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ABSTRACT 

There is currently a lack of modeling framework to predict how relative sea-level 

rise (SLR), combined with restoration activities, affects landscapes of coastal wetlands 

with uncertainties accounted for at the entire northern Gulf of Mexico (NGOM). I 

developed such a modeling framework – Bayesian multi-level models to study the spatial 

pattern of wetland loss in the NGOM, driven by relative RSLR, vegetation productivity, 

tidal range, coastal slope, and wave height – all interacting with river-borne sediment 

availability, indicated by hydrological regimes. These interactions have not been 

comprehensively investigated before. I further modified this model to assess the efficacy 

of restoration projects from 1996 to 2005 and predicted wetland loss by 2100 and 2300 

under climate change and restoration scenarios (RCP3 and RCP8.5) in coastal Louisiana. 

The results show that the main biogeophysical factors contributing to wetland areal loss 

vary by hydrological regime, but relative SLR and wave height are the main drivers in the 

majority of the hydrological regimes. In addition, vegetation productivity reduces percent 

wetland loss and this effect is substantial in the medium riverine discharge regimes. In 

Louisiana coast, breakwater construction and hydrological alteration restoration are more 

effective restoration methods compared to vegetation planting and marsh creation, and 

wetland restoration is predicted to reduce wetland loss under high SLR scenarios. I 

packaged the modeling results and scenarios analysis into a web tool for wider 

dissemination. The research will facilitate more-informed restoration plans and help 

enhance resilience of coastal wetlands to SLR. 
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CHAPTER I  INTRODUCTION 

The coastal wetlands in the northern Gulf of Mexico (NGOM) account for 40% of 

coastal wetlands in the United States, but 80% of the wetland loss in the nation (Bourne, 

2000). The dramatic loss of coastal wetlands in the NGOM has been attributed to 

increasing rates of sea-level rise, accelerated rates of subsidence, reduced sediment input, 

storm surge, and other anthropogenic influences such as land conversion and oil spills 

(Dahl & Stedman, 2006; Reed, 1995; Turner & Cahoon, 1987). With the disappearance 

of coastal wetlands, their ecosystem services, defined as the direct and indirect benefits 

that humans gain from the presence of a given ecosystem, are degraded or lost (Barbier, 

2013, 2016; Caffey, Wang, & Petrolia, 2014; Costanza et al., 2008; de Groot et al., 2012; 

Farber, Costanza, & Wilson, 2002; Interis & Petrolia, 2016; Petrolia et al., 2014). To 

reduce wetland loss and mitigate its impact, numerous efforts have been taken to restore 

coastal wetlands and their related ecosystem services in the NGOM. 

Regional studies within the NGOM have shown that broad-scale restoration efforts 

generally have positive effects on retention of wetlands and their values (Ghosh, Mishra, 

& Gitelson, 2016). Nevertheless, there exists high spatial variability in wetland loss (Dahl 

& Stedman, 2006; Turner & Cahoon, 1987), and restoration’s impact on wetlands’ 

structure and their ecosystem services (Interis & Petrolia, 2016) across the NGOM. The 

spatial explicit information under current and future climate scenarios is important in 

facilitating site selection, planning, and design of restoration projects to enhance 

restoration success in the region. However, there is currently a lack of gulf-wide 

modeling framework to predict how sea-level rise, combined with restoration efforts, 

affects landscape of coastal wetlands spatially. Furthermore, coastal wetland change is a 
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complex process that is driven by multiple environmental factors that may act at different 

spatial scales, such as vegetation productivity at the site scale and sediment availability at 

the watershed scale. The current models developed for a particular bay or state do not 

generally allow coherent assimilation of data at multiple spatial scales, and/or 

uncertainties from multiple sources, therefore the predictions focus on mean responses of 

coastal wetlands without variability/uncertainties accounted for.  

     Hierarchical Bayesian models show a promising tool to address complex processes. 

This approach has the capacity to assimilate diverse sources of data and uncertainties 

(Clark, 2005; Wu, Biber, Peterson, & Gong, 2012). It accommodates complexity by 

decomposing high-dimensional relationships into levels of conditional distribution within 

a consistent framework: data level (Eq. 1a), process model level (Eq. 1b), and parameter 

level (Eq. 1c) (Clark, 2001; Wu, Clark, & Vose, 2010). In this framework, the many 

latent variables and parameters that describe complex relationships are quantified in the 

form of probability distributions known as posterior distributions. 

Prior distributions (prior knowledge) are the beliefs that researchers have about the 

model parameters before collecting data. Likelihood is the probability of data given 

models. Posterior distributions are generated by integrating prior knowledge and 

likelihood. The interpretation of the posterior distributions is simple as moments and 

credible intervals which represent uncertainties are readily derived from the distributions.  

 𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠|𝑑𝑎𝑡𝑎, 𝑝𝑟𝑖𝑜𝑟𝑠) 
     ∝ 𝑃(𝑑𝑎𝑡𝑎|𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑑𝑎𝑡𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)         (𝑎) 
     × 𝑃(𝑝𝑟𝑜𝑐𝑒𝑠𝑠|𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)              (𝑏) 
     × 𝑃(𝑎𝑙𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠|𝑝𝑟𝑖𝑜𝑟𝑠)                           (𝑐) 

(1) 

There are three most compelling reasons why Bayesian approach is used: 1) Bayesian 

analysis is the only statistical approach that treats all unobserved quantities as random 
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variables and use the rules of probability to uncover the probability distributions of these 

unobservables (Hobbs & Hooten, 2015), 2) Bayesian methods make probabilistic 

predictions about the variables of interest instead of data as done in traditional frequentist 

statistics, and 3) prior information can be integrated into Bayesian analysis (McCarthy, 

2007). 

However, the Bayesian inference is not without critique. The main criticism is 

subjectivity of prior distributions. Some believe that the inclusion of prior knowledge 

represented in the prior distributions allows for models to be unfalsifiable and biased 

toward the researcher's opinions (Bowers & Davis, 2012a). Critics believe that this 

subjectivity does not improve models because some studies show that Bayesian methods 

rarely predict better than classical methods (Bowers & Davis, 2012b). Bayesian 

statisticians have tried to address subjectivity by using objective prior distributions which 

are designed to be minimally informative (Berger, 2006; Robbins, 1956). On the other 

hand, subjectivity in research is unavoidable. Prior distributions show a vehicle to make 

the subjectivity transparent.  Another critique of Bayesian models is that too many 

hypotheses are tested (i.e. comparisons), especially in hierarchical models (Reichert & 

Omlin, 1997), with the added risk of overparameterization. However, Bayesian 

proponents argue that this is less of a concern because multilevel models can be 

implemented to sample group-level parameters from a pooled parameter distribution to 

reduce the total parameters that need to be estimated (Gelman, Hill, & Yajima, 2012). 

Nevertheless, the advantages of Bayesian analysis can offer have attracted wider and 

wider application in ecology. The proportion of the papers that refer to “Bayes” or 

“Bayesian” in the topics in the main ecology journals such as in Ecology and Ecological 
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Applications had increased from 1% in 1995 to 10% in 2014 (Wu, Bethel, Mishra, & 

Hardy, 2018). 

Here I developed a Bayesian multi-level models to evaluate the important 

biogeophysical factors that affect wetland loss spatially, based on which, I assessed 

different wetland restoration methods’ efficacy in reducing wetland loss, and then made 

predictions of wetland loss under the scenarios of future sea-level rise and wetland 

restoration. I further integrated the two modeling components into a web-based tool (Fig. 

1) to facilitate probabilistic predictions of coastal wetlands in the NGOM (Fig. 2) and 

wider dissemination of the research.  

In this thesis, I aim to:  

1) Determine the spatial variability of key biogeophysical factors including sea-

level rise that affect coastal wetland change (Chapter 2); 

2) Evaluate the efficacy of different wetland restoration methods in reducing 

wetland loss (Chapter 3); 

3) Predict wetland loss under the scenarios of restoration and climate-induced 

sea-level rise (Chapter 3); 

4) Develop an online, adaptive, probabilistic wetland loss prediction tool to 

integrate the models and scenarios (Chapter 4). 
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Figure 1.1  Theoretical modeling framework for the ecosystem state/function/services of 

coastal wetlands in the northern Gulf of Mexico 

The components inside the bold outline are what are included in this thesis (models and web tool). Gray squares and dashed lines 

delineate between decision nodes (human actions), ecosystem function and state, and utility nodes (ecosystem services). Outlined 

squares with angled corners are decision (input) and utility (output) nodes. Outlined squares with rounded corners are ecosystem status 

and functions. Circles are driver nodes which directly affect ecosystem status and functions. The arrows represent predictive relations 

between nodes; dashed arrows represent probabilistic relations, and solid arrows represent deterministic relations. 
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Figure 1.2  Map of the study area in the northern Gulf of Mexico 

Points (orange) along the shoreline are from the THK99 dataset (Thieler & Hammar-Klose, 2000) where geophysical, biological, and 

hydrological variables are available. The circle around each point with a radius of 2.5 km is the buffer area used to measure wetland 

loss. The inset corresponds to the blue rectangle on the main map and shows the size of the buffered zones. The study area is restricted 

to the mainland shorelines without barrier islands. 

I hypothesized that, in general, coastal wetland loss in the NGOM would be reduced 

by restoration efforts, while facing loss from sea-level rise. I developed a novel modeling 

framework in Bayesian inference which assimilated the data at multiple spatial scales 

(buffer and hydrological regimes) and uncertainties involved with data, parameters, and 

model to make predictions on coastal wetland loss under sea-level rise and restoration 

across the entire NGOM. This model presented spatially probabilistic predictions 

accounting for variability at the finer buffer scale and broader scale of hydrological 

regimes. And finally, I created an updatable, accessible, and extendible web tool to 
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integrate the models developed. I have three chapters to address the objectives of my 

research. 

1) I developed multi-level (mixed-effects) models to predict wetland loss with 

uncertainties quantified using a Bayesian framework in Chapter 2. I expected that 

the effects of sea-level rise, tidal range, coastal slope, wave height, and 

aboveground biomass on wetland loss would vary in different hydrological 

regimes. The model was the base for predicting wetland loss under SLR and 

restoration scenarios in Chapter 3 and development of a web-based tool in 

Chapter 4. It is central/integral to the overall modeling framework.  

2) I evaluated how restoration efforts affect coastal wetland loss and made 

predictions on wetland change under the scenarios of wetland restoration and sea-

level rise in Chapter 3. I extended the model from Chapter 2 by including the 

restoration-related covariates. I narrowed down the spatial extent of the analysis 

to focus on Louisiana. I expected that the presence of restoration projects would 

lead to less wetland loss, and that breakwater restoration would be the most 

effective restoration method to reduce wetland loss. 

3) In Chapter 4, I developed an online web tool / ecoinformatics engine to display 

the wetland loss predictions from the coastal wetland loss model in Chapter 2, 

coupled with scenario analyses from Chapter 3. It is hosted on the Ecospatial 

Lab’s website (http://ecospatial.usm.edu). The web tool is readily accessible to 

policy makers to evaluate coastal wetland dynamics under a variety of climate, 

sea-level rise, and restoration scenario. The web tool was developed to 

automatically update the vegetation-related covariates in the Bayesian models as 

http://ecospatial.usm.edu/
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more data become available, and automatically store the new scenarios users 

select to evaluate. 
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CHAPTER II – MODELING SPATIAL VARIABILITY OF THE RESILIENCE OF 

COASTAL WETLANDS TO SEA LEVEL RISE IN THE NORTHERN GULF OF 

MEXICO USING BAYESIAN MULTI-LEVEL MODELS 

2.1 Introduction 

Coastal wetlands are valuable natural capital in the northern Gulf of Mexico 

(NGOM) because they provide a variety ecosystem services including food production, 

flood protection, storm surge reduction, water quality improvement, blue carbon, 

recreational opportunities, and habitat for flora and fauna (Barbier, 2013, 2016; Costanza 

et al., 2008; Engle, 2011; Interis & Petrolia, 2016; Mendelssohn et al., 2012; Petrolia et 

al., 2014). However, wetlands are being lost at an increasing rate (Blum & Roberts, 2012; 

Davidson & Janssens, 2006; Templet & Meyer-Arendt, 1988; Walker, Coleman, Roberts, 

& Tye, 1987). High wetland loss in the NGOM has been primarily attributed to 

accelerated sea-level rise (SLR), accelerated subsidence, and reduced sediment input 

from rivers (Dahl & Stedman, 2006). To maintain coastal wetlands, the accretion rate 

must be greater than or equal to erosion rate and relative SLR combined. Accretion is 

contributed through mineral sediment deposition, or through in-situ organic accumulation 

from root growth (Groffman et al., 2006; Nyman, Walters, Delaune, & Patrick, 2006). 

Historically, sediment from the riverine sources was the main contributor of 

vertical accretion, formation, and maintenance of salt marshes in the NGOM (Karegar, 

Dixon, & Malservisi, 2015; Tweel & Turner, 2012). However, from 1950 to 2010, the 

fluvial sediment input to the NGOM coast substantially decreased due to reductions in 

agricultural soil degradation (Syvitski, Vörösmarty, Kettner, & Green, 1997), damming 

of rivers (Vörösmarty et al., 2003), and water-use in the upper watershed (Meade & 
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Moody, 2010). Because streamflow can be an adequate indicator of sediment and nutrient 

supply given an appropriate spatial scale (Jha, Gassman, Secchi, Gu, & Arnold, 2004), 

and it is intensive and expensive to measure sediment directly (Juracek & Fitzpatrick, 

2009), sediment input load is generally approximated by streamflow at the watershed 

scale. The National Hydrography Dataset and Watershed Boundary Dataset maintained 

by the USGS provide drainage basin data for multiple spatial scales, allowing for 

sediment inference at various watershed sizes.  

In-situ vegetation provides mechanisms which promote the vertical accretion of 

marsh platforms. Vegetation traps mineral sediments from water columns to the marsh 

surface, and contributes organic matters through below-ground production, both of which 

lead to sediment accretion (Mudd, Fagherazzi, Morris, & Furbish, 2013; Mudd, Howell, 

& Morris, 2009; Nyman et al., 2006). Vegetation productivity can be derived from 

remote-sensing based vegetation indices (Hardisky, Daiber, Roman, & Klemas, 1984; 

Xie, Sha, & Yu, 2008). Many vegetative indices have been developed, all of which infer 

unique vegetative characteristics by combining reflectance in different wavelengths 

(Nouri, Beecham, Anderson, & Nagler, 2014; Wolf, 2012). Normalized difference 

vegetation index (NDVI) is the most commonly used index to infer vegetation growth 

and primary productivity (Payero, Neale, & Wright, 2004; Wen, Yang, & Saintilan, 

2012). NDVI contrasts the near infrared band and red band, which are sensitive to the 

light reflectance and absorbance by leaf chlorophyll contents respectively.  

In addition to sediment input/hydrological regime and vegetation productivity, 

other physical and geomorphological variables ─ including tidal range, wave height, and 

coastal slope ─ affect resilience of coastal wetlands to SLR (Gutierrez, Plant, & Thieler, 
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2011). These factors and processes, combined with SLR, need to be accounted for 

simultaneously in assessing resilience of coastal wetlands to SLR. These effects may vary 

spatially, interacting with different hydrological regimes. An effective way to address this 

is to integrate these environmental factors into a modeling framework that allows 

inferences and predictions of their contributions to spatial variability of coastal wetland 

loss.  

A variety of models have been developed to predict the impact of SLR on coastal 

wetlands, which involve hydrodynamic, geomorphological, and ecological processes 

(Wu, Yeager, Peterson, & Fulford, 2015). The structures of these models range from 

simple to complex. Simpler models account for the processes of wetland dynamics, 

sometimes in a statistical model. They generally require fewer data inputs and are easily 

applied at a broad spatial scale. e.g. Sea Level Affecting Marsh Model (SLAMM) (Park, 

Trehan, Mausel, & Howe, 1989; Wu et al., 2015). However, statistical models often lack 

interactions and feedbacks between geo-morphological and ecological processes and 

therefore could overestimate landscape change (Kirwan & Guntenspergen, 2009). More 

complicated models account for the interactions and feedback mechanisms (processes) 

among vegetation, sediment, hydrology, and sea-level rise and have been found to 

provide more robust predictions of landscape change (Kirwan & Murray, 2007; Martin et 

al., 2000; Morris, Sundareshwar, Nietch, Kjerfve, & Cahoon, 2002; Reyes et al., 2000; 

Wu et al. 2017). However, these models generally require spatial-specific data inputs, and 

can be difficult to implement at broad spatial scales. 

It is difficult to relate wetland loss directly to SLR due to the inherent complexity and 

uncertainty of the ecosystem processes which involve multi-scale data and a variety of 
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biogeophysical factors in addition to SLR. A coherent way to account for these 

uncertainties and assimilate data at multiple spatial scales is necessary to better elucidate 

how different biophysical factors affect coastal wetland loss.  Multi-level models are 

among such an approach.  

Multi-level models – also known as mixed-effect models – have fixed and random 

components (Zuur et al.  2009). In the fixed component, the covariates have the same 

effect on the response variable across all the samples. In the random component, the 

covariates are allowed to have different effect on the response variable among different 

levels of the random effect. The random effect(s) control the correlated structures in the 

data as it allows clustering/dependence of data in each level of the random effect 

(Schielzeth and Nakagawa 2013, Wu et al. 2018). Mixed-effects models use fewer 

degrees of freedom compared to fitting fixed-effects models for each level of random 

factors and still could reach the same performance (Meng et al. 2007). This type of 

models is powerful to analyze data from nested designs (Gelman and Hill 2007, Bolker et 

al. 2009). Assuming there are two hierarchies in the nested, experimental design, and 

there is one covariate measured per hierarchy, we can Equation 1 to describe the multi-

level model (Gelman, 2006): 

 𝑦𝑖𝑗~𝑁(𝛼𝑗 + 𝛽𝑥𝑖𝑗 , 𝜎𝑦
2) 

𝛼𝑗~𝑁(𝛾0 + 𝛾1𝑧𝑗, 𝜎𝛼
2) 

(1) 

where 𝑦𝑖𝑗 represents a response variable for observation 𝑖 within hierarchy 𝑗, 𝑥𝑖𝑗 

represents an indicator variable for observation 𝑖 within hierarchy 𝑗, and 𝑧𝑗 represents the 

variable observed for hierarchy 𝑗; 𝜎𝑦
2 represents within-level variation, and 𝜎𝛼

2 represents 

variation between-level variation not described by 𝛾1𝑧𝑗. 
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Bayesian inference integrates prior knowledge, and accounts for uncertainty in 

data (data model), processes (likelihood), and parameters (parameter model) (Clark, 

2005). It allows the assimilation of data at multiple spatial scales through multi-level 

modeling. The Bayesian method usually applies Markov Chain Monte Carlo (MCMC) 

simulations to sample posterior distributions based on the product of likelihood and prior 

probability (Gilks, Richardson, & Spiegelhalter, 1996). The Bayesian method using 

MCMC allows for multivariate, nonlinear, hierarchical model fitting (Gelfand & Smith, 

1990). It produces posterior probability distributions, rather than point estimates, which 

makes uncertainty readily be quantified using credible intervals (Clark & Gelfand, 2006; 

Wu, Biber, Peterson, & Gong, 2012). 

In this chapter, I developed multi-level models in a Bayesian framework to study 

the spatial-explicit wetland loss driven by relative SLR, vegetation productivity, tidal 

range, coastal slope, and wave height – all interacting with river borne sediment 

availability. These interactions have not been comprehensively investigated before, 

particularly at the scale of the entire northern Gulf of Mexico and while accounting for 

uncertainties from different sources. I examined which environmental factors were 

closely related to coastal wetland loss from 1996 to 2005 at different watersheds. I further 

addressed whether the environmental factors had different effects on wetland loss under 

different riverine-borne sediment availability, approximated by hydrological regimes or 

watersheds. I hypothesized that 1) lower SLR, higher NDVI, higher tidal range, larger 

coastal slope, and lower wave height, separately or in combination, led to lower wetland 

loss, 2) These environmental factors’ effect on wetland loss was smaller in the 

watersheds with higher sediment availability, approximated by larger river discharge. 



 

18 

2.2 Methods 

I implemented multi-level models in a Bayesian framework to determine how 

vegetation productivity and geophysical variables, including relative SLR, coastal slope, 

tidal range, and wave height, impacted loss of coastal wetlands at different hydrological 

regimes in the northern Gulf of Mexico from 1996 to 2005 (before Hurricane Katrina). I 

constructed models using all the possible combinations of geophysical variables and 

remote sensing based vegetation index as the covariates, with or without considerations 

of hydrological regimes’ interaction.  I then compared the suite of models based on 

posterior predictive loss (PPL) and deviance information criterion (DIC) to identify the 

best model(s) and the most important environmental variables that affected loss of coastal 

wetlands. The lower the PPL or DIC, the better the model predicts (Hooten & Hobbs, 

2015). 

2.2.1 Data and Study Area 

There were three types of covariates in the models: 1) geophysical covariates, 

derived from the USGS THK99 dataset (described below), including 50-100+ year 

average relative SLR, coastal slope, tidal range, and wave height (Gutierrez et al., 2011; 

Thieler & Hammar-Klose, 2000); 2) vegetation productivity indicator, derived from 1996 

Landsat-5 satellite images; and 3) an indicator for sediment availability, modeled as a 

random effect at a coarser resolution than wetland scale, using the USGS Watershed 

Boundary Dataset (WBD) Hydrological Unit Codes 4 (HUC4) watershed boundaries 

inferring similar hydrological/sedimentation regimes within each boundary.  

THK99 is a spatially-referenced dataset consisting of long-term data of relative 

sea-level rise (SLR) rate, coastal slope, tidal range, and wave height at regular intervals 
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along the outer most shorelines of the contiguous United States and Alaska (Gutierrez et 

al., 2011; Thieler & Hammar-Klose, 2000). I generated a point centroid for each polyline 

segment from the NGOM shorelines in THK99 (n =1, 184), and created a circular buffer 

with a radius of 2.5 km around each centroid. I chose 2.5 km to maximize spatial 

coverage while minimize overlaps of buffered areas as it was half of the average distance 

between point centroids. I then used the buffer areas as the finest scale for modeling, 

described as ‘sites’ in this paper. I extracted the geophysical properties at the centroid of 

each buffer area to represent the properties for that buffer area, i.e., the site scale. 

Two response variables indicating wetland loss between 1996 and 2005 were 

derived from NOAA’s Coastal Change Analysis Program (CCAP) data for the years of 

1996 and 2005 (before Hurricane Katrina). They were modeled separately. CCAP land 

use/land cover data has a spatial resolution of 30 meters. Wetland areal loss was 

calculated as the sum of cells which converted from any estuarine or palustrine wetlands 

to open water or aquatic bed within each buffer area. The models using this as the 

response variable were called areal wetland loss models. Percent wetland loss was 

derived as the ratio of the wetland areal loss to total wetland areas for 1996. The models 

using this response variable were called percent wetland loss models. The buffer areas 

without wetland loss were excluded from the dataset. The removed areas mainly 

represented areas with restoration activities, land classification errors, and very limited 

coastal wetland availability. In total, I had 598 wetland loss sites (Fig. 1). 



 

20 

 

Figure 2.1  Study area and design 

The study area with hydrological regimes shown in blue (HUC4 watershed boundaries) and study sites shown in orange/yellow. 

Darker colors of blue indicate higher 10-year summer average of streamflow derived from the USGS streamflow data. Subplot shows 

the number of buffer sites within each watershed. Region numbers on the map correspond to the region numbers on the subplot1 

The covariate that indicates vegetation productivity is NDVI derived from the 

Landsat-5 satellite images. Landsat-5 images have seven spectral bands (band 1: blue, 

band 2: green, band 3: red, band 4: near-infrared (NIR), band 5: shortwave infrared 

(SWIR) 1, band 6: thermal, band 7: SWIR 2) with a spatial resolution of 30 meters except 

the thermal band with a spatial resolution of 120 meters, and a revisit time of 16 days. 

                                                 
1 Regions are abbreviations by geographic locale. The official HUC4 designations are: 1) Southern Florida, 

2) Peace-Tampa Bay, 3) Suwannee, 4) Ochlockonee, 5) Apalachicola, 6) Choctawhatchee-Escambia, 7) 

Mobile-Tombigbee, 8) Pascagoula, 9) Lower Mississippi, 10) Louisiana Coastal, 11) Galveston Bay-San 

Jacinto, 12) Lower Colorado-San Bernard Coastal, 13) Central Texas Coastal, 14) Nueces-Southwestern 

Texas Coastal from east to west. 
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NDVI is the normalized difference between the reflectance in the near infrared band and 

the red band (Equation 2): 

 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
=
𝐵𝑎𝑛𝑑 4 − 𝐵𝑎𝑛𝑑3

𝐵𝑎𝑛𝑑 4 + 𝐵𝑎𝑛𝑑 3
 (2) 

The NDVI values were calculated and downloaded using the Google EarthEngine (GEE) 

platform. The temporal coverage of the NDVI data was June through August 1996, the 

season for peak vegetation productivity in the NGOM. I created an image collection in 

the GEE for the entire temporal and spatial coverage. Then I used the median NDVI for 

each pixel as the final composite image. I extracted the NDVI values for only coastal 

wetland areas in 1996 also using GEE, and then calculated the average of NDVI for each 

study site. The positive values of the NDVIs represent good vegetation condition. The 

larger the values, the better the vegetation status. 

To capture the effect of river-borne sediment availability on coastal wetland loss, 

I used HUC4 watershed boundaries (Fig. 1) to represent different hydrological regimes 

which approximately represented different magnitudes of sediment input. There are 14 

HUC4 watersheds in the study area. Each watershed contained multiple sites, therefore 

the hydrological regime represented a broader spatial scale compared to the site scale. 

Because these data occur at different spatial scales, I utilized a multi-level modeling 

approach to assimilate the multi-scale data. 

2.2.2 Multi-scale Modeling in a Bayesian framework 

To determine the environmental variables that affected wetland loss, I developed 

multi-level models with all possible combinations of geophysical and vegetation 

variables as covariates with or without accounting of hydrological regime’s effect. The 

Bayesian inference accounted for uncertainties from parameters, processes, and data (Fig. 
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2). Assume there were a total of m covariates: k of which affected wetland loss uniformly 

across the study area, and m-k of which affected wetland loss differently in different 

hydrological regimes. 

 

Figure 2.2  Structure of the multi-level hierarchical Bayesian model used to identify the 

environmental variables that affected wetland loss 

Wetland loss was a linear function of geophysical properties and vegetation index which effect may (covariates 𝑘 + 1 …  𝑚) or may 

not (covariates 1 …  𝑘) vary in different hydrological regimes. For the covariates which I assumed to affect wetland loss differently in 

different hydrological regimes, their associated parameters for each hydrological regime was sampled from those at the entire study 

area scale (global scale). 𝑚 = total number of covariates, 𝑘 = number of covariates which effects on wetland loss do not vary in 

different hydrological regimes. 𝛽𝑠 represented the parameters associated with intercept and normalized covariates (𝐶), 𝛼s represented 

the hyper-parameters from which hydrological regime 𝛽s were sampled, 𝑊 represented logarithm of wetland loss, 𝑖 represented 

hydrological regimes, and j represented sites. 

To represent the function of wetland loss (area loss or percent area loss) at the 

hydrological regime 𝑖 and site 𝑗 (Wij), let Wij𝜇 represent the mean of Wij, and 𝜎𝑆
2 

represent the variance of wetland loss between sites within watershed. Wij was modeled 

by assuming it was distributed as (~) a normal distribution (𝑁) (Equation 3): 

 𝑊𝑖𝑗  ~ 𝑁(𝑊𝑖𝑗𝜇, 𝜎𝑆
2) (3) 
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I modeled mean of wetland loss (𝑊𝑖𝑗𝜇) using a linear function of the covariates C1-Cm, 

with 𝑘 covariates having the same effect on wetland loss across the entire study area, and 

the remainder of the covariates (𝑚− 𝑘) having different effect on wetland loss in 

different hydrological regimes. The intercept may vary (𝛽𝑖∙,0) or not vary (𝛽∙∙,0) across 

hydrological regimes. Assuming the intercept did not vary across the hydrological 

regimes, the linear function was described using Equation 4: 

 𝑊𝑖𝑗𝜇 = 𝑓(𝛽∙∙,0, 𝛽∙∙,1…𝛽∙∙,𝑘, 𝛽𝑖∙,(𝑘+1)…𝛽𝑖∙,𝑚)

=  𝛽∙∙,0 +∑𝛽∙∙,𝑙𝐶𝑖𝑗,𝑙

𝑘

𝑙=1

+ ∑ 𝛽𝑖∙,𝑙𝐶𝑖𝑗,𝑙

𝑚

𝑙=𝑘+1

 
(4) 

where 𝛽s represent the parameters for the linear model. If the intercept varies across 

hydrological regimes, 𝛽∙∙,0 should be replaced with 𝛽𝑖∙,0 in Equation 4. 𝛽∙∙,𝑙 represents the 

coefficient for variable 𝐶𝑖𝑗,𝑙, which belongs to the covariates which effects on wetland 

loss do not vary across the hydrological regimes (1 ≤ 𝑙 ≤ 𝑘). 𝛽𝑖∙,𝑙 represents the 

coefficient for variable 𝐶𝑖𝑗,𝑙, which belongs to the covariates which effects on wetland 

loss vary across the hydrological regimes (𝑘 + 1 ≤ 𝑙 ≤ 𝑚). Therefore, wetland loss (𝑊) 

for the 𝑅 hydrological regimes and 𝑆𝑖 sites at each hydrological regime (𝑖) was modeled 

as in Equation 5: 

 𝑝 (𝑊|𝛽
∙∙,0
, 𝛽
∙∙,1
…𝛽

∙∙,𝑘
, 𝛽
𝑖∙,(𝑘+1) …𝛽𝑖∙,𝑚) 

    ∝∏∏𝑁(𝑊𝑖𝑗|𝑓 (𝛽∙∙,0, 𝛽∙∙,1 …𝛽∙∙,𝑘, 𝛽𝑖∙,(𝑘+1) …𝛽𝑖∙,𝑚) , 𝜎𝑆
2)  

𝑆𝑖

𝑗=1

𝑅

𝑖=1

 
(5) 
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The coefficients that vary across the hydrological regimes (𝛽𝑖∙,(𝑘+1)…𝛽(𝑖∙,𝑚)) were 

sampled from the parameters at the coarser gulf-wide scale (or global scale in Fig. 2) 

using normal distributions (Equation 6): 

 𝛽𝑖∙,(𝑘+1)~𝑁(𝛼∙∙,(𝑘+1), 𝜎∙∙,(𝑘+1)
2 ) 

𝛽𝑖∙,(𝑘+2)~𝑁(𝛼∙∙,(𝑘+2), 𝜎∙∙,(𝑘+2)
2 ) 

… 

𝛽𝑖∙,𝑚~𝑁(𝛼∙∙,𝑚, 𝜎∙∙,𝑚
2 ) 

(6) 

To complete the Bayesian model, I defined prior distributions for unknown 

parameters (𝛽s, 𝛼s, and 𝜎2s). I used conjugate priors for computation efficiency (Calder, 

Lavine, Muller, & Clark, 2003) therefore the priors and posteriors had the same 

probability distribution forms. The priors for 𝛽s and 𝛼s were normally distributed, and 

the prior for 𝜎2s followed the inverse gamma distribution. The priors distributions were 

flat and only weakly influenced the posteriors, which reflected the lack of knowledge of 

these parameters (Lambert, Sutton, Burton, Abrams, & Jones, 2005).   

By combining the parameter (priors), process, and data models, I derived the joint 

posterior distribution (Clark, 2005) in Equation 7:  
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𝑝(

𝛽∙∙,0, 𝛽∙∙,1…𝛽∙∙,𝑘, 𝛽𝑖∙,(𝑘+1)…𝛽𝑖∙,𝑚
𝛼∙∙,(𝑘+1)…𝛼∙∙,𝑚,

𝜎𝑆
2, 𝜎∙∙,(𝑘+1)…𝑚

2
|𝑊𝐿, 𝐶1…𝐶𝑚) 

    ∝ 𝑝(𝑊𝐿|𝛽∙∙,0, 𝛽∙∙,1, … , 𝛽∙∙,𝑘, 𝛽𝑖∙,(𝑘+1), … , 𝛽𝑖∙,𝑚, 𝜎𝑆
2) 

     × (𝑝(𝛽𝑖∙,(𝑘+1)|𝛼∙∙,(𝑘+1), 𝜎∙∙,(𝑘+1)
2 ) × …× 𝑝(𝛽𝑖∙,𝑚|𝛼∙∙,𝑚, 𝜎∙∙,𝑚

2 ))  

     ×  𝑝(𝛽∙∙,0) × (𝑝(𝛽∙∙,1) × …× 𝑝(𝛽∙∙,𝑘)) × 𝑝(𝜎𝑆
2) 

     × (𝑝(𝛼∙∙,(𝑘+1)) × …× 𝑝(𝛼∙∙,𝑚)) 

     × (𝑝(𝜎∙∙,(𝑘+1)
2 ) × …× 𝑝(𝜎∙∙,𝑚

2 ))  

(7)  

The model in Equation 7 was parameterized using Markov Chain Monte Carlo 

(MCMC) simulations (Gelfand & Smith, 1990) in JAGS through the CRAN R (R Core 

Team, 2015) package ‘rjags’ (Plummer, 2016). I simulated three MCMC chains which 

used three different sets of initial values for the parameters. I examined the three chains 

to determine the number of iterations of MCMC before they converged for the model 

(20,000). I then discarded the pre-convergence, burn-in iterations and ran the chains 

additional 300,000 iterations, thinning every 10 to reduce within-chain autocorrelation. 

The generated posteriors helped identify the covariates that had significant effects on 

wetland loss, and determine whether a covariate had different effects on wetland loss in 

different hydrological regimes.   

Prior to implementation of the multi-level models, I performed data 

transformations to improve the model computation efficiency. The covariates were 

normalized using classic standard score normalization (Zar, 2010). Normalization allows 

comparison among covariates’ impact on wetland loss by examining the magnitudes of 

their coefficients directly because they were transformed to be of the same range (Hooten 
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& Hobbs, 2015). Furthermore, the response variable was log transformed, to fit a normal 

distribution and account for nonlinearity. I checked for multicollinearity using variance 

inflation factor (VIF). Multicollinearity was defined as the VIF for a covariate greater 

than five (Zuur et al., 2009).  

2.2.3 Model Comparison 

I developed a total of 484 models with all the different combinations of 

covariates, which effects on wetland loss may or may not vary across the hydrological 

regimes. (All model structures can be found on the project GitHub at 

https://github.com/ecospatial/NAS_2016.) I compared the models to identify the best 

model(s) using both deviance information criterion (DIC) and predictive posterior loss 

(PPL) functions. The lower the DIC or PPL, the better predictions the model generates 

(Hooten & Hobbs, 2015). PPL functions measure the error in model predictions as loss. 

When response variables follow normal distribution, PPL is the sum of squared errors 

(Gelfand & Ghosh, 1998; Ibáñez et al., 2009). While DIC generally outperforms PPL in 

comparing models with large sample size (n >≈ 1000) (Daniels, Chatterjee, & Wang, 

2012), DIC only allows for comparison of models with the same level of structures 

(Hooten & Hobbs, 2015). Furthermore, models within 2 DIC of each other are considered 

comparable (Burnham, Anderson, & Huyvaert, 2011; Burnham & Anderson, 2004). 

Therefore, I used the DIC to compare models with the same hierarchies (e.g. comparing 

models considering hydrological regimes’ effect but with different covariates) and PPL to 

compare the models with different structures (e.g. comparing models considering 

hydrological regime’s effect and those without). I identified the best model with the 

https://github.com/ecospatial/NAS_2016
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lowest PPL and DIC, while considering models within 2 DIC of the best model as the 

best candidate models.  

I examined the 95% credible intervals (CI) for the coefficient posteriors to 

determine whether they had significant effect on wetland loss or not. Additionally, the 

sign of the 95% CI indicated whether the covariate had a positive or negative effect on 

wetland loss. A covariate had significantly different effect on wetland loss between 

hydrological regimes when the 95% CI of the difference of their posteriors did not 

contain zero (Holsinger & Wallace, 2004).  

2.3 Results 

Here I presented the results of the models for the areal wetland loss and percent 

area of wetland loss from 1996 to 2005 before Hurricane Katrina. None of the covariates 

showed VIF larger than 5, so I did not remove any covariates. 

2.3.1 Areal Wetland Loss Models 

Among the ten lowest-DIC models for areal wetland loss – out of the 484 models 

developed – relative SLR, wave height, and tidal range were consistently included, and 

their effect on wetland loss varied across watersheds (Table 1). Among the five candidate 

models within 2 DIC of the lowest DIC model, NDVI was selected twice and its effect on 

wetland loss did not vary across watersheds. The intercept also varied across the 

watersheds for the best candidate models. 
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Table 2.1  

Ten lowest DIC models of the 484 models for areal wetland loss 

𝛽0 denotes intercept, RSLR denotes relative sea level rise, WH denotes wave height, TR denotes tidal range, CS denotes coastal slope, NDVI denotes normalized different vegetation index, the numbers 

under the significant covariates denotes watershed, see Fig. 1 for watersheds 

 

Covariates which effects do not vary 

across watersheds 

Covariates which effects vary across 

watersheds 

Model metrics Significant covariates 

RSLR NDVI WH TR CS 𝜷𝟎 RSLR NDVI WH TR CS 𝜷𝟎 𝚫 

DIC 

PPL RSLR NDVI WH TR CS 𝜷𝟎 

      X  X X  X 0.00 952.89 6,8,10  1,9 1,8,9  8 

      X  X X X X 0.08 953.15 6,8,10  1,9 1,9 9  

    X  X  X X  X 1.46 968.69 6,8,10  1,9 1,9  8,11 

 X     X  X X X X 1.56 969.27 6,8,10  1,9 1,9  8 

 X     X  X X  X 1.65 969.31 6,8,10  1,9 1,9  8 

      X  X X X  5.87 968.84 6,10  1,9 1,8,9 9  

 X     X  X X X  7.19 967.02 6,10  1,9 1,8,9 9  

      X  X X   7.67 988.51 6,8,10  1,9 1,8,9   

    X  X  X X   8.18 987.14 6,8,10  1,9 1,8,9   

 X     X  X X   9.51 988.81 6,8,10  1,9 1,8,9   
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Table 2.2 Coefficients for the covariates selected in the best areal wetland loss model 

Rows are grouped by hydrological regimes (denoted by 1 to 14). Factor with highest impact highlighted. 

  mean sd 2.5% median 97.5% 

bRSLR[1] -0.41 0.48 -1.37 -0.4 0.51 

bTR[1] -0.71 0.29 -1.28 -0.71 -0.16 

bWH[1] -0.76 0.27 -1.3 -0.76 -0.22 

bRSLR[2] 1.02 0.7 -0.32 1 2.46 

bTR[2] 0.09 0.26 -0.42 0.09 0.6 

bWH[2] -0.53 0.43 -1.39 -0.52 0.28 

bRSLR[3] 0.47 0.93 -1.49 0.5 2.24 

bTR[3] 0.11 0.42 -0.74 0.11 0.93 

bWH[3] -0.25 0.79 -1.87 -0.23 1.28 

bRSLR[4] 0.23 0.93 -1.79 0.29 1.93 

bTR[4] -0.22 0.45 -1.14 -0.21 0.65 

bWH[4] -0.45 0.77 -2.07 -0.41 0.99 

bRSLR[5] 0.82 0.73 -0.6 0.81 2.28 

bTR[5] -0.37 0.98 -2.37 -0.36 1.57 

bWH[5] -0.17 0.8 -1.8 -0.16 1.38 

bRSLR[6] 0.93 0.25 0.45 0.93 1.42 

bTR[6] -0.02 0.16 -0.33 -0.02 0.3 

bWH[6] 0.02 0.31 -0.59 0.02 0.63 

bRSLR[7] 0.77 0.53 -0.26 0.76 1.82 

bTR[7] -0.54 0.89 -2.39 -0.51 1.16 

bWH[7] -0.11 0.62 -1.35 -0.11 1.1 

bRSLR[8] 1.12 0.53 0.1 1.11 2.19 

bTR[8] -1.32 0.65 -2.7 -1.28 -0.12 

bWH[8] -0.44 0.59 -1.64 -0.42 0.71 

bRSLR[9] 1.24 0.39 0.48 1.24 2.02 

bTR[9] 0.15 0.32 -0.47 0.14 0.78 

bWH[9] 0.1 0.29 -0.47 0.1 0.67 

bRSLR[10] 0.5 0.3 -0.11 0.5 1.08 

bTR[10] -1.34 0.36 -2.06 -1.34 -0.64 

bWH[10] 0.62 0.1 0.43 0.62 0.81 

bRSLR[11] 0.27 0.97 -1.84 0.32 2.03 

bTR[11] 0.85 0.8 -0.55 0.8 2.56 

bWH[11] 0.07 0.3 -0.52 0.07 0.65 

bRSLR[12] 0.64 0.97 -1.33 0.65 2.55 

bTR[12] -0.3 0.87 -2.01 -0.31 1.44 

bWH[12] -0.14 0.7 -1.54 -0.13 1.23 

bRSLR[13] 0.5 0.89 -1.33 0.52 2.25 

bTR[13] -0.51 0.46 -1.42 -0.51 0.41 

bWH[13] 0.25 0.54 -0.8 0.24 1.35 

bRSLR[14] 0.88 0.85 -0.78 0.86 2.62 

bTR[14] -0.37 0.98 -2.36 -0.36 1.58 

bWH[14] 0.04 0.74 -1.42 0.03 1.54 

b0 -0.27 0.23 -0.72 -0.27 0.19 
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The model with the lowest PPL and DIC was model 58 (DIC=2037.59), and its 

covariates included wave height, tidal range, coastal slope, and their effects on wetland 

loss varied across the watersheds (Table 1). Most of the watersheds had RSLR as the 

most important factor to affect wetland loss (Table 2). RSLR was significant and 

positively correlated with wetland loss in Watersheds 6, 8, and 10 (West Florida 

Panhandle, Mississippi coast, and western Louisiana, respectively) (Fig. 3). It had 

marginally significant and positive impact on wetland loss in the Mississippi (MS) delta 

(Watershed 9). Thus, high RSLR correlated with increased wetland loss in those regions. 

Although not significantly different from zero, the medians for the RSLR coefficients for 

all the watersheds were positive, except for Watershed 1 (South Florida). Tidal range was 

significant and negatively correlated with wetland loss in Watershed 1, 8, and 9 (South 

Florida, Mississippi coast, and Mississippi delta, respectively). Thus, high tidal range 

correlated with decreased wetland loss in those regions. Wave height was significant and 

negatively correlated with wetland loss in Watershed 1 (South Florida), and significant 

and positively correlated with wetland loss in Watershed 9 (Mississippi delta). Thus, high 

wave height correlated with decreased wetland loss in South Florida, but with increased 

wetland loss in the MS delta. Wave height also exhibited low posterior variance for the 

MS delta region, and significant difference between the MS delta region and all other 

regions. The only significant intercept was in Watershed 8 (Mississippi coast), and it was 

negative. However, pairwise comparisons reveal significant difference between the 

intercept for Watershed 9 and 10 (Mississippi delta and West Louisiana), and Watershed 

2, 6, 11, and 14 (West Florida, West Florida Panhandle, East Texas, and South Texas). 

Watershed 9 and 10 (Louisiana regions), were the only two watersheds with positive 50% 
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credible intervals. RSLR and tidal range had similar magnitude of effect on wetland loss, 

followed by wave height. 

 

Figure 2.3  Maps of the medians of the coefficients in the best areal wetland loss model 

The covariates were standardized so that the coefficients were comparable both between watersheds, and between covariates. In the 

inset plots, a dot represents the median of the parameter posteriors for each watershed, with associated 95% credible interval 

represented by a line crossing the median. A solid dot indicates a significant effect for the given watershed. 

NDVI was not selected in the best model. However, it was selected in Model 241 

and 161 (ΔDIC=1.56, 1.65). In addition to the covariates included in the best model, 

Model 241 included NDVI as a gulf-wide effect, and coastal slope which effect on 

wetland loss varied across watersheds. Compared to the best model, the coefficients for 
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tidal range, relative SLR, and wave height generally had similar posteriors, though the 

coefficient for SLR at the Watershed 8 (Mississippi coast) was no longer significant. In 

addition, the coefficient for wave height at the Watershed 9 (MS delta) was larger in 

magnitude and significant in the best model. The gulf-wide NDVI parameter was not 

significant, though the median was positive (Fig. 4).   

 

Figure 2.4  Median and 95% CI of the coefficient for NDVI in the areal wetland loss 

model 

A dot represented the median, with associated 95% CI represented by the thin line, and 50% CI represented by a thick line. 

2.3.2 Percent Wetland Loss Models 

The best model for percent wetland loss with the lowest PPL and DIC was model 

452 (DIC=2230.46) out of the 484 models developed. The best model did not include 

RSLR, but included wave height, tidal range, coastal slope, and NDVI which effects on 

wetland loss varied across the watersheds (Table 3).
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Table 2.3  

Ten lowest-DIC models of the 484 models for percent wetland loss 

β0 denotes intercept, RSLR denotes relative sea level rise, WH denotes wave height, TR denotes tidal range, CS denotes coastal slope, NDVI denotes normalized different vegetation index, the numbers 

under the significant covariates denotes watershed, see Fig. 1 for watersheds 

 

Covariates which effects do not vary 

across watersheds 

Covariates which effects vary across 

watersheds 
Model 

metrics 

Significant covariates 

RSLR NDVI WH TR CS 𝜷𝟎 RSLR NDVI WH TR CS 𝜷𝟎 𝚫 

DIC 

PPL RSLR NDVI WH TR CS 𝜷𝟎 

     X  X X X X  0.00 1318.54  6 9 6,9 6,9,10 X 

    X X  X X X   1.19 1319.07  6 9 1,6,9 X X 

       X X X X X 1.82 1318.74  6 9 6,9 6,9 all 

X     X  X X X X X 1.95 1319.31  6 9 6,9 6,9 X 

    X   X X X  X 2.35 1339.15  6 9 6,9 X all 

X    X X  X X X   2.90 1337.65  6 9 6,9 X X 

X       X X X X X 3.10 1337.92  6 9 6,9 9 all 

X    X   X X X  X 3.15 1338.02  6 9 6,9 X all 

      X  X X X X 4.34 1332.79  6 9 6,9 6,9 all 

     X X X X X X  4.82 1333.23  6 9 6,9 6,9 X 
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Coastal slope was significant and negatively correlated with percent wetland loss 

in Watershed 6, 9, and 10 (West Florida Panhandle, Mississippi delta, and West 

Louisiana, respectively) (Fig. 5). Thus, high CS was related with low percent wetland 

loss in these watersheds. Tidal range was significant and negatively correlated with 

percent wetland loss in Watershed 6 and 9 (West FL Panhandle and Mississippi delta). 

Thus, high TR was related with low percent wetland loss in those watersheds. Wave 

height was significant and positively correlated with percent wetland loss in Watershed 9 

(Mississippi delta). Thus, high wave height was related with high percent wetland loss in 

the Mississippi delta.  
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Figure 2.5  Maps of medians of the coefficients in the best percent wetland loss model 

The covariates were standardized so that the coefficients were comparable both between watersheds, and between covariates. In the 

inset plots, a dot represents the median of the parameter posteriors for each watershed, with associated 95% credible interval 

represented by a line crossing the median. A solid dot indicates a significant effect for the given watershed. 

NDVI was significant and negatively correlated with percent wetland loss in 

Watershed 6 (West Florida Panhandle). Thus, high NDVI was related with low percent 

wetland loss in the West Florida Panhandle. Although not significantly different from 

zero, medians for the coefficient posteriors of NDVI ranged from negative to positive. 

For posterior distributions with significant 50% CIs, regions 6, 7, and 8 (West FL 

Panhandle, Mobile Bay Alabama, and Mississippi Coast) were negatively correlated with 

NDVI suggesting a likely low percent wetland loss given high NDVI; while region 9 (MS 

delta) was positively correlated with NDVI suggesting a likely high percent wetland loss 

given high NDVI.  

RSLR was not selected in the best percent wetland loss model. However, it was 

selected in model 468 (DIC=2232.40), which fell within 2 DIC of the lowest DIC model. 

Model 468 showed RSLR had a gulf-wide effect on percent wetland loss. Its coefficient 

was not significant, however the median was positive indicating possible high wetland 

loss with high RSLR (Fig. 6). 

 

Figure 2.6 Median and 95% CI of the coefficient for RSLR in the percent wetland loss 

model 

A dot represented the median, with associated 95% CI represented by the thin line, and 50% CI represented by a thick line. 
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2.4 Discussion 

It is important to consider multiple environmental factors other than RSLR 

(Osland et al., 2016) like what I did in this research. In the models for areal wetland loss, 

the coefficient for RSLR had a positive median value for each watershed except for 

southern Florida. These results supported the numerous studies that showed an increase 

in wetland loss due to increasing sea-level (Kirwan & Megonigal, 2013; Linhoss, Kiker, 

Shirley, & Frank, 2015; Morris et al., 2002; Simas, Nunes, & Ferreira, 2001; Wu et al., 

2015, 2017). However, large spatial variability existed for the impact of SLR on coastal 

wetland areal loss. The north-central and north-eastern Gulf of Mexico showed highest 

vulnerability to RSLR based on the posteriors of the coefficient for RSLR. Previous 

studies have shown the SLR’s impact on coastal wetlands in these regions. These studies 

showed, in these regions, that high RSLR caused increases in coastal wetland inundation 

(Alizad et al., 2016), non-linear expansions of tidal creeks (Darrow, Carmichael, Calci, & 

Burkhardt, 2017; Hagen, Morris, Bacopoulos, & Weishampel, 2012), and coastal wetland 

loss (Passeri et al., 2016; Geselbracht, Freeman, Birch, Brenner, & Gordon, 2015; 

Handley et al., n.d.; Walsh, 2007; Wu et al., 2015, 2017).  

I expected the coefficient posteriors for RSLR to be significant and with the 

greatest magnitude for both the Mississippi River Delta region (MS delta) and Chenier 

Plain region (W LA), due to the extensive literature showing high rates of wetland loss 

due to high RSLR from sediment compaction and subsidence in Louisiana (Georgiou, 

FitzGerald, & Stone, 2005; Karegar et al., 2015; Mallman & Zolback, 2007; Törnqvist et 

al., 2008; Yuill, Lavoie, & Reed, 2009). The medians of the coefficients for RSLR in 

both Louisiana watersheds were positive, but RSLR showed a significant effect only in 
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the western Louisiana region and its effect on wetland loss was larger than in MS delta 

region. This result is consistent with the previous research that showed the Chenier Plain 

(southwestern Louisiana) was more vulnerable to RSLR compared to the Mississippi 

delta (southeastern Louisiana) due to differences in soil compaction and geological origin 

(Jankowski, Törnqvist, & Fernandes, 2017). 

It was expected that coastal slope had negative effect on coastal wetland loss seen 

from the negative median of its coefficient for each watershed (Gutierrez et al., 2011). 

The spatial variability for the effect of RSLR, NDVI, wave height, and tidal range on 

wetland loss was larger than that from coastal slope. RSLR and wave height consistently 

had the highest impact on wetland loss when comparing among coefficients within each 

watershed (Table 2). 

The presence of mangroves in the southern Florida instead of salt marshes as in 

the other watersheds may explain low wave height and why wave height had a 

significantly negative effect on wetland loss there. Mangroves reduce wave energy and 

wave height because of mechanical friction from roots and trunks (Bhaskaran, 2017), and 

reduction of wave energy protects wetland from mechanical erosion. Thus, presence of 

mangroves in southern Florida causes both low observed wave heights (attenuation), and 

reduction of wetland loss. Although mangroves are seasonally present in Louisiana 

marshes, hard freezes and colder winters reduce their extent and growth (Osland et al., 

2015). The temporal coverage of this study (from 1996 to 2005) was characterized by a 

strong El Niño event in 1997-1998 when winter temperature in the northern Gulf of 

Mexico (NGOM) was drastically lower than usual. This would contribute to mangrove 

reduction in Louisiana, but not in South Florida where the northern boundary of 
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mangroves is beyond freezing conditions. With mangrove coverage highest in the 

southern Florida between 1996 and 2005, the wave attenuation effect would be 

pronounced in that region.  

In addition to wave attenuation, mangroves promote sedimentation through 

waterflow disruption in the same manner as salt marsh plants (Woodroffe et al., 2016). 

Littoral drift was shifted south-to-north in South Florida because of the 1997-1998 El 

Niño, which supplied sediment to the south-facing shorelines (Hepner & Davis, 2004) 

where the mangroves were located. As waves carried the ocean-borne sediments into the 

shorelines, an increase in wave height would mean more available sediment to the 

southern Florida under this El Niño influenced regime, and therefore reduced wetland 

loss. 

In contrast, the coefficient for wave height was significantly positive only in the 

Mississippi Delta watershed (MS delta), with the magnitude close to 95 quantile of the 

coefficient for RSLR. This indicated that wave height had a profound, positive impact on 

wetland loss in the MS Delta. The Mississippi Delta is characterized by high rates of 

subsidence due to compaction of pores caused by decomposition of carbon-rich Holocene 

era sediment deposits (Törnqvist et al., 2008), and/or pores left from oil extraction 

(Mallman & Zolback, 2007). The sediments of the Mississippi Delta in Louisiana are 

thus less compacted than those in the rest of the NGOM due to this porosity. Land which 

has less compaction, and thus less-consolidated sediment grains, is more likely to be 

eroded by wave action (Fagherazzi, Mariotti, Wiberg, & McGlathery, 2013; McLoughlin, 

2010). Thus, increased wave height in the MS Delta region would lead to increased 

wetland loss as derived by the model. 
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While NDVI’s effect on coastal wetland loss did not vary across the watersheds in 

the models for areal wetland loss, its effect showed spatial variability among the best 

candidate models for percent wetland loss. The opposite held true for RSLR. The models 

for percent wetland loss were useful for regions which had relatively large wetland loss, 

particularly those which had historically small coastal wetland coverage. The 

significantly negative effect on coastal wetland loss in Florida panhandle region showed 

that vegetation health was particularly important in this watershed to maintain coastal 

wetland, which may be due to smaller river discharge and river-borne sediment 

availability. River discharge for the Florida panhandle region falls in the middle of 

discharge regimes seen in the NGOM (Fig. 1). Another regime with similar river 

discharge is the Mississippi coast (region 8). The MS coast, although not significant from 

its 95% CI, was significant at the 50% CI and similarly showed a negative relationship 

between NDVI and coastal wetland loss. Therefore, vegetation health may be an 

important factor in reducing wetland loss in regions with low to moderate riverine 

discharge. 

NDVI’s spatial variability in the percent wetland loss models indicated that 

vegetation interacted with hydrological regimes to affect percent wetland loss. NDVI was 

significant and negatively correlated with wetland loss using the 50% CI in the Mobile 

River and coastal Mississippi regions. This result is consistent with marsh equilibrium 

models that state the importance of vegetation in in-situ accretion and sediment trapping 

(Kirwan & Murray, 2007; Morris et al., 2002; Reyes et al., 2000). This contrasts the best 

areal model where NDVI was excluded or not considered to be spatially (i.e. 

hydrologically) variable. Louisiana’s percent wetland loss is not high because its 
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historical wetland coverage is larger than most other hydrological regimes. Using percent 

loss as a wetland loss metric makes the wetland loss in Louisiana comparable to the other 

regions. NDVI’s inclusion under percent wetland loss models indicated percent wetland 

loss may be a better metric to consider in vegetative restoration, especially in the 

watersheds with historically low wetland coverage.  

Smaller number of sites in the watershed likely lead to non-significant results. 

However, the three watersheds in the north-central and north-eastern Gulf of Mexico 

which showed significantly positive effect of RSLR on wetland loss (Mississippi Gulf 

coast, the western Louisiana coast, and the western Florida Panhandle) had both high and 

low number of sites, when compared with other watersheds (n = 26, 71, and 105, 

respectively) (Fig. 1). Additionally, the Mississippi Delta region (region 9) had 251 sites 

but lacked significance for the RSLR coefficient. Thus, the significant effect of SLR 

derived from my models did not rely solely on sample size.  

I applied multi-level Bayesian modeling to identify the environmental factors that 

affected coastal wetland loss in the entire northern Gulf of Mexico. This modeling 

approach coherently assimilated data at multiple spatial scales (e.g. watershed and site in 

this study). The models’ structures are flexible and easily adapted to include data at any 

scale if necessary and when available (Fig. 2). This approach accounted for and estimated 

uncertainties which are important but largely lacking in many of the current SLR impact 

models. As the response variable was log-transformed areal or percent wetland loss, the 

models also accounted for non-linear and non-additive effect of the environmental 

variables. The statistical models applied are well suited for broad-scale analysis due to 

the low data requirement and spatial data readily available. Though the models do not 
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include hydrodynamic, geomorphological and ecological processes, they are useful in 

identifying the environmental factors affecting wetland loss, and detecting hotspots of 

vulnerability due to a particular environmental factor. This facilitates in-depth analysis in 

hotspots which require urgent attention and timely collection of more data to understand 

the processes that contribute to the vulnerability. The efficient allocation of research 

resources and efforts will further lead to more effective conservation and restoration 

plans.  

The Bayesian multi-level methods and publicly available data I used in this 

research showed the spatial variability of geomorphic, hydrologic, and vegetative factors’ 

influence on wetland loss at a broad spatial scale with uncertainties accounted for. It 

facilitates more-informed evaluation of coastal wetland vulnerability and root causes, and 

therefore could help improve design of effective restoration projects. It also provides a 

supplement or cost-effective alternative to current labor and resource intensive 

monitoring efforts, especially through utilization of remote sensing images. 
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CHAPTER III – PREDICTING COASTAL WETLAND LOSS UNDER SCENARIOS 

OF WETLAND RESORATION AND SEA-LEVEL RISE 

3.1 Introduction 

Coastal wetlands provide ecosystem services such as food production, flood 

protection, and storm surge reduction, and thus represent a large portion of the natural 

capital in the northern Gulf of Mexico (NGOM) (Barbier, 2016; Caffey, Wang, & 

Petrolia, 2014; Costanza et al., 2008; Engle, 2011; Interis & Petrolia, 2016; Petrolia et al., 

2014). However, the coastal wetlands in the NGOM have been disappearing at an 

increasing rate within the past few decades. One important contributing factor is locally 

extreme subsidence rates up to 6 mm/yr (Karegar, Dixon, & Malservisi, 2015). 

Subsidence in the NGOM is driven by extraction of fossil fuels (Mallman & Zolback, 

2007), sediment compaction of poorly packed Holocene deposits (Coleman, Roberts, & 

Stone, 1998), and reduced sediment input (Morton, Bernier, & Barras, 2006; Yuill, 

Lavoie, & Reed, 2009). This leads to high relative sea-level rise and extended inundation 

(Couvillion & Beck, 2013), ultimately causing wetland loss.  

Historically, allocthonous sediment contribution from the Mississippi River and 

other rivers in the NGOM played an important role to offset wetland loss due to 

subsidence (Coleman et al., 1998). However, the allochthonous sediment contributions 

have decreased since the 1950s due to damming on rivers and freshwater diversion for 

oyster farming (Meade & Moody, 2010). Other factors contribute to wetland loss, 

including wave action (Fagherazzi, Mariotti, Wiberg, & McGlathery, 2013) and oil spills 

(McClenachan, Turner, & Tweel, 2013; Turner, McClenachan, & Tweel, 2016). There 

exists large spatial variability in wetland loss due to a variety of biologic and geomorphic 
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variables (Chapter 1) (Gutierrez, Plant, & Thieler, 2011; Spencer et al., 2016), and the 

influence of sea-level rise (Linhoss, Kiker, Shirley, & Frank, 2015; Schile et al., 2014; 

Spencer et al., 2016; Warren & Niering, 1993; Wu, Yeager, Peterson, & Fulford, 2015; 

Wu et al. 2017).  

Massive restoration efforts have been undertaken to restore coastal wetlands in 

the NGOM. The most notable restoration methods involve alteration of sediment 

supplies, reduction of wave action, or direct construction of wetlands. However, it has 

been shown that the efficacy of these efforts is strongly site-dependent (Kenney et al., 

2013). Thus, design and evaluation of the restoration outcomes should account for the 

spatial variability. 

Restoration that targets sediment dynamics has the goal of supplying sufficient 

sediment to counteract sediment loss and sea-level rise directly or indirectly (Allison & 

Meselhe, 2010). One way is to practice beneficial use (BU) of dredged materials 

(Mchergui et al., 2014), which increases sediment availability immediately on the 

restored sites. However, whether the sediments will stay in place depend on local 

geomorphology, hydrodynamics, and how quickly vegetation can colonize the sites. 

Freshwater diversion is another common way to increase sediment supply to coastal 

wetlands (Allison & Meselhe, 2010; Couvillion, Steyer, Wang, Beck, & Rybczyk, 2013; 

Kearney, Riter, & Turner, 2011; Kenney et al., 2013), which may show delayed impact 

on sediment availability compared to the BU but the sediment supply is continuous over 

time. Freshwater diversion has various results in wetland restoration. Most studies, 

including the Louisiana Coastal Master Plan (McMann, Schulze, Sprague, & Smyth, 

2017), have noted significant wetland gain proportional to amount of diversion (Day et 
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al., 2016; Kenney et al., 2013), but the newly gained wetlands were vulnerable to storm 

damage due to lower belowground biomass driven by high nutrient input (Kearney et al., 

2011). Thus, an array of environmental variables need to be considered before restoration 

implementation as they will interact to affect the outcomes of restoration projects. 

Direct restoration takes place through vegetation planting. Vegetation directly 

contributes to sediment accretion through organic matters by root production (Zedler, 

2000; Zedler & Kercher, 2005) and increased trapping of sediment in water columns by 

aboveground biomass (Morris, Sundareshwar, Nietch, Kjerfve, & Cahoon, 2002; Wu, 

Biber, & Bethel, 2017; Wu, Huang, Biber, & Bethel, 2016). Vegetation reduces wave 

height and velocity by disrupting water flow (Tsihrintzis & Madiedo, 2000), reducing 

mechanical stress on the wetland sediments. The reduction is positively related with 

vegetation height and density both in salt marshes (Möller, 2006) and in mangroves 

(Bhaskaran, 2017). Vegetative wave energy reduction also promotes sedimentation 

(Reed, Spencer, Murray, French, & Leonard, 1999). Wave energy reduction allows more 

sediment particles to settle on the wetland surface, and reduces net erosion (Allen & 

Duffy, 1998). Furthermore, the rate of settling is positively related with vegetation height 

and density. Belowground biomass promotes soil cohesion via mycorrhizae and bulk 

biomass (Feagin et al., 2015). Soil cohesion and root stabilization thus prevent wave 

action from eroding wetland beds. Combined, the multiple functions of wetland 

vegetation help stabilize coastal wetlands (Nyman, Walters, Delaune, & Patrick, 2006) 

Breakwater construction is another restoration method with the goal of reducing 

mechanical wave erosion on shorelines (Boumans, Day, Kemp, & Kilgen, 1997) and to 

promote sedimentation (Birben, Özölçer, Karasu, & Kömürcü, 2007). Offshore 
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breakwaters are structures or collections of debris placed offshore that dissipate wave 

energy before it reaches the shore (Losada, Lara, Guanche, & Gonzalez-Ondina, 2008; 

Ryu, Hur, Park, Chun, & Jung, 2016), with up to 90% wave energy reduction 

(Armbruster, 1999). This restoration is similar to natural wave attenuation exhibited by 

marsh vegetation, mangroves, or reefs (Bhaskaran, 2017). If carefully designed, 

breakwaters can also function as artificial reefs (Coen et al., 2007) for oyster or coral 

communities (Burt, Feary, Usseglio, Bauman, & Sale, 2010). Breakwater restoration 

projects in the NGOM have ranged from extremely successful (Holly Beach, LA) 

(Edwards & Namikas, 2011) to mixed (Raccoon Island, LA) (Armbruster, 1999). 

The combination of breakwater construction and vegetation planting is an 

emerging restoration method known as “living shorelines”. Vegetation has a greater 

chance of survival and growth with breakwater-induced sediment promotion in the 

NGOM (Campbell, Benedet, & Thomson, 2005). Recent studies on living shorelines 

show that marsh sills created as means of vegetation planting behind breakwaters 

increase both wetland area and nursery production (Gittman et al., 2016). Living 

shorelines and breakwaters attempt to mimic the natural processes of wetland formation 

and maintenance through sedimentation. They continuously provide restoration beyond 

the construction of the restoration projects, in comparison to the one-off restoration 

methods such as marsh creation. 

The design of restoration projects need to consider the SLR’s impact on coastal 

wetlands. Increased SLR is caused by thermal expansion in the oceans, melting of 

glaciers and ice sheets, groundwater extraction, and reservoir impoundment (Gregory et 

al., 2013). The current mean global SLR rate is 3.5 mm/yr and is predicted to increase to 
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between 4.5 and 16 mm/yr by 2100 (Church et al., 2013). Coastal wetlands are likely to 

keep up with low to medium SLR due to feedbacks among inundation, sediment trapping, 

and vegetation productivity (Coleman et al., 1998; Morris et al., 2002; Wu, Bethel, 

Mishra, & Hardy, 2018). Once SLR exceeds a threshold, coastal wetlands can collapse 

quickly due to increased plant mortality induced by extended inundation (Couvillion & 

Beck, 2013; Wu et al., 2017). The threshold effect must be considered when restoration 

efforts’ ability to combat increasing SLR rates is evaluated.  

In this chapter, I assessed the impact of SLR on and efficacy of wetland 

restoration efforts in maintaining wetland area using spatial information of restoration 

projects and the wetland loss model developed in Chapter 2. The goals of this study were 

to 1) evaluate whether restoration practices effectively reduced wetland loss and if so 

which restoration method was most effective, and 2) predict how restoration practices 

change wetland loss under SLR scenarios. I tested the hypothesis: the restoration projects 

effectively reduced the rate of wetland loss in the short term and long run under SLR 

scenarios. 

3.2 Methods 

I first identified the locations and types of restoration projects in Louisiana. I then 

developed a new wetland change model based on the best areal wetland loss model from 

Chapter 1, but added the covariates of restoration methods (0 denotes absence of 

restoration projects), and ages of restoration projects to test the hypothesis that the 

restoration projects effectively reduced the rate of wetland loss in the short term. 

Furthermore I predicted wetland loss under future SLR scenarios driven by climate 

change at both restoration sites and non-restoration sites. The SLR scenarios are based on 
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expert assessments regarding climate change scenarios (Horton, Rahmstorf, Engelhart, & 

Kemp, 2014). 

3.2.1 Data 

As most coastal wetland restoration projects implemented in the NGOM during 

our study period 1996-2005 were in Louisiana, I focused on restoration projects in 

Louisiana from 1996 to 2005 in this chapter. The spatial data for the restoration projects 

came from the Louisiana Coastal Protection and Restoration Authority (CPRA; 

https://cims.coastal.louisiana.gov/Viewer/). The data list included restoration project 

name, construction status, year of construction, and project type. I selected restoration 

projects which completed construction prior to 2005. Missing information of construction 

years for some projects was derived from the 2017 Louisiana Coastal Master Plan 

Attachment (McMann et al., 2017) and retrieved via searching projects on the CPRA 

website, replacing <projId> with the corresponding project id in the following URL: 

https://cims.coastal.louisiana.gov/outreach/ProjectView.aspx?projID=<projId>.  Project 

type in the original dataset was defined by the goal of the restoration project, and not 

necessarily the method. The four restoration method types I examined were “hydrological 

alteration”, “marsh creation”, “breakwaters”, and “vegetative planting”. I recoded vague 

and/or goal-oriented project types (“Barrier Island/Headland Restoration” and “Shoreline 

Protection”) to the appropriate restoration method by using the project descriptions from 

the CPRA website. Project types “hydrologic restoration” and “sediment diversion” were 

aggregated as the restoration method “hydrologic alteration”. “Infrastructure” restoration 

types were recoded as either “breakwaters” for off-shore construction, or “hydrologic 

alteration” for on-land construction (e.g. plugs or levees). 

https://cims.coastal.louisiana.gov/Viewer/
https://cims.coastal.louisiana.gov/outreach/ProjectView.aspx?projID=%3cprojId%3e
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The wetland loss, physical, geomorphic, and biological data came from the 

coastal change analysis program (C-CAP) of NOAA, a modified THK99 dataset of 

USGS data, and Landsat-7 remote sensing images (see Chapter 1). The THK99 dataset 

combines spatially referenced physical and geomorphic variables (coastal slope, wave 

height, relative sea-level rise, tidal range) from Thieler & Hammar-Klose (2000). 

Vegetative productivity was measured by normalized difference vegetation index (NDVI) 

derived from Landsat-7 remote sensing data. The study sites were derived using the 

similar approach in Chapter 1, but I focused on the sites with and without restoration 

projects in Louisiana only. 

3.2.2 Model 

To develop a model to evaluate the effect of restoration projects on wetland loss, I 

modified the best wetland areal loss model from Chapter 1 to include the restoration 

related covariates. The model included RSLR, wave height, tidal range, and their effects 

on wetland loss varied across the watersheds. The additional restoration covariates 

included were the age of the restoration projects (numerical variable), and methods 

(dummy variable for each method) (Equation 2). As Louisiana has only two hydrological 

regimes, I assumed the effect of these new covariates did not vary by hydrological 

regimes. As with chapter 1, the Bayesian inference accounted for uncertainties from 

parameters, processes and data (Fig. 1). 
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Figure 3.1  Structure of the Bayesian multi-level model used to identify the efficacy of 

restoration projects on wetland loss 

Adapted from Fig. 2.2. Additional restoration parameters were included for breakwaters (BW), hydrological alteration (HA), marsh 

creation (MC), vegetative planting (VP), and age of restoration project (AGE). βs represented the parameters associated with intercept, 

normalized covariates (C) (description of these geophysical and vegetative covariates (C) can be found in Chapter 2 Fig. 1), and 

restoration related covariates. αs represented the hyper-parameters from which the βs for each watershed were sampled, W represented 

logarithm of wetland loss, i represented hydrological regimes/watersheds, and j represented sites. 

To represent the function of areal wetland loss at the hydrological regime 𝑖 and 

site 𝑗 (Wij), let Wij𝜇 represent the mean of Wij, and 𝜎𝑆
2 represent the variance of 

wetland loss within one watershed. Wij was modeled by assuming it was distributed as 

(~) a normal distribution (N) (Equation 1): 

 𝑊𝑖𝑗  ~ 𝑁(𝑊𝑖𝑗 . 𝜇, 𝜎𝑆
2) (1) 

I modeled the mean of wetland loss (𝑊𝑖𝑗. 𝜇) using a linear function of the covariates 𝐶1 to 

𝐶𝑚, with 𝑚 covariates having different effects on wetland loss in different hydrological 
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regimes, the restoration dummy variables BW, HA, MC, and VP coded as 0 or 1, and age 

of restoration project. The intercept varied across the hydrological regimes. The linear 

function was described using Equation 2: 

 𝑊𝑖𝑗 . 𝜇 = 𝑓( 𝛽𝑖∙,0…𝛽𝑖∙,𝑚, 𝛽𝐵𝑊, 𝛽𝐻𝐴, 𝛽𝑀𝐶 , 𝛽𝑉𝑃 , 𝛽𝐴𝐺𝐸)

=  𝛽𝑖∙,0 +∑𝛽𝑖∙,𝑙𝐶𝑖𝑗,𝑙

𝑚

𝑙=1

+ 𝛽𝐵𝑊 ∗ 𝐵𝑊 + 𝛽𝐻𝐴

∗ 𝐻𝐴 + 𝛽𝑀𝐶 ∗ 𝑀𝐶 + 𝛽𝑉𝑃 ∗ 𝑉𝑃 + 𝛽𝐴𝐺𝐸 ∗ 𝐴𝐺𝐸 

(2) 

where 𝛽s represent the intercept and coefficients for the covariates in the multilevel 

model. 𝛽𝑖∙,𝑙 represents the coefficient for variable 𝐶𝑖𝑗,𝑙, where 𝑙 is a number between1 and 

𝑚, which fall into the covariates which effect on wetland loss varies across the 

hydrological regimes. 𝛽𝐵𝑊,𝐻𝐴,𝑀𝐶,𝑉𝑃 represent the coefficients for the restoration related 

variables: breakwaters (BW), hydrological alteration (HA), marsh creation (MC), and 

vegetative planting (VP). Absence of any given restoration project will result in the 

omission of these coefficients. 𝛽𝐴𝐺𝐸 represents the age of the respective restoration 

projects (0 when at the sites without restoration projects). Therefore, wetland loss (𝑊) for 

the 𝑅 hydrological regimes and 𝑆𝑖 sites at each hydrological regime (𝑖) was modeled as in 

Equation 3: 

 𝑝(𝑊|𝛽
𝑖∙,0
, 𝛽
𝑖∙,1
…𝛽

𝑖∙,𝑚
, 𝛽
𝐵𝑊
, 𝛽
𝐻𝐴
, 𝛽
𝑀𝐶
, 𝛽
𝑉𝑃
, 𝛽
𝐴𝐺𝐸
) 

∝∏∏
𝑁(𝑊𝑖𝑗|𝑓(𝛽𝑖∙,0, 𝛽𝑖∙,1 …𝛽𝑖∙,𝑚, 𝛽𝐵𝑊, 𝛽𝐻𝐴, 𝛽𝑀𝐶, 𝛽𝑉𝑃, 𝛽𝐴𝐺𝐸),

𝜎𝑆
2)  

𝑆𝑖

𝑗=1

𝑅

𝑖=1

 
(3) 
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The coefficients for the covariates that vary across the hydrological regimes 

(𝛽𝑖∙,0…𝛽(𝑖∙,𝑚)) are sampled from the parameters at the coarser gulf-wide scale (named 

global scale in Fig. 1) using normal distributions (Equation 4): 

 𝛽𝑖∙,0~𝑁(𝛼∙∙,0, 𝜎∙∙,0
2 ) 

… 

𝛽𝑖∙,𝑚~𝑁(𝛼∙∙,𝑚, 𝜎∙∙,𝑚
2 ) 

(4) 

To complete the Bayesian model, I defined prior distributions for unknown 

parameters (𝛽s and 𝜎𝑆
2). I used conjugate priors for computation efficiency  therefore the 

priors and posteriors had the same probability distribution forms. The priors for βs and αs 

were normally distributed, and the prior for 𝜎2s followed the inverse gamma distribution. 

The priors distributions were flat and only weakly influenced the posteriors, which 

reflected the lack of knowledge on these parameters. 

By combining the parameter (priors), process, and data models, I derived the joint 

distribution in Equation 5:  
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𝑝

(

 
 

𝛽𝑖∙,0, 𝛽𝑖∙,1…𝛽𝑖∙,𝑚,

𝛽𝐵𝑊, 𝛽𝐻𝐴, 𝛽𝑀𝐶 , 𝛽𝑉𝑃 , 𝛽𝐴𝐺𝐸 ,
𝛼∙∙,0, 𝛼∙∙,1…𝛼∙∙,𝑚,

𝜎𝑆
2, 𝜎∙∙,0 

2 , 𝜎∙∙,1 
2 … , 𝜎∙∙,𝑚

2

||
𝑊𝐿, 𝐶1…𝐶𝑚,
𝐵𝑊,𝐻𝐴,𝑀𝐶, 𝑉𝑃

𝐴𝐺𝐸

)

 
 

 

   ∝ 𝑁 (𝑊𝐿|

𝛽𝑖∙,0, 𝛽𝑖∙,1…𝛽𝑖∙,𝑚,

𝛽𝐵𝑊, 𝛽𝐻𝐴, 𝛽𝑀𝐶 , 𝛽𝑉𝑃 , 𝛽𝐴𝐺𝐸 ,

𝜎𝑆
2

) 

× 𝑁(𝛽𝑖∙,0|𝛼∙∙,0, 𝜎∙∙,0
2 )

× 𝑁(𝛽𝑖∙,1|𝛼∙∙,1, 𝜎∙∙,1
2 )…𝑁(𝛽𝑖∙,𝑚|𝛼∙∙,𝑚, 𝜎∙∙,𝑚

2 )

× 𝑁(𝛼∙∙,0) × 𝑁(𝛼∙∙,1)…𝑁(𝛼∙∙,𝑚) × 𝐼𝐺(𝜎𝑆
2)

× 𝐼𝐺(𝜎∙∙,0
2 ) × 𝐼𝐺(𝜎∙∙,1

2 )… 𝐼𝐺(𝜎∙∙,𝑚
2 ) 

(5) 

The model in Eq. 5 was parameterized using Markov Chain Monte Carlo (MCMC) 

simulations (Gelfand & Smith, 1990) in JAGS (Plummer, 2016) through the CRAN R (R 

Core Team, 2015) package ‘rjags’. I simulated three MCMC chains which used three 

different sets of initial values for the parameters. I examined the three chains to determine 

the number of iterations of MCMC before they converge for the model (20,000). I then 

discarded the pre-convergence, burn-in iterations and ran the chains additional 300,000 

iterations, thinning every 10 to reduce within-chain autocorrelation. The generated 

posteriors helped identify the restoration methods that had significant effects on wetland 

loss. 

3.2.3 Coastal Wetland Loss Under SLR Scenarios 

The SLR scenarios were derived from a survey of expert assessment of sea-level 

rise by 2100 and 2300 under more conserved RCP 3 and more aggressive RCP 8.5 

(Horton et al., 2014). To create probability distributions of SLR, I assumed SLR followed 

a normal distribution and applied moment matching (Wu, Clark, & Vose, 2014) based on 
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the quantiles specified in Horton et al. 2014 to derive the mean and variance of SLR by 

2100 and 2300 under each climate change scenario. Predictive posteriors for wetland loss 

under the SLR scenarios were generated using the model with the input of SLR sampled 

from the constructed SLR probability distributions.  

After moment matching, the SLR under the RCP3 climate change scenario 

followed a normal distribution with a mean (µ) and standard deviation (σ) of 0.48 m and 

0.13 m from 2000 to 2100, and 0.83 m and 0.21 m from 2000 to 2300. The SLR under 

the RCP8.5 scenarios was also assumed to be normally distributed with µ=0.97 m and 

σ=0.29 m from 2000 to 2100, and µ=2.58 m and σ=0.75 m from 2000 to 2300. These 

values were converted to the average SLR rate per year (mm/yr). 

3.2.4 Coastal Wetland Loss Under Different Restoration Methods 

I also constructed scenarios that represented absence of restoration for current and 

climate change scenarios. I created a dataset in which all restoration projects were coded 

as 0 to represent absence of restoration. This dataset was assimilated in the model to 

generate predictive posteriors for wetland loss under the no-restoration scenario. 

Predictive posteriors were also generated for the current and changing climate scenarios. 

The comparison between the posterior distributions under presence and absence of 

restoration projects showed the effect of restoration projects on wetland loss. 

3.3 Results 

The posteriors of the parameters for the geomorphological variables were similar 

to those derived from the base model in Chapter 1. 99.3% of the observed wetland loss 

values fell within the 95% CIs of the predicted wetland loss. The wide 95% CI for each 

site’s predictive posterior of wetland loss showed large uncertainty associated it, however 
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the median values was in general close to the observed values (Fig. 2). Here I focused on 

the posteriors of the parameters for the variables related to restoration activities and 

predictive posteriors of wetland loss by 2100 and 2300 under a variety of restoration and 

climate change scenarios. 

 

Figure 3.2  Model predictions of wetland loss vs. observed wetland loss 

The points represent the medians of the predicted wetland loss for each site, and the shaded region shows the 95% CI of the predictive 

posteriors. The diagonal line shows 1:1 line. 

3.3.1 Impacts of Restoration Methods on Wetland Loss 

The parameters for breakwater restoration (BW) and hydrological alteration (HA) 

were significant and negative (Fig. 3), therefore, the presence of breakwater restoration 

and hydrological alteration correlated with decreased wetland loss. Although the 95% CI 

contained zero, the median for vegetative planting restoration (VP) coefficient was 

negative, and the 94% CI (99.1% of the 95% CI) did not contain zero (Fig. 3). 
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Breakwater structures showed the most effective restoration method among the four 

examined due to its lowest median and significant 95% CI. 

 

Figure 3.3  Credible intervals for the parameters in the areal wetland loss model 

accounting for restoration activities 

W or E in brackets correspond to western (Chenier Plain) and eastern Louisiana (Mississippi River Delta) watersheds, respectively. 

The thin lines show the 95% credible intervals and the thick lines show the 50% credible intervals. The dot is the median, and is filled 

when the 50% credible interval does not contain zero. The credible intervals are black when they do not contain zero. Plot generated 

using MCMCvis package in R (Youngflesh, 2018). 

In general, wetland restoration effectively reduced wetland loss from 1996 to 

2005 (Fig. 4). The predictive posteriors of wetland loss at the restored sites shift to the 

left of those at the sites without restoration, representing smaller wetland loss with 

restoration activities. However, high wetland loss predictions (greater than 20 hectares) 

were found in the presence of restoration projects. Further investigation revealed that the 

high loss was driven by a few restoration sites with high RSLR. 
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Figure 3.4  Comparison of predictive posteriors of log wetland loss between the sites with 

and without restoration projects 

3.3.2 Predictions of Wetland Loss Under Climate Change Scenarios 

The predictive posteriors of wetland loss under climate change scenarios shifted 

to the right of those under current climate scenario, indicating larger wetland loss under 

climate change (Fig. 5). The wetland loss was predicted to be larger under the more 

aggressive RCP8.5 compared to the RCP3, and by 2300 compared to by 2100, due to the 

larger SLR under RCP8.5 and by 2300. Under the RCP3 scenario, wetland loss was 

predicted to increase by 2.94 hectares per site for 2100, and 3.29 ha for 2300, on average. 

Under the RCP8.5 scenario, wetland loss was predicted to increase by 3.67 hectares per 

site for 2100, and 5.93 ha for 2300, on average. Under both of the climate change 

scenarios, the frequency of high wetland loss was predicted to increase from the current, 

to the 2100 RCP scenarios, and to the 2300 RCP scenarios. This effect was more 

pronounced in the RCP8.5 scenario (Fig. 5). 
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Figure 3.5  Predictive posterior distributions of wetland loss under two climate change 

scenarios, RCP3 and RCP8.5 by 2100 and 2300 

Restoration effect is assumed to remain the same as present between 1996 and 2005. 

3.3.3 Combined Impacts of Restoration and Climate Change Scenarios on Wetland 

Loss 

Restoration activities were predicted to be particularly important under climate 

change because there was a larger reduction of wetland loss under higher SLR with 

wetland restoration compared to without restoration (Table 1).  Under the base scenario 

(current climate, restoration included), the model prediction showed a total of 1044 

hectares of wetland loss (median). If restoration is not accounted for, the model predicted 

a total of 4953 ha of wetland loss (median) under the current SLR, 4.7 times the loss with 

restoration activities. Under the RCP3 climate change scenario, the prediction showed an 

increase of 5903 hectares of wetland loss by 2100, and 6370 by 2300 without considering 

restoration activities. Under the RCP8.5 climate change scenario, the prediction showed 

an increase of 6515 hectares by 2100, and 14,582 by 2300 if I did not account for the 
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restoration effect. However, if I accounted for restoration activities, the prediction 

showed significant decrease in wetland loss. 

Table 3.1  

Posterior wetland loss under different SLR scenarios with and without restoration 

projects 

 Loss with Restoration Loss with No Restoration ∆Median  

Scenario 2.5% Median 97.5% 2.5% Median 97.5% Loss Ratio 

Current 76 1,045 14,467 327 5,980 112,021 4,935 5.73 

RCP3 2100 33 1,239 57,443 164 7,142 525,928 5,903 5.77 

RCP3 2300 58 1,367 39,003 270 7,737 350,279 6,370 5.66 

RCP8.5 2100 38 1,524 85,655 199 8,039 684,291 6,515 5.28 

RCP8.5 2300 85 2,448 146,222 392 17,030 2,017,378 14,582 6.96 

 

3.4 Discussion 

I applied Bayesian multi-level modeling to investigate the impact of SLR, and the 

efficacy of various restoration methods on coastal wetlands in Louisiana. This modeling 

approach coherently assimilated data at multiple scales (e.g. watershed and site in this 

study), very useful in dynamic coastal systems which are continuously affected by 

multiple factors at different spatial and temporal scales. The predictions were spatially 

variant because the model integrated the spatial heterogeneity of SLR coupled with 

geomorphological variables. The large uncertainties observed in the predictions are likely 

a result of attempting to describe complex wetland loss processes with limited 

biogeophysical covariates. Other factors such as soil type and nutrient content may be 

strong drivers of wetland loss. Wetland soils with higher amounts of soil organic carbon 

are more resilient to wetland loss because to maintain marsh surface they require seven 

times less mineral sedimentation than mineral dominated soils (Nyman, Delaune, & 

Patrick, 1990; Willis & Hester, 2004). And wetlands that receive high nutrient influxes, 
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particularly nitrogen, are susceptible to stunted root growth and thus are more vulnerable 

to mechanical erosion (Kearney et al., 2011). My model accounted for and estimated 

uncertainties which are important but largely lacking in many of the current SLR impact 

models, and in planning for restoration projects. The modeling results could facilitate the 

efficient allocation of research resources and efforts, which will further lead to more 

effective conservation or restoration plans. 

Of the four examined restoration methods – breakwaters, hydrological alteration, 

marsh creation, and vegetative planting – only breakwaters and hydrological alteration 

were significant and negatively correlated with wetland loss. It was expected that 

vegetative planting would have significant impact on reducing wetland loss given 

literature demonstrating the enhanced shoreline stabilization due to shoreline planting 

(Ford, Garbutt, Ladd, Malarkey, & Skov, 2016). However, it’s not entirely surprising that 

vegetative planting was not as effective as breakwaters or hydrological alteration in 

Louisiana because wetland loss in Louisiana was largely driven by compaction of poorly-

consolidated soil, and sediment starvation as shown by Chapter 1 and others (Fagherazzi 

et al., 2013; Feagin et al., 2015; Reed, 1989). Normalized difference vegetation index, a 

proxy for vegetation productivity, is selected among the best candidate models but not in 

the best model in Chapter 1. Significance for vegetative planting would likely be resolved 

at a finer spatial scale because vegetation stabilizes soil, and would be more 

heterogeneous than sediment supply which acts on the broader scale. The wetland loss 

model accounting for restoration developed in this chapter did not consider restoration’s 

effect at the hydrological regime scale (a finer scale) because Louisiana contained only 

two hydrological regimes. A wider set of restoration data (multiple states and/or regions) 
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with more hydrological regimes would allow for finer scale examination of restoration 

efficacy. Resolution aside, vegetative shoreline stabilization requires time for roots to 

develop the dense structure needed for stabilization (Broome, Seneca, & Woodhouse, 

1986). It is possible the temporal coverage I focused on is not long enough for examining 

the vegetative planting method given the high rates of mechanical wave action 

(Georgiou, FitzGerald, & Stone, 2005) and/or subsidence in Louisiana (Hatton, DeLaune, 

& Patrick, 1983; Yuill et al., 2009).  

Marsh creation (insignificant among the methods in the model), which uses 

beneficial use sediment to create land, may not maintain restoration over time and is a 

“one-off” restoration method unless vegetation is established on the restored sites. This 

finding is not consistent with recent studies that have shown marsh creation as a better 

restoration method than hydrological alteration, both creating marsh in shorter time and 

costing less per hectare (Caffey, Wang, & Petrolia, 2014). However, the restoration 

model used here only evaluates wetland loss, thus not detecting projects that directly 

create wetland area (i.e. marsh creation). Further iterations of this model may benefit 

from monitoring the full gamut of wetland change, from gain to loss, so long as the 

temporal coverage can detect restoration efficacy over time.  

In contrast to vegetative planting and marsh creation, both breakwater restoration 

and hydrological alteration increase sediment availability continuously. Breakwater 

restoration encourages littoral sediment trapping through reduction of wave energy, thus 

allowing the formation of tombolos, lagoons, and eventually wetland area (Birben et al., 

2007). Hydrological alteration is the modification of riverine hydrology and thus 

modification of allochthonous sediment transport, supplying sediment to areas where 
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wetland platform can be maintained under SLR. Both methods are continual restoration 

methods, i.e. they continue to provide restoration and/or protection once they are 

constructed. The parameter for breakwater restoration had a lower (more negative) 

median, and thus reduced wetland loss more than hydrological alteration. It is likely that 

breakwaters have a greater wetland loss reduction because they not only supply continued 

restoration through sediment trapping, but also provide protection from waves and 

mechanical erosion (Edwards & Namikas, 2011).  

Hydrological alteration reduces wetland loss, likely as a result of extensive 

hydrological alteration in Louisiana to resupply the Chenier Plain and parts of the 

Mississippi Delta with river-borne sediments (Allison & Meselhe, 2010; Campbell et al., 

2005). However, there were some restoration sites which were predicted to have high 

wetland loss. Inspection of the covariates for these sites revealed that the high wetland 

loss was driven by high RSLR at these locations. It is likely that these restoration projects 

targeted these locations because of the high RSLR and therefore high wetland loss, rather 

than the wetland loss being a result of the restoration. Two regions highlighted in Figure 

7 show the mixed results of the hydrological restoration method, a cluster of unsuccessful 

restoration between 9 and 10 mm/yr of RSLR exhibiting high wetland loss, and the 

successful cluster beyond 10.5 mm/yr exhibiting reduced wetland loss compared to the 

no-restoration sites. Successful breakwater restoration sites are present at SLR of 8 and 

10 to 11 mm/yr, exhibiting reduced wetland loss. The breakwater sites highlighted in 

Figure 7 show general success in breakwaters reducing wetland loss at high RSLR (10-11 

mm/yr). In addition, although there is only one site that utilizes the combination of the 

two restoration methods, the site showed the lowest wetland loss in the 8-9 mm/yr range. 
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This suggests the complexity and high spatial variability involved in wetland restoration, 

and highlights the importance of considering site-specific characteristics. The comparison 

of breakwater restoration and hydrological alteration, and the examination of the singular 

point combining them, suggests that hydrological alteration combined with breakwaters 

may be an infrequently used but very effective method for restoring coastal wetlands in 

the areas of high RSLR. 

 

Figure 3.6  Wetland loss vs. RSLR under RCP8.5 2300 with restoration sites highlighted 

This figure compares the median wetland loss between breakwater restoration (yellow squares), hydrological alteration (blue squares) 

and absence of restoration (black dots). 

The SLR scenarios utilized here account for projection uncertainties. 

Incorporating these uncertainties showed a non-linear increase in the frequency of high 

wetland loss – a shift from low loss to high loss – in all scenarios, rather than a linear 

change of 𝛽𝑖∙,𝑅𝑆𝐿𝑅 ∗ Δ𝑆𝐿𝑅𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜. The area lost by 2100 without considering restoration 
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for RCP3 and RCP8.5 is similar in median (1238.50 and 1523.52), but differs in the 

upper bound of the 95% CI (57,443.30 and 85,654.45). Previous studies have estimated 

anywhere between 369,525 and 28.8 million hectares of wetland loss in Louisiana by 

2100 (Baumann & Turner, 1990; Blum & Roberts, 2009; Turner 1990). Even with 

uncertainty considered, the estimates from this study were drastically lower than previous 

estimates in the field. However, this study represents only the outer-most coastal 

wetlands, rather than total marsh area. The few studies that have quantified wetland loss 

within 5 km of the inner shoreline (i.e. outer-most wetlands) do fall within the 95% CI 

estimated by this study, between 9,200 and 55,600 hectares of loss by 2100 (Titus 1988). 

Under the RCP3 scenarios, wetland loss would have been roughly 5-6 times 

greater by 2100 and 2300 if restoration was not present, similar to the prediction by 2100 

under the RCP8.5 scenario. However, wetland loss was predicted to be nearly 7 times 

that if restoration was not present by 2300 under the RCP8.5 scenario. The large 

difference in the predicted wetland loss between RCP8.5 by 2300 and the other three 

scenarios comes from a larger shift of low wetland loss sites to high wetland loss sites 

(Fig. 5b). Wetland loss has been observed to exhibit threshold response to RSLR. Rapid 

decline in wetland area occurs when RSLR is greater than values 8.4 – 11.9 mm/yr 

(Couvillion & Beck, 2013; Kirwan et al., 2010; Wu et al., 2017). RCP 8.5 by 2300 has a 

mean SLR increase of 2.58 meters from 2000, in comparison to the other scenarios which 

have means of less than one meter. An increase of 2.58 m would exceed this SLR 

threshold. The seemingly unsuccessful hydrological restoration sites examined earlier 

also exhibit SLR exceeding the SLR threshold. Thus, under the extreme SLR scenarios 



 

76 

(RCP8.5 by 2300), the restoration projects are particularly important in reducing wetland 

loss. 

This study has shown the efficacy of breakwater restoration and hydrological 

alteration in reducing wetland loss in coastal Louisiana. The success of these restoration 

methods come from their passive-continual restoration nature, and targeting site-specific 

needs of more riverine-borne sediments. Additionally, the combination of breakwaters 

and hydrological alteration are rarely used, but this study suggests that this combination 

may have the highest efficacy, especially in coastal Louisiana. Restoration data in other 

regions would be helpful to elucidate other region-specific restoration efficacies. As seen 

before, Louisiana may not benefit greatly from vegetative planting. However, this method 

has seen tremendous success in other regions such as Southern Florida where Spartina 

and mangrove planting successfully restored wetlands, as well as the areas outside the 

Gulf Coast (Curado, Rubio-Casal, Figueroa, & Castillo, 2014). Marsh creation using 

beneficial use of dredged materials show some success in round island restoration project 

in Mississippi as the plants colonized the site after one year of construction (personal 

communication with George Ramseur at Mississippi Department of Marine Resources). 

The model is easily updatable when/if new restoration project data becomes available, it 

assimilates the key multi-scale biogeophysical drivers for wetland loss, and it accounts 

for uncertainty generally lacking in wetland loss assessment. All these will facilitate 

more-informed restoration plans and help enhance resilience of coastal wetlands to SLR. 
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CHAPTER IV  Adaptive web tool framework 

4.1 Introduction 

The rise of the World Wide Web has improved web-hosted modeling tools which 

allow the seamless integration of multiple data sources, instant collaboration, and cloud 

computing (Shim et al. 2002). In coastal landscape ecology, there is high demand for 

adaptable ecosystem-function web tools (Rivero and Villasante 2016). Web tools have 

extensive use in coastal ecosystem-based planning, but suffer from shortcomings in 

usability, extendibility, and accessibility. Practices within the field of ecoinformatics may 

alleviate these shortcomings by simplifying model inputs and outputs, creating central 

repositories, and using open-source software. 

Ecoinformatics is an interdisciplinary field which combines multidisciplinary data 

with computer and data science practices to create seamless tools for ecological analysis 

(Michener and Jones, 2012). While most current ecosystem-function web-hosted 

modeling tools provide updatable models, they require users to manually integrate data to 

the tool (Bagstad et al. 2013; Mccomb et al. 2006; Pickard et al. 2015). Using computer 

science practices, ecoinformatics allows for the automatic integration of big data 

otherwise inaccessible or unwieldy to web-tool users (Rosenheim and Gratoon, 2006). 

An example of an ecoinformatics system is the virtual buoy system at the University of 

Southern Florida which automatically downloads and processes satellite imagery to 

create data products about water quality and condition (Hu et al. 2013). Ecoinformatics 

engines provide extendibility through the automatic downloading, storage and processing 

of web-provided big data, and usability through the production of data products. 
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The goals of this chapter are to 1) integrate the modeling components from 

Chapter 1 and 2 into an ecoinformatics engine which evaluates coastal wetland dynamics 

of future climate, sea-level rise, and restoration scenarios; 2) make the tool easily usable, 

extendible, and accessible; and 3) provide documentation on how to operate the tool. 

4.2 Methods 

The ecoinformatics engine (referred to as “tool”) consists of two main 

components: the database and the web application. The tool is adaptive, updatable, and 

open-source; and it is hosted on the web for public access (https://ecospatial.usm.edu). It 

is complemented by an open-source repository (version control system) hosted on 

GitHub (github.com/ecospatial).  The database from which model predictions are made is 

not open to the public. However, files detailing the data structure, upload, and access are 

available on the GitHub page. Users can request scenarios not listed on the tool, 

prompting the tool to automatically run models and generate data products. Upon model 

completion, users are notified via e-mail and the scenarios will then be integrated into the 

tool. The data are hosted on the USM Ecospatial Lab cloud server, and can easily be 

updated with proper permissions using open-source model and tool code. The outputs of 

the tool are the wetland change for the given scenario from the baseline scenario.  

The database is a PostgreSQL database hosted on the USM Ecospatial Lab 

Amazon EC2 cloud server. PostgreSQL is an object-relational database management 

system, and is chosen specifically because it is free, open-source, and supports the 

storage of geographic information system (GIS) related files. The database includes the 

PostGIS extension which processes and stores GIS raster and shape files in the 

PostgreSQL database. 
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The database contains three tables that are related to each other using the third 

normal form. Third normal form is a database design technique used to reduce the 

duplication of data and increase updatability by use of keys linking tables. Two of the 

three tables, “wetloss” and “thkbuffers” are related through third normal form. These 

tables, which respectively contain wetland loss data and spatially related geomorphic 

data, are related using the primary key “ORIG_FID”. The third table ‘scenarios’ contains 

a primary key which identifies the scenario, and links to the table of “wetloss”. Data are 

uploaded to the database using open-source R scripts available on the GitHub page; and 

scenario data are generated and stored via a python script executed on a Cron job on the 

Amazon Web Service (AWS) server. The “wetloss” table generated by the model 

predictions can be downloaded via the web application by users. 

The software behind the web application is developed in the R programming 

language (R Core Team 2015). The tool uses the RShiny package (Chang et al. 2016) 

which acts as a Node.JS front and back-end web server for user interaction, without 

knowledge of Javascript. RShiny consists of “apps” that are separated into the server.R 

and ui.R files. Server.R files handle the server back-end, while ui.R files handle the user-

interface front-end. The server back-end handles R calculations dealing with database 

connection, data loading, sending data to AWS for processing, and model outputs. The ui 

front-end handles model input from users, styling (HTML, CSS), and generating model 

output to users. The entire web application was deployed to http://shinyapps.io/ via the 

rsconnect package, for ease of hosting. 

The tool allows stakeholders, policymakers, and land managers to evaluate the 

tradeoff of wetland loss among different desired scenarios. Scenarios take place over a 
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user-defined number of years using the components of sea-level rise, geomorphic 

covariates and the scenarios of breakwater structures, hydrological alteration, and 

vegetation planting. The scenarios of climate change are constructed using radio buttons. 

The number of simulation years and restoration practices can be selected using sliders. 

Included on the web application is a download button where users can download a plain-

text, tab-delimited file on the wetland loss predictions under a given scenario, and a 

contact button where users can request customized restoration and/or management 

scenarios, or specific covariate quantities. These customized scenarios are then stored in 

the database and integrated into the web application, thus available for public use. In 

addition, when the users place the mouse on a specific site, the wetland loss in hectare 

will be shown on the screen next to the site. 

4.3 Results and Conclusion 

The web application starts with a map of the study area (Northern Gulf of 

Mexico), with predictions of wetland loss in hectare under the base climate scenario 

(2005). Users can select the scenarios on the left side of the screen using the input radio 

buttons and sliders (Fig. 1): 
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Figure 4.1  Scenario options for the wetland change web-tool 

Year is the year for which the prediction is made (2006 is the base scenario, so climate change scenarios are only available for years 

after 2006). Climate change scenarios are the quantile-matched SLR scenarios as described in Chapter 2. Restoration decisions have 

three states: none, which is all sites set to no restoration; current, which is the current 2006 restoration site status; and all, which is all 

sites set to restoration of that type. Combinations of restoration can be selected by setting multiple restoration decisions. Oil 

production trade-offs are not yet implemented. The download button will download the current displayed scenario’s wetland change 

predictions. 
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The map is moveable by clicking and dragging anywhere on the map, and 

zoomable by scrolling in and out or by clicking the zoom buttons (+ and -). The map 

displays hectares of wetland lost at any given site by hovering over the site. Figure 2 

shows an example of one such scenario: 

 

Figure 4.2  Example of map output from web tool 

Current displayed scenario is baseline scenario for 2006 with no sea-level rise scenario or restoration decisions. Bottom middle shows 

the behavior when a cursor hovers over a site, displaying 29.37 hectares of wetland loss. 

The web tool here integrates Chapters 2 and 3 in a simple and cohesive manner 

through use the of the RShiny interface. The tool is extendible through its on-the-fly 

calculation of new scenarios and addition to the database. The tool is accessibly hosted at 

ecospatial.usm.edu, and open for modification, collaboration, or inspection on GitHub 

(github.com/ecospatial/). 

https://ecospatial.usm.edu/
http://github.com/ecospatial/
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CHAPTER V  CONCLUSIONS 

• The main factors contributing to wetland loss differ due to hydrological regimes, 

and should be considered as such when planning restoration 

• Breakwater construction and hydrological alteration are effective restoration 

methods in reducing SLR effects under climate change scenarios 

• A combination of breakwater and hydrological alteration may be a seldom-

considered method to restore wetlands in high RSLR areas 

• Longer-term and wider extent restoration data are needed to determine effective 

restoration methods for the rest of the NGOM 
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