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ABSTRACT

KRYLOV SUBSPACE SPECTRAL METHOD WITH MULTIGRID FOR A

TIME-DEPENDENT, VARIABLE-COEFFICIENT PARTIAL DIFFERENTIAL

EQUATION

by Haley Renee Dozier

August 2016

Krylov Subspace Spectral (KSS) methods are traditionally used to solve time-dependent,
variable-coefficient PDEs. They are high-order accurate, component-wise methods that are
efficient with variable input sizes.

This thesis will demonstrate how one can make KSS methods even more efficient by
using a Multigrid-like approach for low-frequency components. The essential ingredients of
Multigrid, such as restriction, residual correction, and prolongation, are adapted to the time-
dependent case. Then a comparison of KSS, KSS with Multigrid, KSS-EPI and standard
Krylov projection methods will be demonstrated.
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Chapter 1

BACKGROUND

1.1 Introduction

In this thesis, we will discuss certain time-stepping methods for time-dependent,
variable coefficient partial differential equations (PDEs), known as Krylov Subspace Spectral
methods. Krylov Subspace Spectral, or KSS, methods were made known in 2003 by Dr.
James Lambers for his doctoral dissertation. Since then, many advances have been made to
KSS methods, including the switch to one block Lanczos quadrature rule for each Fourier
component instead of two "non-block" rules, which improved the accuracy of the method,
and performing an asymptotic analysis of Lanczos iteration, which improved the efficiency.
In this thesis, it will be shown that another advance, the combination of Multigrid methods
with KSS methods, will further improve KSS.

First, we examine a time-dependent, variable coefficient PDE, such as

ut−
1

r(x)m(t)
[(p(x)ux)x +q(x)u] = 0, a < x < b, t > 0.

There are many existing methods to numerically solve this type of equation, including
finite difference methods, finite element methods, and spectral methods. The problem with
using any of these methods in combination with existing time-stepping methods, such as
Runge-Kutta or multistep methods, is that efficiency of these methods doesn’t scale well to
larger input sizes (number of grid points). That is, unless the chosen time-step is sufficiently
small, the computed solutions might exhibit unreasonable behavior with large input sizes
[5]. Therefore, to improve accuracy as input sizes increases, the time step must be chosen to
be even smaller, so not only is the expense per time step increasing, but the number of time
steps needed to maintain accuracy is increasing as well.

KSS methods are used specifically to solve time-dependent, variable coefficient PDEs.
Unlike the previously mentioned methods, KSS methods are explicit methods that have
the stability of implicit methods, and are component-wise methods that are scalable — the
method is reliable using a variety of input sizes. The difference between KSS and Krylov
projection methods, as described in [7], is that KSS computes each Fourier coefficient of the
solution using an approximation of the solution operator made for that specific component.
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1.2 Multigrid Methods

Multigrid methods can be used to solve the linear system Au = b according to the follow-
ing framework: smoothing, restriction, then interpolation/prolongation. Multigrid methods
are effective because many iterative techniques already contain a smoothing property that
can eliminate high frequency (oscillatory) components of the error but have little to no effect
on the low frequency components of the error. Multigrid methods can fix this effect by using
residual correction on a coarser grid.

To integrate Multigrid into an existing method a Multigrid correction scheme is imple-
mented. After the smoothing takes place in the existing method, a Multigrid correction
scheme is added so that after convergence starts to deteriorate on the fine grid, the residual
is restricted to a coarser grid to obtain an approximation of the error. Then the error is used
to correct the initial approximation of the solution and is returned to the fine grid.

1.3 Combining KSS and Multigrid Methods

Due to the work of Cibotarica, Palchak, and Lambers in [2, 10], KSS methods are highly
effective at eliminating the high frequency components of the error. In this thesis, it will be
shown that incorporating Multigrid into KSS methods improves the accuracy of the method
by applying a Multigrid-like approach on the low frequency components.

Since Multigrid methods are typically used to solve linear systems that arise from the
spatial discretization of elliptic partial differential equations which are time-independent
(such as Laplace’s equation), we must first adapt the method to the time-dependent case.
Therefore, to apply Multigrid to time-dependent problems, we must first generalize the
method by redefining the residual, and then solve a non-homogeneous version of the PDE
to obtain the error for the correction. Then we must create new functions to restrict the
approximate solution, correct, and interpolate the corrected approximate solution.

1.4 Outline

In Chapter 2, we will review KSS methods in their current form and recent improvements
made to these method. This includes the construction of KSS method, rapid node estimation
and an asymptotic analysis of Lanczos iteration to improve the efficiency of the method.

Chapter 3 will describe traditional Multigrid methods and how they are used to solve
linear systems of equations.

In Chapter 4, it will be shown that implementing Multigrid-like techniques with KSS
methods increases the methods overall efficiency. It will also be shown how one can use
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KSS with Multigrid, or KSS-MG, to solve parabolic and hyperbolic PDEs.
Chapter 5 will present numerical results from applying the Mutigrid modified KSS

algorithm to both parabolic and hyperbolic problems. It will also compare Multigrid
modified KSS to the previous KSS method as well as other standard methods.

Chapter 6 will conclude that KSS-MG is far more accurate than standard Krylov pro-
jection and more efficient than the current KSS methods. Further research will also be
discussed.
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Chapter 2

Krylov Subspace Spectral Methods

In this chapter, we will discuss Krylov Subspace Spectral (KSS) Methods, a time-
stepping method for solving time-dependent, variable coefficient PDEs. We start by examin-
ing the initial-value problem

ut +Lu = 0, 0 < x < 2π, t > 0 (2.1)

u(x,0) = f (x), 0 < x < 2π, (2.2)

with periodic boundary conditions

u(0, t) = u(2π, t), t > 0. (2.3)

The operator L is the Sturm-Liouville differential operator defined by

Lu =−(pux)x +qu, (2.4)

where p and q are functions of x. To solve this PDE, we first use the boundary conditions to
find a general solution, then use the initial conditions to find a unique solution. The solution
of this particular PDE can be represented by the Fourier series

u(x, t) =
1√
2π

∞

∑
ω=−∞

eiωxû(ω, t), (2.5)

where û(ω, t) is the Fourier coefficient of each component, and ω is the wave number for
each Fourier component. To find the Fourier coefficients of the solution, we can represent
each Fourier coefficients as an inner product, denoted by 〈·, ·〉, as

û(ω, tn+1) =

〈
1√
2π

eiωx,e−L4tu(x, tn)
〉
, (2.6)

where e−L4t is the exact solution operator.
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2.1 KSS Methods

The main idea behind KSS methods is to independently approximate all Fourier coeffi-
cients of the solution using an approximation of the exact solution operator that is tailored
to each specific Fourier coefficient. To find the approximation of the exact solution operator,
we can spatially discretize (2.6) and obtain the following(

1√
2π

eiω~x
)H (

e−LNt~u(tn)
)
, (2.7)

where LN is an n× n symmetric positive definite matrix obtained from the spectral dis-
cretization of L, and~x is a vector of equally spaced points in [0,2π). To simplify, we can set
~u = 1√

2π
eiω~x,~vv = u(~x, tn), and φ(LN) = e−LNt , where ~u and~v are N-vectors, to obtain the

simplified form
~uH

φ(LN)~v. (2.8)

Because the matrix LN is positive definite, we know that it must have positive, real eigen-
values, denoted by b = λ1 ≥ λ2 ≥ . . .≥ λN = a, and orthonormal eigenvectors, denoted by
~q j where j = 1, ...,N. The spectral decomposition of a matrix is a way to factor a matrix
into its canonical form so that you can represent that matrix in terms of its eigenvalues and
eigenvectors. The general form of the spectral decomposition of some matrix M is

M = QλQH

=
N

∑
j=1

λ j~q j
~qH

j , (2.9)

where λ is a diagonal matrix with the eigenvalues of M as its entries and the columns of Q

are the orthonormal eigenvectors, ~q j. Therefore the spectral decomposition of (2.8) can be
seen as

~uH
φ(LN)~v =

N

∑
j=1

φ(λ j)~uH~q j
~qH

j ~v. (2.10)

As shown by Golub and Meurant in [3], we can represent this sum as a Riemann-Stieltjes
integral

~uH
φ(LN)~v =

∫ b

a
φ(λ ) dα(λ ) (2.11)

such that

α(λ ) =


0 if λ < a
∑

N
j=i~u

H~q j~q j
H~v if λi ≤ λ ≤ λi−1

∑
N
j=1~u

H~q j~q j
H~v if b≤ λ .

(2.12)

To approximate a definite integral, any quadrature rule can be used. In this case, Gaussian
quadrature is used because it has a high degree of accuracy and the weights are guaranteed
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to be positive. Generally, Gaussian quadrature approximates an integral by choosing suitable
nodes, xi, and weights, wi, then computing the following sum∫ b

a
f (x) dx≈

K

∑
i=1

wi f (xi).

Applying Gaussian quadrature rules to (2.11) leads to the approximation∫ b

a
φ(λ ) dα(λ ) =

K

∑
j=1

φ(λ j)w j + error

where the nodes are λ j from j = 1, ...,K and weights are w j from j = 1, ...,K. In [3], it was
shown that this quadrature rule is exact for polynomials of degree up to 2k−1.

When u 6= v, the weights, w j, are not always positive real numbers. This occurrence can
destabilize the quadrature rule. Therefore, in this case, the block approach is considered:

[~u~v]Hφ(LN)[~u~v]. (2.13)

This matrix can be seen as a Riemann-Stieltjes integral∫ b

a
φ(λ ) dµ(λ ) =

[
~uHφ(LN)~u ~uHφ(LN)~v
~vHφ(LN)~u ~vHφ(LN)~v

]
, (2.14)

where µ(λ ) is a 2×2 matrix with entries of the form α(λ ) from (2.12). Then, we can use a
quadrature rule to approximate the integral (2.14) as the sum

k

∑
j=1

Wjφ(Tj)Wj + error, (2.15)

with Wj and Tj as 2×2 matrices. Diagonalizing Tj leads to

k

∑
j=1

φ(λ j)~v j~vH
j + error. (2.16)

where λ j is a scalar and each~v is a 2 vector and~v j~vH
j is a 2×2 matrix.

To obtain the nodes and weights for KSS, we need an algorithm whose output will give
the recurrence relation for the orthogonal polynomials required for Gaussian quadrature
rules for the integral we need to evaluate.

As shown in [4, 10], the block Lanczos algorithm applied to LN using initial vectors~u
and~v will give us appropriate nodes and weights for Gaussian quadrature. The algorithm
for block Lanczos, as described in [10], is
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X0 = 0, R0 = [~u~v], R0 = X1B0 (QR factorization)
for j = 1,2, ...,K

V = LNX j

M j = XH
j V

if j < K

R j =V −X j−1BH
j−1−X jM j

R j = X j+1B j (QR factorization)
end

end.

When block Lanczos is applied to LN using initial block [~u ~v], we obtain the 2× 2
matrices M j and B j. These matrices are the entries of the block tridiagonal matrix

TK =


M1 BT

1
B1 M2 BT

2
. . . . . . . . .

BK−1 MK

 (2.17)

where each entry is a function of ω and all B j are upper triangular. Therefore, for Gaussian
quadrature rules, the nodes λ j are the eigenvalues of TK ,~v j~vH

j are the matrix-valued weights
and~v j consists of the first two components of the eigenvector corresponding to λ j.

2.2 Block KSS

Block KSS as seen in [8] begins by defining

R0(ω) = [êω un] (2.18)

where êω is the discretization of 1√
2π

eiω~x, which is~u in the previous section, and~un is the
computed solution at the given time, which is~v from the previous section. From [10], we
know that the QR factorization of (2.18) leads to

R0(ω) = X1(ω)B0(ω) (2.19)

with
X1(ω) =

[
êw

un
w

||un
w||2

]
and

B0(ω) =

[
1 êH

w un

0 ||un
w||2

]
,
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where
un

ω = un− êω êHun = un− êω û(ω, tn). (2.20)

Next, block Lanczos can be applied to the discretized operator, LN , with inital block X1(ω).
From block Lanczos, we obtain our M j and B j so that we can produce the matrix TK with the
same form as (2.17). The eigenvalues of this matrix are the nodes we will use for Gaussian
quadrature and the Fourier coefficients at time tn+1 can be represented as

[ûn+1]ω = [BH
0 EH

12e−TK(ω)4tE12B0]12, E12 = [ ~e1 ~e2 ] (2.21)

By applying an inverse Fast Fourier Transform (FFT) to the vector of Fourier coefficients,
we obtain the vector~un+1, from which we can retrieve the values of the solution, u(x, tn+1).
According to Cibotarica, Palchak and Lambers in [10], this algorithm has local temporal
accuracy of O(4t2K−1) for the parabolic problem and O(4tKk−2) for the second-order
wave equation.

The problem with Krylov Subspace Spectral Methods is that they need to perform
Lanczos or Arnoldi on each component, which makes the method computationally expensive,
but recently, research by Cibotarica, et al. in [2] led to the creation of an asymptotic analysis
of Lanczos. This modification of the method will be discussed in the next section.

2.3 Asymptotic Analysis of Lanczos

Recall from the previous sections that û is the discrete Fourier transform of u on a
uniform N-point grid. KSS methods use initial block R0(ω) = [êω un] for each ω , then
block Lanczos iteration is used with initial block of R0(ω) to get TK .

In [10], Palchak, Cibotarica and Lambers showed that for the PDE shown in (2.1), every
non-zero, off diagonal entry of the subsequent matrices M j and B j converges to zero as the
limit of the wave number, ω , approaches infinity. This is significant because then it can
be shown that the matrix obtained from applying block Lanczos iteration to R0 = [êω un]

actually converges to the matrix obtained when "non-block" Lanczos is applied to the
columns of R0 separately and then alternating rows and columns of the tridiagonal matrices
produced by the "non-block" Lanczos iterations.

Since the block Lanczos case converges to the "non-block" case, there is a decoupling
effect, and so for a finite ω , it was shown in [10] the Gaussian quadrature notes can be
estimated from the eigenvalues of these smaller matrices, which has been shown to be
hundreds of times faster. It should be noted that in the subsequent pages, the nodes that
are computed from applying "non-block" Lanczos to the spectral discretization of L, LN ,
with initial block un will be referred to as the "frequency independent nodes" since they are
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mainly dependent on the computed solution. These nodes will only have to be calculated
once in the KSS method. The rest of the nodes that are computed from applying "non-block"
Lanczos to êω will be referred to as "frequency dependent nodes".

After obtaining the matrices from Lanczos iteration on the separate entries of R0 and
computing the frequency independent nodes, the frequency dependent nodes must be
computed for each ω . This process can be computationally expensive, but in [2], it was
shown that an asymptotic analysis of Lanczos can be used to decrease the expense by
estimating the elements of TK in terms of the coefficients of a differential operator (neglecting
the lower-order terms in the polynomial ω). This implementation of the asymptotic analysis
of Lanczos was extremely beneficial in eliminating the high frequency error of the solution,
but did nothing to eliminate the low frequency error. In [2] Cibotarica et al. found that after
using a Fast Fourier Transform to split the solution into high and low frequency parts, the
asymptotic analysis of Lanczos could be applied to eliminate high frequency error, while
standard Krylov projection could be used to eliminate the low frequency error.

In summary, adding the asymptotic analysis of Lanczos as well as rapid node estimation
for Gaussian quadrature produces the following framework for KSS to compute un+1 from
un:

• Apply the Lanczos algorithm to LN using initial vector~un and compute the eigenvalues
of TK (the matrix obtained from Lanczos).

• Apply the Lanczos algorithm to LN using initial vector eω , then use the asymptotic
analysis of Lanczos to estimate the eigenvalues of the resulting matrix TK(ω).

• Combine the eigenvalues obtained from the previous steps to obtain the block Gaussian
quadrature nodes.

• We can compute ûn+1 (the Fourier coefficients of the approximte solution) and then
use a Fast Fourier Transform to obtain the approximate solution~un+1.
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Chapter 3

Multigrid Methods

Multigrid methods are an effective tool for solving a linear system that arise from the
spatial discretization of elliptic PDEs, such as

A~x =~b, (3.1)

in conjunction with any iterative method. This is because most iterative methods possess a
"smoothing property" that is highly useful for eliminating high frequency error, but leave the
low frequency error relatively unaffected. The implementation of Multigrid with an iterative
method is a simple, yet effective, solution to these types of problems.

Multigrid methods solve linear equations like (3.1) by restricting an initial guess to a
coarser grid (a grid with twice the spacing of the original), solving on the coarse grid, then
interpolating the approximate solution back to the fine grid using appropriate restriction and
interpolation operators. When combining Multigrid-like methods with an existing iterative
method, then coarse grids can also be used to correct the approximate solution obtained
from the iterative method. This is done by obtaining the residual on the fine grid, restricting
the residual to a coarser grid, using a relaxation method on the residual, then interpolating
back to the fine grid to use the newly obtained residual to correct the approximate solution.
This is called coarse grid correction. Coarse grid correction is so effective because the
low frequency error that the iterative method does not eliminate on a fine grid "looks"
more oscillatory (higher in frequency) on a coarse grid. Briggs, Henson, and McCormick
demonstrated this very clearly in [1] by using the following example.

Let k be the wave number and n be the number of grid points with spacing h between
them. The components can be shown as

ω
h
k,2 j = sin

(
2 jkπ

n

)
= sin

(
jkπ

n
2

)
= ω

2h
k, j. (3.2)

It should be noted that the superscripts indicate the grid that each vector is defined on.
Therefore ωh is defined on the finest grid and ω2h is defined on the next coarsest grid.

If k = 4, n = 12, and 1≤ k < n
2 , then Figure 3.1 from [1] shows a representation of (3.2)

on the fine grid and the corresponding projection of (3.2) onto the coarse grid. Even on the
next coarsest grid, the frequency of the wave appears higher than in the fine grid, which
allows the iterative method to be more effective at eliminating the error.
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Figure 3.1: This figure shows a comparisson between (3.2) on the fine grid (top) and on the coarse
grid (bottom).

3.1 Multigrid Algorithm

To implement Multigrid with an iterative method that has the "smoothing property", we
need two operators: a restriction operator and an interpolation operator. The restriction
operator will transfer a vector from a grid to the next coarsest grid and the interpolation
operator will transfer a vector from a grid to the next finest one. It should be noted that
the coarse grid has twice the spacing of the next finest grid. According to [1], this is the
standard practice because in most cases there is not indication of any benefit to using any
other grid spacing.

The most obvious way to "restrict" a vector to a coarser grid is by injection. This method
defines the restriction operator, I2h

h , as

I2h
h ~vh =~v2h (3.3)

where~v is the approximate solution of (3.1) and~v2h
j =~vh

2 j. This indicates that the jth node
on the coarse grid is the same as the 2 jth node on the fine grid (e.g. the 3rd node on the
coarse grid is equal to the 6th node on the next finest grid). Therefore, this method obtains
the coarse grid vector directly from the fine grid vector. Another way to ’restrict’ a vector
to the next coarsest grid is by a method called full weighting. In this method, the coarse
grid vectors are obtained from the weighted averages of the vectors at neighboring fine grid
points. Therefore, the restriction operator is defined the same as in (3.3), but

~v2h
j =

1
4
(~vh

2 j−1 +2~vh
2 j +~vh

2 j+1). (3.4)
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To interpolate, or prolong, back to a fine grid, an interpolation operator is needed. The
interpolation operator is defined as

Ih
2h~v

2h =~vh, (3.5)

where
~vh

2 j =~v2h
j (3.6)

~vh
2 j+1 =

1
2
(~v2h

j +2h
j+1). (3.7)

Therefore, to interpolate back to a fine grid from a coarse grid, the coarse grid vectors are
mapped back to the even fine grid nodes and the odd fine grid nodes are the averages of the
coarse grid vectors on either side.

The multigrid algorithm for a linear system A~x =~b, where~v is an approximation of~x
and A is an n×n matrix, is

Smooth Ah~vh =~bh on the finest grid using initial approximation~vh.
Compute~b2h = I2h

h ~rh where I2h
h is the restriction operator and~rh is the residual

found by~rh =~bh−Ah~vh.
Smooth A2h~v2h =~b2h using initial guess~v2h.
Compute~b4h = I4h

2h~r
2h.

...
Solve Akh~vkh =~bkh

...
Correct~v2h←~v2h + I2h

4h~v
4h

Correct~vh←~vh + Ih
2h~v

2h.

As one can see from the Multigrid algorithm, a user can choose how coarse of a grid
to use. To ensure that the restriction method used is accurate, the residual on the fine grid
should be compared to the residual on the coarse grid. The restriction to a coarse grid and
prolongation back to fine grid performed in Multigrid is called a V-cycle, and Figure 3.2
from [6] visualizes this process.

3.2 Implementation of Multigrid

To implement a Multigrid algorithm like the one in the previous Section, a computer
code must be written that can be tailored to the relaxation (or iterative) method that a user is
implementing Multigrid with. Many Multigrid experts suggest that writing a highly modular
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Figure 3.2: The v-cycle as seen in [6]

program is the most effective [1]. This allows the programs to evolve from simple relaxation
methods to powerful tools as well as allowing the subroutines (restriction, interpolation,
etc.) to be easily changed and corrected.

Consider a four level V-cycle applied to a one dimensional problem with 16 grid points.
Figure 3.3 shows the changes to the program’s data structure in which the V-cycle progresses.
Each grid in the V-cycle needs two arrays, one for the approximation to the solution (~v) and
one for the right side vectors (~f ). Since boundary values are stored on each grid, then the
kth coarsest grid involves 2k+1 points (the 1st coarsest grid has 3 points, the 2nd courses
has 5, etc.).

As the program "descends" through the V-cycle to coarser and coarser grids, the program
will fill the segments for the solution array and the residual vectors (~f ) fill the right side
array corresponding to the next coarsest grid. As the program "ascends" the V-cycle, only
the solution array is overwritten (see, for example [1]).
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Figure 3.3: An illustration from [1] of a four level V-cycle showing the changes in the data arrays.
The~v arrays hold the solutions vectors and the ~f arrays hold the right-side vectors.
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Chapter 4

Combining KSS and Multigrid Methods

Due to the work of Cibotarica, Lambers, and Palchak in [2], KSS methods are already
highly effective at computing the high frequency components of the error. The low frequency
components of the error though are still computed using standard Krylov projection as seen
in [7].

As stated in the previous chapter, Multigrid is an effective way of eliminating low
frequency error in linear systems that arise from the spatial discretization on elliptic partial
differential equations which are time-independent (such as Laplace’s equation). KSS
methods are used to solve time dependent, variable coefficient PDEs. Therefore, to apply
Multigrid to time-dependent problems, we must first generalize the method by defining the
residual as R = ut +Lu, then solving a non-homogeneous version of the PDE to obtain the
error for the correction.

Since smoothing already takes place in the KSS method, from here we need three
functions to implement Multigrid generalized for a time-dependent PDE:

1. a function to restrict the problem to a coarser grid (eg I2h
h )

2. a function to make a new Jacobian on the coarse grid

3. and a function to Interpolate back to the fine grid (eg Ih
2h).

To make a restriction function for a time-dependent PDE, the residual must first be
reshaped from a vector to an n× n matrix B if the PDE is on a 2-D Domain. Then, the
residual can be restricted to the coarse grid matrix, C, as seen in the following equation:

C(i, j) =
1
4
(B(2i−1,2 j−1)+B(2i−1,2 j)+B(2i,2 j−1)+B(2i,2 j)). (4.1)

This is a method similar to the full weighting method as described in (3.4).
To make an interpolation function where a coarse grid matrix entry is mapped to the

corresponding fine grid matrix entry, as well as the entries surrounding it, the following
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algorithm can be followed:

B(2i−1,2 j−1) =C(i, j) (4.2)

B(2i−1,2 j) =C(i, j) (4.3)

B(2i,2 j−1) =C(i, j) (4.4)

B(2i,2 j) =C(i, j). (4.5)

KSS-MG proceeds as follows:

1. Use KSS as described in section 2 for all components of the solution (high and low
frequency)

2. use Multigrid to eliminate low frequency error,

3. then combine the results of the previous two steps to obtain an approximate solution.

It should be noted that the Multigrid v-cycle will only descend to the next coarsest grid.
Coarser grids could be used though, and further research could explore the effectiveness of
this option.

4.1 Using KSS-MG to solve a Parabolic PDE

The Allen-Cahn equation is a parabolic, two dimensional PDE often used in mathemati-
cal physics. It is used to describe the reaction-diffusion of the separation of iron alloys. The
Allen-Cahn equation is

ut = α4u+u−u3. (4.6)

where α is a constant and for our problem α = 0.2. Since the Allen-Cahn equation is
nonlinear, then to use KSS with Multigrid (KSS-MG) to solve this problem, first we must
linearize the equation. The linearized form is as follows,

ut = α4u+(1−3y2
0)u (4.7)

where y0 is the initial data. Also, there are homogeneous Neumann boundary conditions.
As stated in Section 3.1, Multigrid can be used to improve the accuracy of iterative

methods that have the smoothing property. After KSS is applied, we are left with a relatively
smooth error. To use Multigrid for residual correction, first the solution computed from
KSS is used for the initial approximation and therefore used to find the residual, R(x, t). To
restrict the residual to a coarse grid, the residual is reshaped to an n×n matrix and restiction
by full weighting can be implemented using (4.1).
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Figure 4.1: This figure shows the fine grid residual in red and the coarse grid residual in green.

To verify if the restriction operator appropriately maps the residual to the coarse grid, the
residual on the coarse grid and the residual on the fine grid can be compared by visualizing
both on the same grid. Figure 4.1 represents both the coarse and fine grid residuals for (4.6)
with Neumann boundary conditions.

Once the residual is restricted to the coarse grid the differential operator L must be
restricted to the coarse grid. The operator L is defined as

L = α4+(1−3y2
0). (4.8)

Then we can solve the non-homogeneous equation

et = α4e+(1−3y2
0)e+R(x, t) (4.9)

where et is the error, e(x,0) is the initial condition and e(x,0) = e0 = 0. Also the residual is
R(x, t) = ut−Lu. It follows that

e = eLte0 +
∫ t

0
eL(t−s)R(x,s) ds. (4.10)
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Using Gaussian quadrature rules, we know the integral in (4.10) is approximately equal
to ∫

∆t

0
eL(∆t−s)R(x,s)ds≈∑

k
wkeL(∆t−sk)R(x,sk) (4.11)

where sk are the Gauss-Legendre points, transformed to the interval [0,∆t] and wk are the
weights transformed to the same interval.

The newly obtained approximation can then be interpolated back to the fine grid where it
will be used to correct the solution. To interpolate back to the fine grid, (4.5) is used, where
a coarse grid matrix entry is mapped to the corresponding fine grid matrix entry as well as
the entries surrounding it.

4.2 Using KSS-MG to solve a Hyperbolic Problem

Consider the hyperbolic PDE

utt = Lu, on (0,2π) × (0,∞), (4.12)

u(x,0) = f (x), ut(x,0) = g(x), 0 < x < 2π. (4.13)

To apply KSS-MG to solve a hyperbolic problem such as this one, first a spatial discretization
of the differential operator L must be obtained so that a representation of the solution operator
can be obtained. The solution operator can be expressed as a matrix of functions of the
operator L: [

cos(
√
−L4t) 1√

−L
sin(
√
−L4t)

−
√
−Lsin(

√
−L4t) cos(

√
−L4t)

]
. (4.14)

Therefore, we can use KSS-MG to solve for the solution as well as the first derivative
with respect to t as follows:

[
u
ut

]
n+1

=

[
cos(
√
−L4t) 1√

−L
sin(
√
−L4t)

−
√
−Lsin(

√
−L4t) cos(

√
−L4t)

][
u
ut

]
n
.

The residual, R, computed at various times is

R = utt−Lu,

then the error used to update the solution is

e =
∫

∆t

0

[
cos(
√
−L4t− s) 1√

−L
sin(
√
−L4t− s)

−
√
−Lsin(

√
−L4t− s) cos(

√
−L4t− s)

][
0

R(s)

]
ds. (4.15)
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The entries of (4.15) indicate which functions are the integrands in the Riemann-Stieltjes
integrals that are used to compute the Fourier coefficients of the solution [9].

Consider an equation similar to the linearized form of the Allen-Cahn equation (4.7):

utt = α4u+(−3y2
0)u (4.16)

with Neumann boundary conditions as well. To implement KSS-MG to solve this problem,
a similar process is followed as when solving (5.2). First, the differential operator for any
solution u becomes

Lu = α∆u+(−3y2
0)u. (4.17)

Then a spatial discretization of the differential operator L allows us to obtain a representation
of the solution operator, as seen by (4.14). Then KSS-MG can be applied in a similar
manner.
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Chapter 5

Numerical Results

5.1 Numerical Results

In this section, the effectiveness of KSS with Multigrid (KSSMG) will be demonstrated.
The follwing approaches will be compared:

• KSS, as described in Chapter 2

• KSSMG, as described in Chapter 4

• Krylov Projection (KP), as described in [7]

• KSS-EPI, as described in [2].

5.2 The Parabolic Problem

We first demonstrate the effectiveness of all four methods when solving a the parabolic
problem from Chapter 4:

ut = α4u+(1−3y2
0)u. (5.1)

In Table 5.1 the time elapsed (per time step) and the relative error calculated for that time
step is shown for both grid sizes N = 50 and N = 150 for each test method (KSS-MG, KSS,
KP, and KSS-EPI). In terms of accuracy, KSS-MG is far superior to the other test methods
for both grid sizes. As the grid size increases from 50 to 150 in Figure 5.1 to 5.2, we can
see a significant decrease in accuracy for both KSS-EPI and Krylov projection whereas
the accuracy for KSS and KSS-MG stay relatively the same. Comparatively, the percent
increase in computational time between grid sizes for KSS is much larger than the percent
increase for KSS-MG. This implies that for even larger grid sizes, KSS-MG may be more
efficient than the other test methods, though further numerical experiments would have to
be performed to validate this theory.



21

Method 4t 50 Grid Points 150 Grid Points
Time Elapsed Relative Error Time Elapsed Relative Error

(in seconds) (in seconds)

KSS-MG

0.2 0.0625 6.9647E-07 0.3437 5.0451E-07
0.1 0.1093 6.1328E-09 0.5156 4.2637E-09

0.05 0.1875 7.2752E-10 1.5625 7.3492E-10
0.025 0.21875 9.4966E-11 2.8593 9.8773E-11

0.0125 0.5312 2.8411E-11 5.8281 7.718 E-11

KSS
0.2 0.0312 7.1374E-06 0.1093 7.3640E-06
0.1 0.0312 8.2972E-07 0.2187 8.6024E-07

0.05 0.0468 1.0589E-07 0.3437 1.1012E-07
0.025 0.0937 1.1476E-08 0.7968 1.1937E-08

0.0125 0.0937 1.2216E-09 1.4218 1.2666E-09

KP
0.2 0.0156 1.6409E-04 0.0937 1.6595E-04
0.1 0.0781 2.8841E-05 0.2968 1.9227E-06

0.05 0.0937 6.1232E-07 0.6093 6.1411E-06
0.025 0.1562 8.7526E-07 1.0312 6.6878E-06

0.0125 0.2500 5.7278E-07 2.1093 5.5827E-06

KSS-EPI
0.2 0.0625 1.6409E-04 0.0312 1.6595E-04
0.1 0.0625 8.5766E-06 0.234375 2.0453E-05

0.05 0.109375 4.5584E-07 0.5312 3.2762E-05
0.025 0.15625 5.4245E-09 1.125 4.5564E-07

0.0125 0.3125 6.4457E-09 2.2812 4.6628E-08

Table 5.1: Comparisson of the efficiency and accuracy of each method for the parabolic case.
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Figure 5.1: Time of each timestep for each method vs error with grid size N=50. The blue dotted
curve represents Krylov Projection, the red solid curve represents KSS-MG, the yellow dash-dot
curve represents KSS-EPI and the green dashed curve is KSS.

Figure 5.2: Time of each timestep for each methodvs error with grid size N=150. The blue dotted
curve represents Krylov Projection, the red solid curve represents KSS-MG, the yellow dash-dot
curve represents KSS-EPI and the green dashed curve is KSS.
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5.3 The Hyperbolic Problem

We now demonstrate the effectiveness of all four methods when solving a the hyperbolic
problem from Chapter 4:

utt = Lu, on (0,2π) × (0,∞), (5.2)

u(x,0) = f (x), ut(x,0) = g(x), 0 < x < 2π. (5.3)

In Table 5.1 the time elapsed (per time step) and the relative error calculated for that time
step is sown for both grid sizes N = 50 and N = 150 for each test method (KSS-MG,
KSS, KP, and KSS-EPI). We can see from Figure 5.3 and Figure 5.4 that all four methods
yield similar efficiency (computation time), yet KSS-MG yields much higher accuracy,
especially at the larger grid size. As the grid size increases from N = 50 per dimension
to N = 150 the accuracy of Krylov projection and KSS-EPI decreased while the accuracy
of KSS and KSS-MG increased. Comparitively, the percent increase of computational
time was less for KSS-MG than for KSS. As with the parabolic case, this implies that for
even larger grid sizes, KSS-MG may be more efficient than the various test approaches
seen in Table 5.2. Further numerical experiments would have to be performed to confirm this.

Figure 5.3: Time of each timestep vs error with grid size N=50 (per dimension). The blue dotted
curve represents Krylov Projection, the red solid curve represents KSS-MG, the yellow dash-dot
curve represents KSS-EPI and the green dashed curve is KSS.
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Method 4t 50 Grid Points 150 Grid Points
Time Elapsed Relative Error Time Elapsed Relative Error

(in seconds) (in seconds)

KSS-MG

2 0.8281 5.5349E-05 35.4218 5.5914E-05
1 0.9218 3.1532E-05 71.7343 1.37679E-05

0.5 1.8281 1.5991E-06 136.5156 2.03821E-06
0.25 3.9531 9.8831E-09 278.9218 6.66E-09

0.125 7.8437 1.121E-10 634.9062 1.76E-11

KSS

2 0.375 1.9670E-04 32.6093 2.0072E-04
1 0.6406 8.8408E-05 64.9531 1.0044E-04

0.5 1.4218 8.6060E-06 135.6875 3.3587E-06
0.25 2.7968 2.2603E-07 274.0781 8.3558E-08

0.125 5.9531 6.9945E-09 511.7968 6.385E-10

KP

2 0.6875 2.0655E-06 32.5 1.4269E-04
1 1.5625 5.6772E-05 61.8906 1.3131E-04

0.5 2.4687 4.5361E-05 128.0625 1.0472E-04
0.25 4.7031 8.4548E-05 262.5781 1.1705E-04

0.125 8.2968 8.1277E-05 534.4843 8.5461E-05

KSS-EPI

2 0.625 1.8973E-05 55.0468 4.0456E-05
1 1.5625 4.9768E-06 173.5625 3.9417E-05

0.5 2.2968 1.4233E-06 151.8281 8.4689E-05
0.25 4.1875 1.5063E-07 317.1093 1.0330E-05

0.125 7.9531 5.1046E-09 666.4531 1.1814E-07

Table 5.2: Comparisson of the efficiency and accuracy of each method for the hyperbolic case.
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Figure 5.4: Time of each timestep vs error with grid size N=150 (per dimension). The blue dotted
curve represents Krylov Projection, the red solid curve represents KSS-MG, the yellow dash-dot
curve represents KSS-EPI and the green dashed curve is KSS.
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Chapter 6

Conclusion

It has been shown that the combination of KSS and Multigrid in the manner described
in chapter 4 is incredibly efficient at solving time-dependent variable coefficient PDEs.
The effectiveness of KSS at eliminating high frequency error and the speed of Multigrid at
eliminating low frequency error combined makes KSS-MG, by far, superior to other similar
methods.

By implementing Multigrid techniques with KSS methods, we have demonstrated that
the resulting KSS-MG methods have much higher accuracy than standard KSS methods
(and KSS-EPI methods) as well as Krylov Projection in solving parabolic PDEs. It has also
been shown that in the case of hyperbolic problems, KSS-MG is more efficient than the
other methods as well.

Future work on the combination of Multigrid and KSS is needed to fully explore the
effectiveness of this method. Topics for further reasearch are varied and include generalizing
KSS-MG to solve a wider variety of problems as well as examining the effectiveness of
grid coarseness. In this thesis, only the next coarsest grid was used. An efficient way to
use any number of corrections must be developed to fully understand the effect of coarse
grid correction in KSS-MG. In the future, the Multigrid method in general will be examined
and we hope to examine the effectiveness of implementing KSS-like ideas into a standard
Multigrid method to develop more scalable methods for solving time-dependent PDE on
non-rectangular domains, using Algebraic Multigrid (AMG).

With these future advancements, it is hopeful that more efficient and accurate methods
will be developed for time-dependent variable-coefficient PDEs.
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