5 

(based on Wang’s method). We set this threshold because random pairs usually have 

extremely low similarities that do not well represent a method’s performance. We also 

generated the correlation matrices based on random GO-term pairs without threshold (see 

Table A.1). It can be noticed that GOGO and Wang’s method have the highest 

correlation; and the correlations between IC-based methods are larger than 0.9 in BPO. 

We also found that GOGO and IC-based methods were better correlated than Wang’s and 

IC-based methods in BPO. 

Table 2.2 The Pearson’s correlation matrices between GOGO and other methods in 

BPO, CCO, and MFO.  

BPO GOG

O 

Wang et al. Resnik GO-

universal 

Lin Li et al. Nunivers Relevance 

GOGO 1.00 0.77 0.42 0.42 0.49 0.50 0.46 0.49 
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Table 1.2 (continued). 

Wang et al.  1.00 0.39 0.61 0.45 0.46 0.45 0.45 

Resnik   1.00 0.25 0.89 0.91 0.91 0.89 

GO-universal    1.00 0.24 0.25 0.26 0.24 

Lin     1.00 1.00 0.96 1.00 

Li et al.      1.00 0.97 1.00 

Nunivers       1.00 0.96 

Relevance       
 

1.00 

CCO GOGO Wang et al. Resnik GO-

universal 

Lin Li et al. Nunivers Relevance 

GOGO 1.00 0.80 0.27 0.39 0.36 0.37 0.30 0.36 

Wang et al.  1.00 0.44 0.71 0.38 0.40 0.38 0.38 

Resnik   1.00 0.33 0.82 0.85 0.85 0.82 

GO-universal    1.00 0.10 0.14 0.18 0.10 

Lin     1.00 1.00 0.96 1.00 

Li et al.      1.00 0.97 1.00 

Nunivers       1.00 0.96 

Relevance        1.00 

MFO GOGO Wang et al. Resnik GO-

universal 

Lin Li et al. Nunivers Relevance 

GOGO 1.00 0.82 0.32 0.47 0.42 0.42 0.36 0.41 

Wang et al.  1.00 0.46 0.67 0.43 0.45 0.41 0.43 

Resnik   1.00 0.34 0.85 0.89 0.87 0.86 

GO-universal    1.00 0.26 0.27 0.28 0.26 

Lin     1.00 1.00 0.96 1.00 

Li et al.      1.00 0.97 1.00 

Nunivers       1.00 0.96 

Relevance        1.00 

For each gene ontology, Pearson’s correlation is generated based on 500 randomly-selected GO-term pairs with semantic similarities 

(based on Wang’s method) ≥ 0.5. 

2.4 Comparison of semantic values of sibling terms at different depths 

Table 1.3 illustrates the average, standard deviation, and 95% confidence interval 

of the semantic similarity between sibling terms at depth three and seven. For BPO, we 

randomly selected 200 sibling GO-term pairs at depth three and seven in GO DAG. At 

the relatively shallow depth, we found that semantic similarity of sibling pairs calculated 

by GOGO had the smallest standard deviation. As the depth increased, the standard 
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deviation of GOGO, IC-based methods, and GO-universal significantly changed, which 

indicated that semantic similarities of the methods considering IC or the number of 

children could be affected by the depth in the GO DAG. 

Table 2.3 Mean, standard deviation, and 95% confidence interval of the semantic 

similarity between sibling GO terms in the GO DAG of BPO at depths 3 and 7. 

BPO 

Depth = 3 Depth = 7 

Mean 
Standard 

deviation 

95% confidence 

interval 
Mean 

Standard 

deviation 

95% confidence 

interval 

GOGO 0.29 0.1 (0.281, 0.308) 0.53 0.15 (0.506, 0.546) 

Wang 0.33 0.15 (0.312, 0.353) 0.67 0.16 (0.645, 0.69) 

Resnik 0.33 0.18 (0.297, 0.357) 0.61 0.1 (0.592, 0.627) 

GO-

universal 
0.13 0.13 (0.111, 0.149) 0.43 0.23 (0.398, 0.465) 

Lin 0.52 0.24 (0.484, 0.564) 0.8 0.11 (0.779, 0.82) 

Li 0.46 0.24 (0.417, 0.496) 0.74 0.11 (0.722, 0.763) 

Nunivers 0.47 0.24 (0.431, 0.511) 0.75 0.13 (0.726, 0.772 

Relevance 0.51 0.25 (0.473, 0.556) 0.8 0.11 (0.779, 0.82) 

The result was generated based on 200 randomly-selected GO term pairs. 

2.5 Evaluation of GOGO by clustering genes in yeast pathways 

We used six yeast biochemical pathways retrieved from the SGD32 to evaluate 

GOGO based on GO term semantic similarities. These six pathways are “tryptophan 

degradation”, “mevalonate pathway”, “phenylalanine degradation”, “removal of 

superoxide radicals”, “valine degradation”, and “mannose degradation” (see Figs A.1-

A.5). The GO terms for each gene were also downloaded from the SGD database. These 

GO terms may be annotated with various evidence codes. In our evaluation, we only used 

the GO terms with experimental evidence codes including "EXP", "IDA", "IPI", "IMP", 

"IGI" and "IEP", i.e., not using the GO terms with evidence codes indicating they were 

annotated based on e.g., computational predictions. Figure 1.3 shows the “tryptophan 

degradation” pathway; and Figs A.1-A.5 show the other pathways. 
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Figure 2.3 The tryptophan degradation pathway retrieved from the SGD database.  

 
ARO8 and ARO9 belong to the aromatic amino acid aminotransferase cluster; PDC1, PDC5, PDC6, and ARO10 belong to the 

decarboxylase cluster; and ADH1~5 and SFA1 belong to the alcohol dehydrogenase cluster. This Figure was made by modifying the 

image downloaded from the website of the SGD database. 

We tested GOGO, GOGOregulates (a version of GOGO that also considers the 

“regulate” relationship), Wang’s, and Resnik’s methods on the same pathway 

“tryptophan degradation” as Wang et al.22 previously performed in their evaluations. 

Tables A.2-A.4 online show the similarities between each gene pair by GOGO, Wang’s, 

and Resnik’s methods. Because Wang’s method used the pairwise mixing strategy ABM, 

in order to compare with Wang’s method we used the same mixing strategy for all other 

methods. 

The clustering results of the pathway “tryptophan degradation” are shown in 

Table 1.4, which indicates that only the clustering results of GOGO and GOGOregulates are 

completely consistent with the pathway retrieved from the SGD. We performed the same 

procedures on the other five pathways in BPO, CCO, and MFO; and we showed the 

clustering results from GOGO and other methods in Tables A.5-A.9 (some genes of 

pathways do not have available GO terms in certain ontologies and therefore clustering 
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results are not included). We found that GOGO and GOGOregulates achieved the same 

performance; and the “regulates” relationships only have a small effect on functional 

similarities. Therefore, we only tested GOGO for the rest of the evaluations. 

Table 2.4 Gene clustering results in the tryptophan degradation pathway. 

 GOGO GOGOreguates Wang Resnik SGD 

 

 

 

 

 

 

BPO 

Clustering 

Result 

 

ADH1 ADH1 ADH1 ADH1 ADH1 

ADH2 ADH2 ADH3 ADH2 ADH2 

ADH3 ADH3 ADH5 ADH3 ADH3 

ADH4 ADH4  ADH4 ADH4 

ADH5 ADH5 ADH2 ADH5 ADH5 

SFA1 SFA1   SFA1 

  ADH4 SFA1  

PDC1 PDC1 SFA1  PDC1 

PDC5 PDC5 PDC6 PDC1 PDC5 

PDC6 PDC6 ARO10 PDC5 PDC6 

ARO10 ARO10  PDC6 ARO10 

  PDC1 ARO10  

ARO8 ARO8 PDC5  ARO8 

ARO9 ARO9  ARO8 ARO9 

  ARO8 ARO9  

  ARO9   

GOGO, GOGOregulates, Wang, Resnik are the methods used to calculate semantic similarities. SGD indicates the true clusters based on 

the pathway downloaded from the SGD database. 

2.6 Testing the ability to correctly cluster genes with randomly selected genes added 

In the previous section, we applied semantic similarity methods only on the genes 

that exist in the target pathway. However, in order to test the performance of these 

methods when genes outside of the target pathway are added, we performed another 

round of evaluations. This time, we randomly selected 50% more genes (e.g., if the target 
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pathway has 10 genes, we add 10 * 50% = 5 genes as input to the methods) from all other 

SGD pathways. We evaluated the performance using Matthew’s correlation coefficient 

(MCC) (for details about the evaluation procedure see “Evaluating the clustering 

performance using Mathew’s correlation coefficient” in Chapter three). 

In Figure 1.4, we use violin (showing the distribution of the data) and box plot to 

display the MCC scores for pathways in BPO (the calculations of the other seven 

methods were performed by the tool A-DaGO-Fun24 with default settings). Figure 1.4A 

shows the MCC scores calculated by GOGO and other seven methods before adding any 

outside genes, whereas Fig. 1.4B after adding outside genes. We also tested different 

mixing strategies in Fig. 1.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 

Figure 2.4 Violin and box plots of average MCC scores on pathways in BPO. 

 

(A) The MCC scores calculated when no outside genes were added i.e., only using the genes originally existing in the target pathways. 

(B) The MCC scores after randomly-selected outside genes were added. (C) The MCC scores after randomly-selected outside genes 

from the same EC category were added, i.e., the first two digits of EC numbers are the same. 

From Figure 1.4A, we can find that GOGO can successfully classify genes using 

ABM, BMA, and BMM strategies. From Figure 1.4B, we also find that the performance 

of other methods drops significantly when outside gene are added. However, GOGO can 

still maintain a good performance indicating that GOGO performs most robustly than 

other methods in the selected pathways.  

Moreover, we also performed another evaluation for a header configuration. For 

each cluster, we randomly selected 50% outside genes with top two levels of Enzyme 

Commission (EC) number35 are the same as the genes in the cluster. For example, we 
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selected a gene with EC number starting with 2.6 as outsider gene for the cluster 

originally containing ARO8 (EC number 2.6.1.28) and ARO9 (EC number 2.6.1.27). 

Figure 1.4C, a header situation than Fig. 1.4B, shows that GOGO still can successfully 

generate correct clusters using ABM, BMA, and BMM strategies in BPO. Figures A.6-

A.7 show the MCC scores on the same data set in CCO and MFO, in which we do not see 

the same good performance. The reason of this may be that the available GO terms in 

CCO and MFO are much less than the ones in BPO.  

2.7 Comparison of execution time 

Table A.10 shows the running time of GOGO and other six popular methods based on 

randomly-selected 100 pairs of BPO GO terms. The running time of GOGO was obtained 

based on the stand-alone version of GOGO; and the other methods’ running time was based 

on A-DaGO-Fun24. Results show that the speed of GOGO is comparable with other 

methods. Notice that the time in Table A.10 does not include the pre-calculation of IC 

values for the IC-based methods, which e.g., takes ~3,781 seconds when UniProt is used 

as the annotation corpus.  
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CHAPTER III - METHODS 

3.1 Calculating IC from a large annotation corpus 

The IC of a GO term is calculated as: 

𝐼𝐶(𝑓) = − log 𝑃 (𝑓)                                                       (1) 

where P(f) denotes the probability of the presence of the GO term f and its descendants. 

To calculate this probability, we divide the number of occurrences of GO term f 

(including its descendent GO terms) in the UniProt by the total number of occurrences of 

all GO terms in the same corpus. 

3.2 Semantic similarity between two GO terms 

We retrieved the semantic meanings and relationships between GO terms from 

the GO consortium1 released on September 10, 2016. Among all relationships between 

GO terms, the “is_a”, “part_of”, and “regulates” relationships are the most common ones. 

If A “is_a” B, it means that A is a subtype of B. If C is “part_of” D, it means that C and 

D are having a part-whole relationship. If E regulates F, it means that E directly affects 

the process of F. Notice that only BPO and MFO have the “regulates” relationship 

defined by the Gene Ontology. As for our tool GOGO, we consider “is_a” and “part_of” 

relationships. We also implemented another version of GOGO named GOGOregulates that 

considers all three relationships in order to compare their performances. Figure 2.1 

illustrates an example showing how semantic similarity between two GO terms is 

calculated by GOGO. It shows the GO DAG of GO:0005975, GO:1901135, and their 

ancestors. The arrows shown in Fig. 2.1 represent “is_a” relationships. For each ancestor 

in Fig. 2.1, we also show the number of children nodes. 

Figure 3.1 A partial GO DAG of GO:0005975 and GO:1901135.  
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It shows the ancestor nodes for GO terms carbohydrate metabolic process GO:0005975 and carbohydrate derivative metabolic process 

GO:1901135. 

    Given a GO term A, the GO DAG of A and its ancestors are defined as 

DAGA =  (A,  TA, EA), where TA is the set of GO terms including A and its ancestors, and 

EA is the set of links (i.e. edges) among nodes of TA in DAGA. To measure the semantic 

contribution of ancestors to A in the GO DAG, we first calculate the weight for semantic 

contribution according to the type of links and the number of children:  

we = 1 (c + nc(t))⁄ + d                                                     (2) 

where ‘nc(t)’ is the total number of children for GO term ‘𝑡’; and both ‘c’ and ‘d’ 

are constant parameters. The parameter ‘d’ inherited from Wang’s method refers to how 

strong the semantic contribution is passing through the link, which depends on the type of 

link between a GO term and its parent nodes. We assign ‘d’ as 0.4, 0.3, and 0.2 for ‘is-a’, 

‘part-of’, and ‘regulates’, respectively. The parameter ‘c’ is subjected to the range of a 

valid weight (i.e. 0 < we ≤ 1) based on Eq. 2, from which we can conclude that ‘c’ 
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needs to be ≥ 0.67. We analyzed the performance of GOGO and the similarity between 

GOGO and other seven methods on different values of parameter ‘c’. This analysis was 

performed on 500 randomly-selected GO-term pairs with the condition that their 

semantic similarities based on Wang’s method are ≥ 0.5. Figure A.8A shows the 

distribution of semantic similarities calculated by GOGO when c equals to 0.67, 1, 2, and 

3, from which we can find that different c values do not cause a big difference. Figure 

A.8B shows the Pearson’s correlation coefficient between GOGO and other methods 

when a set of ‘c’ values are applied. With the increase of ‘c’, the correlations between 

GOGO and other methods change slightly. In general, GOGO and other methods have 

the highest correlations when ‘c’ = 0.67. Therefore, we assign ‘c’ to 0.67, which is also 

the minimum value to make ‘w’ valid. 

    For each term in DAGA =  (A,  TA, EA), it has the semantic contribution to the 

target term A, which is defined as S-value as in Wang’s method22: 

{
SA(𝐭) = 𝟏                                                                                        𝐢𝐟 𝐭 = 𝐀 

SA(𝐭)  = 𝐦𝐚𝐱{ we ∗ SA(t′)|t′ ∈ 𝐜𝐡𝐢𝐥𝐝𝐫𝐞𝐧(𝐭)}                 𝐢𝐟 𝐭 ≠ 𝐀
                     (3) 

In this way, GOGO considers the semantic contribution of ancestor terms to term 

A according to the number of children terms and the depth of ancestor terms, which 

inherit both the advantages of IC-based methods and hybrid method. The semantic value 

of GO term A is the summation of S-values in DAGA: 

SV(A) = ∑ SA(t)t∈TA
                                                            (4) 

Table A.11 shows the S-value of all GO terms in DAGA =  (A,  TA, EA), when A is 

carbohydrate metabolic process GO:0005975. We also calculated the S-value of 



 

20 

carbohydrate derivative metabolic process GO:1901135 in Table A.12. Both Tables A.11 

and A.12 show the S-values calculated by GOGO and Wang’s method. 

Formally, given DAGA =  (A,  TA, EA) of GO term A and DAGB =  (B,  TB, EB) of 

GO term B, the semantic similarity between GO term A and GO term B is defined as 

follows, which is the same as in Wang’s method22: 

SGO(A, B) =
∑ (SA(t)+SB(t))t∈TA∩TB

SV(A)+SV(B)
                                                 (5) 

where t is the common GO terms existing in both TA and TB; SA(t) and SB(t) are 

the S-values of t based on TA and TB, respectively. Equation 5 measures the S-value 

through common ancestors of term A and term B normalized by the semantic values of 

term A and term B.  

    According to the example displayed in Fig. 2.1 and Tables A.11-A.12, the 

semantic similarity of carbohydrate metabolic process GO:0005975 and carbohydrate 

derivative metabolic process GO:1901135 is SGO(0005975, 1901135) = 0.368.  

3.3 Functional similarity of genes 

Each gene usually is annotated with multiple GO terms from various ontologies (BPO, 

CCO, and MFO), which means that a gene participates in multiple biological processes, 

has different cellular locations, or has different molecular functions. The functional 

similarity of genes usually is a combination of semantic similarities of GO terms. There 

are many strategies of mixing GO term semantic similarities into a gene functional 

similarity, such as Average (Avg)27, Best-Match Average (BMA)23,28, Average Best-

Matches (ABM)22,29, Maximum (Max)30 and Best Match Maximum (BMM)16. Based on 

our evaluations (Fig. 1.4, Figs A.6-A.7), we find that BMA and ABM have the best 

performance among five mixing strategies. Therefore, we choose to use ABM as the default 
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mixing strategy in GOGO. Given a gene G1  with m GO terms go11, go12, … go1m and 

number i (any integer between 1 and m), the semantic similarity between another GO term 

go and G1 is defined as: 

Sim(go, 𝐺1) =  (SGO(go, go1i))
1≤i≤m

max  
                                                  (6) 

where i can be any integer between 1 and m. Given a gene G2 with n GO terms go21,

go22, … go2n, the functional similarity defined by ABM between G1 and G2 is: 

Sim(G1, G2) =
∑ Sim1≤i≤m (go1i,G2)+∑ Sim1≤j≤n (go2j,G1)

m+n
                                   (7) 

where j can be any integer between 1 and n. Equations A.1-A.4 are the definitions of Avg, 

Max, BMA, BMM, respectively. Table A.13 shows the annotated GO terms of gene PDC5 

and gene PDC6 retrieved from the SGD32. Table A.14 shows the functional similarities 

between genes PDC5 and PDC6 calculated based on their GO terms in BPO.  

3.4 Parameters of the clustering algorithm 

We clustered genes using the affinity propagation algorithm33 with the default 

parameters, i.e., maximum iterations 500, convits 50, and dampfact 0.95. The preference 

value is assigned as the median of functional similarities of gene pairs, which influences 

the number of clusters. In terms of the pathway “Tryptophan degradation”, we also tested 

larger values for the number of maximum iteration and smaller dampfact values. 

However, the clustering results were not affected by these changes. 

3.5 Evaluating the clustering performance using Mathew’s correlation coefficient 

To evaluate the performance after adding noise genes, we manually added one 

noise cluster of genes to the target pathway, which only contains the randomly-selected 

outside genes. In other words, all outside genes are in a new cluster besides the other 
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clusters originally existing in the target pathway. After that, we calculated true positive 

(TP), true negative (TN), false positive (FP), and false negative (FN) in terms of each 

gene in the pathway including the outside genes. For example, if the target pathway 

originally contains three genes: gene A, gene B, and gene C; and gene D is a newly-

added outside gene, we calculate TP, TN, FP, and FN for each of the genes A, B, C, and 

D. For gene A, we check genes B, C, and D. If genes A and B exist in the same cluster in 

the original target pathway and are classified into the same cluster by GOGO or other 

methods, we consider this a true positive. In this way, we calculate an overall TP for gene 

A after looking at its relationship with genes B, C, and D. Similarly, we calculate TN, FP, 

and FN. Furthermore, we calculate the Matthew’s correlation coefficient (MCC)36 as: 

𝑀𝐶𝐶 =  
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+ 𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                                                (8) 

The average MCC of a cluster is the average value over all genes in the cluster. 

All MCC scores range between [-1, 1] where 1 represents a perfect prediction; 0 

represents no better than random prediction; and -1 represents total disagreement between 

prediction and observation. Table A.15 shows an example of calculating the MCC score 

for the pathway “removal of superoxide radicals”. 
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CHAPTER IV – DISCUSSIONS 

We developed an improved hybrid algorithm GOGO that calculates semantic 

similarities between GO terms based on GO DAG topology. We find that GO terms with 

higher number of children nodes in the GO DAG usually have lower IC values. 

Therefore, by considering the number of children nodes in the GO DAG, GOGO can 

mimic the property of IC. Calculating IC from a large annotation corpus usually takes a 

lot of computational time. GOGO does not need to calculate IC but still has the advantage 

of using IC. 

GOGO can calculate the semantic similarities between one or more pair(s) of GO 

terms, functional similarities between one or more pair(s) of genes, and pairwise 

functional similarities between a list of genes. It can also classify multiple genes based on 

the functional similarities between genes. Besides the better measure of semantic 

similarities between GO terms, the gene clusters generated by GOGO are accurate and 

robust on selected SGD pathways in BPO. 

The stand-alone version of GOGO contains PERL source code of the algorithms. 

Detailed examples of input and output files are included in the website and stand-alone 

package. Because GOGO and GOGOregulates have very similar performances, we only 

release GOGO. 
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APPENDIX A – SUPPLEMENTARY DOCUMENTS 

Mixing strategies of gene functional similarity: 

Average: 

Sim(G1, G2) =
1 

m×n
∑ Sim1≤i≤m,1≤j≤n (go1i, go2j)                       (A.1) 

Maximum: 

Sim(G1, G2) = max{Sim(go1i, go2j)| 1 ≤ i ≤ m, 1 ≤ j ≤ n}                  (A.2) 

Best-Match Average: 

Sim(G1, G2) =
1

2
{

1

𝑚
∑ Sim1≤i≤m (go1i, G2) +

1

𝑛
∑ Sim1≤j≤n (go2j, G1)}               (A.3) 

Best Match Maximum: 

Sim(G1, G2) = max {
1

𝑚
∑ Sim1≤i≤m (go1i, G2),

1

𝑛
∑ Sim1≤j≤n (go2j, G1)}              (A.4) 

Figure A.1 The mevalonate pathway retrieved from the SGD database. 
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Figure A.2 The phenylalanine degradation pathway retrieved from the SGD database. 

 

Figure A.3 The removal of superoxide radicals pathway retrieved from the SGD 

database. 

   

Figure A.4 The valine degradation pathway retrieved from the SGD database. 
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Figure A.5 The mannose degradation pathway retrieved from the SGD database. 

 

Figure A.6 Violin and box plots of average MCC scores on pathways in CCO.  

 

(A) The MCC scores calculated when no outside genes were added i.e., only using the genes originally existing in the target pathways. 

(B) The MCC scores after randomly-selected outside genes were added. (C) The MCC scores after randomly-selected outside genes 

from the same EC category were added, i.e., the first two digits of EC numbers are the same. 
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Figure A.7 Violin and box plots of average MCC scores on pathways in MFO.  

 
(A) The MCC scores calculated when no outside genes were added i.e., only using the genes originally existing in the target pathways. 

(B) The MCC scores after randomly-selected outside genes were added. (C) The MCC scores after randomly-selected outside genes 

from the same EC category were added, i.e., the first two digits of EC numbers are the same. 
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Figure A.8 The performance of GOGO on different values of parameter ‘c’.  

 

Figure 8A is the distribution of semantic similarity of GO terms when c equals to 0.67, 1, 2, and 3. Figure 8B is the Pearson’s 

correlations coefficient between GOGO and other methods at different values of parameter ‘c’. This analysis is performed on 500 

randomly-selected GO-term pairs with semantic similarities of Wang’s method ≥ 0.5. 
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Table A.1 Pearson’s correlation coefficient matrices of methods. 

BPO GOGO Wang et al. Resnik GO-universal Lin Li et al. Nunivers Relevance 

GOGO 1.00 0.93 0.72 0.77 0.72 0.74 0.71 0.72 

Wang et al. 
 

1.00 0.81 0.80 0.82 0.82 0.81 0.82 

Resnik 
  

1.00 0.61 0.99 0.99 0.99 0.99 

GO-universal 
   

1.00 0.59 0.60 0.60 0.59 

Lin 
    

1.00 1.00 1.00 1.00 

Li et al. 
     

1.00 0.99 1.00 

Nunivers 
      

1.00 1.00 

Relevance 
       

1.00 

CCO GOGO Wang et al. Resnik GO-universal Lin Li et al. Nunivers Relevance 

GOGO 1.00 0.90 0.70 0.67 0.73 0.72 0.71 0.72 

Wang et al. 
 

1.00 0.80 0.74 0.80 0.78 0.79 0.79 

Resnik 
  

1.00 0.48 0.97 0.97 0.97 0.97 

GO-universal 
   

1.00 0.49 0.48 0.48 0.48 

Lin 
    

1.00 1.00 0.99 1.00 

Li et al. 
     

1.00 0.99 1.00 

Nunivers 
      

1.00 0.99 

Relevance 
       

1.00 

MFO GOGO Wang et al. Resnik GO-universal Lin Li et al. Nunivers Relevance 

GOGO 1.00 0.87 0.68 0.65 0.73 0.74 0.70 0.73 

Wang et al. 
 

1.00 0.82 0.88 0.84 0.81 0.82 0.82 

Resnik 
  

1.00 0.81 0.97 0.97 0.98 0.97 

GO-universal 
   

1.00 0.79 0.75 0.78 0.77 

Lin 
    

1.00 0.99 0.99 0.99 

Li et al. 
     

1.00 0.98 1.00 

Nunivers 
      

1.00 0.99 

Relevance 
       

1.00 

Pearson’s correlations are between GOGO and other methods in BPO, CCO, and MFO. For each gene ontology, Pearson’s correlation 

coefficient is generated based on 500 randomly-selected GO-term pairs without threshold. 
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Table A.2 Similarity table of genes set of tryptophan degradation measured by GOGO in 

BPO. 

GOGO ARO9 ARO8 ARO10 PDC6 PDC5 PDC1 SFA1 ADH5 ADH4 ADH3 ADH2 ADH1 

ARO9 

 

1.000 0.353 0.360 0.368 0.368 0.323 0.322 0.265 0.351 0.299 0.322 

ARO8 

  

0.353 0.360 0.368 0.368 0.323 0.322 0.265 0.351 0.299 0.322 

ARO10 

   

0.791 0.736 0.736 0.525 0.503 0.543 0.542 0.494 0.503 

PDC6 

    

0.749 0.749 0.406 0.396 0.410 0.407 0.612 0.396 

PDC5 

     

1.000 0.392 0.547 0.432 0.404 0.392 0.547 

PDC1 

      

0.392 0.547 0.432 0.404 0.392 0.547 

SFA1 

       

0.524 0.566 0.587 0.516 0.524 

ADH5 

        

0.574 0.847 0.748 1.000 

ADH4 

         

0.642 0.546 0.574 

ADH3 

          

0.832 0.847 

ADH2 

           

0.748 

ADH1 
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Table A.3 Similarity table of genes set of tryptophan degradation measured by Wang’s 

method in BPO. 

Wang ARO9 ARO8 ARO10 PDC6 PDC5 PDC1 SFA1 ADH5 ADH4 ADH3 ADH2 ADH1 

ARO9 

 

1.000 0.544 0.532 0.546 0.546 0.485 0.473 0.470 0.516 0.461 0.461 

ARO81 

 

 
0.544 0.532 0.546 0.546 0.485 0.473 0.470 0.516 0.461 0.473 

ARO10 

 

  
0.845 0.805 0.805 0.663 0.653 0.679 0.684 0.640 0.653 

PDC6 

 

   
0.778 0.778 0.556 0.544 0.562 0.568 0.726 0.544 

PDC5 

 

    
1.000 0.559 0.687 0.562 0.592 0.562 0.687 

PDC1 

 

     
0.559 0.687 0.562 0.592 0.562 0.687 

SFA1 

 

      
0.643 0.695 0.687 0.629 0.643 

ADH5 

 

       
0.653 0.896 0.800 1.000 

ADH4 

 

        
0.711 0.633 0.653 

ADH3 

 

         
0.864 0.896 

ADH2 

 

          
0.800 

ADH1 

            

 

 

 

 

 

 

 

 

 

 

Table A.4 Similarity table of genes set of tryptophan degradation measured by Resnik’s 

method in BPO. 
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Resnik ARO9 ARO8 ARO10 PDC6 PDC5 PDC1 SFA1 ADH5 ADH4 ADH3 ADH2 ADH1 

ARO9  1.000 0.345 0.360 0.352 0.352 0.214 0.239 0.227 0.239 0.222 0.222 

ARO8   0.345 0.360 0.352 0.352 0.214 0.239 0.227 0.239 0.222 0.239 

ARO10    0.840 0.785 0.785 0.545 0.565 0.563 0.567 0.552 0.565 

PDC6     0.828 0.828 0.481 0.541 0.495 0.500 0.654 0.541 

PDC5      1.000 0.451 0.647 0.547 0.580 0.583 0.647 

PDC1       0.451 0.647 0.547 0.580 0.583 0.647 

SFA1        0.549 0.543 0.550 0.529 0.549 

ADH5         0.695 0.943 0.887 1.000 

ADH4          0.636 0.594 0.695 

ADH3           0.885 0.943 

ADH2            0.887 

ADH1 
 

           

 

 

 

 

 

 

 

 

Table A.5 Clustering results comparison of genes in mevalonate pathway. 

 GOGO GOGOregulates Wang Resnik SGD 

MFO ERG10 ERG13 ERG10 ERG13 ERG10 ERG13  ERG10 ERG13  ERG10 ERG13 

HMG2 HMG1 

 

HMG2 HMG1 

 

HMG2 HMG1 

IDI1 MVD1 

HMG2 HMG1 HMG2 HMG1 

 

ERG8 ERG12 ERG8 ERG12 ERG8 ERG12 ERG8 ERG12 

MVD1 IDI1 

ERG8 ERG12 

MVD1 IDI1 MVD1 IDI1 MVD1 IDI1 

Table A.6 Clustering results comparison of genes in phenylalanine degradation. 

 GOGO GOGOregulates Wang Resnik SGD 

BPO ARO8 ARO9 ARO8 ARO9 ARO8 ARO9 ARO8 ARO9 ARO8 ARO9 

PDC6 PDC1 PDC5 

ARO10 

PDC6 PDC1 

PDC5 ARO10 

ARO10 ADH4 

PDC6 SFA1 

ARO10 PDC1 

PDC5 PDC6 

PDC6 PDC1 PDC5 

ARO10 
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SFA1 

ADH1 ADH4 SFA1 

ADH3 ADH2 ADH5 

ADH3 ADH5 

ADH1 

ADH3 ADH5 

ADH1 

ADH3 ADH4 

ADH2 ADH5 

ADH1 

ADH1 ADH4 SFA1 

ADH3 ADH2 ADH5 

PDC1 PDC5 

ADH2 

Table A.7 Clustering results comparison of genes in removal of superoxide radicals. 

 GOGO GOGOregulates Wang Resnik SGD 

BPO CTT1 CTA1 CTT1 CTA1 SOD1 SOD1 CTT1 CTA1 

SOD2 SOD1 SOD2 SOD1 SOD2 CTT1 

CTA1  

SOD2 CTT1 

CTA1  

SOD2 SOD1 

MFO CTT1 CTA1 CTT1 CTA1 CTT1 CTA1 CTT1 CTA1 CTT1 CTA1 

SOD2 SOD1 SOD2 SOD1 SOD2 SOD1 SOD2 SOD1 SOD2 SOD1 

Table A.8 Clustering results comparison of genes in valine degradation. 

 GOGO GOGOregulates Wang Resnik SGD 

BPO PDC6 PDC1 

PDC5 

PDC6 PDC1 

PDC5 

PDC5 PDC1 SFA1 PDC6 PDC1 

PDC5 ADH4 ADH2 

PDC6 

PDC1 PDC5 

PDC6 

BAT1 BAT2 BAT1 BAT2 BAT1 BAT2 BAT2 BAT1 BAT1 BAT2 

ADH1 ADH4 

SFA1 ADH3 

ADH2 ADH5 

ADH1 ADH4 

SFA1 ADH3 

ADH2 ADH5 

ADH3 ADH5 

SFA1 ADH1 

ADH3 ADH4 

ADH2 ADH5 

ADH1 

ADH1 ADH4 

SFA1 ADH3 

ADH2 ADH5 

Table A.9 Clustering results comparison of genes in mannose degradation. 

 GOGO GOGOregulates Wang Resnik SGD 

MFO HXK2 GLK1 

HXK1 

HXK2 GLK1 

HXK1 

HXK2 GLK1 

HXK1 

HXK2 GLK1 

HXK1 

HXK2 GLK1 

HXK1 

PMI40 PMI40 PMI40 PMI40 PMI40 

Table A.10 Running times of different methods.  

 GOGO Wang Resnik Lin Li Nunivers Relevance 

Time(second) 0.78 2.95 1.11 1.19 1.18 1.26 1.25 

The calculation time of semantic similarities is measured by calculating 100 randomly selected GO term pairs in BPO. Pre-calculation 

of IC-based method costs 3,781 seconds when UniProt is used as the annotation corpus. All jobs are based on one CPU: Intel(R) 

Xeon(R) CPU E5-2650 v4 @ 2.20GHz. 

 

Table A.11 Weights for the edge from children nodes and S-values for GO:0005975. 

GO terms 0005975 0044238 0071704 0008152 0008150 

𝐰𝐞 (GOGO) Irrelevant 1 / (0.67 + 6) + 0.4 
= 0.55 

1 / (0.67 + 53) + 0.4 
= 0.419 

1 / (0.67 + 15) + 0.4 
= 0.464 

1 / (0.67 + 24) + 0.4 
= 0.441 

S-value 
(GOGO) 

1 0.550 0.419 0.255 0.112 

𝐰𝐞 (Wang) Irrelevant 0.8 0.8 0.8 0.8 

S-value 
(Wang) 

1 0.8 0.8 0.64 0.512 

# of children Irrelevant 6 53 15 24 
Weights of carbohydrate metabolic process GO:0005975 and its ancestor terms are calculated with both GOGO and Wang’s method. 
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Table A.12 Weights for the edge from children nodes and S-values for GO:1901135. 

GO terms 1901135 0071704 0008152 0008150 

𝐰𝐞 (GOGO) Irrelevant 1 / (0.67 + 53) + 0.4 = 
0.419 

1 / (0.67 + 15) + 0.4 = 
0.464 

1 / (0.67 + 24) + 0.4 = 
0.441 

S-value 
(GOGO) 

1 0.419 0.194 0.086 

𝐰𝐞 (Wang) Irrelevant 0.8 0.8 0.8 

S-value (Wang) 1 0.8 0.64 0.512 

# of children Irrelevant 53 15 24 

Weights of carbohydrate derivative metabolic process GO:1901135 and its ancestor terms are calculated with both GOGO and 

Wang’s method. 

Table A.13 Genes PDC5 and PDC6 and annotated GO terms in BPO. 

PDC5 

GO:0019655     glycolytic fermentation to ethanol 

GO:0006090     pyruvate metabolic process 

GO:0000949   aromatic amino acid family catabolic process to alcohol via Ehrlich pathway 

GO:0006569 tryptophan catabolic process 

GO:0006559 L-phenylalanine catabolic process 

PDC6 

GO:0006067 ethanol metabolic process 

GO:0000949   aromatic amino acid family catabolic process to alcohol via Ehrlich pathway 

GO:0006569 tryptophan catabolic process 

GO:0006559 L-phenylalanine catabolic process 

 

Table A.14 Functional similarities between genes PDC5 and PDC6 calculated based on 

their GO terms in BPO.  

             PDC5 

PDC6 

GO:0019655     GO:0006090     GO:0000949   GO:0006569 GO:0006559 

GO:0006067 0.291 0.073 0.105 0.036 0.070 

GO:0000949   0.142 0.116 1 0.397 0.408 

GO:0006569 0.103 0.056 0.397 1 0.185 

GO:0006559 0.114 0.155 0.408 0.185 1 
Based on the equation (7) in the manuscript, the functional similarity given by GOGO between genes PDC5 and PDC6 is (0.291 + 

0.155 + 1 + 1 + 1 + 0.291 + 1 + 1 + 1) / (5 + 4) = 0.749. 
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Table A.15 MCC of cluster calculation table for pathway “removal of superoxide 

radicals”.  

Note: ‘C’ refers to 

Cluster, ‘NA’ refers to 

gene’s MCC does not 

exist. 

True condition 

C 1 C 2 

CTA1 CTT1 SOD2 SOD1 

Predicted 

condition 

C 1’ CTA1  TP FP TN 

CTT1 TP  FP TN 

SOD2 FP FP  FN 

C 2’ SOD1 TN TN FN  

MCC of gene 0.5 0.5 -1 NA 

MCC of cluster 0.5 -1 
There are two clusters for each true and predicted condition, i.e. C1 and C2 for true condition; C1’ and C2’ for predicted condition. 

CTA1, CTT1, SOD2, and SOD1 are gene names. The nodes of genes are filled in line by line. Take the line of CTA1 of C1’ in 

predicted condition for example, CTA1 is in the same cluster as CTT1, which is same as true condition. Thus, the node of CTA1 and 

CTT1 is true positive (TP). CTA1 and SOD2 are not in the same cluster but are clustered into the same cluster C1’. Therefore, the 

node of CTA1 and SOD2 is false positive (FP). Etc. MCC of genes are calculated based on each column of genes by Formula 8 in 

main manuscript. The MCC of cluster is the average of MCC of genes.
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