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ABSTRACT 

THE ROLE OF LANDSCAPE IN THE DISTRIBUTION OF 

DEER-VEHICLE COLLISIONS IN TWO COUNTIES 

IN SOUTH-CENTRAL MISSISSIPPI 

by Jacob Jeremiah McKee 

August 2011 

The number of deer killed by vehicle collisions each year in the United States 

exceeds the number of deer killed annually through hunting. Deer-vehicle collisions 

(DVCs) have a vast negative impact on the economy, traffic safety, and general well

being of otherwise healthy deer populations. To mitigate DVCs, it is imperative to gain a 

better understanding of the factors that play a role in their spatial distribution. Much of 

the existing research has been inconclusive, pointing to a variety of factors that cause 

DVCs that are specific to study site and region. Very little DVC research has been 

undertaken in the southern United States, which makes the region particularly important 

with regard to this issue. Through the use of GIS, remotely sensed imagery, and 

statistical analysis, this thesis evaluates landscape factors that contribute to the spatial 

distribution of DVCs within Forrest and Lamar Counties in Mississippi. 
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CHAPTER I 

INTRODUCTION 

1.1. Overview 

1 

Animal-vehicle collisions are one of the most common and dramatic forms of 

human-environment interaction (Gonser et al. 2009), posing a threat to traffic safety and 

animal welfare, and serving as a drain on economic development and conservation 

initiatives (Seiler 2005). In recent decades, animal-vehicle collisions, more specifically 

deer-vehicle collisions (DVCs), have become a matter of critical importance, given the 

significant impact of these collisions on wildlife, society, and the economy (Hussain et aJ. 

2007). While the number of vehicles on U.S. roadways increased by 7 percent between 

2004 and 2009, DVCs increased by 18.3 percent. Between July of 2007 and June of 

2009, over 2.4 million DVCs occurred on U.S. roadways, the equivalent of 100,000 

DVCs per month, or one DVC every 26 seconds (State Farm Insurance 2009) 

Published research suggests that the primary factors underlying this dramatic 

increase in DVCs are twofold, one being the explosive growth in the North American 

White-Tailed Deer ( Odocoileus virginianus) population over the past 50 years, and the 

other being the corresponding increase in human populations (Gonser and Horn 2007). 

As a result of human population growth, traffic volume has increased and transportation 

networks have expanded to satisfy increasing needs and demand (Hubbard et al. 2000). 

The enormous white-tailed deer population has only recently become an issue, as 

the North American population was almost extinct in 1900 as a result of two historic 

periods of over-harvesting. The most recent of these occurred in the latter half of the 191
h 

century when the North American White-Tailed Deer population declined from an 
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estimated 18 million to a mere 500,000 individuals (Gonser and Horn 2007). Better 

management and reduction of natural predators (Rawinski 2008) helped the population to 

recover in the U.S. during the 201
h century. Contemporary estimates now place the 

population at more than 20 million individuals (Hubbard et al. 2000). 

Another factor in the revival of the white-tailed deer was human migration from 

rural areas to cities, which left abandoned agricultural land where deer thrived (Gonser 

and Horn 2007). Unlike other species that do not tolerate environmental disturbance and 

land fragmentation, deer flourish in anthropogenic landscapes, and especially mosaics of 

forest and grassland. White-tailed deer are incredibly adaptable generalists endowed with 

exceptional survival skills. They need forested areas for protection, but thick canopies do 

not offer sufficient understory growth that is their preferred browse. They have therefore 

become adapted to exploiting human-altered environments, feeding in agricultural fields, 

lawns, and road sides (Rawinski 2008). Deer also take advantage of areas of secondary 

forest regeneration. As woody seedlings and grasses become the dominant plant species, 

deer turn to these areas as prime habitat for browsing. Likewise, deer are attracted to 

clear-cut areas and roads, in part because they create edge habitat. Most species tend to 

avoid ecological edges, but abrupt transitions from forest to grass communities keenly 

attract deer (Gonser and Horn 2007). Active and fallowed farmland, new road cuts, and 

clear-cut forest lands are key examples of how human activity creates heterogeneous 

landscapes (Turner 2005). Not only do these disturbances create a diverse mosaic of 

plant communities, but they also create patterns that can be useful in understanding where 

and why DVCs occur. 
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A growing deer population, however, is only one factor in the recent increase in 

DVCs. The expansion of road networks is also involved. Transportation networks 

constitute the most extensive human-built infrastructure in the United States (Malo et al. 

2004). Road expansion leads to habitat fragmentation and increased edge habitat, which 

fundamentally alter how local ecosystems operate (Forman & Alexander 1998). Unlike 

many other species, deer are not adversely impacted by fragmentation and proliferation 

of edge habitat. In fact new road construction produces their ideal habitat by expanding 

or creating new grazing areas with easily accessible food sources (Gonser and Hom 

2007). During the times of day when deer graze, primarily around dawn and dusk, deer 

routinely cross roads encompassed within their home range, intermingling with traffic as 

they move through open road corridors (Putnam 1997). Although roadside environments 

may appear to be ideal foraging habitat for deer, in reality they act as ecological traps. 

Millions of deer are killed annually along roads in the U.S. as they graze on or near roads 

(Coffin 2007). As seen in Figure 1, Conover (1997) hypothesized that when a small deer 

population is increasing, so will its net value with regard to monetary gains from hunting 

or simply from the pleasure of people seeing wild deer in rural settings. When a large 

deer population continues to grow, however, DVCs become more common, leading to 

negative aspects that outweigh these positive values. Rather than symbolizing majestic 

nature, deer are increasingly seen as pests in need of management or removal (Conover 

1997). 
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Stun of positive values 

Maximal net value 

(Optimal population) 

Stun of negative values 

Deer Populations 

Figure 1. Net Value of Deer with Population Growth, from Conover (1997, p. 303). 

1.2. Statement of the Research Problem 

Over the past 30 years, DVCs have increased dramatically as a result of more vehicle 

traffic and higher populations of deer (Seiler 2005). Record deer populations can be 

attributed in part to the decline of hunting in the U.S. From 1991-2001, 5 percent of the 

total population of the U.S. participated in deer hunting. Between 2001 and 2006, the 

number of deer hunters declined by 4 percent (U.S. Fish and Wildlife Service 2006). 

While Mississippi has the third largest population of white-tailed deer (Woods 2006), 

estimated to be around 1.75 million in number, the state saw the largest decrease (-6.8%) 

in hunting license sales between 2007 and 2008 (Northway 2010). 



5 

The results and conclusions of previous studies are mixed regarding which factors 

play the most crucial role in DVC location and occurrence. Most agree that DVCs do not 

have a random spatial distribution (Seiler 2005, Gonser and Horn 2007, Gonser et al. 

2009), but instead are associated with roads in close proximity to forested areas (Farrell 

and Tappe 2006). Less conclusive are findings that link vehicle speed and traffic volume 

to DVCs (Hubbard et al. 2000). Farrell and Tappe (2006) showed that the distribution of 

DVCs in Ohio was negatively related to cropland, whereas Gonser and Horn (2009) 

found the opposite in Indiana. This apparent contradiction in the role of farmland in 

DVC distribution is likely due to variations of deer grazing behavior between these two 

states. 

The growing presence of deer in human environments and increases in DVCs in 

recent years has become a significant problem for wildlife and transportation managers in 

the U.S. (Butfiloski et al. 1997). DVC kill rates are not high enough to adversely affect 

the deer population, but there is a growing need to understand the geography of this 

phenomenon to minimize economic losses, improve traffic safety, prevent human injury, 

and decrease the number of deer injury and deaths from automobiles (Bissonette et al. 

2008, Putnam 1997, Seiler 2005). As such, a great deal of research on DVCs remains to 

be done (Hubbard et al. 2000). 

1.3. Significance of This Research 

Over 1.5 million DVCs occurred in the United States in 2002 alone. These 

collisions were responsible for over $1 billion dollars in damages, and the deaths of 150 

people and roughly 1.5 million white-tailed deer (Gonser and Horn 2007, Gonser et al. 

2009, State Farm Insurance 2006). In 2009, State Farm Insurance used accident claims to 
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estimate that 1,160,979 DVCs occurred in the United States that year, 14,327 of which 

were in Mississippi (State Farm Insurance 2010). DVCs increased by 38 percent in 

Mississippi between 2007 and 2009, ranking the state among the top five in the nation 

with the largest increase in DVCs (Northway 2009, State Farm 2009). To illustrate the 

need for DVC mitigation in Mississippi as well as the U.S., I collected national-level data 

on DVCs for 2009 (State Farm, 2010). After normalizing these data for population, 

registered vehicles, and land area, I created three choropleth maps classified into 

quintiles. With 191 DVCs per capita, Mississippi ranks 24th in the nation (Figure 2). 

When DVCs are normalized for land area, Mississippi ranks 26th (Figure 3). When 

normalized for registered vehicles, however, Mississippi ranks 13th with one incident per 

141 automobiles (Figure 4). 
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Figure 2. Deer-Vehicle Collisions, 2009 (Normalized for Population). 
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Figure 3. Deer-Vehicle Collisions, 2009 (Normalized for Land Area). 
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Figure 4. Deer-Vehicle Collisions, 2009 (Normalized for registered vehicles). 

Estimated monetary losses associated with DVCs in 2004 ranged from $796 per 

vehicle in Savannah, Georgia (Butfiloski et al. 1997) to $1,500 nationwide (Malo et al. 

2004). Unfortunately for motorists, not only have DVCs increased in recent decades but 

property damage associated with these accidents has as well, reaching a nationwide 

average of $3,050 per collision in 2009 (State Farm Insurance 2009). In Mississippi, 

DVC-associated property damage averages around $4,500 per collision and is estimated 

to account for 35 percent of all repair claims at auto body repair shops in the state 

(Woods 2006). 

9 
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1.4. Research Objectives 

To gain a better understanding of the factors that influence spatial distributions of 

DVCs, this thesis integrates geographic information systems (GIS), remotely sensed 

imagery, FRAGSTATS and inferential statistics to analyze DVCs in Forrest and Lamar 

Counties of South Mississippi between 2006 and 2009. The primary objectives of this 

research include: 

1. Examining and explaining temporal trends (hourly, monthly, and seasonal) of 

DVCs in the study area. 

2. Determining whether or not the spatial distributions of DVCs in the study area 

are random. 

3. Determining whether a specific land-cover class is closely associated with the 

locations of DVCs in the study area. 

4. Developing a statistical model to determine landscape patterns and features 

that influence the spatial distribution of DVCs. 

1.5. Summary 

The number of deer killed by vehicle collisions exceeds the number of deer killed 

through hunting each year in the United States (Coffin 2007). Published research has 

shown that DVCs have a significant impact upon society, the economy, and conservation 

initiatives (Conover 1997, Seiler 2005, Hussain et al. 2007). Research has also shown 

that these collisions are not random occurrences, but products of various environmental 

characteristics that can be quantitatively measured through remotely sensed imagery and 

geographic information systems (Seiler 2005). Furthermore, little research has been 

published on the factors that influence DVCs in the southeastern U.S. After analyzing 
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the national data pertaining to DVCs in 2009, it is apparent that Mississippi is among the 

states where DVCs should be a top priority for mitigation. However, in order to do so, it 

is essential to gain a better understanding of the factors that influence the distribution of 

DVCs. Through the application of GIS, remotely sensed imagery, and statistical analysis, 

this thesis will identify what landscape features are most important in explaining the 

spatial distribution of DVCs in Forrest and Lamar Counties of South Mississippi. 



CHAPTER II 

A REVIEW OF RELATED LITERATURE 

2.1. Human-Wildlife Conflicts 

12 

Interactions between humans and wildlife historically have occurred in rural 

areas, but recently have become increasingly common along urban fringes (Manfredo and 

Dayer 2004). Wildlife impacts human society in both positive and negative ways. 

Negative impacts, collectively referred to as human-wildlife conflicts, can arise from a 

variety of interactions in which wildlife negatively impact humans and/or their goals or 

when the actions of humans negatively impact wildlife and/or their resources (Conover et 

al. 1995, Messmer 2000, Madden 2004). Human-wildlife conflicts, however, are not 

easily categorized simply into two groups, because negative consequences can impact 

both parties and conflicts are not limited to single species (Messmer 2000, Manfredo and 

Dayer 2004). As wildlife populations have increased in the 201
h century, conflicts also 

have increased as the needs of humans and wildlife further overlap, creating costs for 

both. As human activities intensify and encroach upon natural environments, wildlife 

will continue to impact economic development and human livelihood (Messmer 2000, 

Madden 2004). 

Traditionally, wildlife management has been defined as initiatives that strive to 

maintain or increase populations of various wild species. More recently, in the 1980s and 

1990s, as human-wildlife conflicts became a public concern, wildlife managers shifted 

their focus to human-wildlife conflict management. Since its origins, this field has 

integrated various techniques and strategies to mitigate negative interactions between 

humans and wildlife (Messmer 2000). In recent decades, organizations such as the 
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National Wildlife Research Center (NWRC) have expanded to help mitigate human

wildlife conflicts and correct misconceptions that humans have towards wildlife (USDA 

2010). Numerous strategies have been developed to mitigate human-wildlife conflicts, 

but most are specific to particular regions or species (Madden 2004). The following 

paragraphs discuss published research on various conflicts that have clear and negative 

impacts for humans, wildlife, or both. 

The most common human-wildlife conflicts with negative impacts for humans 

include pest damage of agricultural crops, livestock depredation, property damage, and 

human injury or fatality. A survey of U.S. agricultural producers showed that 89 percent 

of respondents experienced problems with wildlife, half of which reported losses of more 

than $500 due to crop damage (De Vault 2007, Messmer 2000). Wildlife-induced crop 

damage is often the result of invasive or exotic species such as feral hogs (Sus scrofa), 

which were introduced to North America by European colonists and have since become a 

major nuisance to farmers due to the damage they cause to agricultural fields. In 2003, 

feral hogs inhabiting the Savannas Preserve State Park of Florida inflicted severe damage 

to a 9,027 square-meter patch of land, creating furrows as deep as forty-five cm and 

removing virtually all vegetation cover. Feral hogs also created problems by degrading 

habitat and outcompeting native species. It was not until a removal program led to the 

capture of twenty-three hogs that the state park was able to recover (Engeman et al. 

2007). 

Native species such as beavers (Castor canadensis) also inflict excessive damage 

to agricultural production and to the timber industry. In the southeastern U.S. , beaver 

impoundments routinely flood over 288,000 hectares of forest (Conover et al. 1995). 
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Impoundments not only destroy valuable stands of timber, but can also flood roadways 

and agricultural fields. Across the American Southeast, beavers annually cause an 

estimated $100 million in damaged timber stands. The NWRC recently has implemented 

several management strategies in Mississippi to reduce economic loss from beavers. For 

every dollar the NWRC spends on mitigation, the state saves approximately $39.4 to 

$88.5, making management and control economically viable (USDA 2010). 

White-tailed deer (Odocoileus virginianus) and raccoons (Procyon lotor) cause 

damage to soybean and com crops on a regular basis in the American Midwest. During 

late summer and fall, com and soybeans can constitute up to 65% of these species' diet 

(De Vault et al. 2007), resulting in damage that can significantly reduce profit margins of 

farmers and increase costs for consumers (Messmer 2000). Regulated hunting of game 

species such as white-tailed deer can play an important role in the mitigation of this type 

of adverse impact (De Vault et al. 2007). 

Human-wildlife conflicts of greatest public concern cause human injury, illness, 

or death, and are often the result of wildlife attacks or disease transmission. Two of the 

most common diseases with multiple wildlife vectors include rabies and Lyme disease 

(Conovor et al. 1995, USDA 2010). Lyme disease typically makes up 81 percent of all 

reported wildlife-related diseases (Conover et al. 1995). Annual public health costs 

associated with rabies testing, treatment, and vaccinations has risen to $300 million in the 

U.S. in recent years (USDA 2010). Turkey vultures (Cathartes aura) are perceived as a 

common vector for disease transmission to humans and are most commonly associated 

with unsanitary accumulations of fecal droppings. Although turkey vultures may also 

cause superficial damage to roosting areas such as rooftops, their feces and regurgitations 
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tend to have a repugnant, ammonia odor, increasing concerns pertaining to sanitation and 

disease transmission (Ball 2009, USDA 2010). In several studies in North Carolina, the 

implementation of vulture effigies were effective in removing vulture roosts, resulting in 

resolution of this human-wildlife conflict with little or no negative impact on the animal 

population itself (Ball 2009). 

Conversely, human-wildlife conflicts with adverse impacts on wildlife are most 

commonly associated with wildlife injury, death, and habitat destruction. In northeastern 

India, cultivation and developmental activities have destroyed and further encroached on 

the natural habitat of many species. As forest cover has disappeared, conflicts between 

humans and elephants (Elephas maximus) have increased dramatically. Between 1980 

and 2003, more than 370 elephants were killed in retaliation for crop trampling. Given 

northeast India is home to approximately 25 percent of the world's elephant population, 

this conflict represents a conservation dilemma of global importance. As elephants and 

humans compete for space, conflicts are inevitable and elephants will continue to suffer 

from habitat destruction or retribution. A wide range of strategies has been designed to 

mitigate this conflict. The most common involve allocating protected areas, preventing 

urban encroachment, and banning commercial logging (Choudhury 2004). Similarly, in 

certain areas of the U.S., the proliferation of wind farms has resulted in the disruption of 

migratory birds, such as the northern pintail (Anas acuta) and birds of prey, such as the 

golden eagle (Aquila chrysaetos). The California Energy Commission found that over 

1,000 birds of prey were killed at one wind farm located near San Francisco. Since these 

conflicts directly affect conservation, numerous game and fish departments now impose 
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guidelines that require potential wind farms to examine migratory patterns and to include 

development of strategies to monitor turbine related mortality on wildlife (Martin 2010). 

Human perceptions of wild animals are an important factor in human-wildlife 

conflicts. During the 1960s, declines in black bear (Ursus americanus) populations in 

Louisiana and the listing of the species as threatened led to a reintroduction program that 

brought about a recovery of the species, but also resulted in conflicts when bears began to 

appear in residential areas scavenging for food. Although no bear attacks occurred, many 

residents supported extermination or removal, despite the fact that these methods were in 

conflict with conservation goals. Wildlife managers found the best way to resolve these 

conflicts was through outreach to address public fears and increase awareness of black 

bear behavior (Cotton 2008). Just as black bears are perceived as threats or nuisances in 

Louisiana, colobus monkeys (Procolobus kirkii) receive similar attention in Zanzibar, 

Tanzania. A highly endangered species, the colobus monkey primarily sustains itself by 

eating immature coconuts. In the mid-1990s, coconuts made up 90 percent of foreign 

exchange in Zanzibar. Because colobus monkeys routinely raided coconut plantations, 

residents felt they jeopardized their economic wellbeing and called for their removal. 

Researchers, however, were able to determine that the monkeys had only a limited impact 

on agricultural production and mitigation was redirected towards community education 

and conservation (Siex and Stuhsaker 1999). 

Human-wildlife conflicts that result in negative outcomes for both humans and 

wildlife are most commonly associated with transportation collisions. Aircraft collisions 

with birds pose a serious threat to economics, safety, and conservation (Dolbeer et al. 

2000, USDA 2010). According to the Federal Aviation Administration (FAA), there 
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were 7,516 reported aviation bird strikes in 2008 (USDA 2010). Larger birds such as 

geese and vultures pose the greatest hazard, often causing aircraft to crash (Dolbeer et al. 

2000). Between 1990 and 2008 wildlife collisions with aircraft cost the civil aviation 

industry approximately $614 million annually in the U.S. The NWRC is now studying 

the possibility of habitat modification and development of lighting systems to deter birds 

from living in the vicinity of airports (USDA 2010). Similarly, in Norway, collisions 

between moose (Alces alces) and trains are common events, occurring at a rate of 1,000 

per year since the early 1990s. Researchers found that moose commonly use railroads as 

corridors and grazing land because they remain clear of heavy snow during the winter. 

Various mitigation strategies have been implemented, the most successful of which were 

scent marking and supplemental feeding. Scent marking involves spraying chemicals 

along rail lines that replicate the scents of bears or humans. Supplemental feeding areas 

located away from rail corridors offer safer feeding opportunities for moose. Research 

showed the scent-marking reduced the number of moose-train collisions by 85 percent 

and supplemental feeding proved a beneficial, although expensive, mitigation strategy as 

well (Andreassen et al. 2005). Similarly, kangaroo-vehicle collisions (Macropus sp.) are 

a common problem in Australia. During periods of drought, kangaroo mortality along 

roadways increases dramatically. Research found that in times of drought, irrigated 

pastures along roadways attracted foraging kangaroos . Establishment of supplemental 

feeding areas was successful in discouraging kangaroos and other wildlife species from 

areas along roadways (Lee et al. 2004). 

From this review of published studies, it is apparent that a significant number of 

human-wildlife conflicts occur along roadways. Road systems not only encroach upon 



wildlife habitat, but provide environments in which automobiles and wildlife come in 

contact with each other, resulting in disastrous consequences (Litvaitis and Tash 2008). 

2.2 Ungulate-Vehicle Collisions 
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Given the prevalence of roads in almost everywhere in the United States, it seems 

difficult to escape their effects (Litvaitis and Tash 2008). One consequence of growing 

road networks is an increase in the number of wildlife-vehicle collisions. Collisions 

between automobiles and ungulates have increased dramatically in Europe and North 

America in recent decades. For the purpose of this study, ungulate-vehicle-collisions 

(UVC) refer to ungulates in general, while DVC and MVC refer to deer and moose

vehicle collisions respectively. In Sweden, for example, UVC accounted for 60 percent 

of road accidents in the 1990s (Seiler 2004 ). These collisions are considered a major 

road-safety hazard and economic drain in Europe and North America (Groot-Bruinderink 

and Hazebroek 1996, Bissonette et al. 2008). In Europe and Canada the most prevalent 

UVC involves moose, while white-tailed deer are most common in the U.S. (Coffin 

2007). Despite the wide variety of situations and species associated with UV Cs, the 

common denominator of all wildlife-vehicle collisions is the involvement of humans. 

Because humans are responsible for the consequences of collisions with wildlife, finding 

ways to understand, mitigate, and prevent UV Cs remains an important area of scientific 

study (Groot-Bruinderink and Hazebroek 1996, Manfredo and Dayer 2004). Research 

focuses on two major themes: social perceptions of UV Cs and the identification of the 

factors that drive them for the purpose of modeling and prediction (Livaitis and Tash 

2008). The following paragraphs discuss recent literature in these two areas of research 

in North America and Europe. 
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Some studies review the numbers of UV Cs and corresponding economic losses, 

seeking to determine if there is sufficient evidence for mitigating these incidents, whereas 

other studies rely on identifying and influencing social perception. Humans must cope 

with the economic consequences of UV Cs so it is logical to study social perceptions to 

determine if there is sufficient public interest in their mitigation. Annual costs associated 

with deer-vehicle collisions exceed $1 billion each year, suggesting that UVC mitigation 

could prevent economic loss. From a social perspective, however, the supposed benefits 

of reducing UV Cs might not be worth the reduction of local or regional deer populations 

(Schwabe and Schuhmann 2002). At least one study has shown that societal attitudes of 

ungulates are inversely related to the amount of damage individuals have experienced. 

With this in mind, reducing DVCs should improve social perceptions toward ungulates, 

although this is not always the case (McShea et al. 2008). 

Bissonette et al. (2008) assessed the costs of DVCs in Utah and found that human 

injuries, deaths, vehicle damage, and loss of wildlife are the greatest concern surrounding 

ungulate vehicle collisions that require attention and justify mitigation. Such mitigation 

can be costly, but this study found that 58% of DVCs were concentrated on only 11 % of 

state roadways, making policy solutions both practical and cost effective. In southern 

Michigan, on the other hand, Marcoux and Riley (2010) studied the perceptions and 

attitudes of drivers toward DVCs. They found that 88% of survey respondents answered 

positively about seeing deer on their commute, while 94% simultaneously worried about 

potential DVCs. Marcoux and Riley found that while those involved in DVCs were less 

likely to view deer positively, almost 48% wanted the local deer population to remain the 

same and 8% wanted an increase. By contrast, only 38% of those involved in DVCs 
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wanted a decrease in deer herd size. In a state with more than 60,000 DVCs per year, this 

study showed public preference of deer herd size in Michigan was not significantly 

hampered by concern about DVCs. Similarly, in Tompkins County, New York, Stout et 

al. (1993) found that 36% of respondents enjoyed the presence of deer without worrying 

about DVCs, while 54% enjoyed deer presence but were worried about the possibility of 

a DVC. Furthermore, 63% of respondents felt that the chance of personal involvement in 

a DVC within the next year was low. Most respondents regarded DVCs as dangerous 

and expensive accidents, but 49% preferred to maintain the deer population and 14% 

desired an increase. Butfiloski et al. (1997) conducted a study of a small community in 

Georgia experiencing numerous problems associated with the overabundance of deer. As 

the number of DVCs began to rise in the community, public opinion began to shift 

toward a reduction in herd size. The community unanimously approved a resolution to 

reduce the deer herd by removing or euthanizing 1,127 deer, providing an affordable and 

effective measure to reduce DVCs. Understanding public perceptions of risk associated 

with UVCs provides wildlife managers an understanding of local preferences for the size 

of deer populations, thus preventing further economic loss due to unwanted mitigation or 

management (Stout et al. 1993). 

While social perceptions provide insight into public preference towards mitigation 

and wildlife management, other areas of study rely on environmental characteristics to 

determine where and when to implement mitigation strategies. Recent research has 

sought to better understand causal factors of UV Cs by developing statistical models, thus 

making it possible to predict specific locations of potential threat. Some of these studies 

focus on highway characteristics such as traffic speed, traffic volume, road density, and 
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road curvature, whereas others focus on local environmental factors, such as landscape 

structure and composition. The findings of these two bodies of research are inconsistent 

and often contradict each other, highlighting the site and regional specificities of UV Cs 

(Madden 2004). The following paragraphs will discuss these two areas of research on 

UVCs in North America and Europe, further elucidating the apparent contradictions and 

gap in the published literature. 

The results of numerous studies suggest that decreases in traffic speed and volume 

leads to a decline in the number of collisions, but other studies have found the opposite to 

be true. Bissonette and Kassar (2008), using multiple regression analysis to compare 

roads in Utah based on traffic volume and posted speed limit, failed to find a significant 

relationship between DVCs and road characteristics. Similarly, in a study of wildlife

vehicle collisions in New Hampshire, Litvaitis and Tash (2008) created a multivariate 

model using traffic volume, but could explain 55% of variation. Bashore et al. ( 1985), 

using highway characteristics to predict DVCs in Pennsylvania, found a significant 

negative relationship between traffic speed and DVCs, demonstrating that as speed limits 

increased, the probability of DVCs decreased. 

Whether or not highway characteristics influence locations and occurrences, it is 

apparent that a wide variety of factors influence the frequency and distribution of UV Cs, 

suggesting that the reason animals are hit by vehicles are related to the spatial 

arrangement of resources, thus animals die when they are searching for these resources 

(Coffin, 2007). It is for this reason that recent research has taken an explicitly 

geographical approach to better understand spatial distributions and patterns of UV Cs. 



Many of these studies integrate landscape ecology and geography in an effort to more 

accurately predict these UVCs. 
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Speed limit seems like an important factor in UVCs given that a vehicle moving 

at 120 km/hr (75 mph) has a slower reaction time than a vehicle traveling at 50 km/hr (30 

mph). Although some studies that focus on the influence of highway characteristics have 

found that traffic speed and volume are important causal factors of UV Cs, other studies 

have found no such relationship. Studying moose-vehicle collisions (MVCs) in Sweden, 

for example, Seiler (2004) concluded that increased traffic volume explained 85% of the 

variance in a regression analysis model and that MVCs increased on roads with speed 

limits over 90 km/hr (55 mph). Although the regression model used by Seiler had only a 

small number of variables, it correctly classified 81.2% of all collisions that occurred 

during the study period. Similarly, Ng et al. (2008) used a regression model to determine 

that DVCs in Minnesota were twice as likely to occur on roads with higher speed limits 

and lower road densities. Similar results were found in Virginia where highway 

characteristics of primary roads failed to explain DVCs, but traffic volume on secondary 

roads was correlated with the probability of a DVC (McShea et al. 2008). Furthermore, 

Gunson et al. (2004) found that increased traffic volume was the primary reason for 

greater numbers of UV Cs in the Canadian Rocky Mountains. 

Landscape ecology integrates both geography and ecology by focusing on how 

landscape structure and composition affects the abundance and distribution of organisms 

across geographical space (Kent 2007). It studies the interactions between spatial pattern 

and ecological process, based on the premise that spatial patterns significantly influence 

ecological processes (Gustafson 1998, Turner et al. 2001, Turner, 2005). In the context 
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of understanding wildlife-vehicle collisions, landscape is essentially the surrounding area 

that is spatially heterogeneous in at least one factor of interest, most commonly land-use 

or land-cover (Turner 2005). Recently, many federal and state wildlife management 

agencies have adopted landscape ecology approaches to assess wildlife-vehicle collisions 

to develop location and species-specific management strategies. Due to the influence of 

land-use activities and disturbance patterns, a great deal of spatial variation exists in the 

distribution and quality of wildlife. It is therefore imperative to understand and identify 

the distribution and availability of habitat within a landscape to understand and recognize 

patterns of UV Cs and effectively mitigate them (Felix et al. 2007). As noted earlier, 

UVCs in North America and Europe are site and species specific, which suggests that 

regional-scale research is necessary to understand the factors that govern them. The 

following paragraphs provide a survey of various spatial, predictive models that have 

been developed in recent years to analyze UVCs. 

One of the earliest published studies that integrated landscape ecology, highway 

characteristics, and predictive modeling was conducted in Pennsylvania by Bashore et al. 

(1985), who found that as the number of residences and commercial buildings increased, 

the likelihood of DVCs decreased. This finding is supported by other studies that focus 

on space usage of white-tailed deer and demonstrate that this species tends to avoid 

dwellings and built environments (Storm et al. 2007). Bashore et al. ( 1985) also found 

that as landscapes become less wooded, the chances of DVCs increases, indicating that 

deer more commonly used grass and underbrush habitats for browsing. The regression 

model used to determine this finding was particularly robust, correctly classifying 85% of 

DVC sites and 89% of control locations. Similarly, Gonser et al. (2009) studied DVCs in 
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Indiana and found that planted or cultivated land was the land-cover type most closely 

associated with DVC sites. Nielsen et al. (2003) corroborated these findings in their 

study of DVCs in Minnesota. Their model only had an accuracy of 77%, but they found 

that forest cover did not significantly contribute to the location of DVCs and that 

landscape diversity and the amount of public land was higher surrounding the collision 

site. Besides finding that traffic volume played a role in DVCs in Virginia, McShea et al. 

(2008) also found that the highest rates of DVCs occurred in agricultural regions. In 

Alberta, Canada, DVCs were most common around highly productive non-forest 

vegetation and were 29% more likely to occur near water (Ng et al. 2008). 

In contrast, Malo et al. (2004) found that MVCs in Spain most commonly 

occurred in areas of high landscape diversity and non-riparian forest. Furthermore, they 

were able to correctly classify 87% of low risk areas by identifying areas dominated by 

agriculture and urban land-cover. Similarly, in Alabama, Hussain et al. (2007) found that 

an increase in the proportion of cropland reduced the probability of a DVC. Hubbard et 

al. (2000) found that large agricultural fields decreased the chance of a DVC occurring in 

an area. With a classification accuracy of 63.3%, their model showed that as the amount 

of woody patches, bridges, and lanes of traffic increased, so did the probability of a DVC. 

These findings were similar to those in Arkansas, which showed that DVCs were 

influenced most by urbanization and human population densities (Farrell and Tappe 

2007). Other studies have demonstrated that there are numerous causal factors of UV Cs. 

In Sweden, Seiler (2005) developed a model that utilized highway characteristics and a 

second one based on landscape variables. With a classification accuracy of 62%, Seiler 

(2005) found that MVCs occurred more frequently in areas where there was no highway 
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fencing and on roads that traversed clear-cuts or young forests. Around Glacier National 

Park in Canada, MVCs were found to most likely occur in areas that were closer to water 

and wetlands, which are used by moose to forage for herbaceous and woody plants 

(Hurley et al. 2009). In the same way, MVCs in Ontario, Canada routinely occur around 

salt pools that accumulate after snowmelt. Salt licks have proven to be influential in 

MVCs due to their attractive resources for wildlife that have struggled to find natural 

mineral licks during harsh winters (Groot-Bruinderink and Hazebroek 1996). 

Much of the research on spatial distributions of DVCs has been conducted in the 

northeastern or mid western regions of the United States. To date, there have been only 

three published DVC studies conducted in the American South, one being a statewide 

study in Alabama (Hussain et al. 2007), another in Clarke County, Virginia (McShea et 

al. 2008), and a third that focused on DVCs in Arkansas (Farrell and Tappe 2007). Even 

fewer studies have been conducted at the county-level, with most of these focused on the 

upper Midwest. The only published county-level study of DVCs in the American South 

is that of Farrell and Tappe (2007), which was conducted in Arkansas. Owing to the lack 

of published literature regarding local factors influencing deer collisions in the southern 

U.S., there is a clear gap in the DVC literature that needs to be filled. Furthermore, a 

review of available literature confirms that factors influencing the location of DVCs are 

inconsistent, varying with correlative factors highly site specific (Ng et al. 2008). This 

finding further supports the need for county-level studies of DVCs and associated factors 

in the southern U.S. 
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2.3. Mitigation 

The financial cost of UV Cs suggests that effective mitigation strategies have the 

potential to prevent significant economic loss associated with these conflicts. While such 

an argument is relatively straightforward, what seems unclear is which strategies are most 

effective (Schwabe and Schuhmann 2002). Predictive models seem to be effective at 

identifying areas of high UVC incidence thereby potentially increasing the success rate of 

mitigation (Malo et al. 2004, Litvaitis and Tash 2008, Ng et al., 2008). Currently, there 

are over forty different mitigation policies in place designed to reduce automobile 

collisions with ungulates (Huijser et al. 2009), most of which are documented in 

publications by various state and federal agencies (Romin and Bissonette 1996, 

Danielson and Hubbard 1998). Within this literature, there are three types of mitigation 

strategies: modifying motorist behavior, modifying ungulate behavior, and reducing 

ungulate populations (Mastro et al. 2008). 

Mitigation policies designed to modify motorist behavior include reducing speed 

limits, erecting warning signs, modifying roadside vegetation, and public education. 

Some studies have shown that speed limit is a factor in UVCs, but recent research suggest 

that reducing travel speeds is not necessarily an effective form of mitigation (Curtis and 

Hedlund 2005). In fact, some studies have found that reducing speed limits has actually 

led to an increase in collisions (Mastro et al. 2008). Furthermore, unless speed limits are 

adhered to through enforcement, they do not necessarily lead to reduction in travel speeds 

(Curtis and Hedlund 2005). 

Deer-crossing warning signs are the most common mitigation strategy in the U.S. 

(Romin and Bissonette 1996, Putnam 1997, Danielson and Hubbard 1998). Various 
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types of road signs help warn motorists of specific locations where DVCs are common 

(Curtis and Hedlund 2005). Caution signs are the familiar yellow diamond with a black 

silhouette of a deer (Mastro et al. 2008). Although these signs are the most frequent, it is 

doubtful whether deer caution signs are effective in the long term. Often motorists 

become complacent with signs unless they are reinforced through an actual encounter 

(Putnam 1997, McShea et al. 2008). Enhanced signs have been used to increase the 

effectiveness of warnings by making them more visible with lights and flags. These can 

be replaced by electronic message signs permanently positioned above the roadway or on 

a portable trailer that flash warning messages alerting drivers to potential danger. Animal 

activated warning signs detect ungulates along the road through the use of infrared light, 

radar, laser, or thermal sensors and then flash warning lights to caution passing motorists 

(Curtis and Hedlund, 2005, Mastro et al. 2008). 

Increasing driver visibility by clt~aring roadside vegetation has also been shown to 

decrease UVCs. At least one study has shown that clearing a twenty-meter zone on each 

side of a road decreased UVCs by 20%, however, maintenance costs and the potential 

ecological impacts make this technique problematic (Mastro et al. 2008). Approximately 

half of all U. S. states use public and private funds to implement education programs to 

inform motorists about the danger of DVCs and how to avoid them (Donaldson 2006, 

Mastro et al. 2008). Through press releases, television commercials, brochures, and web 

pages, government agencies and private organizations attempt to warn motorists about 

the seasonality of DVCs, reiterating that DVCs are not random and suggesting measures 

to avoid collisions (Donaldson 2006). 



28 

Mitigation practices designed to modify ungulate behavior include overpasses and 

underpasses, repellents, vegetation modification, and fencing. These techniques focus on 

preventing ungulates from crossing roadways through physical control or by creating 

other areas more attractive than road corridors (Curtis and Hedlund 2005). Wildlife 

underpasses and overpasses can either be designed specifically for wildlife or consist of 

infrastructure modified to encourage use by animals. These crossings enhance habitat 

connectivity and offer safe corridors for wildlife to safely cross roadways, thus reducing 

effects of habitat fragmentation (Donaldson 2006). Recently, Michael Van Valkenburgh 

and Associates won a nationwide competition to design and construct a wildlife overpass 

near Vail, Colorado. Their proposed ecological bridge is expected to be fifty meters wide 

and cultivated with native trees, shrubs, and grasses to encourage wildlife (Wald 2011). 

Common repellents used to deter ungulates include a variety of hazing techniques 

such as reflectors or chemical repellents. Reflectors are devices attached to posts along 

roadways that capture light from oncoming traffic and transmit it as a continuous barrier 

of white, red, or blue-green light parallel to the road (Putnam 1997, Curtis and Hedlund 

2005, Mastro et al. 2008). Such devices are limited, however, because they are only 

effective at night and various studies have shown that deer cannot see red light and are 

not frightened by blue-green light (Putnam 1997, Mastro et al. 2008). Furthermore, deer 

eventually become adjusted to the light, rendering reflectors ineffective (Putnam 1997). 

Research in British Columbia and Germany has used chemical repellants that mimic the 

odors of bears and humans, but their effectiveness in preventing DVCs has not yet been 

adequately evaluated (Mastro et al. 2008). 
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Vegetation on road corridors grows rapidly with ample light and moisture from 

road drainage (Forman and Alexander 1998). As such, it is not surprising that a great 

deal of research has been conducted on the effects of roadside vegetation modification on 

the frequency of DVCs. Cultivating unpalatable plants along roadways might possibly 

decrease the number of ungulates foraging in these areas (Rea 2003, Donaldson 2006, 

Mastro et al. 2008). 

Fencing, when combined with warning signs, has shown to be the most effective 

way to reduce UVCs (Curtis and Hedlund 2005, Donaldson 2006). Several studies have 

found that to prevent deer from entering roadways, fencing must be at least 2.4 meters 

high (Curtis and Hedlund 2005). Furthermore, one-way gates allow for the safe exit of 

ungulates trapped on roadways (Putnam 1997). Research in Banff National Park, near 

Alberta, Canada found that after construction of fencing, UV Cs decreased by 80% 

(Clevenger and Waltho 2000, Clevenger et al. 2001). 

Perceptions of risk associated with UVCs can influence public preference toward 

the size of ungulate populations, thus supporting various management objectives that 

attempt to reduce population numbers (Stout et al. 1993). Several studies have shown 

that the implementation of ungulate relocation programs have reduced the number of 

UVCs, but due to high costs, risk of disease transmission, unavailable release sites, and 

concerns over animal cruelty, live-trapping and relocation of ungulates is not an option in 

most states (DeNicola and Williams 2008, Mastro et al. 2008). State transportation 

departments rated the most effective UCV control strategy to be culling large herds of 

wild grazers (Curtis and Hedlund 2005). In small towns in Iowa, New Jersey, and Ohio, 

sharpshooters eliminated 950 deer in Iowa, 1,455 in New Jersey, and 1,002 in Ohio. 
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Following this management strategy, DVCs declined by rates ranging from 49-78%, with 

the greatest decline in Iowa (DeNicola and Williams 2008). Similarly, in a residential 

community near Savannah, Georgia, killing 1,127 deer proved to be a cost effective 

strategy to reduce DVCs (Butfiloski et al. 1997). In Lynchburg, Virginia, wildlife 

specialists culled 2,600 deer over a ten-year period, decreasing DVCs by 50% 

(Donaldson 2006). More recently, a bill was introduced into the Mississippi Legislature 

that proposes to cull the state' s large deer population in attempt to curb DVCs (Northway 

2010). Despite its apparent effectiveness, culling deer populations remains politically 

controversial (Conover 1997, Storm et al. 2007, Mastro et al. 2008). 

Analysis of the economic costs of mitigation and economic losses associated with 

UVCs is complex (Putnam 1997). With the number of UVCs increasing each year, there 

is a growing need for more research on mitigation strategies. Although fencing increases 

the amount of habitat fragmentation, it appears to be most effective at reducing UV Cs 

when used with deer warning signs. Ultimately, however, due to the site and regional 

specificity of UV Cs, there is likely no universally appropriate strategy to mitigate this 

environmental hazard for both humans and wildlife (Putnam 1997, Curtis and Hedlund 

2005, Donaldson 2006, Mastro et al. 2008). 
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METHODOLOGY 

3.1. Study Area 

31 

The study area for this thesis research encompasses two counties in south-central 

Mississippi: Forrest and Lamar (Figure 5). Both are situated in the Level IV Southern 

Pine Plains and Hills ecoregion of Mississippi, as defined by Environmental Protection 

Agency (Chapman et al. 2004). Ecoregions are areas with homogenous soils, vegetation, 

physiography, or other environmental characteristics (Griffith et al. 2003). The most 

important unifying environmental characteristic of the two counties of the study area is 

the dominance of Longleaf and other pine species. Forrest County, which forms the 

eastern half of the study area, has a total land area of 467 square miles, 1,038 linear miles 

of road, and a density of 2.2 miles of road per square mile of land area. Lamar County, 

which borders Forrest to the west, has a total land area of 497 square miles with 887 

linear miles of road and 1.8 miles of road per square mile of land area (U.S. Census 

2000). These two counties were chosen because they are located in the same ecoregion, 

are adjacent to each other, and are accessible from The University of Southern 

Mississippi. Mississippi is an ideal study area not only because of the dearth of DVC 

studies in the state, but also because there are no current mitigation strategies directed 

towards deer collisions other than common deer crossing signs, unlike numerous other 

states, which have implemented highway underpasses, fencing, and habitat alteration as 

mitigation strategies (Romin and Bissonette 1996). 
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3.2. Data Acquisition 

Data was obtained from the Mississippi Office of Highway Safety (MOHS) on the 

locations of DVCs in Forrest and Lamar Counties between 2006 and 2009. These data 

were pulled from a larger database of vehicle collision reports maintained by MOHS. 

Deer-vehicle collisions are coded as a type "31" accident, which is derived from official 

collision reports completed by responding public safety officers. Code "31" refers only 

to collisions involving deer and does not include collisions resulting from a driver 

swerving to miss a deer. In addition to collision information, these data contain the 

geographic coordinates of DVC sites in decimal degrees with an estimated accuracy of 

seven meters. The responding public safety officer recorded these measurements at the 

scene of each collision with the aid of a handheld GPS device. As well as locational 

information, the data set also includes date, time of day, and weather conditions at the 

time of the collision (Sennett 2010). Between 2006 and 2009, 347 type "31" collisions 

occurred in Forrest and Lamar Counties. In order to assess the accuracy of these points, a 

United States Census Tiger Line File was obtained from Mississippi Automated Resource 

Information System (MARIS), which is a data layer in vector format containing all roads 

within Forrest and Lamar Counties, along with street names and numbers (MARIS 2010). 

A land cover map of the study area from the National Oceanic and Atmospheric 

Administration Coastal Change Analysis Program (NOAA C-CAP) was obtained to 

quantify landscape composition and structure around each collision site (NOAA 2010). 

These remotely sensed images were created in 2006 and have a spatial resolution of 30 

meters. C-CAP images are raster files that have been classified into twenty land-cover 

classes and have an overall target accuracy of 85 percent (NOAA 2010). In an effort to 
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account for landscape features not represented in C-CAP imagery, high-resolution aerial 

photography was obtained from the National Agriculture Inventory Program (NAIP) 

(Nielsen et al. 2003). The U.S. Department of Agriculture Farm Services Agency 

(USDA-FSA) acquires 1-meter natural-color digital imagery during the growing season 

on a yearly basis for all counties in the continental U.S. (MARIS 2010). The NAIP 

imagery collected for this study was acquired during the 2010 growing season. 

3.3. Data Preprocessing 

To check the accuracy of the DVC points, the MOHS data was integrated as a 

point layer in ArcMap 10, using latitude and longitude coordinates of each collision. The 

location of each point was then verified with the U.S. Census Tiger Line File to 

determine that each collision site documented on the official crash report coincided with 

its correct road. If a point was located on a road that did not match what was listed in the 

collision report, it was classified as invalid and excluded from further analysis. Nine 

DVC sites in were eliminated this way as a result of conflicting information between 

latitude, longitude, and road location, reducing the data set to 338 functional DVC sites. 

In order to analyze landscape structure and composition of each DVC site, the 

researcher reclassified the twenty land-cover classes of the C-CAP imagery in ArcMap 

10. Following methods used in Hubbard et al. (2000) and Nielsen et al. (2003), the 

twenty classes were collapsed into five: developed land (urban), agriculture/grassland, 

forest, wetland, and water (Figure 6). Lastly, in order to account for variables that might 

not be represented in C-CAP imagery, NAIP imagery was used to visually classify the 

number of road lanes at each site as 2, 4, or 6 (Nielsen et al. 2003). This variable was 
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used as a proxy for traffic volume, with more road lanes representing higher volumes of 

traffic. 

3.4. Nearest Neighbor Analysis 

To determine whether DVC sites in the study area are randomly distributed, the 

average nearest neighbor was calculated for each DVC site in ArcMap 10, using a 95% 

confidence level (Gonser et al. 2009). This created an index based on distance from one 

DVC site to the closest adjacent site. The resulting output is a ratio (standardized nearest 

neighbor ratio) of the observed distance divided by a hypothetically expected random 

distance, which allows for comparison across spatial areas. Any data set whose nearest 

neighbor ratio is greater than or equal to 1 has a random spatial distribution. Similarly, 

data sets with values less than 1 have non-random distributions (McGrew and Monroe, 

2000). As Gonser et al. (2009) points out, a central assumption of the nearest neighbor 

analysis is that all points are able to be located anywhere within a study area. DVCs 

must occur on roads, however, and therefore do not have the freedom to be located at any 

geographical location. To control for the inherent non-randomness associated with road 

networks, ArcMap 10 was used to generate 338 random points onto the U.S. Census 

Tiger Line road file . The average nearest neighbor was then calculated for this randomly 

generated set of points to compare with the DVC point data. 

3.5. GIS Techniques 

With 338 functional DVC sites georeferenced to the Tiger Line File in ArcMap 

(Figure 7), slightly less than half of the collision sites (n = 160) and an equal number of 

control sites (n = 160) were randomly selected from the study area for further analysis 

(Nielsen et al. 2003). A grouping variable (binary dependent variable) was added to both 
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sets of points, classifying them either as "1" for a collision site and "2" for a control site. 

Using Spatial Analyst in ArcMap 10, a buffer with a radius of 1,200 meters was created 

around each collision site. This buffer size was chosen as an estimate of the average 

diameter of a white-tailed deer's home range, which is normally about 2,400 meters 

(Gonser et al. 2009). 

In order to attain the most definitive representation of a control sample, roads that 

contained a DVC were selected. This selection was then reversed within the attribute 

table, which only allowed roads that did not contain a DVC to be displayed. These roads 

were then exported as a new layer. From there, the researcher added the layer that only 

contained roads with no DVCs along with the layers of the collision site buffers. Road 

segments that overlapped with a collision site buffer were then erased, leaving only roads 

that contained no DVCs and did not lie in a collision site buffer. These control roads 

were then assigned a number through a random number generator, and after sorting them 

in ascending order, the first 160 road segments were selected. These control road 

segments were then bisected so that the researcher could insert control site buffers. This 

process allowed the researcher to choose only control sites that were not located on a 

road where a DVC occurred and were not inside a collision site buffer. The researcher 

did, however, allow collision buffers to overlap control buffers and vice versa. The total 

land area within each buffer was approximately 7 .1 square kilometers. 

All collision and control site buffers were then added as layers in ArcMap 10, 

along with the reclassified C-CAP imagery, to create a buffer/land-cover map. Using the 

randomly selected collision and control sites, as seen in Figure 8, land-cover data was 

extracted from each buffer to create 320 individual landscape units (1 = 160, 2 = 160), 



which were then converted to ASCII (American Standard Code for Information 

Interchange) format to ensure compatibility with FRAGSTATS 3.3. 
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3.6. FRAGST ATS 

The ASCII files containing the individual landscapes (n = 320) were then loaded 

into FRAGSTATS 3.3. This application quantifies landscape structure and composition, 

computing landscape metrics to understand the landscape patterns that might influence 

ecological processes (McGarigal and Marks 1995). Following Nielsen et al. (2003), the 

8-neighbor rule was used to calculate the following landscape-level metrics (Table 1): 

number of patches, patch size coefficient of variation, edge density, mean patch edge, 

mean shape index, mean perimeter-area ratio, mean patch fractal dimension, Shannon's 

diversity index, and Shannon's evenness index. Shannon's diversity and evenness 

indices measure the diversity of land-cover classes in a landscape and determine the 

proportional equality of all land-cover classes (Turner 2001). Landscape-level metrics 

calculate composition and configuration for an entire buffer area. For example, for a 

given buffer in the study area, FRAGSTA TS calculated total number of patches, using 

the entire landscape in the buffer for analysis. Similarly, at the class-level, the 8-

neighbor rule was used to calculate the following metrics (Table 1) for the five land

cover classes: percentage of landscape, number of patches, patch size-coefficient of 

variation, edge density, mean patch area, mean shape index, mean perimeter-area ratio, 

and mean patch fractal dimension (Nielsen et al. 2003). These class-level metrics 

calculate the values for each land-cover class within in a landscape. For example, 

FRAGST ATS calculates number of patches for each of the five land-cover classes in a 

given buffer, meaning that each metric has separate values for each of the land-cover 

classes. Using FRAGST ATS 3.3, I calculated forty-nine variables for each buffer to 
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verify which landscape features best distinguish between DVC sites and control sites. In 

total, fifty variables were calculated for analysis. 

Table 1 

Metrics Quantified with FRAGSTATS 

Landscape Level Metrics 

Number of patches 

Patch size coefficient of variation 

Edge density 

Mean patch area 

Mean shape index 

Mean perimeter-area ratio 

Mean patch fractal dimension 

Shannon's diversity index 

Shannon's evenness index 

Note. Adapted from Nielsen et al. 2003. 

Class Level Metrics (for five cover types) 

Percentage of landscape 

Patch size coefficient of variation 

Number of patches 

Edge density 

Mean patch fractal dimension 

Mean shape index 

Mean perimeter-area ratio 

Mean patch area 

3.7. Statistical Analysis 

Once all variables had been calculated, the statistical software SPSS 18 

(Statistical Package for the Social Sciences) was used to achieve my research objectives. 

To determine if one land-cover classes was more associated with DVC sites than others, a 

two-sample difference of means test was conducted for the percentage of each land-cover 

class surrounding every collision site. Because the agriculture/grassland class was the 

only variable that was normally distributed, the researcher used a two-sample difference 

of means test and the non-parametric Wilcoxon-Rank Sum for the other four land-cover 

classes. For the difference of means, a 95% confidence level was used to determine if the 

percentage of each land-cover class significantly differed between collision and control 
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sites. The researcher also used discriminant analysis to create a statistical model to 

understand which landscape variables best distinguish between collision and control sites. 

This multivariate statistical technique is used on classed data to assess differences 

between classes and to predict the classes of unknown data (Huberty 1994). This 

procedure is specifically developed to estimate parameters in models utilizing grouping 

variables, such as collision site (1) and control site (2) (Allen 1997). This technique 

sequentially creates discriminant functions until all of the variance in a data set is 

explained. Essentially, discriminant functions are best-fit lines that are drawn through a 

multivariate dataset and used for classification and prediction (James 1985). 

The discriminant analysis was conducted using a step-wise method with the 

collision ( 160) and control sites ( 160). The significance of the variable's F-statistic and a 

95% confidence interval were used for variable selection, meaning the significance of 

each variable had to be less than 0.05 (statistically significant) for selection. This 

strategy of statistical modeling adds individual variables in a series of steps. If the 

significance of a variable's F-statistic was less than 0.05, meaning that it explained a 

significant amount of the variability between two classes, it became implemented in the 

model. Once a variable had been selected, however, it could be removed from the model 

in the next step if the significance of the variable's F-statistic became greater than 0.10 

and was no longer statistically significant (James 1985, Younger 1985). The discriminant 

analysis created one discriminant function utilizing seven of the fifty variables that 

explained 100% of the variance. Although this procedure cross-validates the model's 

accuracy by removing each collision/control site individually and allowing the model to 

classify each site, the accuracy was manually assessed by randomly selecting twenty 
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DVC sites that had not been used in the analysis. For this process, the researcher 

randomly selected collision sites from the unused portion of the data set, created buffers 

for these sites, and derived their landscape metrics. These sites and their corresponding 

variables were then entered into the model to determine if the model would classify them 

as collision sites (1). 
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In order to observe the temporal trends in the 338 DVCs that occurred in the study 

area between 2006 and 2009, I divided the DVCs into the following temporal categories: 

seasonal (Figure 9), monthly (Figure 10), and hourly (Figure 11). Figure 9 shows DVCs 

increase from summer to winter, with a slight increase in spring, yet the largest increase 

occurs in fall and winter. Figure 10 shows an increase in DVCs in October, November, 

and December, with a peak in January. Similarly, Figure 10 also shows a slight increase 

in DVCs during May. DVCs are most likely to occur in late fall and early winter when 

male deer are most bold and mobile due to the breeding season (Sudharsan et al. 2006, 

McShea et al. 2008, Ng et al. 2008). The breeding season for white-tail deer generally 

occurs during the first two months of each year in South Mississippi, which explains the 

high numbers of DVCs in January (n = 72), accounting for 21 % of the total, and in 

February (n = 145), with 43% of the total (MDWFP 2009). This winter peak in DVCs 

also coincides with deer hunting season, which might induce deer to be more mobile than 

at other times of the year. Likewise, the slight increase in DVCs during the late spring 

can be explained in part by the dispersal of fawns with their mothers and foraging during 

the early green-up of roadside vegetation (Ng et al. 2008). These findings are similar to 

other studies, such as Sudharsan et al. (2006), Madsen et al. (2002), McShea et al. (2008), 

and Ng et al. (2008), which all found that DVCs were more frequent during the white-tail 

breeding season. 
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Figure 11 shows that DVCs occur most often around dawn and dusk. From 2006 

to 2009, seventy-two DVCs occurred between the hours of 4:00 and 8:00 a.m., which 

accounts for 21 percent of reported collisions. Some 165 DVCs, or 49 percent of the 

total, occurred between the hours of 5:00 and 10:00 p.m. Because white-tailed deer are 

crepuscular species, meaning they are most active around dawn and dusk, they are most 

vulnerable during these hours as they move from feeding areas to bedding areas and vice 

versa. This explains to a great extent why DVCs are more common during these hours. 

These hourly patterns also suggest another possibility regarding DVCs. During winter 

months when the sun sets earlier, the period of high deer mobility coincides with higher 

automobile traffic volumes associated with afternoon rush hour. During the summer 

months, on the other hand, the sun sets later in the evening and the period of high deer 

mobility does not coincide with the afternoon rush hour. This likely explains why 

substantially fewer DVCs occurred during the summer. 
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Figure 9. Seasonal Trend of DVCs in the Study Area from 2006-2009. 
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Figure 10. Monthly Trend of DVCs in the Study Area from 2006-2009. 
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Hourly Trend in DVCs (2006-2009) 
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Figure 11. Hourly Trend of DVCs in the Study Area from 2006-2009. 

4.2. Nearest Neighbor Analysis 

Recent studies have shown that DVCs are not only aggregated in time, but also 

across space (Seiler 2005, Gonser et al. 2009). To determine whether this is true for my 

study area, I conducted a nearest neighbor analysis (Table 2). The null hypothesis for 

this test states that the spatial distribution of features is random (McGrew and Monroe 

2000). I used a 95 percent confidence interval to calculate the average nearest neighbor 

for each of the 338 DVC sites. I also calculated the standardized nearest neighbor ratio, 

which ranges from 0.0 to 2.149 and allows direct comparison of results across different 

phenomena or spatial units. Nearest neighbor ratios vary according to the distribution of 

a data set, ranging from perfectly clustered (value of 0) to perfectly dispersed (value of 
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2.149), and to random distribution (value of 1) (McGrew and Monroe 2000). Since I 

used a confidence interval of 95%, a p-value less than .05 required that I reject the null. 

The analysis produced a p-value of 0.00, which allowed me to reject the null hypothesis 

that the collision sites were randomly distributed. Analysis of the control sites yielded a 

p-value of 0.557, which led me to accept the data were randomly distributed as expected. 

For the standardized nearest neighbor ratio, the DVC sites (0.611) have a more clustered 

pattern, suggesting that various factors influence the location of DVCs as opposed to 

random chance. The nearest neighbor ratio of the 338 random sites (0.978) indicates that 

their pattern is random. These results are supported by other studies that have shown that 

DVCs are not spatially random, and further expand upon existing research that pertains to 

the spatial distribution of DVCs in the southern United States (Neilsen et al. 2003, Seiler, 

2005, Gonser et al. 2009). 

Table 2 

Results of Nearest Neighbor Analysis 

Nearest Neighbor Variable 338 DVC Sites 338 Random Sites 
Observed Distance 0.008 0.017 
Expected Distance 0.014 0.018 
Nearest Neighbor Ratio 0.611 0.978 
Z-Score -13.654 -0.603 
p-value 0.00 0.557 

4.3. Statistical Analysis 

The null hypothesis for the two-sample difference of means test states there is no 

significant difference in the percentage of agriculture/grass land-cover between collision 

sites and control sites. Using a 95% confidence interval, the null is rejected if the p-value 

is less than 0.05. The mean percentage of agriculture/grass land-cover at collision sites 
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was 36.15% ± 1.23 and 25.77% ± 1.73 for control sites. This test produced a Z-score of 

4.88 and a p-value of 0.000, leading me to reject the null hypothesis because the amount 

of agriculture/grass land-cover was significantly greater at collision sites. For the other 

four land-cover classes, I used the non-parametric Wilcoxon-Rank Sum to test the 

significance of the percentage of land-cover between collision and control sites. As these 

data were not normally distributed, the Wilcoxon test ranks sample observations to 

measure the magnitude of differences in ranked positions instead of using the mean 

(McGrew and Monroe 2000). Table 3 shows the mean rank for the percentage of urban, 

forest, wetland, and water land-cover at both collision and control sites. Because all 

variables produced a p-value less than 0.05 (95% confidence interval), I rejected the null 

hypothesis because the percentages of land-cover classes were significantly different 

between collision and control sites. The mean rank shows that urban land-cover was 

significantly less at collision sites, while forest, water, and wetlands covered significantly 

larger areas. 

Table 3 

Results of Wilcoxon-Rank Sum Test 

Land-Cover Collision Control p-value Test-Statistic 
Percentage Urban (Mean Rank) 147.8 173.2 0.014 2.456 
Percentage Forest (Mean Rank) 188.13 132.87 0.000 -5.343 
Percentage Water (Mean Rank) 182.53 138.47 0.000 -4.26 
Percentage Wetland (Mean Rank) 195.88 125.12 0.000 -6.842 

The discriminant analysis created one function that utilized seven of the original 

fifty variables (number of road lanes, patch size coefficient of variation, mean patch area 

of water, mean patch area, percentage of forest, mean patch area of agriculture/grassland, 

and mean perimeter-area ratio of urban land-cover) and explained 100% of the variation. 
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Table 4 shows the stepwise process of variable selection and removal depending on the 

variable's significance. Using a 95% confidence interval, variables had to have a p-value 

less than 0.05 to be implemented in the model. If the p-value of any variable became 

statistically insignificant, it was removed from the model, as demonstrated by the variable 

edge density (ED) in step six of Table 4. Furthermore, a variable in the model with a p

value below 0.05 can be used to discriminate sites as collision or control, but as its p

value increased above 0.05, it could no longer be used in the model. Although the two

sample difference of means and Wilcoxon-Rank Sum tests showed that the percentage of 

each land-cover class was significantly different between collision and control sites, the 

discriminant function only used percentage of forested land-cover. This was due to the 

fact that when all variables are analyzed together, one variable might no longer be 

statistically significant, and other variables might explain more of the variation, such as 

the case with mean perimeter-area ratio of urban land-cover (MPAR Urban). Percentage 

of urban land-cover was not used in the analysis, because the variable, MPAR Urban, 

was more effective at statistically differentiating between classes and explaining more of 

the variance. 
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Table 4 

Stepwise Process of Variables in the Model 

Step Entered Removed Wilks' Lambda 

Statistic Exact F 
Statistic p-value 

1 #of Road 0.735 114.548 0.000 
Lanes 

2 ED 0.633 91.715 0.000 
3 PSCV 0.612 66.805 0.000 
4 MPA 0.601 52.262 0.000 

Water 
5 MPA 0.589 43.826 0.000 
6 ED 0.59 54.813 0.561 
7 % Forest 0.58 45.452 0.000 

8 MPAAg 0.571 39.139 0.000 

9 MPAR 0.558 35.257 0.000 
Urban 

The canonical discriminant function coefficients show the relationship between 

variables in the model and the classification of sites, and also demonstrate the strength of 

each variable in the classification. As shown in Table 5, the variables most important to 

the model and classification include number of road lanes and mean patch area (MPA), 

followed by the mean patch area of water (MPA Water) and percentage of forest land

cover (Percent Forest). 

The structure matrix (Table 6) shows the strength of the correlation for each 

variable with regard to the best-fit line of the model. This table shows that the number of 

road lanes is most strongly correlated with the model, which means that it is the primary 

variable for prediction and classification, followed by patch size coefficient of variation 

(PSCV), mean patch area (MPA), and percentage of forest land-cover (Percent Forest). 

The structure matrix also demonstrates that as the number of road lanes, percentage of 



53 

forest land-cover, MPAR Urban and mean patch area of agriculture/grassland (MPA Ag) 

increase, so does the probability of a site being classified as a collision site (Figure 12). 

In other words, as a landscape becomes more dominated by forest cover, patches of 

agriculture/grassland become larger, or the number of road lanes increases, so does the 

probability of a DVC. 

Landscapes with high proportions of forest cover or large uninterrupted areas of 

agriculture/grass land-cover are beneficial for deer, offering numerous forest patches to 

seek cover, yet have large contiguous patches of agriculture/grassland in which to forage. 

DVCs might be more common in areas dominated by forest because deer dispersing to 

foraging areas may not be clearly visible to motorists until it is too late to avoid a 

collision (Nielsen et al. 2003). DVCs might also be more common around areas with 

unbroken agriculture/grassland patches because deer move to these areas as part of their 

foraging behavior. These results are similar to those in Iowa by Hubbard et al. (2000), 

who found that the probability of a DVC increased as average size of grassland patches 

and the interior of wooded areas grew. Gonser et al. (2009) also found that planted and 

cultivated land was the primary land-cover around DVC sites in Indiana, followed by 

forest. Bashore et al. (1985) also found that DVCs in Pennsylvania were more common 

when approaching a woodland-field interface. 

Mean perimeter-area ratio is a measure of shape complexity with large simple 

shapes such as circles or squares having a small ratio because the perimeter or edge is 

approximately equal to the core area (McGarigal and Marks 1995). As land-cover shapes 

become smaller or more complex, this ratio increases. The probability of a DVC 

increases as the mean perimeter-area ratio of urban land-cover increases, changing from 
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large, relatively simple shapes of continuous urban cover to smaller and more complex 

shapes interspersed across the landscape. In large contiguous areas of urban land-cover 

surrounding a city, DVCs are not likely to occur due to lack of preferred natural habitat. 

Moving away from a city, small, complex features increasingly characterize exurban and 

rural landscapes and it is here that the likelihood of DVCs increases. These landscapes 

offer more edge habitat for deer, and these patches are typically interspersed with prime 

deer habitat of forest and undeveloped land, thus increasing the likelihood of DVCs as 

humans encroach on deer habitat. Research has also shown that deer home ranges shift 

toward residential areas in winter to browse on landscape plantings due to the scarcity of 

food in rural, undeveloped areas (Kilpatrick and Spohr 2000). Exurban landscapes also 

typically have low deer harvest rates from hunting, allowing deer over-population to 

become a significant problem (Storm et al. 2007). 

The number of road lanes was an important variable in the model, demonstrating 

that as the number of road lanes increased, so did probability of DVCs. Because this 

variable was used as a proxy for traffic volume, traffic intensity could possibly be an 

indicator of collision sites, similar to the findings of Seiler (2005), Farrell and Tappe 

(2007), and McShea et al. (2008) which found that traffic was a significant factor in DVC 

prediction and Hubbard et al. (2000) who also found that more lanes of traffic increased 

DVC probability. 

In contrast to variables that increase the probability of a DVC, mean patch area, 

patch size coefficient of variation, and mean patch area of water (MPA Water) are more 

associated with control sites (Figure 13). The mean patch area is the average patch size 

of all land-cover types in a given landscape. On average, as land-cover patches grow in 
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size, the likelihood of a DVC occurring nearby decreases. This illustrates that DVCs are 

more common around fragmented landscapes with smaller patches. This suggests that in 

areas of more contiguous cover types and resources, deer might not have to travel as far 

for sustenance, thus lowering the probability of their crossing roadways. As landscape 

patches become smaller, however, an area might not contain enough resources to sustain 

the deer, forcing them to disperse further afield for resources (Hussain et al. 2007). The 

patch size coefficient of variation measures variability of patch size across all land-cover 

types as a percent, with higher percentages representing higher variability. As variability 

in patch sizes increases, the probability of a DVC decreases. Hubbard et al. (2000) also 

found that the probability of DVCs decreased with patch size variability. High variability 

in patch size typically means large proportions of one land-cover type with only a few 

small patches of other types. This raises the possibility that large areas of urban land

cover interspersed with recreational or green areas are not conducive for deer habitat. 

Similarly, as mean patch area of water becomes larger, the chance of a DVC decreases. 

This result contrasts with Ng et al. (2008) who found a weak, yet significant relationship 

between water and probability of a DVC in Alberta, Canada. 

Table 5 

Standardized Discriminant Function Coefficients 

Function 1 
# of Road Lanes -0.872 
% Forest -0.019 
MPAAg -0.037 

MPAR Urban 0.002 
MPA Water 0.146 
MPA 0.363 

PSCV 0.003 
(Constant) -1.658 



Table 6 

Structure Matrix 

Function 1 

# of Road Lanes 

PSCV 

MPA 
% Forest 

MPAR Urban 

MPA Water 

MPAAg 

-0.675 

0.539 

0.464 

-0.39 
-0.186 

0.115 
-0.092 
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Figure 12. Variables Which Increase the Probability of a DVC. 
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Figure 13. Variables Which Decrease the Probability of a DVC. 
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To assess the accuracy of the model ' s predictive capabilities, I ran each site 

through the discriminant function to determine how the model classified them. I then 

cross-validated the predictive model by removing each site individually and letting the 

model classify it. The discriminant function classified 81.3 percent of the sites correctly 

and 80.3 percent after cross-validation. To manually assess the accuracy of the function, 

I randomly selected twenty collision sites from the data points not used in the analysis. I 
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generated buffers and derived landscape variables using FRAGSTATS and NAIP high

resolution aerial photography. I then ran these sites through the model as unclassified 

points to observe how the model classified them. Table 7 shows that the model correctly 

classified seventeen of the twenty sites as collision, equivalent to an accuracy of 85 

percent. The P (G/D) column is the probability that the site actually falls into the 

predicted group. Most of the seventeen sites that were correctly classified have a strong 

probability of falling into the predicted group, demonstrating the effectiveness and 

strength of the model. In the same way, of the three sites that were classified incorrectly, 

two had a near-50% chance of falling into the predicted group, which means they likely 

contained landscape characteristics similar to both collision and control sites. 
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Table 7 

Accuracy Assessment of Model 

Actual Group Predicted Group p (G/D) 

Unclassified (1) 2 0.518 
Unclassified ( 1) 1 0.659 
Unclassified ( 1) 1 0.972 
Unclassified ( 1) 2 0.569 
Unclassified ( 1) 1 0.675 
Unclassified (1) 1 0.517 
Unclassified ( 1) 1 0.504 
Unclassified ( 1) 1 0.517 
Unclassified ( 1) 2 0.786 
Unclassified ( 1) 1 0.511 
Unclassified ( 1) 1 0.979 
Unclassified ( 1) 1 0.988 
Unclassified ( 1) 1 0.981 
Unclassified ( 1) 1 0.971 
Unclassified ( 1) 1 0.978 
Unclassified ( 1) 1 0.966 
Unclassified ( 1) 1 0.986 
Unclassified ( 1) 1 0.976 
Unclassified ( 1) 1 0.970 
Unclassified (1) 1 0.686 



CHAPTER V 

CONCLUSION 

5.1. Overview 
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Deer-vehicle collisions are one of the most common and dramatic forms of 

human-environment interaction (Gonser et al. 2009), posing a threat to both traffic safety 

and animal welfare, and serving as a drain on economic development and conservation 

initiatives (Seiler 2005). Unlike other species that do not tolerate environmental 

disturbance and land fragmentation, deer flourish in anthropogenic landscapes and have 

adapted by exploiting human-altered environments, feeding in agricultural fields, lawns, 

and roadsides (Rawinski 2008), thus intensifying the problems associated with human 

population growth. Furthermore, road expansion leads to habitat fragmentation and 

increased edge habitat, fundamentally altering how local ecosystems operate, yet creating 

a landscape well suited for DVCs (Forman and Alexander 1998). Unlike many other 

species, deer are not adversely impacted by fragmentation and proliferation of edge 

habitat. In fact, new road construction produces their ideal habitat by expanding or 

creating new grazing areas with easily accessible food sources (Gonser and Horn 2007). 

During times of the day when deer graze, primarily around dawn and dusk, they routinely 

cross roads encompassed in their home range, intermingling with traffic as they travel 

along road corridors (Putnam 1997). Not only do these disturbances and anthropogenic 

activities create a diverse mosaic of plant communities, but they also create patterns that 

can be useful in understanding where and why DVCs occur (Turner 2005). 

Between July of 2007 and June of 2009, over 2.4 million DVCs occurred on U.S. 

roadways (State Farm Insurance 2009), far exceeding the number of deer killed annually 
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through the affects of hunting in the United States (Coffin 2007). Given the significant 

impact of these collisions on wildlife, society, and the economy, it is imperative to gain a 

better understanding of the factors associated with these collisions in order to develop 

strategies to mitigate these incidents (Hussain et al. 2007). Though the results of 

published research are mixed regarding which factors play the most crucial role in DVC 

location and occurrence, most agree that DVCs do not have a random spatial distribution 

(Seiler 2005, Gonser and Horn 2007, Gonser et al. 2009), but instead are associated with 

roads in close proximity to forested areas (Farrell and Tappe 2006). Less conclusive are 

findings that link vehicle speed and traffic volume to DVCs (Hubbard et al. 2000). 

Furthermore, little research has been published on the factors that influence DVCs in the 

southeastern U.S. After analyzing the national data pertaining to DVCs in 2009, it is 

apparent that Mississippi is among the states where DVCs should be a top priority for 

mitigation. To gain a better understanding of the factors that influenced the distribution 

of DVCs, my thesis integrated GIS, remotely sensed imagery, FRAGST ATS and 

inferential statistics to analyze DVCs in Forrest and Lamar Counties of South Mississippi 

between 2006 and 2009. The primary findings of this research demonstrated that, for my 

study area, DVCs were most common during winter months around the hours of dawn 

and dusk, were not random spatial occurrences, and that landscape patterns can be 

quantified and developed into a predictive statistical model which utilized seven variables 

to predict areas of potential risk to DVCs with an accuracy of 85 percent. 

5.2. Management Implications 

Due to the fact that Mississippi has relied entirely on warning signs for mitigation, 

there are numerous possibilities for the application of these results. Roadways can be 
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buffered and landscapes surrounding roads can be quantified and input in the model to 

determine potentially hazardous areas for the installation of warning signs, fencing, or 

vegetation modification. Studies have shown that deer-proof fencing along with warning 

signs is the most effective DVC mitigation strategy, but given the length of roadways in 

the study area, fencing might not be financially realistic given the cost of installation and 

maintenance (Putnam 1997, Clevenger 2001). Modifying roadside vegetation might be a 

beneficial countermeasure given the large number of deer seen foraging along roadsides 

in the study area. Although unappealing from an aesthetic standpoint, clearing roadside 

vegetation not only eliminates food resources for deer but also increases the ability of 

motorists to see deer approaching roadways (Mastro et al. 2008). Other research has 

shown that cutting roadside vegetation in early spring shortly after green-up causes plants 

to have lower nutritional value and palatability than when cut during the middle of the 

growing season, which can help push deer to browse in other areas (Rea 2003). 

Currently, twenty-two states have implemented public education and awareness 

programs (Romin and Bissonette 1996). Studies have shown that many people believe 

DVCs are random, unavoidable events, so a public campaign to inform residents of the 

study area that they are in fact aggregated in both time and space might increase public 

awareness about the potential hazards of DVCs. This effort could be achieved through 

newspaper, radio, television, or website announcements by local and state government 

agencies (Curtis and Hedlund 2005, Seiler 2005, Mastro et al. 2008). 

Lastly, another mitigation strategy utilized with success in Georgia, New Jersey, 

Iowa, and Ohio is the culling of excessive deer populations. Case studies have shown 

that reducing deer herd size successfully decreases DVCs by 49 to 78 percent (Butfiloski 
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et al. 1997, DeNicola and Williams 2008). A recent bill proposing to establish a system 

of culling Mississippi's large deer population passed overwhelmingly in the State House 

of Representatives and is currently waiting passage in the State Senate (Northway 2010). 

If the bill does pass, DVCs might possibly decrease over the next decade and remain low 

as long as the population is kept in check. 

5.3. Limitations 

Deer-related accidents occur not only when a deer and vehicle collide, but also 

when accidents result from motorists' attempts to avoid deer (Stout et al. 1993). My data 

are conservative in that I only used collisions that were coded as type "31 ", which is 

limited to collisions involving a vehicle striking a deer. Collisions in which the driver 

swerved to avoid hitting a deer and collided with another object were not included. 

Furthermore, numerous studies have shown that annual rates of DVCs are underestimated 

given that only 17 to 50 percent are actually reported (Bissonette et al. 2008, Marcoux 

and Riley 2010). If the same underestimation found in these studies also occurs in my 

study area, there could have been as many as 395 to 507 DVCs during the 2006-2009 

study period. 

It is also possible that the 30 x 30 meter sensor resolution of my data was not 

adequately sensitive to identify subtle patterns or edges used by deer (Hubbard et al. 

2000). A general rule of thumb is that the object being observed must be at least 1.5 

times the size of a pixel to be detected. Therefore, in some areas, the 30 square meter 

resolution might be too coarse to identify patches of roadside vegetation. Furthermore, 

landscape patterns change based on the geographical scale at which they are represented 

(Benson and MacKenzie 1995, Greenberg et al. 2001). Landscapes with a considerable 
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local variability are most affected by spatial resolution. Subtle patterns are best illustrated 

with higher resolutions whereas course resolutions are likely adequate for homogeneous 

landscapes (Benson and MacKenzie 1995, Greenberg et al. 2001). 

Lastly, given that speed limit and traffic volume data were not consistently and 

accurately available for the entire study area, forcing me to use the number of road lanes 

as a proxy for traffic volume. Given the importance of this proxy variable to my analysis, 

subsequent research would benefit from more detailed and accurate data on traffic speeds 

and traffic volume. 

5.4. Conclusion 

Though the growing presence of deer in human environments has caused DVCs to 

increase in recent years, creating a significant problem for wildlife and transportation 

managers in the U.S. (Butfiloski et al., 1997), research has shown that DVC kill rates are 

not high enough to adversely affect local deer populations and the problem continues to 

grow. There is clearly a growing need to better understand the geography of this 

phenomenon and develop predictive models in order to minimize economic losses, 

improve traffic safety, prevent human injury, and decrease the number of injuries and 

deaths from DVCs (Putnam 1997, Seiler 2005, Bissonette et al. 2008). Citing the relative 

dearth of published research pertaining to DVCs in the southern U.S., this thesis expands 

the available literature and demonstrates that DVCs can be better understood and 

accurately predicted through use of statistical analysis and quantification of landscape 

structure and composition. Further, through the use of this or similar predictive 

modeling, effective action steps may be taken at the local level which will improve traffic 

safety with regards to DVCs and minimize associated economic loss. 
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