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ABSTRACT 

AN INTEGRATED DROUGHT INDEX (IDI) INCORPORATING  

PHYSICAL AND SOCIAL VARIABLES 

by Rebecca Lynn Lanier 

December 2015 

The purpose of this research was to determine significant bio-physical (physical 

and environmental) and social variables that can be integrated into a drought index to 

predict areas susceptible to drought. Severe drought events are capable of causing 

millions of dollars in damage. The 1988 drought caused the United States approximately 

$40 billion in damage. Drought forecasting, modeling, and detection have, therefore, 

become imperative to understand the social, economic, and environmental impacts of 

droughts, and also to explore how these impacts play a role in the occurrence of a 

drought. A number of drought indices widely used in the U.S. rely on physical and 

meteorological factors to describe and predict drought conditions. Though social factors, 

especially, urbanization seem to contribute to the occurrence and severity of a drought 

they are rarely used in drought prediction and monitoring. In this research, the following 

research questions were answered to aid with drought prediction by incorporating 

physical and social variables: (1) Which physical parameters are significant in drought 

forecasting? (2) Can a social variable be used as a predictor for drought? If so, what 

impact does it have on drought severity?  
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CHAPTER I 

INTRODUCTION 

Overview 

Severe drought events are capable of causing billions of dollars in damage 

worldwide and in the United States (U.S.) (Kogan 1997). Drought forecasting, modeling, 

and detection have, therefore, become imperative to understand the social, economic, and 

environmental impacts of droughts, and also to explore their role in drought occurrence. 

A number of drought indices have been developed for drought forecasting which rely on 

physical and meteorological factors. Though social factors seem to contribute to the 

occurrence and severity of a drought, rarely these factors are used in drought monitoring 

or forecasting. The purpose of this research was to determine significant bio-physical 

(physical and environmental) and social variables that contribute to drought occurrence, 

and to integrate these variables in an index following the Multi-Criteria Evaluation 

(MCE) technique to predict locations susceptible to drought based on their bio-physical 

risk and social vulnerability.  

In this chapter, a definition of drought is provided followed by a discussion of 

potential drought impacts and mitigation techniques used to reduce drought impacts in 

the U.S. Finally, a discussion of the goals, objectives and main research questions 

examined, and the significance and potential outcomes of this research is presented.   

Drought and Drought Types 

Though a drought can be defined in a variety of ways, there are four main types of 

droughts: meteorological, hydrological, agricultural and economical. A meteorological 
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drought refers to a lower amount of rainfall compared to the “normal” amount over a 

certain time-period (University of Nebraska-Lincoln 2013). Because there is no universal 

precipitation level that can be used to classify all regions as having a deficiency of rain 

due to varying climates, defining a meteorological drought is done on a regional basis 

(University of Nebraska-Lincoln 2013). A hydrological drought is dependent on the 

actual amount of precipitation, including rainfall, snowfall and the subsurface water 

supply. It tends to occur later than a meteorological drought because the hydrologic 

systems, such as stream flow or change in reservoir levels, take a longer time to be 

affected (University of Nebraska-Lincoln 2013). Though a limited amount of literature 

focuses specifically on hydrological droughts, the common understanding is that there 

will typically be a time lag between a meteorological drought and a hydrological drought, 

often lasting a number of months (Tallaksen and Van Lanen 2004). An agricultural 

drought refers to the effects of both meteorological and hydrological droughts on 

agriculture and is impacted by a shortage in precipitation and reduction in groundwater 

levels (University of Nebraska-Lincoln 2013). Given that some crops are more dependent 

on water than other crops and certain crops rely on top soil moisture versus subsoil 

moisture during different stages of their growing cycles, an agricultural drought is 

defined by the reduction in crop production due to water deficiency (University of 

Nebraska-Lincoln 2013). An economical drought is a result of the other three types of 

droughts and their impacts on the supply and demand of economic goods.  

The key components used to classify a drought and measure its severity are a 

drought’s duration, spatial extent and the availability of precipitation (Tallaksen and Van 
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Lanen 2004). The duration of a drought refers to the length of time in which a drought 

condition persists, and the spatial extent refers to the area impacted by the drought. 

Drought Impacts 

 A drought can have a number of impacts that can be classified into the following 

three categories: economic, environmental, and social (Knutson et al. 1998). Economic 

impacts often result from a drought’s direct damage to agriculture. This can lead to an 

increase in prices of crops that were affected by a drought, thereby directly impacting 

consumers’ expenses. Similar to crops, a drought can impact the availability of food for 

livestock and lead to the loss of livestock and a subsequent economic burden on 

consumers and the consumer-market driven economy. This impact is especially 

concerning due to the persistence of drought over an extended period of time. For 

instance, the U.S. is a hub for certain food products, such as corn. A drought impacting 

this crop will likely cause a shortage in food products associated with corn, thereby 

influencing the consumer market of countries around the world, many of which depend 

on U.S. food production, causing a price increase for these food products 

(Knowledge@Wharton 2012).  

Environmental impacts can include impacts to animal or plant life, wetlands, and 

even air quality. The social impacts, on the other hand, cover a much wider variety of 

subjects. These can encompass adverse health conditions resulting from lack of proper 

food and/or availability of nutritional food. A very good example of the societal impacts 

of drought is the situation in Ethiopia where a lack of nutritional food due to lingering 

drought conditions caused health-related issues and the deaths of thousands of people 

(UNICEF 2013). Since the early 1970s, Ethiopia has been experiencing long-term 
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droughts every few years. The drought of 2011 caused the deaths of approximately 

250,000 of the country’s livestock, creating a shortage of food for Ethiopians 

(Kronsteiner 2011). Due to a lack of available water, people were forced to walk 26 km 

to find drinking water, and this was a nearly impossible task for the elderly population 

(Kronsteiner 2011).  The drought impacts in Ethiopia are diverse and have long-term 

effects on society and the environment.  

The social impacts of droughts can also encompass recreational and public safety 

aspects (Knutson et al. 1998). For instance, in 2012, Austin, Texas had to implement its 

Stage 2 Watering Restrictions (Austin Water Utility 2014), according to which residents 

could water lawns and gardens during certain designated certain hours in a particular day. 

The restriction also prohibited restaurants from serving water unless a customer requested 

it (Austin Water Utility 2014). In April 2015, the State Water Resources Control Board of 

California mandated a reduction in water usage by 25 percent for all urban water users 

due to the continuous drought conditions experienced in the state (Kostyrko 2015). 

Given its current rank as the country with highest economic damage due to 

droughts, the United States is one of the many countries in need of continuous drought 

research (Table 1). Since 2000, the U.S. has been impacted by three major droughts 

according to the Centre for Research on the Epidemiology of Disasters (CRED) (EM-

DAT 2014). The drought of 2002 caused an estimated damage of $3.3 billion followed by 

the 2011 and 2012 droughts that caused approximately $8 billion and $20 billion damage 

respectively (EM-DAT 2014). The regions most affected by these later droughts were the 

Midwest and Southeastern United States. The frequency of drought occurrence within the 
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U.S. since 1900 indicates an increasing trend in drought in recent years (Table 2), which 

could be due to the earth’s changing climate (National Wildlife Federation 2014).  

Table 1 

Top 10 Most Important Drought Disasters for the Period 1900 to 2014 ( EM-DAT 2014) 

   

Country Date Damage (000US$) 

   

   

United States, Drought Jun-2012 20,000,000 

   

China P Rep, Drought Jan-1994 13,755,200 

   

China P Rep, Drought Jan-2013 10,000,000 

   

United States, Drought Jan-2011 8,000,000 

   

Australia, Drought 1981 6,000,000 

   

Spain, Drought Sep-1990 4,500,000 

   

China P Rep, Drought Oct-2009 3,600,000 

   

Iran Islam Rep, Drought Apr-1999 3,300,000 

   

United States, Drought Jul-2002 3,300,000 

   

Spain, Drought Apr-1999 3,200,000 
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Table 2 

Drought Occurrences in the United States Since 1933 (EM-DAT 2014) 

     

Start Date End Date Location 
Est. Damage 

(US$ Million) 
DisNo 

     

     

00/06/2012 00/12/2012 South-West regions, 

Mid-West regions 

20000 2012-9489 

   n/a  

00/06/2012 00/00/2012 Midwest  2012-9235 

     

00/01/2011 00/11/2011 Texas, Oklahoma, 

New Mexico… 

8000 2011-9363 

     

00/10/2007 00/06/2009 California, Georgia, 

Maryland… 

300 2007-9548 

     

00/07/2002 00/08/2002 Midwest 3300 2002-9853 

     

00/11/2000 00/00/2000 Wyoming n/a 2000-9712 

     

00/06/2000 00/00/2002 South Carolina, 

Georgia 

1100 2000-9339 

     

00/07/1999 00/00/1999 Kentucky, Maryland, 

Ohio… 

1100 1999-9358 

     

00/07/1991 00/07/1991 Pennsylvania, 

Maryland 

335 1991-9523 

     

00/01/1991 00/07/1991 California 1000 1991-9476 

     

00/04/1988 00/06/1988 n/a n/a 1988-9707 

     

00/00/1933 00/00/1937 Great Plains n/a 1933-9003 
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 Currently, the U.S. ranks third in terms of the highest number of people directly 

exposed to or living in drought-prone areas (PreventionWeb 2009). Because drought 

impacts tend to be severe, it is pertinent for people residing within drought-prone regions 

to understand the risks involved in living within those regions so that they can implement 

appropriate steps to reduce severity of drought impacts. In light of the growing severity 

and frequency of droughts along with rising population in the drought impacted areas in 

the U.S., this research is a step towards understanding how physical as well as social 

factors contribute to drought occurrence and subsequent impacts.  

Mitigation Solutions 

 Despite their frequent occurrence, understanding all the risks associated with a 

drought is still a research topic (Knutson et al. 1998). The National Drought Mitigation 

Center (NDMC) in the U.S. has worked with drought planners worldwide to develop a 

checklist of the possible impacts of a drought. The checklist developed by the NDMC in 

1998 includes questions pertaining to economic, environmental, and social impacts with 

regard to current, historical or potential future droughts (NDMC 2014). Typically, this 

list is used by agencies at local and national level and water utility companies to aid in 

mitigating potential drought conditions. 

Based on the ranking of drought impacts, the NDMC guide has identified six 

basic steps of preparatory actions to reduce drought risk (Knutson et al. 1998). First, an 

individual (typically a policy maker) must identify a mitigation strategy to follow and use 

with the NDMC guide as the guide was designed to be used in conjunction with other 

mitigation strategies (Knutson et al. 1998). The next step requires assessing the risk of a 
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drought and its direct impacts - environmental, social and economic. The drought risk 

refers to the amount of exposure or potential exposure of a region to a drought event. The 

third step requires ranking the impacts based on cost, areal extent, public opinion and 

other items identified in the NDMC guide (Knutson et al. 1998) in order to identify the 

most significant and  severe impacts for a selected region. The final step is to determine 

underlying causes for a region’s susceptibility to droughts so that specific mitigation 

actions can be undertaken.  

 The Federal Emergency Management Agency (FEMA) (2013) also developed a 

guide to reduce drought risk in the U.S. The major difference between the FEMA and the 

NDMC identified steps is that the FEMA (2013) guide includes steps that specifically 

take into account available water supply and a plan of action for drought events. FEMA’s 

mitigation steps also begin by assessing the risk of a region to drought at a chosen local 

level, such as a county. The first step in this process includes gathering climate data to 

determine local climatic conditions and drought history, and identifying all available 

water supply sources. The second step requires monitoring drought conditions by 

determining local factors to aid in early warning. For instance, the drought condition of a 

region receiving snowfall will be impacted by the amount of snowpack available in a 

specific year. The guide, however, does not explicitly state using a drought index for 

monitoring though using an index, especially a local drought index, could be very helpful 

in predicting drought impact areas. The next step requires monitoring water supply 

amount to plan for a drought with the help of policy makers (FEMA 2013). The final step 

requires water conservation during a drought which may include prevention of 

overgrazing or excess water usage and is aimed at residents/businesses with livestock 
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(FEMA 2013). An advantage of using FEMA’s mitigation guidelines is that they are 

more recent than the NDMC guidelines from 1998. 

 Determining drought impacts is pertinent to mitigate these impacts and prepare 

for future drought events. One useful resource for determining drought impacts is the 

Drought Impact Reporter (DIR) developed by the NDMC. The DIR provides users and 

drought planners the ability to visualize where the greatest impacts have occurred from 

droughts during a selected time period (NDMC 2014). It also breaks down the impacts 

into different categories for a specific location (i.e. a state or a county). For instance, 

from Figure 1 that depicts drought impacts for the conterminous U.S. during February 1, 

2004 to February 1, 2014, it is evident that Texas experienced the highest economic, 

social and environmental impacts during this ten year period. Because the DIR also 

provides information about specific impacts a region experiences, it can also be used to 

mitigate and prepare for droughts by policy makers and local stakeholders.  

 
 

Figure 1. Drought Impact Reporter U.S. Drought Impacts: 02/01/2004 to 02/01/2014 

(NDMC, Drought Impact Reporter 2014). 
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Numerous mitigation techniques, tools and indices are available to reduce drought 

impacts. The PREVIEW Global Risk Data Platform utilizes the Standardized 

Precipitation Index (SPI) to determine drought-related risks (UNEP/UNISDR 2013). 

Because this organization is comprised of numerous other agencies, it integrates data and 

information from a variety of sources to analyze risk and develop risk reduction 

measures. Unlike this platform, rarely drought indices are used in conjunction with the 

dynamic nature of the physical and social environments to help stakeholders (e.g., 

planners and policy makers) prepare for future droughts.  

Research Questions 

Undoubtedly, numerous physical and social factors influence drought occurrence. 

Naturally occurring events, such as tropical storms, have also been found to alleviate 

drought conditions in the southeast U.S. (Maxwell et al. 2013). The purpose of this 

research was to determine physical, meteorological, and social factors that play a 

significant role in drought occurrence, and develop a drought index by combining these 

factors that can be used to predict locations at-risk to experience a drought. The scope of 

this study does not include events that can alleviate drought conditions, but rather focuses 

on identifying physical and meteorological factors from literature, and examining the 

impact of specific social factors (e.g., population density), which can be integrated with 

the physical and meteorological variables to help determine areas at-risk to future 

droughts. This index can be used to explore how population growth can impact future 

drought conditions. This study builds on the Self-Calibrating Palmer Drought Severity 

Index (SC-PDSI). The main research questions investigated in this study were: (1) Which 
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physical parameters are significant in drought forecasting? (2) Can a social variable be 

used as a predictor for drought? If so, what impact does it have on drought severity?  

Research Significance 

 It is evident that numerous possible input parameters can be used in drought 

prediction and forecasting (listed in Table 1 in Chapter 2), and including all these 

parameters to determine a drought’s severity or to forecast its occurrence is nearly 

impossible. An alternative to addressing this issue is to review previous studies and 

indices already in place to narrow down the list of parameters that are frequently used 

and are of import in drought prediction. For instance, the Palmer Drought Index (PDI) 

has been the most commonly used index in the U.S. since its development in 1965 

(National 2013). The PDI and other such indices use meteorological and bio-physical 

variables that are significant in predicting drought and, therefore, should be used in a 

drought index. However, none of the indices available and used include any social 

parameters in predicting drought occurrence. The first research question focuses on 

determining pertinent and appropriate physical parameters contributing to drought risk.  

A hydrological drought is influenced by a number of social variables, such as 

population density, water usage, household size, etc. The second question emphasizes 

identifying the appropriate social variable(s) that affect a drought’s severity and/or its 

occurrence and therefore should be used in future drought forecasting models.  

Summary 

 A drought has the potential to cause billions of dollars in damage. Research on 

Earth’s changing climate shows the possibility of increased drought occurrences due to 

climate change (National Wildlife Federation 2014). While a drought can affect people 
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during and after its occurrence, population size/density likely has an effect on the severity 

of drought conditions. It is, therefore, crucial to examine the impact of growing 

population on possible drought occurrence for the development of improved mitigation 

strategies for planners and other stakeholders.   

This manuscript is organized into the following chapters. The next chapter 

provides a comprehensive literature review of drought indices established within the 

United States and the variables used in these indices followed by a discussion of the 

advantages and limitations of using remote sensing in drought studies. The methodology 

chapter introduces to the study site and discusses the research methodology used in this 

study (i.e. the scale of analysis, data sets, data processing steps and analytical 

techniques). This section is followed by the presentation and discussion of results, and 

then by the conclusion sections in which conclusions drawn from results and 

recommendations for future work are presented.   
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CHAPTER II 

LITERATURE REVIEW 

Overview 

This chapter discusses the role of teleconnections in drought occurrence and 

provides an overview of physical risk and social vulnerability. A comprehensive table 

(Table 3) of drought indices used in and across the U.S. is presented along with a 

discussion of the variables and formulas used (if any), and other criteria required for 

developing and deploying each index. Because remote sensing data is used to derive 

different variables, such as biomass and soil moisture, that are used as proxies for drought 

prediction, it has steadily become an important component in drought research. A 

discussion of the merits and disadvantages of using remote sensing data is presented in 

this chapter. A discussion of physical risk and social vulnerability is also presented to lay 

the foundation for determining the locations physically and socially susceptible to future 

droughts.  

Drought Introduction 

A drought is a hydro-meteorological hazard that influences countries worldwide, 

including the United States. The United States experienced the most expensive drought 

during 1987-89 that caused approximately $40 billion in financial loss (Kogan 1997; 

NCDC 2013). At its peak, this drought covered about 36% of the U.S. (NCDC 2013), as 

opposed to the 70% of the U.S. that was impacted by the Dust Bowl drought of the 1930s 

that persisted for about six years, but came in three distinct waves: 1934, 1936 and 1939-

1940 (NCDC 2013). The drought of 1980s began on the west coast in 1987, but 

intensified by 1988 by spreading to the eastern U.S. including parts of the Mississippi 
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River Basin (NCDC 2013).  This drought affected society in multiple ways with record-

setting temperatures in the Midwest and problem with crop growth and barge navigation 

along the Mississippi River (NCDC 2013). The U. S. experienced another severe drought 

in 2000, which lasted until 2004. The 2000 drought covered 35% of the contiguous U.S., 

but by 2001, the drought coverage shrank to about 15% of the entire U.S. Between 2002 

and 2004 the spatial extent of the drought increased that covered approximately 50% of 

the contiguous U.S. (NCDC 2012). The most recent drought that affected the U.S. was 

during 2011-2012, which is considered to be the worst drought in the past 25 years 

(Knowledge@Wharton 2012). As of January 2013, the estimated financial loss from this 

drought due to impacts to agricultural and food industries was about $35 billion (Rice 

2013).  

Drought Teleconnections 

In the U.S.,the occurrence of droughts can be related to the oscillations resulting 

from the shifting of wind speed and ocean currents. These oscillations affect the intensity 

and duration of a drought. The El Niño Southern Oscillation (ENSO) is the warm phase 

of the Southern Oscillation during which the waters off the western coast of South 

America experience unusually warm temperature and any nutrient-rich cold water is 

stopped from upwelling from the deep ocean (USDM 2014). The ENSO occurs from an 

unusual shift in winds which leads to the Peru Current weakening and/or reversing. The 

high pressure develops farther west than its typical location in the South Pacific Ocean, 

which leads to low pressure development along the western coast (California Department 

of Fish and Wildlife 2014). The change in pressure causes the winds to blow from the 

opposite direction than what is typically observed. Typical winds observed are the 
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easterly trade-winds, but ENSO weakens these or reverses the direction to a westerly 

wind (California Department of Fish and Wildlife 2014). The ENSO - colloquially 

known as the El Niño - has been linked with global shifts in weather patterns (USDM 

2014). During an El Niño event, weather conditions are typically affected during the 

winter months, causing the Southeastern U.S. to experience above normal precipitation 

and cooler than normal temperatures, which  lessens the likelihood  of a drought 

(Ropelewski and Halpert 1986). In contrast, the northwest coast could receive extreme 

heat waves during this time if the event is strong enough to cause a displacement in the 

jet stream (USDM 2014). The La Niña event describes the opposite effect of the Southern 

Oscillation, during which the sea surface temperatures across the west coast of South 

America are cooler than normal, and the winter temperatures across the Southeastern 

U.S. tend to be warmer than normal with drier conditions (NOAA 2014). Thus, there is 

the increased possibility for drought conditions to persist during winter in the Southeast. 

While each phase cycles every 3 to 7 years, a phase may persist for approximately 6 to 18 

months (USDM 2014). 

There are also other ocean oscillations that impact the weather of the U.S., such as 

the Pacific Decadal Oscillation (PDO). The PDO has similar effects as ENSO, but a 

different behavior with its ocean patterns and timing (Climate Impacts Group 2014). The 

PDO is located in the North Pacific Ocean and its warm phase occurs when the eastern 

Pacific Ocean receives higher than normal temperatures, while the central and western 

Pacific receives cooler than normal temperatures (Climate Impacts Group 2014). During 

the cool phase of the PDO, the Pacific regions of the U.S. experiences the exact opposite 

ocean temperature pattern than the warm phase (Climate Impacts Group 2014). Each 
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phase of the PDO can persist for 20-30 years, which is much longer than that of the 

ENSO (Climate Impacts Group 2014). The warm phase of the PDO and the El Niño, and 

the cold phase of the PDO and  La Niña have similar impacts in the Southeastern U.S..  

The Atlantic Multidecadal Oscillation (AMO) also influences the  weather 

conditions across the U.S.. The warm/positive phase of this corresponds to warmer sea 

surface temperatures across the tropical Atlantic Ocean and the cold/negative phase 

corresponds to colder than normal temperatures (McCabe et al. 2004). Each phase 

persists for about 40 to 50 years with the warm phase of the AMO bringing below-

average amounts of precipitation to the central U.S. (McCabe et al. 2004), thereby 

increasing the possibility for drought conditions.  

The timing of these oscilliations is critical to forecasting drought conditions. If all 

the oscillations were in a phase during which precipition is inhibited in the Southeastern 

U.S., then this would enhance the intensity and duration of a drought. However, if a 

lesser amount of rainfall occurs during one oscillation, while increased rainfall occurrs 

during the other two oscillations, a balance in precipitation could occur. Likewise, 

depending upon an oscillation, peristent drier conditions could be eliminated due to 

greater than normal rainfall, thereby either obliterateing or moderating a drought and/or 

drought conditions.  

Evidently, there is a relationship between ocean oscillations and climate change. 

According to Climate Communication (2014), the current warming trend of the Earth is 

intensifying the phases of the oscillations and increasing their durations. Therefore, the 

ENSO has become a much more intense and frequent event in recent years (Climate 

Change 2014). Because climate change impacts the intensity, duration and severity of 
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oscillations which subsequently influence the spatial and temporal extents, severity and 

magnitude of a drought, it is critical to forecast drought occurrence to better manage its 

social and financial impacts.   

Drought Indices 

Drought was originally defined by Alfred Judson Henry in the early 1900s as “a 

period of twenty-one days or more was 30 percent, or less of the normal for the season” 

(Henry 1906, 54). Using this definition, researchers developed a number of drought 

indices to predict and/or monitor drought severity in and across the U.S.. Although 

drought severity is determined by the average amount of precipitation a location receives, 

some indices define severity based on the duration of a drought. A discussion of these 

indices, the variables and techniques used to create them, and their pros and cons is 

presented in the following section.  

 The Munger’s Index is the first drought index that was developed in 1916 to 

explore forest fire risk (Heim 2002). This index uses amount of precipitation coinciding 

with the timing of a drought to determine drought severity by using Equation (1) - a 

technique similar to calculating the area of a right angle triangle:  

Equation (1): severity of drought = ½ *L2 

where L is the length of drought in days, and drought, in this instance, is defined by a 

location experiencing less than 1.27 mm of rainfall within 24 hours (Heim 2002). In 

1919, Kincer’s Index was developed in which drought was defined as “30 or more 

consecutive days with less than 6.35 mm (0.25 in) of precipitation in 24 h” (Heim 2002). 

This new index was successful in depicting precipitation distribution with regard to 

seasonal changes and subsequently frequency of droughts east of the Rocky Mountains. 
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Markovitch’s Index, developed in 1930, uses both temperature and precipitation to 

measure drought severity (Equation 2): 

Equation (2): drought index = ½ (N/R)2 

Where N is the number of two or more consecutive days above 90⁰ F (32.2 C) and R is 

the total amount of summer rainfall for those same months (Heim 2002). In 1942, the 

Blumenstock’s Index was developed using the duration of a drought. According to this 

index, a drought is terminated when the accumulated precipitation level reaches 2.54 mm 

(0.10 in.) within 48 hours (Heim 2002). The Antecedent Precipitation Index (API) was 

developed in 1954 to aid with soil moisture estimation for flood forecasting (Heim 2002). 

The API is calculated daily by multiplying the previous day’s precipitation with a factor, 

which changes for snowfall (Heim 2002). McGuire and Palmer developed the Moisture 

Adequacy Index in 1957,which is simply a ratio of the actual amount of soil moisture and 

the percentage of moisture needed for plant growth (Heim 2002). This index gave rise to 

the idea of using potential evapotranspiration (the amount of evaporation that would 

occur is a sufficient water source was available) for drought monitoring. 

The most widely used index in the U.S. is the Palmer Drought Severiy Index 

(PDSI) which was developed in 1965 by Wayne Palmer and incorporates the following 

variables: precipitation, temperature, moisture supply and moisture demand (Heim 2002). 

This index was heavily influenced by Thornthwaite’s pioneering work on 

evapotranspiration (Heim 2002). The PDSI is useful for meteorological droughts, but 

because it incorporates precipitation, evapotranspiration and soil moisture conditions, it 

can also be used to determine hydrological droughts (Alley 1984). Palmer also created a 

number of other indices which were adapted from the original PDSI. For instance, the 
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Palmer Hydrological Drought Index (PDHI) is used to determine long term hydrologic 

moisture conditions and the Z Index which is used to determine moisture anomalies, i.e. 

when the moisture conditions depart from the normal (the average or mean value) 

moisture conditions typically observed (Heim 2002). It can either be expressed in terms 

of drought conditions or wetness. In 1968, Palmer introduced the Crop Moisture Index 

(CMI) as an agricultural index, which is dependent on drought conditions at the 

beginning of a week and calculates the amount of soil recharge occurring by the end of 

the week (Heim 2002). 

Despite the PDSI’s attention and popularity in the U.S., it has received criticisms 

for its inability to compare its values among regions with different climatic conditions, 

and it suffers from numerous limitations and assumptions (Wells et al. 2004).  The most 

serious problems are: the arbitrary classification of drought severity and the arbitrary 

rules used to quantify the beginning and ending of droughts (Alley 1984). To address the 

local variability of drought conditions, Wells et al. (2004) developed a new index known 

as the Self-Calibrating Palmer Drought Severity Index (SC-PDSI) (discussed in detail in 

the Methodology chapter). The SC-PDSI allows for the empirical constants, originally 

calculated when the PDSI was developed, to become variables that can be recalculated 

automatically for any location by using the climatic data for that location (Wells et al. 

2004). Because a drought can be explained based on the variation in moisture content 

from the average climatic conditions of a particular area, it is important to know the 

area’s history of precipitation and temperature.  

The Keetch-Byram Index (1968) was developed to control fire and for wildfire 

monitoring, and is based on a fixed soil moisture storage capacity of 203 mm (8 inches) 
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(Heim 2002). The index values range from 0 (no moisture defecit) to 800 (absolute 

drought). In 1981, the Surface Water Supply Index (SWSI) was developed for Colorado, 

which is an enhancement of the PDSI as it accounts for snowpack and other variables 

(NDMC 2013) as listed in Table 3 influencing drought conditions. The Standardized 

Precipitation Index (SPI), also developed for Colorado, is based on the probability of 

precipitation (NDMC 2013). The Vegetation Condition Index, developed in 1995, 

compares the current Normalized Difference Vegetation Index (NDVI) to the previously 

calculated NDVI (Copernicus 2013) and utilizes the visible and near infrared bands of the 

Advanced Very High Resolution Radiometer (AVHRR) for the NDVI calculations (Heim 

2002). Because of its dependency on vegetation, it is most useful during the summer 

growing seasons.  

In 1999, the federal and state agencies collaborated to develop a new drought 

monitoring tool - the U.S. Drought Monitor which is maintained by the National Drought 

Mitigation Center. The tool uses climatic data and values from other indices such as the 

PDSI, CPC  Moisture Model, USGS Weekly Streamflow, and SPI to determine spatial 

distribution of drought on a weekly basis in the coterminous U.S. (USDM 2013).  The 

tool produces a map of drought severity for the contiguous U.S. and the drought severity 

classifications range from D0 (abnormally dry) to D4 (exceptional drought) (Heim 2002). 

The Percent of Normal Index (PNI) is a simple mathematical equation that divides the 

actual precipitation by the normal precipitaiton and multiplies the division results with 

100 to get a percentage output. Because the PNI calculates percent precipitation, it can be 

calculated for any time scale, but it uses the normal precipitation for a 30-year mean for 

calculations (Indiana Department of Natural Resources 2013). The Reclamation Drought 
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Index (RCI), a product of the Reclamation States Drought Assistance Act of 1988, is very 

similar to the SWSI, and the index incorporates temperature, precipitation, snowpack, 

reservoir levels and streamflow at the river basin level (NDMC 2013). The RCI is 

typically used as an indicator for determining when the drought emergency relief funds 

need to be released. The Deciles Index, developed in 1967, simply uses the deciles 

statistic on monthly precipitation data (NDMC 2013). The deciles method splits up any 

set of ranked data into 10 equal parts. The deciles process has 5 categories all 20% apart 

and each category represents precipitation occurrences (NDMC 2013). For instance, 

below normal precipitation occurs in the 1-2 deciles category representing the lowest 

20% of precipitation amount recorded (NDMC). The most recently developed drought 

index is known as the Standardized Precipitation Evapotranspiration Index (SPEI). This 

index encompasses precipiation and climatic temperature and has some similarities to the 

SPI and SC-PDSI (Vicente-Serrano et al. 2010). Table 3 provides a comprehensive list of 

currently available drought indices, and the variables used and the time scale of each 

index. 
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Table 3 

U.S. Drought Indices  

 

    

Index Name Year Variables Time Scale 

    

    

Munger's Index 1916 Precipitation, Drought Length Daily 

    

Kincer's Index 1919 Precipitation Seasonal 

    

Marcovitch's Index 1930 Precipitation, Temperature Seasonal 

    

Precipitation 

Effectiveness Index 

1931 Precipitation, Evapotranspiration Monthly/Yearly 

    

Blumenstock's Index 1942 Precipitation Daily 

    

Antecedent 

Precipitation Index 

1954 Precipitation Daily 

    

Moisture Adequacy 

Index 

1957 Precipitation, Soil Moisture Daily 

    

Palmer's Index (PDSI 

and PHDI) 

1965 Precipitation, Temperature, 

Hydrologic Cycle 

Weekly, 

Biweekly, 

Monthly 

    

Deciles 1967 Precipitation Monthly 

    

Crop Moisture Index 1968 Precipitation, Temperature, 

Evapotranspiration, Soil Moisture, 

Runoff 

Weekly 

    

Keetch-Byram 

Drought Index 

1968 Precipitation, Soil Moisture 

Capacity 

Daily 

    

Surface Water 

Supply Index 

1981 Precipitation, Snowpack, Reservoir 

Storage, Stream flow, Runoff 

Monthly 
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Table 3 (continued).    

    

    

Index Name Year Variables Time Scale 

    

    

Standardized 

Precipitation Index 

1993 Precipitation Monthly/Season

al 

    

Vegetation Condition 

Index 

1995 VIS an NIR from AVHRR Daily 

    

Drought Monitor 1999 Precipitation, Soil Moisture, Stream 

flow, PDSI, SPI, CMI, VHI, other 

climatic variables 

Weekly 

    

Percent of Normal n/a Precipitation Monthly 

    

Reclamation Drought 

Index (RDI) 

1988 Precipitation, Temperature, 

Snowpack, Reservoir Levels, 

Stream flow 

Monthly 

    

SC-PDSI 2004 Precipitation, Temperature, AWHC Weekly, 

Biweekly, 

Monthly 

    

Standardized 

Precipitation-

Evapotranspiration 

Index (SPEI) 

2010 Precipitation, Potential 

Evapotranspiration 

Weekly, 

Monthly 

    

    
Note. Sources: Heim 2002; NDMC 2013; IDNR 2013; Niemeyer 2008; Wells et al. 2004; Vicente-Serrano et al. 2010 

Drought Variables and Data 

It is apparent from Table 3 that the most commonly used variables in drought 

indices are precipitation and temperature. The data for these two variables can be 

obtained from weather stations around the country (i.e. United States) and interpolated to 

determine values for data-void regions. Due to the limited availability of weather station 
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data, data about other variables, such as soil moisture and NDVI are generally obtained 

from remote sensing data. With the availability of numerous satellite sensors with 

multiple bands, obtaining these data sets is not impossible. Though field work can be 

conducted to collect data about soil moisture and vegetation condition, it can only be 

conducted for smaller sites, and can become time consuming and expensive. In contrast, 

remote sensing provides easy access and a wider coverage to many data sets that can 

be/are used in drought prediction and monitoring, especially, while dealing with large 

sites (Kogan 1997; Schubert et al. 2007). The most useful indicators of drought 

conditions derived strictly from remotely sensed data are the NDVI and Vegetation 

Condition Index (VCI) as they are highly sensitive to drought conditions. Remote sensing 

data is also used to estimate soil moisture content for drought research (Alley 1984). 

Therefore, remotely sensed data is used to monitor and assess drought efficiently. 

Kogan (1997) used NDVI, VCI (Vegetation Condition Index), and Temperature 

Condition Index (TCI) derived from the AVHRR satellite sensor imagery to determine 

drought severity. The author generated VCI and TCI from the NDVI layers to compare 

with ground data, such as rainfall, temperature, vegetation density, biomass, and yield, 

the PDSI and the Crop Moisture Index (CPI) in order to validate the drought severity 

determined by the remotely sensed data. The methodology developed by Kogan (1997) 

has been successful in detecting drought based on vegetation stress in other countries 

such as Asia, Africa, the Americas, and Europe.  

Using remote sensing data, a number of tools have also been developed for public 

and government use. These tools provide information about drought severity of a location 

and help implement mitigation techniques to reduce drought impacts. One such tool is the 
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National Integrated Drought Information System (NIDIS). The online web application -

NIDIS - is run by the U.S. Drought Portal and promotes interaction among various 

government agencies including NASA, which provides access to remote sensing data to 

improve drought monitoring and forecasting techniques.  

Wang et al. (2008) used the Normalized Difference Water Index (NDWI) in the 

near-infrared and shortwave infrared bands of the Landsat TM and ETM+ remotely 

sensed images to observe the oak crown die-back, a characteristic that indicates decline 

of oak trees and their subsequent mortality due to a drought. To monitor and assess 

drought in Southwest Asia, Thenkabail et al. (2004) used the monthly highest NDVI and 

the unique spectral signatures of tree canopies. They concluded that the satellite data is 

the most reliable way to receive data most consistently which can be used in predicting 

the onset of drought. 

Kogan (1997) and Thenkabail et al. (2004) used the AVHRR satellite, but the 

satellite has a spatial resolution of 1.1 km x 1.1 km that is coarser than many other 

sensors. Despite having a daily temporal resolution, the authors concluded that AVHRR 

satellite is not suitable for smaller scale drought cases because of its coarser spatial 

resolution. Another satellite option for drought research is the Landsat 7 which has a 

higher spatial resolution (30m x 30m), but a lesser temporal resolution of sixteen days. 

The spatial resolution of satellite data is a major constraint seen by these researchers, 

especially if the area being monitored is relatively small. There are a wide variety of 

spatial resolutions available when using remotely sensed data, but the finest resolution 

data available (30m) was chosen for analysis for the study. 
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Physical Risk and Social Vulnerability 

A drought has very diverse impacts on the physical and social environments. With 

the growing concern about a drought and other meteorological hazards’ potential 

financial and societal impacts, the United Nation (UN) has undertaken the Disaster Risk 

Reduction (DRR) initiative (UNISDR 2007). Risk assessment is one of the major 

requirements of the DRR initiative, which focuses on identifying the physical risk zones 

(UNISDR 2007; Peduzzi et al. 2009). Risk assessment, the main component of DRR, is 

based on assessing hazards (their type, location, intensity, frequency, and probability of 

occurrence), vulnerability and exposure. In other words, it is a function of hazard, 

vulnerability and exposure (Peduzzi et al. 2009; Bründl et al. 2009). 

The hazard analysis component of risk assessment focuses on determining the 

expected physical impacts a region will experience for a defined period by a hazard event 

(Bründl, et al. 2009). It takes into account the topographic features and meteorologic 

conditions of the region to determine the intensity of the hazard and its probability of 

occurrence primarily through modelling techniques (Bründl, et al. 2009). Exposure refers 

to population, structures, infrastructures, and physical environment subjected to harm 

from hazards (Lavell et al. 2012; Peduzzi et al. 2009). The exposure analysis focuses on 

identifying the people and assets at risk based on certain factors such as how many 

people and structures are in a region, their values and the probability the people and 

structures will be exposed to such a hazard (Bründl, et al. 2009). Finally, the outcomes of 

the hazard occurrence and exposure analyses are combined to determine the  expected 

damage and loss (physical and financial) (Bründl, et al. 2009).  
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Vulnerability, in general, refers to the potential and degree of susceptibility of an 

individual, a group, or a community to experience adverse impacts of hazards due to 

socio-cultural, physical, economic, and environmental conditions (Burton et al. 1993; 

Cutter 1996). Social vulnerability refers to the factors that affect the outcomes of a 

specific hazard to a social group (Cutter et al. 2003). Some of the predominant factors 

contributing to social vulnerability include the social capital of a community (i.e. social 

networks), the socio-economic conditions, cultural beliefs and customs, limited or no 

access to resources, the physical conditions of individuals (i.e. limited physical ability 

due to health conditions or due to old age) (Cutter et al. 2003). In addition to these 

factors, population growth of a region can also increase vulnerability (Cutter et al. 2003). 

An understanding of the physical and meteorological conditions contributing to a 

drought’s occerrence combined with the socio-economic conditions that may increase the 

drought’s potential impacts will help develop an index integrating both physical and 

social conditions of the region.  

Summary 

Conclusions 

 A drought is a phenomenon that is dependent on multiple factors. The drought 

severity is typically analyzed through drought indices by using the most commonly used 

factor - precipitation. However, all the existing drought indices lack a social component. 

Because the population density of a location appears to impact drought condition of that 

location, it is an important factor to be considered as part of any drought study. Although 

the PDSI is the accepted drought index within the U.S., the SC-PDSI is an improvement 

upon the PDSI because it accounts for local climatic characteristics (Wells et al. 2004). 
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However, this new index does not incorporate social factors that contribute to drought 

conditions. Therefore, the proposed new index was built on the SC-PDSI by integrating 

social factors. Knowing how a changing population will impact drought conditions can 

help formulate and improve mitigation techniques to address the impact of population 

growth on drought events.   

Limitations of these studies 

 As with any research, this research has some limitations. The main limitation 

being the use of data sets at varying spatial scales of analysis and spatial resolutions. 

These varying scales and resolutions will result in the Modifiable Area Unit Problem 

(MAUP) – a common fallacy associated with geo-spatial studies due to changing and 

varying scales of analysis. To reduce the influence of MAUP, a raster data model and a 

standardized spatial resolution were used. Another limitation results from the use of 

interpolation techniques to create a continuous surface of meteorological variables (i.e. 

precipitation, temperature) from point data. Measures were taken to standardize the 

spatial resolution of these surfaces and assess the cumulative error and spatial distribution 

of error in these surfaces. The final limitation of this study is the use of specific social 

variables, especially, population growth and economic conditions instead of other social 

variables that may influence a drought (e.g. water draw down by each household, water 

table condition in each study site, etc.). Because this study was the first study to 

incorporate social variables, the scope of this study included only population of a region 

to determine its drought risk potential instead of other social variables. By limiting the 

social variables, this study achieved the goal of obtaining more accuracy while 

integrating social variables with physical and meteorological variables.  



   29 

 

 

 

CHAPTER III 

METHODOLOGY 

Overview 

 This chapter discusses the methodology implemented to answer the following 

research questions: (1) Which physical parameters are significant in drought forecasting? 

(2) Can a social variable be used as a predictor for drought? If so, what impact does it 

have on drought severity?  

In the first section of this chapter, the justification for selecting particular Texas 

counties is presented. The next section outlines the study’s scope and data sets in which a 

discussion of the final set of variables used for analysis and their data sources is 

presented. With these established, the research designs and analytical techniques used to 

answer the research questions are discussed. The final section of this chapter discusses 

the steps implemented to validate the index and asses its accuracy in comparison to other 

existing indices (SC-PDSI and PDSI).  

Study Site 

For this research, the state of Texas was selected due to the frequent occurrence of 

drought in this state. As evident from Figure 1, Texas has the highest reported drought 

impacts. Among the 254 counties in Texas, the counties with the highest population 

density were Dallas, Harris, Tarrant and Bexar Counties (Figure 2) as per the 2010 U.S. 

census. Because the SC-PDSI accounts for the subsurface water supply, it was crucial to 

choose counties for this study that draw their water supply from the subsurface as well as 

surface water sources for comparative analysis purpose. Given the purpose of this study 

was to incorporate social factors in predicting drought occurrence potential, these 
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counties - Harris and Bexar (drawing water from subsurface sources) and Dallas and 

Tarrant (drawing water from surface water supplies) (Figure 5) were used in this study 

because of their higher population density in comparison to other counties in Texas 

(Table 4). Table 4 lists the decadal population increase experienced by these counties 

during 1990 – 2010 as well as their varying water supply sources.  

 
 

Figure 2. Texas Counties’ Population Densities from the 2010 Census 

Harris County, which is located in the southeastern part of Texas, draws 29% of 

its water supply from the Evangeline and Chicot underground aquifers (City of Houston 

2014). Bexar County also pumps the majority of its water from underground water 

sources which include: the Edwards Aquifer, Trinity Aquifer and Carrizo Aquifer (San 
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Antonio Water System 2014). Dallas County strictly uses surface water resources from 

nearby lakes, such as Lake Ray Hubbard and Lake Lewisville (City of Dallas 2014). 

Tarrant County also draws water from surface supply consisting of the following lakes: 

Eagle Mountain Lake and Lake Worth (City of Fort Worth 2014). 

 
 

Figure 3. Study Site Locations 
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Table 4 

Percentage Decadal County Population Growth From 1990 - 2010 

     

Variable 
Bexar 

County 

Dallas 

County 

Harris 

County 

Tarrant 

County 

     

     

1990 Total Population 1185394 1852810 2818199 324877 

     

2000 Total Population 1392931 2218899 3400578 1446219 

     

2010 Total Population 1714773 2368139 4092459 1809034 

     

Population Increase (%) 

1990 - 2000 
17.5% 19.8% 20.7% 23.6% 

     

Population Increase (%) 

2000-2010 
22.6% 6.8% 20.3% 24.8% 

     

Major Cities San Antonio Dallas Houston Fort Worth 

     

 

The two counties – Dallas and Tarrant - with a strictly surface-based water supply 

are under the direct influence of fracking (hydraulic fracturing), which is used in places 

where the soil has very low permeability and is located above a large reservoir of oil or 

gas. The process of fracking breaks up the soils with low permeability to allow drilling 

into the oil or gas wells by injecting a fluid through a perforated casing (Earthworks 

2014). The increased pressure from the fluid buildup causes the ground to crack. This can 

impact a county’s decision to use a subsurface water supply versus a surface supply 

because the fracking fluid can be toxic and could contaminate groundwater supplies 

within the region (Earthworks 2014). Dallas and Tarrant (two neighboring counties), 

contain numerous fracking (Figure 4, WorldMap 2011; SkyTruth 2013). This can explain 
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the use of surface water supplies in these counties. Bexar and Harris Counties currently 

have little to no fracking sites (WorldMap 2011) (SkyTruth 2013). Bexar County is 

unique because of its location in a karst region. Karst is a type of terrain typically 

characterized by caves and sinkholes, which help steer water underground creating 

underground aquifers (Elliott 2014). Bexar County pumps water from the Edwards 

Aquifer which is a karst aquifer. This variation in the geological makeup of the soil may 

explain variation in results when Bexar County is compared to other counties. 

 
 

Figure 4. FrackMap Showing Disclosed Location of Oil and Gas Fracking Sites 

(SkyTruth 2013) (WorldMap 2011) 
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Data Sources and Processing 

Both physical and social variables required for drought prediction are available at 

multiple spatial and temporal scales of analysis and from different data sources. For 

instance, meteorological data, such as temperature and precipitation, are often available 

as point data from meteorological stations, which can be interpolated to estimate 

precipitation level and temperature for locations where no such data is available. 

Likewise, population data can be obtained from the U.S. Census Bureau at the county, 

tract, block group and block levels. For instance, meteorological data, such as 

temperature and precipitation, are often available as point data from meteorological 

stations, which can be interpolated to estimate precipitation level and temperature for 

locations where no such data is available. Likewise, population data can be obtained from 

the U.S. Census Bureau at the county, tract, block group and block levels. 

The proposed new index incorporates population, temperature, precipitation and 

soil moisture data with the SC-PDSI (Table 5). For this study, meteorological data 

(precipitation and temperature) were collected from the United States Historical 

Climatology Network (USHCN) as excel spreadsheets for 1902 to 2013 for the fifty-five 

stations spread across the Texas region (Figure 5). The temperature data indicates 

monthly average temperatures in Fahrenheit, and the precipitation data represents the 

total monthly rainfall in inches.  
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Figure 5. Untied States Historical Climatology Network Data Points 

The Available Water Holding Capacity (AWC) data were collected through the 

Web Soil Survey at every station’s location. The AWC values depict the average holding 

capacity of the soil from 0 to 150 cm in depth. The 2010 census data were obtained from 

the United States Census Bureau at the block group level. The 2000 block group census 

data were downloaded from the American Fact Finder (2015) and the 1990 census data 

were obtained from the Texas State Data Center (2015) as Summary Level Files. Both 

the 1990 and 2000 census data were joined with the U.S. Census block group boundaries 

obtained from the National Historical Geographic Information System.  The soil moisture 

data was obtained for the year 2011 because the soil moisture data was available for the 

entire study area for this year. This data was gathered through TAMU North American 
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Soil Moisture Database (2013). Depending on the sensor used for data collection, the 

selected soil moisture measurement of 20cm – 25cm was used in this study. 

Before processing, all datasets were projected to North American Datum 1983 

Universal Transverse Mercator (UTM) Projection, Zone 14. Next, the area of each block 

group was computed in square kilometers which was used to compute population density 

(number of people per square kilometer) at the block group level.  

Table 5 

Data Sets and Sources 

    

Data Set Source File Format Web URL 

    

    

Precipitation USHCN Excel http://cdiac.ornl.gov/epubs/nd

p/ushcn/ushcn.html 

    

Temperature USHCN Excel http://cdiac.ornl.gov/epubs/nd

p/ushcn/ushcn.html 

    

2010 

Population  

U.S. Census 

Bureau 

Polygon 

shapefile 

https://www.census.gov/geo/

maps-data/data/tiger-

data.html 

    

2000 

Population 

American Fact 

Finder 

Summary File 

1 

http://factfinder2.census.gov 

    

2000 Block Group 

Boundary 

U.S. Census 

Bureau 

Polygon 

Shapefile 

https://www.census.gov/geo/

maps-data/data/tiger-

data.html 

    

1990 Population  Texas State 

Data Center 

Summary Tape 

Level 1B 

http://txsdc.utsa.edu/Data/Dec

ennial/1990/Index.aspx 

    

1990 Block Group 

Boundary 

NHGIS Polygon 

shapefile 

https://www.nhgis.org/researc

h 

    

    



   37 

 

 

 

Table 5 (continued).   

   

    

Data Set Source File Format Web URL 

    

    

    

AWC Web Soil 

Survey 

N/A http://websoilsurvey.nrcs.usda

.gov/app/websoilsurvey.aspx 

    

Soil Moisture TAMU Text File http://soilmoisture.tamu.edu/ 

    

    

Research Methods and Techniques 

An exploratory research design was implemented to answer the research 

questions. Integrating a social component into a drought index is a novel approach in 

drought research, and determining how this variable will impact drought intensities will 

benefit other researchers within this field. The NDMC (2013) concluded that because too 

many meteorological parameters are responsible for a drought event, it is a challenge to 

depict drought severity and forecast a drought accurately. Therefore, through the 

exploratory design, the impact of certain social and meteorological variables (i.e. 

population density, temperature, precipitation and soil moisture) on drought severity were 

determined. A descriptive research design was also used to answer the second research 

question, which provides insight into the impacts of population density on drought 

occurrences and how the new index results compare to SC-PDSI and PDSI.  

The ability to determine the occurrence of a drought accurately is critical for 

mitigation, and made easier through the use of indices. PDSI is the most commonly used 

and accepted index in the U.S., but in recent years a modified version of the PDSI, known 

as the SC-PDSI, was developed. The SC-PDSI was modified to include a social 
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parameter along with precipitation, temperature and soil moisture for drought severity 

classification through the use of a Weighted Linear Combination (WLC) technique. A 

discussion of SC-PDSI and WLC is presented in the following sections. Figure 6 depicts 

the steps implemented in this research. 

 
 

Figure 6. Flow Chart of Entire Work Process 

  

SC-PDSI Index Calculations 

The variables required for the implementation of the SC-PDSI are the mean 

monthly temperatures, total monthly precipitation, at least a 25-year mean temperature 

for each month, and the Available Water Content (AWC). As discussed in Wells et al. 

(2004), the input variables listed here are used to calculate the following variables used in 

the SC-PDSI: evapo-transpiration (ET), recharge (R), runoff (RO), loss (L), potential ET 

(PE) (calculated using Thornthwaite’s method), potential recharge (PR), potential runoff 

(PRO), and potential loss (PL). The Climatically Appropriate for Existing Conditions 
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(CAFEC) value represents how much precipitation is needed for the soil moisture level to 

remain normal which is calculated by combining all the potential values (PE, PR, PRO 

and PL) and associated weights for each potential value. The weighting factors (α, β, γ, or 

δ) for each potential value are calculated by the following equations: 

Equation (3): α𝑖 =
𝐸𝑇𝑖̅̅ ̅̅̅

𝑃𝐸𝑖̅̅ ̅̅ ̅
         β𝑖 =

𝑅𝑖̅̅ ̅

𝑃𝑅𝑖̅̅ ̅̅ ̅
         γ𝑖 =

𝑅𝑂𝑖̅̅ ̅̅ ̅

𝑃𝑅𝑂𝑖̅̅ ̅̅ ̅̅ ̅
         δ𝑖 =

𝐿𝑖̅

𝑃𝐿𝑖̅̅ ̅̅ ̅
 

The equation for the CAFEC precipitation, 𝑃̂, is denoted by Equation (4): 

Equation (4): 𝑃̂ = α𝑖𝑃𝐸 + β𝑖𝑃𝑅 +  γ𝑖𝑃𝑅𝑂 −  δ𝑖𝑃𝐿 

The moisture departure (d) is then calculated from the difference in CAFEC precipitation 

and the actual precipitation, 𝑃, recorded for the month using Equation (5). 

Equation (5): 𝑑 = 𝑃 −  𝑃̂ 

K, which is described as the climate characteristic, is next calculated using the following 

equations where K’ represents the moisture anomalies.  

Equation (6): 𝐾′𝑖 = 1.5 log10 (

𝑃𝐸𝑖 + 𝑅𝑖 + 𝑅𝑂𝑖
𝑃𝑖+ 𝐿𝑖

+2.8

𝐷𝑖
) + 0.5 

Following the calculation of 𝐾′, the PDSI approximation is calculated using Equation (7). 

Equation (7): 𝑍𝑃𝐷𝑆𝐼 = 𝑑𝐾′ 

Wells et al. (2004) defines K by using percentiles of the PDSI (𝑍𝑃𝐷𝑆𝐼), and uses the PDSI 

non-extreme values ranging from 4 to -4, where negative numbers indicate dryer 

conditions and positive numbers indicate wetter conditions. K is calculated by using 

Equation (8). 

Equation (8): 𝐾 = {
𝐾′{−4.00/(2𝑛𝑑 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒)}, 𝑖𝑓 𝑑 < 0

𝐾′{4.00/(98𝑡ℎ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒)}, 𝑖𝑓 𝑑 ≥ 0
} 
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The moisture anomaly index, Z, represents wetness or dryness of an area in a single 

month and does not account for the current precipitation trends. Z is calculated using 

Equation (9). 

Equation (9): 𝑍 = 𝑑𝐾 

The SC-PDSI (X) calculation is performed with the following equation:  

Equation (10): 𝑋𝑖 = 𝑝𝑋𝑖−1 + 𝑞𝑍𝑖 

Where 𝑝, 𝑞, and 𝑍𝑖 are: 

Equation (11): 𝑝 = (1 −  
𝑚

𝑚+𝑏
) 

Equation (12): 𝑞 =  
𝐶

𝑚+𝑏
 

Equation (13): ∑ 𝑍𝑖
𝑖
𝑖−1 = 𝑚𝑡 + 𝑏 

The variables p and q, known as the duration factors, are derived from the linear 

relationship between the summation of the Z index and the recorded PDSI, where C is the 

calibration index (C = -4). The line of best fit is determined giving the slope and intercept 

values m and b, and the duration factors are computed using the least squares method 

with those parameters. Equation (13) is calculated for both extremely wet spells and 

extremely dry spells. The threshold values for the extreme spells of the PDSI range from 

-4.0 and below for an extreme drought and from 4.0 and above for extremely wet 

conditions. Once the thresholds of -4.0 and 4.0 have been reached, a “spell” has been 

established (either dry or wet for the respective value).  

 All SC-PDSI calculations were performed with a tool written in C++ and 

provided by The GreenLeaf Project (2014). This tool also calculates the PDSI which is 

used for the final comparison among all the indices. 
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Final Index Calculations 

The SC-PDSI value at each meteorological station was calculated using the tool, 

and then the values were used and interpolated to create a continuous surface of the SC-

PDSI values. The two interpolation techniques, Kriging and IDW, were implemented on 

the SC-PDSI dataset at a 30m resolution. The results were then compared by using cross-

validation graphs and the Root Mean Square Error (RMSE) values. The interpolation 

technique producing the lowest RMSE was used for the creation of surfaces for 

temperature and precipitation. The soil moisture data was also interpolated across the 

study site at a 30m resolution. Because soil moisture data points were sparsely distributed 

across the study site than the meteorological data, the nearest neighbor interpolation 

technique was used. 

After all the surfaces were created using interpolation, the values for each variable 

were extracted within each block group using the block group centroid in the study 

counties. The block group population shape file layer was converted to a raster layer at a 

30m resolution to get the population density data for the proposed index. 

Multi-Criteria Evaluation (MCE) and Weighted Linear Combination (WLC) 

Multi-Criteria Evaluation (MCE) is a tool used to simplify decision-making tasks 

that may involve a number of stakeholders, have a diverse set of possible outcomes, and 

be influenced by numerous qualitative and quantitative criteria (Proctor and Drechsler 

2003; Drobne and Lisec 2009). As the goal of this research is to develop an index 

combining social and meteorological factors for the purpose of predicting future locations 

susceptible to droughts, a GIS-based Weighted Linear Combination (WLC) technique 

was employed to accomplish this goal which is one of the most commonly used MCE 
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approaches (Voogd, 1983; Carver, 1991). The WLC allows stakeholders to weigh a set of 

factors based on certain criteria (Kar and Hodgson 2008; Drobne and Lisec 2009). The 

ratings of each factor are then multiplied with corresponding weights and all layers are 

then added to determine a ranked spatial distribution of final weights (Malczewski 2000; 

Kar and Hodgson 2008; Drobne and Lisec 2009).This approach allows the results to 

show varying degrees of suitability for the chosen factors.  

In this study, population density, precipitation, temperature and soil moisture (for 

2011 only) were included with the SC-PDSI to determine the intensity rating of droughts. 

The results depict the influence of certain variables on the variance of the SC-PDSI. Each 

factor was assigned an associated factor rating (FR) value and multiplied with a 

respective weight (w). Finally, all the weighted layers were added to create a layer 

depicting spatial distribution of drought severity for the region. Equation 15 depicts the 

implementation of WLC (Kar and Hodgson 2008): 

Equation (15): Score = (
n

j

FRj * wj) 

Where Score = drought severity rating, FRj = factor rating for factor j, n = number of 

factors included in the model and wj = weight assigned to factor j such that each weight is 

the factor’s coefficient from the regression analysis. 

Tables 6 through 10 indicate the factor ratings for each variable ranging from 0 to 

10, where 10 indicates the strongest drought conditions and 0 indicates no drought. These 

classes were used because it is easier to implement the WLC on a standardized scale of 0 

to 10. The SC-PDSI factor ratings (Table 6) are based off of the U.S. Drought Monitor’s 

(2013) defined PDSI severity classes. The U.S. Drought Monitor (2013) uses 5 severity 
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classes on a single unit interval to classify the PDSI, but for this research each class is 

based off of a half-unit interval instead creating factor rating classes ranging from 0 to 10, 

where 10 depicts the most intense droughts (Table 6). The population density factor 

ratings were determined using the Jenks Natural Breaks Classification method on the 

2010 U.S. Census block group data (Table 7). This method was chosen over the equal 

interval classification because the equal interval classification showed very little 

distinction between the highly populated and less populated areas. The maximum 

temperature (Table 8), precipitation (Table 9) and soil moisture (Table 10) factor ratings 

were determined using the equal interval classification. Because temperature and 

precipitation vary from month to month, each case study month has its own set of factor 

ratings per variable.  
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Table 6 

SC-PDSI Factor Ratings 

   

SC-PDSI Factor Rating Drought Description 

   

   

> -1.0 0 No Drought 

   

-1.0 – -1.5 1 Abnormally Dry 

   

-1.5 – -2.0 2 Abnormally Dry 

   

-2.0 – -2.5 3 Moderate Drought 

   

-2.5 – -3.0 4 Moderate Drought 

   

-3.0 – -3.5 5 Severe Drought 

   

-3.5 – -4.0 6 Severe Drought 

   

-4.0 – -4.5 7 Extreme Drought 

   

-4.5 – -5.0 8 Extreme Drought 

   

-5.0 – -5.5 9 Exceptional Drought 

   

<-5.5 10 Exceptional Drought 
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Table 7  

Population Density Factor Ratings  

   

Population Density Factor Rating  

   

   

0 – 239 0  

   

240 – 599 1  

   

600 – 1000 2  

   

1001 – 1426 3  

   

1427 – 1903 4  

   

1904 – 2483 5  

   

2484 – 3271 6  

   

3272 – 4635 7  

   

4636 – 7219 8  

   

7220 – 11792 9  

   

>= 11793 10  
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Table 8 

Maximum Temperature Factor Ratings (Fahrenheit) 

    

June 1990 September 2000 October 2011 Factor Rating 

    

    

< 85.28 < 83.67 < 77.96 0 

    

85.28 – 86.81 83.67 – 85.06 77.96 – 79.42 1 

    

86.81 – 88.34 85.06 – 86.44 79.42 – 80.88 2 

    

88.34 – 89.86 86.44 – 87.83 80.88 – 82.34 3 

    

89.86 – 91.39 87.83 – 89.22 82.34 – 83.80 4 

    

91.39 – 92.91 89.22 – 90.61 83.80 – 85.26 5 

    

92.91 – 94.44 90.61 – 92.00 85.26 – 86.72 6 

    

94.44 – 95.96 92.00 – 93.38 86.72 – 88.18 7 

    

95.96 – 97.49 93.38 – 94.77 88.18 – 89.64 8 

    

97.49 – 99.02 94.77 – 96.16 89.64 – 91.10 9 

    

> 99.02 > 96.16 > 91.10 10 
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Table 9  

Precipitation Factor Ratings (Inches) 

    

June 1990 September 2000 October 2011 Factor Rating 

    

    

> 3.25 > 3.01 > 4.97 0 

    

2.93 – 3.25 2.74 – 3.01 4.57 – 4.97 1 

    

2.61 – 2.93 2.46 – 2.74 4.16 – 4.57 2 

    

2.29 – 2.61 2.19 – 2.46 3.76 – 4.16 3 

    

1.97 – 2.29 1.91 – 2.19 3.36 – 3.76 4 

    

1.65 – 1.97 1.63 – 1.91 2.95 – 3.36 5 

    

1.33 – 1.65 1.36 – 1.63 2.55 – 2.95 6 

    

1.01 – 1.33 1.08 – 1.36 2.15 – 2.55 7 

    

0.69 – 1.01 0.80 – 1.08 1.74 – 2.15 8 

    

0.37 – 0.69 0.53 – 0.80 1.34 – 1.74 9 

    

< 0.37 < 0.53 < 1.34 10 
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Table 10 

Soil Moisture Factor Ratings (m3 water/m3 soil) 

   

Soil Moisture Factor Rating  

   

   

> 0.4120 0  

   

0.3723 – 0.4120 1  

   

0.3325 – 0.3723 2  

   

0.2928 – 0.3325 3  

   

0.2531 – 0.2928 4  

   

0.2133 – 0.2531 5  

   

0.1736 – 0.2133 6  

   

0.1338 – 0.1736 7  

   

0.0941 – 0.1338 8  

   

0.0543 – 0.0941 9  

   

< 0.0543 10  

   

 

 To determine the factors’ weights, a multi-variate regression analysis was 

conducted using the regular values for SC-PDSI as dependent variable and population 

density, precipitation, maximum temperature, and soil moisture as independent vairables. 

The resulting beta coefficients that indicate the impact of each independent variable on 

the dependent variable and its statistical significance was used as the factor weighting for 

each independent variable. Because the study counties are not geographically 

neighboring a regression was implemented for each county separately to examine the 
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impact of each independent variable including population density on SC-PDSI (i.e. 

drought severity) based on the county’s water supply source. 

 After implementing the regression analysis, each input variable was reclassified to 

the defined factor ratings (discussed above), and then multiplied with its respective 

weight (coefficient) determined in the regression. The weighting factor (regression 

coefficients) for population and temperature were inverted before implementing WLC. 

While population and temperature appear to influence drought severity, the original 

regression coefficients indicate that an increase in temperature and population density 

relates to a stronger drought that is represented by lower SC-PDSI. Just based on the sign 

of the drought severity factor ratings, this appears to be an inverse relationship. However, 

once the factor ratings were applied, the directionality changed. Now, an increase in 

population density or temperature gave a higher factor rating, but to keep its relationship 

the same with the SC-PDSI factor ratings as observed in the original coefficients, the 

newly converted SC-PDSI factor rating value should also increase to indicate a stronger 

drought. The conversion resulted in these variables having a positive relationship with 

one another. For the WLC computation, the sign of the coefficients found for these two 

variables during the regression analyses had to be inversed to maintain the correct 

relationship between the SC-PDSI and temperature and population density.  

The precipitation and soil moisture weighting factors directly equal the 

coefficients found in the regression. Both of these variables were expected to have 

positive relationships with the SC-PDSI found in the regression results, indicating that an 

increased value also increased the SC-PDSI value (showing weaker drought conditions). 

After the factor ratings were applied, the higher precipitation and soil moisture values got 
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the lowest factor ratings because they indicate weaker droughts while the SC-PDSI 

higher values which also indicated weaker drought conditions were also assigned the 

lower factor ratings. As the precipitation/soil moisture reading would increase, there 

would be a decrease in the factor rating value. To show the weakening drought conditions 

due to this, the SC-PDSI also needed to show weaker drought conditions. Therefore, 

these variables’ factor ratings still maintain the same positive relationship that was seen 

in the regression analysis before the variables were converted to factor ratings without 

having to invert the coefficients. Finally, all three variables were multiplied by their 

respective weights, and summed with the SC-PDSI for the final index output. The results 

then show how these variables influenced the SC-PDSI with an increase, decrease or no 

change in drought severity. All variables that were not statistically significant were 

omitted from the WLC computation. 

Case Study 

The drought of 2011 was used as the main case study for this research. During 

this year, Texas experienced its worst 12-month drought in history (NPR 2011). On 

October 4th in 2011, Texas experienced exceptional drought in 88% of the state, extreme 

drought in 9%, severe drought in 2%, and moderate drought in 1% (NPR 2011). This day 

in particular had the highest coverage of extreme drought conditions seen in Texas since 

2000 (NPR 2011). The other two drought events that occurred on September 2000  and 

June 1990 were also used as case studies using 2000 and 1990 census and meteorological 

data. The month of June in 1990 and September in 2000 were the months when the 

drought condition was most severe in Texas according to the NIDIS Map and Data 

Viewer (2015). 



   51 

 

 

 

Validation 

Statistical analyses were conducted to explore if any variables had significant 

relationships with one another. A regression analysis was performed using the variables 

(population density, precipitation, temperature and soil moisture) against the SC-PDSI. 

The R Square value, produced during the regression, showed the extent to which 

independent variables account for the variance of the dependent variable (drought 

severity), and the coefficients, which became the weighting factors, indicated the amount 

of impact each variable had on the final drought intensity. Finally, the new index was 

compared against the PDSI and the SC-PDSI. A Paired Samples T-Test was run using the 

PDSI and SC-PDSI separately against the new index to test the significance and 

correlation. The results of the three indices were also visually compared to identify 

general trends in maximums, minimums, and overall drought patterns in the study site. 
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CHAPTER IV  

RESULTS AND DISCUSSIONS 

Overview 

 This chapter is divided into two sections. The first section describes the results 

and discussions found prior to the final index calculation. The second section outlines the 

results and discussions pertaining to the final index calculations.  

Interpolation and Regression 

Results and Discussions 

 After the SC-PDSI calculations were completed at the specified points, the data 

were then interpolated to provide a continuous surface of drought severity values. The 

interpolation was initially performed using both Kriging and IDW techniques. Kriging 

had the lower RMSE of 1.296962 while IDW had a RMSE of 1.389249. The Kriging 

technique was chosen because of the lower RMSE. The SC-PDSI, population density, 

precipitation, temperature and soil moisture (for 2011 only) values were then extracted 

for each county at each block group centroid.  

 The regression analysis for the SC-PDSI provided the R Square values and the 

standardized coefficients for the predictors (population density, precipitation, temperature 

and soil moisture). These R Square values depict the percentage of the dependent variable 

(SC-PDSI) that the predicting factors as a whole could account for. Each independent 

variable was also run individually against the dependent variables to determine the 

individual R Square values and the extent to which each independent variable influences 

the dependent variable. Tables 11-13 show the pertinent results from the regression 

analysis for the selected three years. It is important to note that the stronger a drought is, 
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the lower (more negative) the SC-PDSI value is. When analyzing the coefficients and 

their signs, if the value is positive, an increase in the predictor variable indicates an 

increase in SC-PDSI (i.e. weaker drought conditions) or vice versa. A negative 

coefficient value means that an increase in the predictor variable leading to a decrease in 

SC-PDSI (i.e. stronger drought) or vice versa.  

Table 11 

October 2011 Regression Results 

     

Year  

County 
Variable R Square 

Standardized 

Coefficient 

Coefficient 

Significance 

     

     

2011  

Bexar  

 

Total 19.6%   

    

Population* 10.7% -0.349 0 

    

Max Temperature* 5.6% -0.327 0 

    

Precipitation* 0.2% -0.108 0.003 

    

Soil Moisture* 0% -0.030 0.439 

     

Regression 

Equation: 

SCPDSI = –  0.349*(Pop) – 0.327*(Temp) – 0.108*(Precip)  

                  – 0.030*(SoilMois)  

     

2011 

Harris  

Total 25.1%   

     

 Population* 5.7% -0.158 0 

     

Max Temperature* 5.2% 0.372 0 

    

Precipitation* 6.9% 0.482 0 

    

Soil Moisture* 0% -0.140 0 

     

     

     



   54 

 

 

 

Table 11 (continued).    

     

     

Year  

County 
Variable R Square 

Standardized 

Coefficient 

Coefficient 

Significance 

     

     

Regression 

Equation: 

SCPDSI = –  0.158*(Pop) + 0.372*(Temp) + 0.482*(Precip)  

                  – 0.140*(SoilMois) 

     

2011 

Dallas 

Total 59.0%   

 Population* 0% 0.077 0 

     

 Max Temperature* 56.0% -1.069 0 

     

 Precipitation* 11.9% 0.117 0 

     

 Soil Moisture* 49.5% 0.357 0 

     

Regression 

Equation: 

SCPDSI = – 0.077*(Pop) – 1.069*(Temp) + 0.117*(Precip)  

                  + 0.357*(SoilMois) 

     

2011 

Tarrant 

Total 89.7%   

 Population* 2.8% -0.051 0 

     

 Max Temperature* 16.1% -0.543 0 

     

 Precipitation* 69.5% 0.582 0 

     

 Soil Moisture* 7.7% 0.667 0 

     

Regression 

Equation: 

SCPDSI = – 0.051*(Pop) – 0.543*(Temp) + 0.582*(Precip)  

                 + 0.667*(SoilMois) 

  
 

Note. All independent variable R Square values were determined by analyzing each variable separately with the SC-PDSI. 

In 2011, there were severe drought conditions in the study site. Dallas and Tarrant 

Counties had the highest total R Square values compared to Bexar and Harris Counties 

due to the temperature, precipitation and soil moisture variables (Table 11). There is a 

pattern to when and where population density impacted drought. Bexar and Harris 
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Counties draw from the subsurface water sources, which the SC-PDSI accounts for, 

explaining the higher R Square values for population density. Bexar County had a higher 

R Square than Harris County which could be explained by Bexar County’s strict use of 

subsurface water, while Harris County only acquires 29% of its water from the 

subsurface. Dallas and Tarrant Counties draw their water from lakes (surface water 

supplies) due to fracking in the region and therefore, the population density showed little 

influence (lower R Square) on the SC-PDSI. The population density was a statistically 

significant factor for all counties except Dallas. Soil moisture had no influence in Bexar 

County and was not statistically significant in this county, which could be attributed to 

the karst geology of the county. Temperature and precipitation had less influence on 

drought severity in Bexar and Harris Counties. Bexar County’s precipitation variables 

showed a negative coefficient which is opposite than expected, and Harris County’s 

temperature coefficient also had a sign opposite than what was expected. The expected 

signs should show a positive coefficient for precipitation (an increase in precipitation 

increases the SC-PDSI value indicating a weaker drought), and a negative coefficient for 

temperature (an increase in temperature decreases the SC-PDSI value indicating a 

stronger drought). 
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Table 12 

September 2000 Regression Results 

     

Year  

County 
Variable R Square 

Standardized 

Coefficient 

Coefficient 

Significance 

     

     

2000  

Bexar  

 

Total 24.4%   

    

Population* 0.5% 0.019 0.503 

    

Max Temperature* 16.8% -0.563 0 

    

Precipitation* 0.2% -0.315 0 

     

Regression 

Equation: 
SCPDSI = 0.019*(Pop) – 0.563*(Temp) – 0.315*(Precip) 

     

2000 

Harris  

Total 69.1%   

    

Population* 0.2% -0.069 0 

    

Max Temperature* 51.2% 0.376 0 

    

Precipitation* 60.3% -0.547 0 

     

Regression 

Equation: 
SCPDSI = – 0.069*(Pop) + 0.376*(Temp) – 0.547*(Precip)  

     

2000 

Dallas 

Total 56.4%   

 Population* 3.0% -0.137 0 

     

 Max Temperature* 0.3% -0.245 0 

     

 Precipitation* 49.4% 0.747 0 

     

Regression 

Equation: 
SCPDSI = – 0.137*(Pop) – 0.245*(Temp) + 0.747*(Precip)  
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Table 12 (continued).    

     

     

Year  

County 
Variable R Square 

Standardized 

Coefficient 

Coefficient 

Significance 

     

     

2000 

Tarrant 

Total 26.6%   

 Population* 1.6% 0.127 0 

     

 Max Temperature* 9.7% -0.235 0 

     

 Precipitation* 20.3% 0.394 0 

     

Regression 

Equation: 
SCPDSI = 0.127*(Pop) – 0.235*(Temp) + 0.394*(Precip)  

  

  
Note. All independent variable R Square values were determined by analyzing each variable separately with the SC-PDSI. 

 Although Texas experiences a drought in September of 2000, this drought was 

overall weaker than the 2011 drought, and the results indicate that population seemingly 

had very little influence on this drought’s severity in the study counties. Population 

density was not even a significant factor for Bexar County in 2000. Soil moisture was not 

used for this year, or 1990, because there was an insufficient amount of data available for 

the study counties. Bexar County results showed the expected directionality of the 

coefficient for temperature, but the opposite for precipitation with a very low R Square 

value. The results for Harris County showed that temperature and precipitation 

contributed to the majority of the total R Square but both variables had the opposite 

coefficient sign than the typical relationships seen between those variables and drought 

conditions. Temperature should have seen a negative coefficient indicating that higher the 

temperature, the stronger the drought (i.e. the lower the SC-PDSI value). Precipitation 
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should have had a positive coefficient indicating a relationship in which higher amounts 

of rainfall lead to a lesser drought (higher SC-PDSI values). Temperature and 

precipitation coefficient patterns were consistent for Dallas and Tarrant Counties, and 

precipitation was found to be most influential for these two counties in 2000. 

Table 13 

June 1990 Regression Results 

     

Year  

County 
Variable R Square 

Standardized 

Coefficient 

Coefficient 

Significance 

     

     

1990 

Bexar  

 

Total 41.1%   

    

Population* 13.2% 0.269 0 

    

MaxTemperature* 22.7% 0.621 0 

    

Precipitation* 0.2% 0.373 0 

     

Regression 

Equation: 
SCPDSI = 0.269*(Pop) + 0.621*(Temp) + 0.373*(Precip) 

     

1990 

Harris  

Total 38.5%   

    

Population* 1.2% -0.083 0 

    

Max Temperature* 34.9.% -0.490 0 

    

Precipitation* 20.3% 0.192 0 

     

Regression 

Equation: 
SCPDSI = – 0.083*(Pop) – 0.490*(Temp) + 0.192*(Precip)  

     

1990 

Dallas 

Total 65.6%   

 Population* 2.0% 0.035 0.012 
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Table 13 (continued).    

     

     

Year  

County 
Variable R Square 

Standardized 

Coefficient 

Coefficient 

Significance 

     

     

 Max Temperature* 39.4% -0.406 0 

     

 Precipitation* 51.5% 0.552 0 

  

Regression 

Equation: 
SCPDSI = 0.035*(Pop) – 0.406*(Temp) +0.552*(Precip)  

     

1990 

Tarrant 

Total 73.1%   

 Population* 0% 0.049 0.002 

     

 Max Temperature* 72.7% -0.860 0 

     

 Precipitation* 0.8% -0.032 0.046 

     

Regression 

Equation: 
SCPDSI = 0.049*(Pop) – 0.860*(Temp) – 0.032*(Precip)  

  

  
Note. All independent variable R Square values were determined by analyzing each variable separately with the SC-PDSI. 

June 1990 experienced weaker drought conditions than that of 2011 as well, 

which resulted in a weak influence from population density. While Bexar County had a 

relatively high R Square value for population and temperature, the coefficients had the 

opposite directionality than what was expected. Tarrant County experienced an atypical 

coefficient sign for precipitation, but the variable was almost not significant and showed 

a very low R Square value. Temperature had the highest R Square for every county, 

except Dallas where the highest R Square came from precipitation. The standardized 

coefficients listed in the above tables were used as the weighting factors in the WLC, as 

previously discussed. 



   60 

 

 

 

Final Index 

Results and Discussions 

For this study, population density was chosen as the only social variable that will 

have an impact on drought severity, and hence, was analyzed at the block group level to 

see the distribution within each county. The regression analysis was performed using the 

interpolated values of each variable: SC-PDSI, maximum temperature, precipitation and 

soil moisture. Based on the significance value of the standardized coefficients of each 

variable, the variables that were not significant were omitted from being used in the 

index. Next, all variables were reclassified to their assigned factor ratings. Once this was 

completed, the identified coefficient became the weighting factor for each variable. Two 

variables, population density and maximum temperature, required the sign of their 

corresponding coefficients to be inversed to determine the associated weighting factor. 

As previously discussed, this was done to keep the same relationship between the two 

variables, that was seen prior to converting them to factor ratings. The coefficients were 

then multiplied by the factor ratings determined for each variable then summed using the 

WLC equation (Equation 15). The process was repeated for September 2000 and June 

1990 to determine how well this index depicts drought conditions over time and during 

varying drought conditions.  

 The final index was compared to the PDSI and SC-PDSI in the Paired Samples T-

Test. To most accurately compare these indices, the SC-PDSI and PDSI values were 

converted to the same factor rating values used for the SC-PDSI in the WLC since these 

values were used to create the final index. Table 14 lists the results of the Paired Samples 

T-Test between all the indices. 2011 and 2000 show weak negative correlations between 
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the new index and the existing two. The SC-PDSI and PDSI display strong positive 

correlations, which is to be expected since the only difference between them is that one 

accounts for the region’s historical climatological data (SC-PDSI) and the other uses 

derived constants (PDSI). There is also a statistically significant correlation between 

them. The correlation significance for the new index and the SC-PDSI for 2011 is not 

significant, indicating they are independent and not similar. The data for 1990 was unable 

to produce a result for the correlation with two of the pairs. This is due to the SC-PDSI 

values all being zero for that month/year, and a “0” factor rating indicates no drought 

being present. For the new index and PDSI in 1990, there was a strong positive 

correlation between those two indices. The correlation was likely stronger due to the 

weaker drought conditions present. When stronger droughts are present, there should be 

more variation in the indices because of the added parameters. The Paired Samples T-

Test resulted in a statistically significant difference among each index for every year.  
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Table 14 

Paired Samples T-Test Results 

     

Year Variables 

Paired  

Samples 

Correlation 

Correlation 

Significance 

Paired  

Samples Test 

Significance 

     

     

2011 New Index – PDSI -0.420 0 0 

     

2011 New Index - SC-PDSI -0.018 0.150 0 

     

2011 SC-PDSI - PDSI 0.801 0 0 

     

2000 New Index - PDSI 0.081 0 0 

     

2000 New Index - SC-PDSI -0.178 0 0 

     

2000 SC-PDSI - PDSI 0.795 0 0 

     

1990 New Index - PDSI 0.812 0 0 

     

1990 New Index - SC-PDSI n/a 0 0 

     

1990 SC-PDSI - PDSI n/a 0 0 

     

 

 

Figure 7. New Index for 2011  
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Figure 8. SC-PDSI for 2011  

 

Figure 9. PDSI for 2011 

 

Figure 10. New Index for 2000 
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Figure 11. SC-PDSI for 2000  

 

Figure 12. PDSI for 2000 

 

Figure 13. New Index for 1990 
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Figure 14. SC-PDSI for 1990 

 

Figure 15. PDSI for 1990 

The new index was also compared to the SC-PDSI and PDSI visually.  Visual 

interpretations of drought severity are important because that is how many people 

interpret drought severity. The SC-PDSI and PDSI were first converted to their factor 

ratings. Then, all three indices were symbolized on the same scale for easier visual 

comparisons. Figures 7-15 depict the final results of the new drought index, SC-PDSI and 

PDSI for 2011, 2000, and 1990. For 2011 (Figures 7-9), the new index produced overall 

stronger drought values compared to the other two indices. It is important to note that the 

population density variable stood out in the new index because there was more variation 

in the index severity within each county. This was the strongest drought year selected for 

this study and was depicted well by the new index among all the years. 
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For 2000 (Figures 10-12), the new index still showed overall stronger drought 

values, except in Harris County, where the values appeared much lower in comparison. 

This can be attributed to the weak influence from population and the opposite signs of the 

coefficients for maximum temperature and precipitation for this year/county. Overall the 

patterns among the three indices were similar in Bexar County that had the strongest 

drought conditions. 

In 1990, the drought condition was the weakest, and based on SC_PDSI value of 

“0”, there was no drought in the study counties. The visual depiction of indices (Figures 

13-15) agreed with there being no correlation as per the Paired Samples T-Test results 

(Table 14). Once again, the new index produced slightly stronger drought severity than 

the other two indices, and it was especially noticeable for Harris County. 

Across the years, the new index displayed more variation due to population 

density though the influence of population was much more prominent in Bexar and 

Harris Counties. As previously mentioned this was due to their use of an underground 

water supply while Dallas and Tarrant Counties use surface water. It is expected that the 

counties using the subsurface water supplies show more of an impact from population 

density. The population impact appeared to be more influential in 2011 compared to the 

other years as well. This indicated that the stronger drought years experienced more 

impact from population. 

Limitations 

Drought is a complex phenomenon with many impacting factors, and it is 

important to note that this research only includes a select number of those factors, which 
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were analyzed for a small number of study counties. Further research is needed to 

incorporate more study sites and more case study droughts to further validate the research 

findings and prove that population is an impacting factor on a large scale. Another 

limitation is the scale at which this study was performed on. While examining drought 

severity at the block group level produced results at a finer resolution within each county, 

it is also a limitation because the census data at a block group level is only gathered every 

ten years. So, predicting a drought occurrence in between censuses will not produce 

accurate results as compared to this study in which drought severity was examined for the 

years when census data was available. The availability of meteorological data can also be 

considered a limitation. The SC-PDSI values are calculated at specific stations located 

throughout Texas, where the temperature and precipitation data are collected. These data 

were then interpolated for this study at a 30m resolution, thereby introducing error. 
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CHAPTER V 

CONCLUSIONS 

Overall Conclusions 

Incorporating social factors into a drought severity measurement is an innovative 

concept. While temperature and precipitation are the most commonly used factors for 

drought prediction, there are many others that should be considered as well, especially for 

regions with large and increasing populations because increasing population density is a 

cause for concern. This research indicated that population density in fact influences 

drought severity, and this impact is noticeable in areas relying on underground water 

supplies. There is no clear answer as to whether an index is classified as correct or not, 

and science is continually evolving to enhance previous research. Anytime new variables 

are added into an equation results are going to vary when compared to prior research.  

The R Square values calculated from the regression for only population density 

was on the lower side ranging from 0% to 10.7%, indicating that this variable can only 

account for up to 10.7% of the variability of SC-PDSI. The highest R Square values were 

seen in Bexar County in 2011 during a very intense drought, and it is important to 

remember that Bexar County uses the subsurface water source. These overall values of R 

Square for population density were seemingly low compared to the other variables, but 

that was to be expected because many variables impact and contribute to drought 

intensity. The three meteorological and physical variables – temperature, precipitation 

and soil moisture were found to have higher impact on drought severity based on their R 

Square values. However, population density did appear to have contributed to drought to 



   69 

 

 

 

some extent, and also found to be more influential in counties drawing from the 

subsurface water sources during the worst drought years.  

From these findings, it can be concluded that population density and SC-PDSI are 

more strongly related during more intense droughts. Furthermore, though population 

density appears to be a weaker predictive variable, it is still a cause for concern, 

especially, for counties experiencing an increase in population density and relying on 

sub-surface water sources. One major threat to the Edwards Aquifer, which supplies 

water for Bexar County, is pollution and extraction (The University of Texas at Austin 

2015). The increasing population creates a higher demand for water usage which could 

potentially affect the water levels of the aquifer. This could have been the reason for 

watering restrictions put in place in Bexar County. If people did not impact drought and 

enhance drought severity, these water restrictions would not be in place. Another current 

example of population density’s impact on drought can be seen in California. The state 

has been experiencing extreme drought conditions so far in 2015, which led to the state 

government to place a mandatory water usage reduction (James 2015).    

As discussed previously, the signs of the coefficients were important because they 

indicated the directionality of the variables and how they influence the SC-PDSI value. 

The sign for most of the coefficients was “typical” - what the expected relationship would 

be between the particular variable and the SC-PDSI. However, some variables did not 

display an expected relationship, for instance, the results for Harris County for the 2000 

drought condition. The absence of an expected relationship between drought severity and 

temperature and precipitation could have been due to the very high resolution. Drought is 

typically analyzed on a larger scale (i.e. state or climate division) and rarely analyzed at 
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this fine resolution, i.e., at the block group level. Another possible explanation could be 

the use of interpolation technique. Insitu meteorological data was not gathered every 

30m, which would be ideal for this study but impossible to find. Interpolation itself is not 

perfect and the values are derived, which always introduces some error. Another issue 

was including all variables in one multi-variate regression analysis. According to 

Siminoff (2009), two collinear variables should be excluded from the regression analysis 

as a general rule of thumb, but there are instances in which collinear predictors are 

needed. In this case, temperature and precipitation are very important predictors of 

drought. Although these two variables are collinear, they did not display a strong 

collinear relationship. This could be an explanation to the opposite signs of the 

coefficients and the significant differences seen among all the indices in the Paired 

Samples T-Test results.  

The findings of this study reveal that population density does influence drought 

severity and hence should be included in drought prediction research. However, the 

extent to which population influences drought is a matter that needs further investigation. 

In counties where majority of the water supply depends on subsurface water sources, 

population appears to be a major factor in drought occurrence. Therefore, for these 

locations and locations experiencing significant population growth, drought related 

mitigation measures should account for population growth and subsequent water usage.  

This study is probably the first study to have included social variable to examine 

drought severity and its occurrence. Therefore, future research should focus on 

incorporating more study sites and a larger quantity of case studies to increase validity of 

the research findings. Although the methodology is easily replicable, one component that 
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should be paid more attention in future research is the identification of study sites 

drawing from subsurface water supplies. Another area where further research should be 

conducted is the impact of spatial scale of analysis on index computation. Many drought 

studies are performed on a larger scale, generally at the state or the climatic division 

level, but rarely at the block or block group level where most of the population growth 

analysis are conducted. Therefore, it would be crucial to examine how the spatial scale at 

which data are available and collected influence index computation and subsequently 

drought severity determination so that appropriate mitigation measures can be taken. 
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APPENDIX 

LIST OF COMMON ABBREVIATIONS 

Palmer Drought Severity Index (PDSI) 

Self-Calibrating Palmer Drought Severity Index (SC-PDSI) 

National Drought Mitigation Center (NDMC) 

Normalized Difference Vegetation Index (NDVI) 

Weighted Linear Combination (WLC) 

Drought Impact Reporter (DIR) 

Federal Emergency Management Agency (FEMA) 
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