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ABSTRACT 

RAPID APPROXIMATION OF BILINEAR FORMS INVOLVING 

MATRIX FUNCTIONS THROUGH ASYMPTOTIC ANALYSIS OF 

GAUSSIAN NODE PLACEMENT 

by Elisabeth Marie Palchak 

May 2012 

Technological advancements have allowed computing power to generate high resolution 
models. As a result, greater stiffness has been introduced into systems of ordinary differential 
equations (ODEs) that arise from spatial discreti zation of partial differential equations 
(PDEs). The components of the solutions to these systems are coupled and changing at 
widely varying rates, which present problems for time-stepping methods. Krylov Subspace 
Spectral methods, developed by Dr. James Lambers, bridge the gap between explicit 
and implicit methods for stiff problems by computing each Fouier coefficient from an 
individualized approximation of the solution operator. KSS methods demonstrate a high 
order of accuracy, but their efficiency needs to be improved. We will carry out an asymptotic 
study to determine how these approximations behave at high frequencies to develop a formula 
to reduce the computation of each node while still achieving a high level of accuracy. Our 
numerical results will reveal that our method does prove to increase the efficiency as well as 
the accuracy of KSS methods. 
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NOTATION AND GLOSSARY 

General Usage and Terminology 

The notation used in this text represents fairly standard mathematical and computational 

usage. In many cases these fields tend to use different preferred notation to indicate the same 

concept, and these have been reconciled to the extent possible, given the interdi sciplinary 

nature of the material. In particular, the notation for partial derivatives varies extensively, 

and the notation used is chosen for stylistic convenience based on the application. While it 

would be convenient to utili ze a standard nomenclature for this important symbol, the many 

alternatives currently in the published literature will continue to be utilized. 

The blackboard fonts are used to denote standard sets of numbers: IR for the field of real 

numbers, <C for the complex field. The capital letters, A,B, · · · are used to denote matrices. 

Functions which are denoted in boldface type typically represent vector valued functions, 

and real valued functions usually are set in lower case roman or greek letters. Lower case 

letters such as i, j , k, l , m , n and sometimes p and d are used to denote indices. 

Vectors are typset in square brackets, e.g.,[·], and matrices are typeset in parenthesese, 

e.g., (-) . In general the norms are typeset using double pairs of lines, e.g., II· II, and the 

abolute value of numbers is denoted using a single pairs of lines, e.g., I· I. Single pairs of 

lines around matrices indicates the determinant of the matrix. Denote ( ·, ·) as the standard 

inner product on [0,2rr]. Define [ f(x) g(x) ] as the limit of a block on n rows and 2 

columns of vectors of values of J(x) and g(x) as n-+ =. 

Vil 



Chapter 1 

INTRODUCTION 

In recent years, technology has advanced dramatically. These advancements in technology 

have allowed computing power to generate high resolution models, but with new advance­

ments comes new challenges. The components of the solution of the ordinary differential 

equations (ODEs) that arise from spatial discretization of partial differential equations 

(PDEs) are coupled and changing at widely varying rates. Therein lies the challenge. 

This coupling has increased the stiffness [2] of the ODEs which presents problems for 

time-stepping methods. 

We first discuss the Hockbruck-Lubich method [16, 17] which is a representative ap­

proach to using a polynomial approximation to compute e-A1v. Since solutions to stiff 

systems have components that are changing at widely varying rates, this method is not 

efficient because the time step needs to be chosen very small to compute each component 

to achieve an acceptable order of accuracy. To handle these components differently, we 

introduce the next approach which applies Krylov Subspace Spectral (KSS) methods, de­

veloped by Dr. James Lambers [20]. KSS methods compute each Fourier coefficient from 

an individualized approximation of the solution operator. As a result, these KSS methods 

demonstrate a high order of accuracy, but are lacking in efficiency. 

To improve these KSS methods, we will carry out an asymptotic study to determine how 

these approximations behave at high frequencies. In our anaylsis, we want to recognize any 

patterns to develop a formula to approximate the largest node to assign as a sharp lower 

bound to alleviate the expense of computing each node at a high level of accuracy. 

In Chapter 2 we discuss the background material. In Section I of Chapter 2 we discuss 

the Hockbruck-Lubich method for solving the problem. In Section 2, we describe the 

background material in detail as it relates to matrices, quadrature, and partial differential 

equations. In Section 3, we di scuss the block approach, and in Section 4 we introduce block 

Krylov Subspace Spectral methods. In Chapter 3, we discuss the solution to the problem 

through the asymptotic block Lanczos iteration. Section I of Chapter 3 consider the case 

when we have a constant leading coefficient, and Section 2 considers the case when we have 

a variable leading coefficient. Chapter 4 presents our numerical results. In Section I of 

Chapter 4, we examine a one-dimensional parabolic partial differential equation. In Section 



2 

2, we examine a two-dimensional example of a parabolic partial differential equation. In 

Chapter 5, we state our conclusions based on these results. 



Chapter 2 

BACKGROUND 

2.1 Polynomial Approximation of the Solution Operator 

3 

For simplicity, we consider the one-dimensional case which can be generalized to higher 

dimensions [ 13, 15]. Consider the parabolic PDE 

u1 + Lu = 0, t > 0, (2.1) 

with exp[-Lt] as the solution operator on (0,2n), where Lis a second order, self-adjoint, 

positive definite differential operator. The first approach to approximate the solution, 

developed by Hochbruck and Lubich [ 16, 17], follows. Consider 

u'(t) +Au= 0, u(to) = no , (2.2) 

where A is an N x N matrix, u(t) and no are N-vectors. This system is a result of the spatial 

di scretization of the previous PDE (2.1). We find the exact solution of the ODE to be 

u(t) = e- A1uo , which results in an approximate solution of the PDE. 

We use a polynomial of A produced by the Lanczos iteration as an approximation of 

exponential. For example, consider w = e- A,v for a given symmetric matrix A and vector 

v. If we apply the Lanczos iteration to the matrix A with initial vector v, j times, where 

j « N , at the end of the }th iteration, the Lanczos iteration produces an N x j orthogonal 

matrix Xj and a j x j tridiagonal matrix Tj such that XJ AXj = Tj. Then we can compute 

the approximation 

(2.3) 

where each column Xk, where k = 1, . .. ,}, of Xj is x k = Pk- I (A)v. The polynomial Pn (A ) 

is of degree n in A, the polynomials p j are orthonormal, and w j is a product of a polynomial 

in A of degree }- I and v [21 , 17]. 

It is not possible to approximate exponential functions on a large interval with a poly­

nomial without using a large number of terms. Similarly, it is not possible to approximate 

a matrix exponential with widely varying eigenvalues without many Lanczos iterations, 

which is the case if A arises from a stiff system. So if the eigenvalues are not clustered, this 

approach is not practical. A new approach is needed that approximates the high frequency 

components and low frequency components separately. Specifically, we need to apply a 

different polynomial approximation of the exponential for each component. 
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2.2 Matrices 

A componentwise technique is used in the next approach. We execute this componentwise 

approach by using an approximation of the solution operator that is ideal for each Fourier 

coefficient of the solution. Given the solution u(x,tn) at time tn, the solution at time t11+1 is 

u(w,t11+1) = \ ~eiwx,exp[-L~t]u(x,t11 )) . (2.4) 

The result from discretizing the (2.4) is 

UT f(A)v , (2.5) 

where u = b::eiwx and v = u(x,t11 ) are N-vectors, A = LN is an N x N symmetric positive 
v2n 

definite matrix that comes from discretizing the operator L , and f (A) = exp( - A~t). Meth-

ods for computing the bilinear form in (2.4) are discussed by Golub and Meurant in [ IO]. As 

given by properties of symmetric positive definite matrices, the matrix A has real eigenvalues 

(2.6) 

and corresponding orthonormal eigenvectors q1, where j = 1, ... ,N . Thus we can rewrite 

uT f(A)v in terms of its spectral decomposition, 

N 
u T f(A)v = L j(A1)uT q1q) v. 

) = I 

The matrix function (2.7) can also be regarded as the Riemann-Stieltjes integral 

u T f(A)v = I[J] = 1b j(A)da(A) 

where 

if A< a 

if Ai ~ A < Ai- I ' 

if b ~ A 

(2.7) 

(2.8) 

(2.9) 

We can approximate the integral J[f] by Gaussian, Gauss-Radau, or Gauss-Lobatto Quadra­

ture rules [3, 8, 9, 1 OJ , but the scope of my research only considers Gaussian. Approximating 

J[f] yields 
K 

J[f] = L Wjj(Aj) + R[f] 
)= I 

(2. 10) 

where we use the Lanczos algorithm to acquire the nodes AJ, j = 1, . . . ,Kand weights w1, 

j = 1, .. . ,K [4, 6, 7, 12] . In the case where u = v, we apply the Lanczos algorithm [32]: 



f3o = 0, p = 0, u = given , q = u/ llull2 

for n = I , 2, ... ,K 

V= Aq 

an = QTV 

ifn < K 

end 

end 

V = v- f311- 1P - anq 

f3n = ll vll2 
p = q 

Q = V / f3n 

5 

The a1s and f31s produced by the Lanczos algorithm form a tridi agonal matrix T K , where 

the diagonal elements are the a s and the super and sub diagonal elements are the f3 s. The 

resulting tridiagonal matrix produces the nodes and the weights [ 12] in our approximation. 

The nodes AJ are the eigenvalues of 

a, /3, 
/3, a2 /32 

TK = (2.11) 

/3K-2 aK- 1 f3K- 1 
f3K- I aK 

and the weights are obtained by squaring the first components of the eigenvectors. 

2.3 Block Gaussian Quadrature 

Now we consider the case when u =I- v. As a consequence, the weights could be negative 

and destabilize the quadrature rule [I , 2 1 ]. T hus, we consider the block approach 

[ u v]rf(A)[u v]. (2. 12) 

The block matrix function (2. I 2) can be regarded as the R iemann-Stieltjes integral 

1bf(A) d (A) = [ ur f(A)u ur f(A)v ] 
a µ VT f(A) u VT f(A)v (2. I 3) 

where µ (A) is a 2 x 2 matrix, each entry of which is a measure of the form a (A). Usi ng the 

most general quadrature fo rmula with K matrix nodes [ I 0, 2 1] we get 

(2. 14) 
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where T1 and W1 are 2 x 2 matrices. If we diagonali ze each T1, the resulting quadrature 

formula is given by 

1
b 2K 

J(}.,)dµ,(}.,) = [f(}.,1)v1v; + error, 
a )= I 

(2.15) 

where }.,1 is a scalar and v J is a 2-vector. The nodes and weights for our quadrature formula 

are obtained by applying the block Lanczos algorithm: 

for n = I, 2, .. . ,K 

V=AXn 

Mn = X,; V 

ifn < K 

end 

end 

Rn = V - Xn- 1B:i- 1 - XnMn 

Rn = Xn+1Bn 

The block Lanczos algorithm produces 2 x 2 matrices M 1 and BJ, as stated in [ 11 ], that 

form a block tridiagonal matrix 'J K , where each BJ is upper tri angular. The resulting block 

tridiagonal matrix produces the nodes and the weights. The nodes }.,1 are the eigenvalues of 

(2.1 6) 

Bx- 2 Mx- 1 B'f:._ 1 

BK-I MK 

and the weights are the 2 x 2 matrices obtained by taking the outer product of the first two 

components of each eigenvector with itself. 

2.4 Block KSS Methods 

The general method for Block KSS [1 9, 24] begins by defining 

Ro= [ ew u (tn) ], (2.17) 

where ew is a discretization of Jk eiwx and 

(2. 18) 
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Next we compute the QR factorization of R j - 1 for j = 1, such that 

(2. 19) 

which outputs 

(2.20) 

and 

(2.21) 

Then we apply the block Lanczos algorithm to the operator LN, which comes from the 

discretization of L, with initial block X1 ( w ). The result produces a block tridiagonal matrix 

'J K like (2.16), where every entry of 'J K is a function of w. Then, at time t11+1, each Fourier 

coefficient of the solution is 

(2.22) 

For the parabolic problem we will examine in Chapter 4, we will show that block KSS 

methods have a high-order of accuracy 0(1:it2K - I) [20] for K block Gaussian nodes, whereas 

the Hochbruck and Lubich method only has 0( titK- I) [ 17]. 

Compared to the Hochbruck and Lubich method, it would seem that KSS methods have a 

high amount of computation expense. However, this is not actually the case. We compute an 

approximation of the solution operator for each Fourier coefficient, and all of the subspaces 

generated are closely related by the wave number w [2] ]. Although KSS methods take less 

time computationally in comparison to the Hochbruck and Lubich method, we still do not 

achieve a desired level of efficiency. In Chapter 3, we will discuss how we address this 

issue. 
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Chapter 3 

ASYMPTOTIC BLOCK LANCZOS ITERATION 

3.1 Constant Leading Coefficient 

Previously in our discussion of block KSS methods, we stated a Jacobi matrix is computed 

for each Fourier coefficient by using an approximation that is ideal for that component 

[ 16, 17, 18, 31 , 33]. Then each component is approximated using a different polynomial of 

A. Thus, the computed solution including all the components is defined by 

2K 

un+ I = f (LN;/1t )u11 = [. Dj(11t )Ajun, 
j=O 

(3. 1) 

where 0 11 is the solution from the previous time step and Dj(11t ) is a di agonal matrix in the 

Fourier basis. 

Block KSS methods are more flexible than time-stepping methods based on polynomial 

or rational approximations of exp[-At] and can be used to improve accuracy and stability for 

stiff problems. However, compared to other time-stepping methods with the same number 

of grid points, more computation time is required per time step to compute the nodes and 

weights. Given the high order of accuracy and stability of KSS methods [ 14, 19, 20, 22, 

23, 24, 25, 26, 27, 28, 29, 30], we wish to improve their efficiency without sacrificing any 

accuracy. We now examine how we can take advantage of this fl exibility. 

First we will examine the case where we have a constant leading coefficient. We use 

(2.20) to form the initial block recursion coefficient 

(3.2) 

Suppose L is a second-order differential operator where 

Lu = - puxx+ q(x) u (3.3) 

and p is constant. Then 

(3.4) 
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where q is the mean of a function q(x) defined on [O, 2n] and q(x) = q(x) - q. Denote q by 

the vector with components [qlJ = q(xj), 
As lcol increases, the Fourier coefficients of a function go to zero and u~-+ u11

• So the 

off-diagonal entries are virtually the Fourier coefficient of qu( ·, t11 ), corresponding to co, 

which decay to Oas lcol -+ =. So, 

(3.5) 

and the non-diagonal entries become negligible. Thus as co increases, B 1 (co) becomes small 

so the overall matrix 'J K (co) approximately decouples. Thus, for higher frequencies , the 

diagonal entries of M 1 (co) are approximately two eigenvalues of 'J K( co). 

450 

400 + 

+ 
350 

"' 
300 • 
250 e 

El> 

" 15 200 e 
C: 

e 
150 e 

4) 

100 4) 

El> 

"' 50 "' e .. + 
0 $ t I e $ .. e 4) + "' $ .. e • e .. e • + + 

0 2 4 6 8 10 12 14 16 18 20 

"' 

Figure 3.1: Quadrature Nodes and Block Gaussian Nodes 

Figure 3.1 above shows the prescribed quadrature nodes by a 4-node KSS method with 

the blue circles. The red crosses show a 2-node block KSS method with 4 block Gaussian 

nodes . The previous approximation is a good approximation of the Gaussian nodes, but the 

work that goes into computing the actual Gaussian nodes is excessive. It has been observed 

in numerical experiments for the 2-node Block KSS method, that half of the four scalar 

nodes Aj are clustered around the values of the diagonal entries of M1 (co). So we prescribe 
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the smallest and largest nodes 

(3.6) 

as seen in Figure 3.1. The rest of the nodes are equally spaced between A1 ( c.o) and A2K( c.o) 

[21]. 

3.2 Variable Leading Coefficient 

The previous approach does not work when the operator contains a variable leading co­

efficient as demonstrated Figure 3.2. Different from the case in (3.3) where the operator 

contains a constant leading coefficient, we define the operator 

Lu= - (p(x)ux)x + q(x)u. (3.7) 

ffJO 
+ 

500 + 
+ 

400 + 0 
(f) 

-el + 0 
0 
C + 0 
I!! 3JO 
:, + 0 

~ + 0 + "Cl 0 (0 + 5- 200 + 0 + 
+ 0 + 

+ 0 + + 
+ 0 + 

100 + 0 + + 
+ 0 + 

i i i i ; 
0 + + 
+ 

Oii * • $ $ $ $ $ $ $ $ $ $ $ $ $ 

' ' ' 
0 2 4 6 8 10 12 14 16 18 20 

(j) 

Figure 3.2: Variable Leading Coefficient Fails 

We now propose to assign the largest node for each component to serve as a sharper 

lower bound, as opposed to the lower bound we could obtain from the ( 1, 1) entry of (3.5). 

To achieve our approximation of the largest node, we examine the columns of the R J blocks 

generated by block Lanczos, only considering the highest powers of co, to develop a formula 
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that maximizes the Rayleigh quotient. From block Lanczos, we compute M2 ( w) in the 

following manner. We calculate 

(3.8) 

Thus, 

R1 [ L( Jkeiwx) - [Jkeiwx (M1 )1 1 +uw(x)(M1 )2 1], 

L(uw(x)) - [Jkeiwx(M1 )12 + uw(x) (M1)22] ] 

[ L( Jk eiwx) - [ Jk eiwx(pw2 + q) + uw(x)[ ~ pu - /fn p'u + Jkcfu]], 

L(uw(x))- [Jkeiwx [~ pu - /fn p' u + Jk cfu] + 

uw(x)( - puu11
- p1uu' + qu2]] 

[ -2i_peiwx _ ...i!!!_ p' eiwx + - '- qeiwx _ w2 -p/wx _ _ 1_-qeiwx _ w2 pAuu+ 
/27i /27i /27i /27i /27i /27i 

_.!!!_ p' uu - _ l_ qAuu - pu" - p' u' + qu - w2 pAueiwx + ...i!!!_p' ueiwx -
/27i /27i ' /27i /27i 
_ l_qAueiwx + pu2u" + p'u2u' + qu3 ] /27i . 

After only considering the highest powers of w in each column, we determine 

R 1 = [ ~ peiwx 2~2 
pu(x)eiwx ] + lower order terms. 

Neglecting the constants we conclude 

R 1 = [ eiwx f5(x )eiwx ] . 

From R I we determine 

which leads to 

We calculate 

[ Jkeiwx p (x)eiwx J H L [ Jkeiwx fi (x)eiwx J 

\ /27i ' /27i \ /27i ' 
[ 

/_1 eiwx L- 1 eiwx) / _1 eiwx_Lp-(x)eiwx) ] 

\fi(x) eiwx,L Jkeiwx) ( J5(x)eiwx,Lf5 (x )eiwx ) · 

After computing the inner products of the entries we get 

wZ 11 -11 + I (ij,p) j 
/27i p 2 /27i llft112 

w2 ll ft llz, + IIP'llz, + llft ll~ · 
llft ll2 llft ll 2 ll ft ll 2 

(3 .9) 

(3. 10) 

(3. 1 1) 

(3 . 12) 

(3. 13) 

(3. 14) 

(3. 15) 



Using M2 ( w ), we compute 

Since we determined B 1 T rv O is negligible, we only need to compute 

where 

Thus, 

R2 [ L( Jkeicox)- [Jkeicox(M2)1 1 + p(x)eicox(M2)21], 

L(p(x)eiwx) - [Jkeiwx(M2)12 + p(x)eicox(M2h2] ] 

[ L( Jkeiwx) - [ Jkeicox ("pw2 + q) + p(x )eicox (-~-221r_J_J p-J-J2_+_Jk_1r_il-~-,-i1l)], 

L(p(x)eicox) -[Jkeicox(~JJpJ J2 + Jin /1~fll)+ 
-( )eicox(w2 IIPII~ + lli' II~ + ll ft ll~ )] J 
p X llft ll 2 ll ft ll 2 ilftll2 

[ co2 peicox _ ...J!Q_p' eicox + _ l_ qeicox _ [-l-eicox(pw2 + -q) 
./27i ./27i ./27i ./27i 

+p(x)eicox( ~ IJPll2 + Jin il~iil )], poW2 peicox - Poiwp' eicox+ 

w2 p2eicox _ 2iWpp' eicox _ poiwp' eicox _ Pof5'' eicox _ p'2eicox _ pp" eicox 

- iwpp' eicox + qpeicox - [Jkeicox( ~ JJpJJ2 + Jin f1~1il )+ 
-( )eicox(w2 llft ll~ + lli ' II~ + llftll~ )] J 
p X IIPll2 ll ftll2 ll ft ll2 . 

After only considering the highest powers of w in each column, we determine 

Neglecting the constants, we conclude 

Using R2, we compute X3 

12 

(3.16) 

(3.17) 

(3.18) 

(3 .1 9) 

(3.21) 

(3.22) 

which yields 

(3.23) 
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So 

(3.24) 

We note that the columns of the X1 blocks are linear combinations of 

(3.25) 

+ lower order terms of co. We recall our goal is to estimate the largest eigenvalue of Tk such 

that 

(3.26) 

where 

(3.27) 

The largest eigenvalue of a symmetric matrix maximizes the Raleigh quotient, where 

vHLv 
max --. 

vErange(Qkw) vHv 
(3.28) 

By computing R1 and R2, we observed a nice pattern that will allow us to consider a much 

smaller space. Since we only consider the high frequency components, the useful part of 

the range(Qk,w) is well approximated by the span{eiwx ,peiwx,tieiwx, ... ,Jl- 1eiwx}. As 

lco l -too, the largest eigenvalue is well approximated by 

where 

vHLv 
max H 

vErange(Pk 00 ) v v 

- iwx pe -k- 1 iwx ] .. . P e 

All the vectors v are a linear combination of 

v = C1P1 + c2p2 + · · · +ckPk 

so 

Since v is a linear combination of the columns of Pk w, we determine 
) 

where ;\,1 is the largest generalized eigenvalue [5] of the matrix pair (B,F ). For 

(3.29) 

(3.30) 

(3.3 1) 

(3.32) 

(3.33) 

(3.34) 
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and 

(3 .35) 

we determine formulas for Band F. We compute Fin the following manner. 

Fkj (uk , uj) 

(pk- I eiwx, pj- 1 eiwx) 

fo
2
n (pk- I eiWx) (i- 1 /Wx)dx 

fo2n (l- 1) (pj- 1 )dx 

fo2n (pk+j- 2)dx (3.36) 

We compute our formula for B similarly 

Bkj (uk ,Luj ) 

(pk- I /Wx , L(pj- 1 eiwx) ) 

fo
2
n (pk- I eiwx) (L(pj- 1 /Wx) )dx 

fo
2
n (pk- I eiwx) (popj- I w2 /Wx + pj w2 eiwx _ 2(j _ 1) POPj- 2 (p)' iweiwx 

- 2(j - 1 )pj- 1 (p)' iweiwx - (j - 1) (j - 2)PoPj- 3 ( (p)')2eiwx -

(j _ 1) (j _ 2) pj-2 ( (p)')2 eiwx _ (j _ 1) POPj-2 (p)" eiwx _ 

(j _ l ) pj- 1 (p )" eiwx _ p' pj- 1 iw/wx _ (j _ 1) p' pj- 2 (p)' eiwx + 
q(pj- 1 eiwx) )dx 

fo
2
n (pow2 l +j-2 + w2 l +j- l - (j- 1 )(j - 2)pol+j- 4p'2 -

(j- 1 )(j - 2)l+j- 3 p'2 - (j - 1 )PoPk+j- 3 p" - (j- l )l +j- 2 p" 

-(j- 1 )l+j-3 p'2 + l +j- 2q)dx (3.37) 

As shown in Figure 3.3, this method is very accurate for the 4-node case in approximating 

the external nodes when p is variable. To summarize, in the case where p is variable, we 

prescribe the largest node accoring to the aforementioned method. When p is constant, we 

follow the given procedure in (3.5) and (3.6) to use the quadrature rule. Our numerical 

results are shown in Chapter 4. 
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Figure 3.3: Well-Approximated Nodes for Variable Coefficient Case 



Chapter 4 

NUMERICAL RESULTS 

4.1 One-Dimensional Parabolic PDE 

16 

In this chapter we solve examples of the one-dimensional and two-dimensional heat equation 

using the Hochbruck-Lubich method of approximating e- LT, an accelerated KSS method 

with nodes prescribed in the same way as when pis constant, Dr. Lambers' original KSS 

method, and our new method. All experiments are conducted on 128 and 256 point grids 

with 4- or 6- dimensional Krylov subspaces . The exact solutions are unknown, so we 

compute the error by comparing each solution to the solution at the smallest time step and 

taking the 2-norm of the relative difference. 

To compare our results to previous methods, we solve (2.1 ), (3.7) using the coefficients 

p(x) 
I 1 . 1 

1 + 2cosx - 4 sm2x+ 8cos3x 

q(x) 
1 . I 

2 
1 . 1 

I + - smx - - cos x + - sm3x - - cos4x 
4 4 8 8 

(4.1) 

with initial conditions 

u(x, 0) = 1 + 
1

3

0 
cosx - ;

0 
sin 2x + }

0 
cos3x, 0 < x < 2n. (4.2) 

First we compare our methods using 4-node KSS methods. The results are given in Figure 

4.1, Figure 4.2, and Table 4.1 . Figure 4.1 gives the relative error for the solution of (2.1) 

using four different methods. The black curve demonstrates our improved KSS method. The 

blue curve demonstrates Dr. Lambers' original KSS method. The red curve is an accelerated 

KSS method with nodes prescribed in the manner as when pis constant. The green curve 

demonstrates the Hockbruck-Lubich method of approximating e-Lt. All methods should 

be 3rd-order accurate, but only the our new KSS method achieves this level of accuracy. 

Similarly, Figure 4.2 shows our 4-node comparison on a 256 point grid. Table 4.1 gives 

estimates of the relative error of the four methods we discussed. 

Then we compare our methods using 6-node KSS methods. The results are given in 

Figure 4.3, Figure 4.4, and Table 4.2. Figure 4.3 gives the relative error for the solution 

of (2. 1) using the four different methods we discussed. The black curve demonstrates our 

improved KSS method. The blue curve demonstrates Dr. Lambers' original KSS method. 
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parabOllc prob{em, 1·0 , N• l28, T• l 

-'ir, 

l - {~ r 
10·1 

·~ 
~~ 

10-2 -
~ 
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~ 

l 
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', 
10-l ""--, 

, I ~ .......... 

~ '.i 

10-<4 ~ I 
.J 

_L -~ 
1/2 1/4 1/8 1/ 16 

time step 

Figure 4.1: 4-Node Comparison on 128 Point Grid 

N /),.t Improved KSS KSS-p constant Original KSS Hockbruck-Lubich 
I 4.560e-002 2.440e-001 2.605e-002 4.272e-002 
1/2 6.375e-003 I .964e-001 7.848e-003 4.077e-002 

128 1/4 l .073e-003 1.89 1 e-00 I 2.877e-003 3.694e-002 
1/8 2.32 1e-004 3.967e-00l I .069e-003 l .947e-002 
1/16 4.083e-005 l .983e-001 2.935e-004 3. l 57e-003 

4.560e-002 2.440e-00 1 2.604e-002 4.272e-002 
1/2 6.375e-003 I .964e-001 7.839e-003 4.077e-002 

256 1/4 1.073e-003 1.891e-001 2.868e-003 3.694e-002 
1/8 2.32 le-004 3.967e-001 I . 134e-003 I .947e-002 
1/16 4.083e-005 I .983e-OO I 3.089e-004 3. 157e-003 

Table 4.1: Relative Error Estimates of 4-node Comparisons 

The red curve is an accelerated KSS method with nodes prescribed in the manner as when p 

is constant. The green curve demonstrates the Hockbruck-Lubich method of approximating 

e - LJ. All methods should be 5th-order accurate, but only the our new KSS method achieves 

thi s level of accuracy. Similarly, Figure 4.4 shows our 6-node comparison on a 256 point 

grid. Table 4.2 gives estimates of the relative error of the four methods we discussed. Again 

we find that all of these methods should be 5th-order accurate, but only our new method is. 



N l}.t 

1 
1/2 

128 1/4 
1/8 
1/16 

112 
256 1/4 

1/8 
1/16 

10·3 

~--_____J__ 

1/ 2 

parabOlic problem, l ·D, N• 256, l • l 

1/4 

t1me step 

1/16 

Figure 4.2: 4-Node Comparison on 256 Point Grid 

Improved KSS KSS-p constant Original KSS Hockbruck-Lubich 
I .090e-OO I 6.085e+002 l .534e-002 4.665e-002 
2.323e-002 I .002e+008 2.070e-003 1.755e-002 
9.684e-004 I .35 le+005 1.150e-003 6.993e-003 
4.323e-005 l .280e+003 4. 17 le-004 I .441e-002 
4.416e-006 3.848e-002 8.049e-005 2.407e-002 
l.090e-OO I I.407e+002 1.533e-002 4.665e-002 
2.323e-002 4.898e+007 2.065e-003 1.755e-002 
9.684e-004 6.936e+002 1.506e-003 6.993e-003 
4.323e-005 7.051e+004 4.763e-004 l .441e-002 
4.416e-006 1.244e-OOI 8.375e-005 2.407e-002 

Table 4.2: Relative Error Estimates of 6-node Comparisons 

4.2 Two-Dimensional Parabolic PDE 

18 

We now consider high dimensions of the heat equation. To test our methods, we use the 

two-dimensional coefficients 

p(x ,y) 1 + ~cos(x + y) - ~ sin(2 (x - y)) + icos(3 (x + y)) 

I 1 1 I 
q(x ,y) 1+ 4sinx - 4cos2y+ 8sin3x- 8cos 4y (4.3) 
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Figure 4.3: 6-Node Comparison on 128 Point Grid 

with initial conditions 

3 3 3 
u(x ,y,O) = 1 + 10 cosx -

20 
sin(2(x+y) ) + 

40 
cos3x , 0 < x ,y < 2n. (4.4) 

The results are given in Figure 4.5, Figure 4.6, and Table 4.3. Figure 4.5 gives the relative 

error for the solution of (2.1) using the four different methods we discussed. The black 

curve demonstrates our improved KSS method. The blue curve demonstrates Dr. Lambers' 

original KSS method. The red curve is an accelerated KSS method with nodes prescribed in 

the manner as when p is constant. The green curve demonstrates the Hockbruck-Lubich 

method of approximating e- LJ. All methods should be 3rd-order accurate, but only the our 

new KSS method achieves this level of accuracy. Similarly, Figure 4.6 shows our 4-node 

comparison on 32 points per dimension. Table 4.3 gives estimates of the relative error of the 

four methods we discussed, with 4 nodes, on a grid with 16 points per dimension. 
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Figure 4.4: 6-Node Comparison on 256 Point Grid 

Improved KSS KSS-p constant Original KSS Hockbruck-Lubich 
6.723e-002 5.510e-OO I 2.644e-002 1.35 1 e-00 I 
1 .443e-002 3.301e-OO I 8.9 10e-003 9.480e-002 
3. 191e-003 6.699e-001 2.956e-003 4.589e-002 
4.5 19e-004 4.469e-001 7.558e-004 6.060e-003 
I. lO le-004 1 . 133e-002 1.360e-004 1.270e-003 
6.724e-002 6.013e-001 2.646e-002 1.35 1 e-00 I 
1.320e-002 4.232e-001 8.593e-003 9.480e-002 
1.51 le-003 7.755e-001 3.273e-003 4.589e-002 
3. 186e-004 5.897e-OO I 1.090e-003 6.060e-003 
l . 189e-004 2.1 4 1e-001 2.662e-004 1.270e-003 

Table 4.3: Relative Error Estimates of 2D Comparisons 

20 
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Figure 4.6: 2D, 4-Node Comparison on 32 Points per Dimension 



Chapter 5 

CONCLUSION 

22 

We examined the problem of stiffness that has been introduced into systems of ordinary 

differential equations that arise from the spatial discretization of partial differential equations. 

We discussed the Hockbruck-Lubich method of approximating e- Lt , and determined that 

it takes too many Lanczos iterations to achieve a suitable level of accuracy. We discussed 

Krylov Subspace Spectral methods to address this stiffness issue. Although KSS methods are 

more scalable than the Hockbruck-Lubich method, they are too computationally expensive 

per time step. From our asymptotic study, we were Jed to develop a formula that uses 

the largest generalized eigenvalue to approximate the largest quadrature node for each 

component. This method has allowed us improve the efficiency of the existing KSS methods 

without sacrificing any accuracy. In this thesis, we solved a one-dimensional and two­

dimensional paraboic PDE to analyze our results. We found that in addition to not sacrificing 

any accuracy, we actually improved the accuracy of the existing KSS methods. Now we have 

set the foundation to develop an efficient method that is more practical for stiff problems. 
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