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ABSTRACT 

EFFECT OF FRAGMENTATION AND HABITAT TYPE 

 ON COASTAL NEKTON IN MISSISSIPPI 

by Thomas Bennett Sevick 

December 2016 

Coastal wetlands are extremely productive ecosystems that support an abundance 

of organisms at higher tropic levels. Coastal wetlands also act as important buffers from 

storms and help protect major cornerstones of coastal economies, such as tourism and 

fisheries. Despite the clear need for the protection of these habitats, anthropogenic use of 

coastal wetlands has increased in frequency and intensity resulting in the fragmentation 

of once continuous habitats. A central challenge to assessing the impact of marsh 

fragmentation is the lack of quantitative distribution and abundance data from specific 

habitat types. This is especially true for species that are not commercially or 

recreationally harvested and are, therefore, not regularly monitored by state and federal 

resource management agencies. This study makes use of quantitative density, habitat use, 

and distribution data for non-harvested marsh nekton collected in oligohaline marshes 

(salinity 0.5-5ppt) of coastal Mississippi. To assess how nekton assemblages varied by 

habitat, fragmentation level, and position in patch (core vs. edge), four sites along coastal 

Mississippi were sampled in the summers of 2014 and 2015. Nekton were sampled in 

adjacent patches of submerged aquatic vegetation and emergent vegetation using a 1 m2 

throw trap. Marsh patch fragmentation was quantified using aerial pictures taken with a 

GoPro camera secured to the end of a 20ft pole. Points around the patch were digitized in 
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TPS software and analyzed using R. The results of this study indicate that diversity and 

density of nekton in Mississippi marshes vary significantly based on habitat type. 
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CHAPTER I - INTRODUCTION 

Coastal wetlands are extremely productive ecosystems (Mitsch and Gosselink 

1993) that support an abundance of organisms at numerous trophic levels (Stoner 1983, 

Beck et al. 2001, Kneib 2003). Emergent and submerged vegetation (here after SAV) 

provide crucial habitats and act as a nursery for small and juvenile fishes, as well as other 

nekton (Boesch and Turner 1984, Rozas and Odum 1988a, Cho et al. 2006). Nursery 

habitat can be defined as any habitat, which significantly contributes individuals to the 

adult population (Beck et al. 2001, Adams et al. 2006). In addition to the nursery function 

of coastal marshes, the abundance of habitat in general, facilitates fishes of all life-history 

stages to reach densities greater than those seen in non-vegetated habitats (Hosack et al. 

2006). One factor partially responsible for high levels of production in coastal wetlands is 

the large volume of fresh water input. Freshwater input delivers fine sediment, which 

accretes over time in river dominated estuaries to form new wetlands. Moreover, this 

fresh water input carries nutrients obtained from higher up in the stream continuum, 

which supplement coastal production (Sklar and Browder 1998). 

High levels of primary and secondary production support large commercial 

fisheries upon which coastal economies are often dependent (Bell 1997, Zimmerman et 

al. 2002). Coastal wetlands absorb significant amounts of wave energy and help protect 

various cornerstones of coastal economies from major storms (Klein et al. 2003, Laska et 

al. 2005). Given the numerous ecosystem services provided by these habitats, 

maintaining the physical and ecological integrity of these habitats is crucial. Despite the 

clear need to maintain the production and the ecosystem services offered by coastal 

marshes, rapidly increasing anthropogenic use and disturbances have resulted in steady 
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declines in these habitats (Lowe and Peterson 2014). It is estimated that 53% of the U.S 

population lives near the coast (Tralli et al. 2005). As anthropogenic use of, and presence 

in, coastal wetland increases, so too has the frequency and intensity of anthropogenic 

disturbances (Zedler and Kercher 2005). Coastal communities are now locked in a 

paradoxical relationship with the coastal wetlands on which they are economically 

dependent. These communities are reliant on the ecosystem service provided by these 

wetlands, yet their use of ecosystems services decreases the ability of the ecosystems to 

provide them. 

Global climate change and associated sea level rise have had a profound effect on 

coastal wetlands. Sea level rise in coastal marshes has resulted in the conversion of 

historically freshwater marshes to saltwater and lead to a subsequent shift in assemblage 

composition (Park et al. 1991). Increased freshwater input is also predicted to increase 

the occurrence of hypoxic events and increase turbidity and shading of SAV. In addition, 

future sea level rise will result in the destabilization and loss of already threatened 

vegetated marsh edge (Penland and Ramsey 1990, Scavia et al. 2002). 

  Habitat losses in coastal wetlands can result from more direct and local changes 

in land use practices, such as the construction of canals for navigation and oil extraction. 

Such canals facilitate saltwater intrusion into historically fresh water habitats (Hitch et al. 

2011). The increased salinity in these once oligohaline and fresh water habitats results in 

changes to both the nekton and plant community structure (Sklar and Browder 1998). In 

addition, the construction of these canals and similar navigation channels fragment once 

contiguous habitat and populations of coastal nekton (Craig et al. 1979).  



 

12 

As patches of coastal marsh become fragmented, patch edge (the outer boundary 

between vegetation and open water) increases as the interior portion of the patch 

decreases. Eventually, all interior habitats within the patch are dissipated and the 

remaining patch is comprised completely of edge (Chesney et al. 2000). The importance 

of “edge” in both terrestrial and aquatic habitats has been well documented. Theories that 

support the idea of a positive edge effect center on the basic idea that edge occurs at the 

intersection of multiple distinct habitat types and that this intersection results in an 

overall increase in habitat heterogeneity. Edges effects are often species-specific, 

resulting in inter and intraspecific interactions between species. For example, in 

frequently disturbed habitats or in generalist dominated habits, increases in edge may 

have no negative effect, as biota in these environments have adapted to regular 

perturbation. Collins and Barrett (1997) found that female meadow voles preferentially 

made use of patch edges during reproduction and were therefore unaffected by increased 

fragmentation, and, in fact, were better able to defend their territories as fragmentation 

increased. The resulting increases in habitat complexity often benefits more resilient edge 

adapted species. In contrast, specialist species with a narrow range of environmental 

tolerances may be negatively affected by the loss of key habitat (Rand and Tscharntke 

2007). For example, Munday (2004) observed a significant decrease in populations of 

coral dwelling gobies and Acropora corals in Kimbe Bay, Papua New Guinea. 

The manner in which edge is formed plays an important role in determining the 

nature of an edge effect. Human presence has often resulted in the rapid formation of new 

edge and has transformed existing habitats, increasing edge in the process (Broadbent et 

al. 2008). Edges associated with anthropogenic disturbance are abrupt and often 
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unsuitable habitat for native biota and specialist (Yates et al. 2004). Renjifo (2001) 

examined the role of natural and anthropogenic landscape matrixes on the bird 

assemblages in the Andes and found that species with narrow geographic ranges were 

disproportionally affected by anthropogenic fragmentation. In contrast, naturally 

occurring edges occur over a gradual gradient of environmental change which native 

biota have adapted to over evolutionary time (Dangerfield et al. 2003). The quality and 

type of surrounding habitat also play a role in shaping the nature of an edge effect. Edges 

formed adjacent to highly productive habitats (e.g. seagrass mangrove relationship) may 

still support relatively intact assemblages of biota. Planes et al. (2009) tracked larval 

Amphiprion percula movement between marine protected areas and found that 40% of 

larva settling in areas adjacent to a marine reserve came from within the reserve, 

suggesting that intact reserves can serve as a viable source to replenish adjacent habitats. 

While many habitats are composed of gradual edges, coastal marshes in the southern U.S 

are heterogeneous and often composed of many naturally occurring, distinct edges at the 

marsh water interface. This natural heterogeneity is the result of a variety of deltaic 

processes forming distinct patches of marsh and small rivulets over time. 

Two main hypotheses have dominated coastal wetland literature in regards to the 

nature of fragmentation and edge. Recently the negative edge-effect hypothesis, which 

views edge as the result of fragmentation and habitat degradation has dominated 

scientific literature. Supporters of this hypothesis predict an overall decline in 

biodiversity as the result of habitat loss and degradation (Fahrig 1997). In addition, 

fragmentation may also result in the decline of species dependent on interior habitat 

which often decreases as edge habitat increase. Overall, declines may be both due to 
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habitat loss as well as increased competitive dominance of edge species (Opdam 1991). 

The positive edge-effect hypothesis centers on the idea that that the initial increases in 

edge during fragmentation may mask the negative effects of habitat loss by increasing 

habitat heterogeneity (Chesney et al. 2000, Yahner 1988). Despite the prominent history 

of this theory in landscape ecology (Leopold 1987) few examples of overall positive edge 

effects exist. One exception to this was observed by Miyashita et al. (2008) who found a 

positive relationship between edge length and the pregnancy rate of females Sika deer in 

Japan. Another example can be seen in Casazza and Ross (2008), who examined the 

assemblages of pelagic fishes near Sargassum weed lines in the Gulf Stream off North 

Carolina. Their study found a significant increase in the density of fishes and in the 

overall richness of fish assemblages in Sargassum edges relative to the adjacent pelagic 

environment. Given the present increase in wetland fragmentation and the predicted 

future loss of wetlands it is crucial that we gain an understanding of how nekton 

assemblages will respond. Additional information on the relative importance of “core” 

and “edge” habitats to the abundance and diversity of nekton is essential to furthering our 

understanding of marsh fragmentation. 

There is also a need for studies which quantify the importance of different habitat 

types to coastal marsh nekton and examine how patterns of habitat use change over time. 

Studies such as these should aid scientist and managers in predicting how the effects of 

fragmentation may interact with different habitat types. While many studies have 

examined and compared the role of several types of coastal wetland habitats, the majority 

of these studies focus on the identification and comparisons of higher salinity 

environments, such as salt marshes and seagrass (Hanekom and Baird 1984, Orth and 
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Van Montfrans 1987, Ferrell and Bell 1991, Sogard and Able 1991, McIvor and Odum 

1988, Rozas and Odum 1988b). Studies which compare vegetated habitats in fresh and 

intermediate marshes are fewer in number. The few studies that have examined these 

habitats have been limited to comparison of vegetated and non-vegetated bottoms. 

Duffy and Baltz (1998) used drop samplers to quantify differences in fish density 

between various species of native and introduced SAV, in Lake Pontchartrain, Louisiana. 

Their results suggested that community diversity was highest in habitats characterized by 

Vallisneria americana Michx. Rozas and Minello (2006) compared nekton use of V. 

americana Michx, and non-vegetated bottom using a 1 m2 drop sampler in oligohaline 

marsh, and found that Naked Goby (Gobiosoma bosc) and Gulf Pipefish (Syngnathus 

scovelli) were more abundant in V. americana. Castellanos and Rozas (2001) showed that 

SAV habitats supported significantly higher densities of nekton compared to non-

vegetated habitats. 

Hypotheses 

Habitat fragmentation may have resulted in the homogenization of both the 

habitat and nekton assemblages present in coastal Mississippi. Thus, I predict that beta 

diversity (site to site change in diversity) will decrease as fragmentation increases in 

marsh patches (negative effect of fragmentation and increased edge). Moreover, I predict 

that assemblage composition will vary based on the level of patch fragmentation and 

position in a patch (edge vs. core).  

I predict that distinct nekton assemblages will represent both emergent marsh and 

SAV habitats present in Mississippi's oligohaline marshes. Moreover, habitats 

characterized by SAV are predicted to contain a more diverse and distinct assemblage of 
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transient nekton (nekton species who spend only a part of their life cycle in the marshes), 

while emergent marsh are predicted to be represented by specialist resident nekton 

(nekton who spend their entire life cycle within the marsh). 
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Table 1  

Summary of average abiotic conditions separated by watershed, month and habitat.  

Watershed Month Habitat Salinity 

(ppt) 

SD DO 

(mg/L) 

SD Temperature 

(°C) 

SD Turbidity 

(NTU) 

SD 

Pascagoula June SAV 1.80 

 

0.9 

 

5.8 

 

1.0 

 

28.3 

 

1.87 

 

8.82 

 

0.733 

 

Pascagoula July SAV 1.60 

 

0.9 

 

5.0 

 

2.1 

 

30.6 

 

2.00 

 

13.9 

 

9.47 

 

Pascagoula August SAV 4.45 

 

0.1 

 

5.6 

 

1.8 

 

32.3 

 

1.38 

 

21.6 

 

11.6 

 

Pascagoula June EME 0.945 

 

0.6 

 

7.1 

 

1.5 

 

30.3 

 

1.38 

 

19.9 

 

8.86 

 

Pascagoula July  EME 2.75 

 

2.3 

 

4.7 

 

1.4 29.6 

 

1.23 

 

7.74 

 

3.86 

 

Pascagoula August EME 3.00 2.2 

 

4.7 

 

0.9 

 

30 

 

1.86 

 

11.5 

 

3.43 

 

Tchoutacabouffa June SAV 0.243 

 

0.1 

 

5.8 

 

0.5 

 

28.2 

 

2.26 

 

8.81 

 

2.10 
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Tchoutacabouffa July  SAV 1.75 

 

1.1 

 

5.9 

 

2.2 

 

30.8 

 

1.58 

 

4.65 

 

1.13 

 

Tchoutacabouffa August SAV 5.25 

 

0 9.5 

 

0 29.2 

 

0 5.89 

 

0* 

Tchoutacabouffa September SAV 10.0 

 

0 3.9 

 

0.0 

 

29 

 

0 5.74 

 

0* 

Tchoutacabouffa June  EME 0.055 

 

0.02 

 

5.6 

 

0.5 

 

27.7 

 

1.05 

 

11.3 

 

1.48 

 

Tchoutacabouffa July EME 3.54 

 

2.74 

 

3.8 

 

1.1 

 

29.5 

 

1.32 

 

8.56 

 

7.58 

 

Tchoutacabouffa August EME 5.37 

 

0.01 

 

3.5 

 

0.4 

 

26.3 

 

0.11 

 

14 

 

0.808 

 

Tchoutacabouffa September EME 9.28 

 

0.08 

 

9.5 

 

0.0 

 

31.8 

 

0.32 

 

30.6 

 

24.1 

 

 

Note: Rows which end in a * represent measurements taken only once during the entire study. 
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Table 2  

List of all taxa collected and their summed density  by habitat type. 

Taxa Emergent SAV Grand Total 

Anisoptera 5 42 47 

belostomatidae 4 20 24 

Callinectes sapidus 45 286 331 

Cyprinodon variegatus 8 20 28 

Dormitator maculatus 4 24 28 

Eleotris amblyopsis               0 3 3 

Ephemeroptera               0 4 4 

Fundulus sp. 1       0 1 

Fundulus grandis 10 34 44 

Fundulus jenkinsi 93 3 96 

Fundulus pulvereus 9 1 10 

Gambusia affinis 50 2 52 

Gobiosoma bosc               0 6 6 

Heterandria formosa 2 10 12 

Labidesthes sicculus               0 1 1 

Lepomis macrochirus 1 2 3 

Lepomis microlophus 23 198 221 

Lepomis miniatus 7 81 88 

Lepisosteus oculatus               0 1 1 
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Lucania parva 90 1401 1491 

Menidia beryllina               0 68 68 

Microgobius gulosus               0 14 14 

Micropterus punctulatus               0 3 3 

Micropterus salmoides 4 62 66 

Myrophis punctatus 1 34 35 

Palaemonetes kadiakensis               0 5 5 

Palaemonetes paludosus 12 321 333 

Palaemonetes pugio 38 75 113 

palaemonetes vulgaris               0 1 1 

paralichthys lethostigma               0 1 1 

Farfantepenaeus aztecus               0 14 14 

Litopenaeus setiferus 5 12 17 

Poecilia latipinna 1       0 1 

Ranatra.sp 9 14 23 

Shrimp larva               0 5 5 

Syngnathus scovelli               0 21 21 

Tadpole               0 13 13 

Trinectes maculatus               0 8 8 

Xanthidae               0 66 66 

Zygoptera 9 170 179 
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Table 3  

Results of a Multivariate Analysis of Variance for Distance Matrices which examined the 

effect of habitat (emergent marsh vs. SAV), month (June, July, August), replicate (1-6) 

and the interactions of all main factors. 

Factors DF Sum of 

squares 

Mean sum of 

Sqs 

F.model      R2 P value 

Habitat 1 8.12 8.12  45.69 0.188 <0.0001 

Month 3 1.77 0.59 3.32 0.041 <0.0001 

Watershed 1 1.90 1.90 10.6 0.044 <0.0001 

replicate 5 0.683 0.136 0.769 0.015 0.830 

Habitat*Month 3 2.18 0.725 4.08 0.050 <0.0001 

Habitat* 

Region 

1 0.59 0.591 3.32 0.013 0.0039 

Residuals 156 27.7 0.178  0.645  
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Table 4  

Results of the indicator analysis that used habitat as a grouping term. Species at the top 

portion of the table represent SAV species and species on the lower half of the table 

represent emergent marsh species. 

Species Indicator 

value 

SAV 

density 

Emergent marsh 

density   

P 

L.parva 0.936 1401 90 <0.0001 

 L.microlophus 0.714 198 23 <0.0001 

Zygoptera 0.690 170 9 <0.0001 

P.paludosus 0.658 321 12 <0.0001 

M.salmoides 0.597 62 4 <0.0001 

 L.miniatus 0.515 81 7    0.0006 

Anisoptera 0.480 42 5 0.0007 

 M.punctatus 0.420 34 1 0.0005 

S.scovelli 0.364 21 0 0.0017 

Belostomatidae 0.361 20 4 0.0325 

M.beryllina 0.319 68 0 0.0103 

M.gulosus 0.303 14 0 0.0095 

Emergent marsh 

species 

    

 F.jenkinsi 0.809 3 93 <0.0001 

G.affinis 0.363 2 50 0.002 

F.pulvereus 0.337 1 9 0.003 
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Table 5  

Results of the indicator analysis using fragmentation level as the grouping factor. High 

fragmentation (HF), medium high fragmentation (MHF), medium fragmentation (MF). 

Species Indicator 

value 

Emergent marsh 

density 

P Fragmentation 

level 

 Lepomis 

microlophus 

0.737 23 0.004 HF 

 Lepomis miniatus 0.667 7 0.004 HF 

Fundulus grandis 0.581 10 0.03 MHF 

Cyprinodon 

variegatus 

0.439 8 0.05 MF 
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Figure 1. Study area map. 

Map of the two coastal regions sampled in Mississippi oligohaline marshes. The inset map on the left shows replicate sampling areas 

(A and B) in the Tchoutacabouffa watershed. Each red dot represents replicate sites within each sampling area. The map on the right 

shows replicate sampling areas within in the Pascagoula watershed red dots again represent sampling location within each replicate 

area. Areas A and B in both watersheds were sample three times a year for two year.  
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A 

 

B 

Figure 2. A) Original aerial photo of patch with the 1 m2 quadrat used for scale. B) 

Digitized points used to quantify patch area (72 m2) and fragmentation index. The X and 

Y-axis represent a range of pixels per area. 
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Figure 3. Results of an NMDS run on log transformed Bray-Curtis density data.  

Emergent marsh sites are indicated by a green dots and SAV site are represented by blue dots. The top ten most abundant species are 

represented in NMDS space by species codes (the first three letters of genesis and species). K=3, stress=12.7 
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Figure 4. Regression using fragmentation index as a dependent variable and Simpson 

diversity as the response variable. Dot size represents emergent marsh patch area. 

R2=16.4%, p= 0.041. 
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Figure 5. Ordination biplot depicting the first two axes of the CCA of the nekton density 

of emergent marsh (EME) and submerged aquatic vegetation (SAV) sites. Environmental 

variables are represented by arrows and species location by their species codes (first three 

letters of genus and species). 
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Figure 6. Ordination biplot depicting the first two axis of the partial CCA of the species 

assemblages of emergent marsh and SAV sites. Environmental variables are represented 

by arrows and species location by their species codes (first three letters of genus and 

species). 
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Figure 7. Ordination biplot depicting the first two axis of the CCA of the species 

assemblages of emergent marsh. Environmental variables are represented by arrows and 

species location by their species codes (first three letters of genus and species). 
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Figure 8. Graph depicts change in summed nekton abundance over summer months. 

Solid lines depict the summed nekton abundance in SAV and emergent marsh in the 

summer months of 2014. Dashed lines represent the raw nekton abundance in SAV and 

emergent marsh in the summer months of 2015. 
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CHAPTER II - METHODS AND APPROACH 

Sampling Design 

This study was conducted in the oligohaline marshes (salinity 0.5-5 ppt) of coastal 

Mississippi. A stratified sampling design was used in this study. Sites were haphazardly 

selected within two watersheds, Tchoutacabouffa River and Pascagoula River, based on 

the availability of oligohaline marshes. Based on initial site visits, two main habitat types 

were defined: emergent marsh (ephemeral patches dominated by Juncus americanus and 

Sagittaria lancifolia) and SAV (all submerged vegetation including Vallisneria 

americana, Najas guadalupensis and Myriophyllum spicatum). All core-edge analysis 

was based on data obtained from distinct patches of emergent marsh only. In contrast, the 

primary use for SAV data was to assess differences between nekton assemblages in SAV 

and emergent marsh. Two replicate sites (A and B), each of which contained the two 

habitat types (SAV and emergent marsh), were sampled (Figure 1) in each watershed. 

Sampling took place over two years during the summer months (June-August) when both 

plant and nekton assemblages were assumed to be at peak abundance and production 

(White et al. 1978, Castellanos and Rozas 2001). For the first season of sampling each 

site was sampled once in each month, using four throws per habitat type (eight throws per 

site per month). The total number of samples in year 1 was therefore: 2 localities x 2 

replicate sites x 2 throws core x 2 throws edge x 2 habitat types per site x 3 months=96. 

In order to increase statistical power, the number of throws was increased to three (core 

and edge) in the second year of sampling. The sampling protocol remained otherwise 

unchanged, resulting in 144 samples in year 2 (2 localities x 2 replicate sites x 6 throws x 

2 habitat types per site x 3 months). Several samples in both year one and two were 
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collected late in the season (September); these samples were determined to differ 

significantly from seasonal norms and were excluded from all analyses. After the 

exclusion of late season samples, the total samples used for analysis in this study were 

184 (88 throws in year one and 96 in year two).  

Physicochemical Data 

Dissolved oxygen (mg/L), temperature (°C), turbidity (NTU), salinity (ppt) and 

pH were taken at the edge (start of vegetation) and core (at least 1m into the patch) of 

each habitat patch prior to sampling using YSI professional series meters. These 

measurements were taken at the location of the first throw for all SAV samples. 

Nekton Collections 

Assemblages of nekton were sampled with a 1m2 throw trap. Choosing a sampling 

method, which accurately samples the target organism and is effective in that organism’s 

habitat, is crucial for the success of any ecological study (Rozas and Minello 1997). In 

many cases, towed gear, such as seines and trawls, has low catch efficiencies in marsh or 

other structured habitats (Wells et al. 2008). Effectiveness of towed nets can also vary 

based on net size, rigging method, tow speed, duration of trawl, and method of net 

retrieval (Rozas and Minello 1997). Large stands of both submerged and emergent marsh 

are difficult to sample with pulled nets because the dragging lead line is often lifted off 

the marsh bottom, reducing the effectiveness and the area covered by the net. Throw traps 

have several attributes that make them ideally suited for sampling nekton in marshes. One 

of these attributes is that no habitat alteration is needed prior to sampling (Rozas and 

Minello 1997). In addition, throw traps provide accurate estimates of density that does 

not vary with changes in plant stem density (Jordan et al. 1997, Rozas and Minello 1997). 
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Throw traps were the ideal choice for this project because they allowed for discrete 

sampling of both core and edge habitats. Moreover, throw traps allow nekton to be 

sampled in dense stands of emergent marsh. 

Patches of SAV in Mississippi's oligohaline marshes are dominated by several 

species of aquatic vegetation (V.americana, N.guadalupensis and M.spicatum, 

P.pectinatus). Emergent marsh sampling focused on discrete patches of emergent marsh. 

These discrete patches are characterized as being separate from the main body of 

permanent marsh and are dominated by species such as S.lancifolia which senesce in 

winter months and returns in the spring and summer. The resulting loss of vegetated 

structure and increased energy expenditure by these plants make these patches 

particularly vulnerable to fragmentation and habitat loss relative to more permanent 

marsh. Edge throws were located on the edge of the emergent marsh patch (start of 

vegetation), while core throws were deployed in the interior of the patch (at least 1m 

away from edge). In the case of SAV, throws were adjacent to the edge of the marsh. 

Water depth (cm), plant canopy height (cm), percent cover and density of each species 

within the trap were measured. Plants in the trap were then uprooted, rinsed, and shaken 

over the trap to dislodge remaining nekton. Plants were bagged, brought back to the lab, 

placed in an oven at 105°C until completely dry, and weighed. A bar seine with 3.0 mm 

stretch mesh was passed through the trap, until three consecutive clean sweeps were 

obtained (Jordan et al. 1997). Collected nekton were fixed in l0% buffered formalin and 

later identified to the lowest taxonomic level possible, counted, weighed (g) and 

measured to the nearest mm standard length (SL). 
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Patch Data 

In order to accurately measure perimeter and area of emergent marsh patches, an 

aerial picture was taken of each patch of emergent marsh using a GoPro camera, secured 

to the end of a 20ft telescoping pole. Pictures were taken prior to nekton sampling, in 

order to capture patch geometry before it was disturbed. A 1 m2 quadrat was placed in the 

patch and used as a scale reference for the picture. Points around the patch were digitized 

in TPS software (http://life.bio.sunysb.edu/morph/) (Figure 2). Additionally, in emergent 

marsh and SAV sites, percent coverage, and density of each plant species was assessed 

visually using a 1 m2 quadrat, laid across the trap at both edge and interior samples. In 

SAV, sample distance to the nearest marsh edge was measured using a laser range finder. 

Distance to the nearest patch was recorded for emergent marsh. 

Fragmentation Index 

 To quantify the ratio of edge to core, a fragmentation index (DL) was used. As 

patch perimeter (P) deviates from that of a perfect circle for a patch of area (A), the 

perimeter-area ratio of the patch will increase. Therefore, marsh patches with increased 

fragmentation should have fragmentation index values greater than 1.5. This 

fragmentation index is based on a shoreline index created by (Wetzel 2008), who used it 

to describe lake shape. 

Statistical Analyses  

Beta Diversity was estimated the using the average Simpson's diversity index 

among replicate throws. Multivariate Analysis of  Variance for Distance Matrices was 

used to test the hypothesis that nekton assemblages differ based on habitat types (SAV 

and emergent marsh) and position within a patch (core and edge) (Anderson 2001). In 

http://life.bio.sunysb.edu/morph/
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order to account for the disproportional effect of rare species on multivariate analyses, 

rare taxa with summed density of less than four individuals in the overall dataset were 

exclude from all analyses (Cao et al. 2001). Assemblage structure was assessed visually 

with Non Metric Multidimensional Scaling (NMDS) of Bray-Curtis similarity of log+1 

transformed densities (K=3, metaMDS function in the Vegan package in R).  

Species patterns of distribution and habitat use are often based on environmental 

characteristics associated with a given habitat. It is therefore crucial that ecologist make 

an effort to determine what abiotic characteristics play a role in determining habitat use. 

Based on this goal, an initial Canonical Correspondence Analysis (CCA) was used to 

examine the relationship between nekton assemblage composition (natural log+1 

transformed abundance) and habitat data from SAV and emergent marsh (plant cover, 

relative % cover of each plant species, depth (cm), Temperature (ºC), salinity (ppt) and 

dissolved oxygen (mg/L), Ph, TDS). Variables in the global model were first exclude 

based on Variance inflation factor scores (VIF), highly correlated variable (>10 VIF) 

were eliminated (Legendre and Legendre 2012). Variables were then selected for 

inclusion in the final CCA model based on a forward and backward selection using the 

ORDISTEP function in the vegan pack in R. Ordistep uses permutated p values (n=1000 

per step, 100 steps) and AIC values for tied p values as the basis for variable selection 

(minim p value of 0.004 for variable acceptance). Monte Carlo permutation tests 

(permutations=1000) were used to assess the significance of the overall CCA model, the 

first three axes, and each variable selected by ORDISTEP. 

A second Canonical Correspondence Analysis (CCA) based solely on emergent 

marsh data was used to test the hypothesis that assemblage structure differed based on 
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environmental variables associated with marsh patches. In addition, a partial CCA which 

partialed out depth was used to separate variability resulting from depth in the data 

(Titeux et al. 2004). 

An indicator species analysis was performed in order to identify species strongly 

associated with habitat types (emergent marsh and SAV) and position in patch (core and 

edge). A third indicator species was used to identify species characteristic of very high 

(1.88->2), high (1.7-1.87), medium high (1.35-1.59) medium (1.3-1.48) and low (1.11-

1.29) levels of fragmentation in emergent marsh patches (Dufrêne and Legendre 1997). 

Indicator species analysis was also used to select species or groups of species that are 

characteristic of a given group of samples. The analysis produces indicator values (IV) 

which are the product of the relative frequency of occurrence and relative density (range 

0-100%). A perfect indicator species therefore, is a species that is highly abundant and 

exclusively sampled in one group of samples. The significance of IV are determined by 

comparing observed IV to a distribution of  IV obtained by randomly permuting nekton 

density data (permutations 10,000) (Schaefer et al. 2016). P-values obtained are based on 

the proportion of permutations that resulted in a greater than or equal indicator value than 

observed in the non-permuted density data (Cáceres and Legendre 2009). Linear 

regressions using Shannon's diversity as the response and fragmentation index as the 

independent variable were preformed to test the hypothesis that diversity changes with 

fragmentation index. Statistical analyses were performed using R software (R Core Team 

2013). A level of 0.05 was used to determine significance. 
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CHAPTER III  - RESULTS 

Over two sampling seasons 184 throw trap samples were collected from 

oligohaline marshes in coastal Mississippi (88 throws in 2014 and 96 in 2015) (Figure 1). 

In all, 3,986 individuals making up 41 taxa (several aquatic arthropods identified down to 

suborder, family or genus) were collected (Table 1). SAV sites contained higher density 

of nekton relative to emergent marsh (2,807 total nekton in SAV and 449 emergent 

marshes). The Lucania parva was the most abundant nekton and fish species collected 

(1,491 total). Palaemonetes paludosus were the most abundant invertebrate collected and 

second most abundant nekton overall (333 total collected). After exclusion of rare species 

(occurrence < 3), 29 numerically dominant nekton taxa remained in the data set. The 29 

remaining taxa collectively represented 98% of all individuals collected. Mean Shannon's 

diversity was 0.558 overall, 0.612 in SAV and 0.556 in emergent marsh. 

The results of the NMDS suggest that there are clear differences in nekton 

assemblages between emergent marsh and SAV (Figure 3). The permANOVA identified 

significant differences between habitat types (emergent marsh and SAV), month and 

region in assemblage structure (habitat pseudo F =18.21 r2=0.150 p=0.0009; month 

pseudo F = 4.17 r2 = 0.069 p = 0.0009; region pseudo F = 3.93 r2=  0.0324  p=  0.0009). 

There was no significant effect of replicate (Table 3). There were thirteen significant 

indicators of SAV habitat and three significant indicators of emergent marsh (Table 4). 

Only one significant indicator of Edge was identified (P. paludosus) and no significant 

indicators of core habitat were identified by the indicator species analysis. There were 

two significant indicators of high levels of fragmentation (L. microlophus and L. 

miniatus), one of medium high fragmentation (F. grandis) and one of medium 
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fragmentation (C. variegatus) (Table 4). The linear regression that examined the effect of 

fragmentation on diversity found a significant negative relationship between 

fragmentation index and species diversity (Figure 4). 

The results of the overall CCA using nekton assemblage data collected from both 

emergent marsh and SAV showed distinct differences based on habitat type (Figure 5). 

The global CCA model (canopy height, plant cover, depth, temperature, salinity, 

dissolved oxygen, pH, TDS) accounted for 20.6% of the variation in nekton assemblage 

structure. The final CCA model contained six variables and explained 17.0% of the 

variation. Based on the Monte Carlo permutation tests the final CCA model explained a 

significant amount of variation (pseudo-F6, 164 = 5.56, p = 0.001). All six of the variables 

selected (canopy height, salinity, depth, pH, dissolved oxygen, plant cover) were found to 

be significant. In addition, the first three axis explained a significant amount of variation 

(CCA1 pseudo-F1, 164 = 14.7, p = 0.001; CCA2 pseudo-F1, 164  = 6.40, p = 0.001; CCA3 

pseudo-F1, 164  = 5.20, p = 0.001). Based on the position of the taxa on the CCA bioplot 

there was significant cross over in habitat usage. Several taxa did, however, have clearly 

defined habitat usage trends. Fundulus jenkinsi was clearly associated with increased 

canopy height and emergent marsh habitat. Penaeus aztecus was associated almost 

exclusively with SAV habitat and increased pH and salinities. Menidia beryllina was also 

strongly associated with SAV habitat as well as with increased levels of dissolved 

oxygen. Fundulus grandis seemed to be positioned on the boundary between emergent 

marsh and SAV, suggesting equal usage of both habitat types. 

The results of the partial CCA on both emergent marsh and SAV suggest the same 

distinct differences between emergent marsh and SAV. There is again significant overlap 
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in habitat usage among the taxa, however; F. jenkinsi is still strongly associated with 

emergent marsh habitat and increased canopy height. The global model (canopy height, 

plant cover, depth, Temperature, salinity, dissolved oxygen, pH, TDS) accounted for 

15.9% of the variation in nekton assemblage structure and depth (the partialed out 

variable) accounted for 4.70% of the variation in the data. The final CCA model 

contained four variables and explained 12.1% of the variation. Based on the Monte Carlo 

permutation tests the final CCA model explained a significant amount of variation 

(pseudo-F4, 166 = 5.72, p = 0.001). In addition the first three axis explained a significant 

amount of variation (CCA1 pseudo-F1, 166= 11.1, p = 0.001; CCA2 pseudo-F1, 166 = 5.44, p 

= 0.001; CCA3 pseudo-F1, 166 = 3.70, p = 0.001). All four of the variables selected 

(canopy height, salinity, pH, dissolved oxygen, plant cover) where found to be significant 

(Figure 6).  

The results of the final CCA based solely on emergent marsh patches showed no 

clear core edge difference (Figure 7). The global model (depth, canopy height, plant 

cover, percent S.latifolia, temperature, dissolved oxygen, salinity, TDS, turbidity, pH , 

area, fragmentation index) contained twelve variables and explained 26.6 % of the 

variation. However, the factor fragmentation index was selected by ordistep as significant 

along with, depth, canopy height, and plant cover. In addition, fragmentation index was 

found to be significant by the Monte Carlo permutation tests run on factors selected by 

ordistep. 
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CHAPTER IV –  DISCUSSION 

The results of this study suggest that habitat type (emergent marsh and SAV) has 

a clear effect on the composition of nekton assemblages in Mississippi’s oligohaline 

marshes and fragmentation has a significant negative effect on nekton diversity. SAV 

supported larger and more diverse assemblages of nekton taxa. These results support my 

original prediction that distinct assemblages would exist in Mississippi's marsh and that 

SAV would support a more diverse assemblage of nekton. While this pattern of nekton 

dependence on SAV has been clearly documented in previous studies (Rozas and Odum 

1988b), it has rarely been documented in Mississippi's oligohaline marsh. Given the 

importance of SAV to coastal nekton, it is crucial that an increased effort be made to 

understand the overall distributions of these habitats, as well as the specific distributions 

and roles that particular SAV species play in Mississippi's coastal environment. 

While emergent marsh habitats were comprised of significantly less diverse 

nekton assemblages, they were a crucial habitat for assemblages of resident nekton who 

spend their entire life cycles in and around emergent marsh habitats. In particular F. 

jenkinsi was frequently sampled in ephemeral patches of emergent marsh (predominantly 

S. lancifolia) in low salinity regions of Mississippi marsh (<5.00 ppt). The connection 

between emergent marsh and resident nekton has been clearly demonstrated (Kneib 

1997) and several studies have focused on the reproduction, life history and distribution 

and abundance patterns of F. jenkinsi in and around Mississippi's marshes (Lang et al. 

2012, Lopez et al. 2011, Peterson et al. 2003). However, this study differs from previous 

studies in that samples were directly obtained from both the cores and edges of shallow 

(<15 cm in depth) stands of ephemeral emergent marsh with throw traps. Shallow 
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ephemeral patches of S.lancifolia have been infrequently sampled in general and their 

value to specialist species such as F. jenkinsi is crucial information that may aid in 

conservation efforts.  

Based on the results of the permANOVA there is clear temporal variation in 

nekton assemblage patterns. However, habitat differences persist in both space and time. 

The spatial and temporal variation indicated by the permANOVA may be the results of 

an unusually cold winter and spring in 2014, leading to a lag in plant and nekton 

production and subsequent interactions. In the 2015 sampling period, nekton density and 

diversity increased. Overall, nekton density peaked in June and July in both 2014 and 

2015 in SAV and emergent marsh. However, nekton densities were higher June 2015 vs. 

June 2014 (Figure 8). Emergent marsh nekton density peaked in June 2014 and August 

2015 and was at their lowest in July in both 2014 and 2015 (Figure 8). While it is clear 

the June and July are important months for nekton production, logistical issues prevented 

consistent sampling in August and September, decreasing the resolution with which 

seasonal declines in nekton density could be observed. However, several long-term 

studies (e.g Schaefer et al. 2016) clearly demonstrate seasonal shifts in patterns of density 

and diversity of coastal species. 

The CCA that examined at the interactions between environmental variables and 

nekton assemblages by habitat type supported the idea that clear differences exist 

between emergent marsh and SAV based on both abiotic and biotic factors. Emergent 

marsh sites where characterized by increased salinity and canopy height, while SAV site 

had increased water depth and dissolved oxygen (Table 1). Given the frequency with 
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which emergent marsh patches experience desiccation, increased salinities are to be 

expected. 

Fragmentation, along with dynamic abiotic conditions in emergent marsh patches 

may significantly affect the assemblage composition of these habitats. Data shows a 

significant negative relationship between fragmentation index and nekton diversity. This 

result supports my original prediction that increases in fragmentation and edge would 

result in decreases in nekton diversity and indicate a negative effect of fragmentation and 

increased marsh edge. Given these result it seems that that nekton which use shallow 

emergent marsh habitat are forced to contend with multiple natural and anthropogenic 

stressors (i.e, fragmentation and hypersaline conditions). These harsh conditions may 

partially explain the low overall density and diversity of nekton in emergent marsh 

samples. F. jenkinsi was sampled more often in patches of emergent marsh with lower 

levels of fragmentation, suggesting that intact patches of emergent marsh are crucial 

habitat for some species of specialist nekton . The results of the indicator species analysis 

found that assemblages of edge and transient nekton dominate patches of emergent 

marsh, which have undergone medium to high levels of fragmentation (Table 5). This 

result suggest that as patches of emergent marshes become increasingly fragmented, 

specialist species such as  F. jenkinsi are forced out and replaced by transient edge 

species. Despite predictions that increased habitat complexity may result from 

fragmentation, data from ephemeral patches of emergent marsh in coastal Mississippi 

support the negative edge effect hypothesis, particularly for specialist such as F. jenkinsi. 

Reports that F. jenkinsi are rare and a species of concern in many states should therefore 
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not be surprising, given the high levels of coastal fragmentation experienced in the 

southern United States. 

  There was no clear effect of position within patch, causing me to reject my 

original prediction that nekton assemblages would differ based on position within patch. 

There are several possible hypotheses for this result. First, it is plausible given the myriad 

of both anthropogenic and natural stressors experienced by these habitats and their 

associated nekton, emergent marsh patches may be comprised almost entirely of edge 

quality habitat and therefore supports primarily edge tolerant species. Second, the lack of 

core species may be related to the fact that marsh assemblages are often comprised of 

species that are adapted to the dynamic edge like conditions present in Mississippi's 

fragmented marshes. It is also possible that given the limited time these emergent marsh 

patches are available (high tide) to many nekton, clear core edge delineation may not 

have sufficient time to form prior to patch desiccation. Resident species that are able to 

use the shallow marsh habitats at low tides (F. jenkinsi) may be the exception to this 

however. One possible solution to these issues is to study this system (emergent marsh 

patches) in a controlled environment. A mesocosum study in which water level, patch 

fragmentation, nekton density, and assemblage composition were controlled, may provide 

further insight into how nekton make use of emergent marsh. 

Another possible reason for the lack of a position effect could be a lack of power 

(N=17 patches). Selecting the appropriate number of samples per strata is crucial in any 

ecological study. The results of a power analysis run on emergent marsh samples from 

the first season of sampling resulted in a power of 0.40. Based on these results, paired 

samples may have provided adequate power. However, the additions of further samples 
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in each stratum significantly increase power. Further sampling that is directed exclusively 

at emergent marsh patches and simultaneously evaluates fragmentation should provide 

further insight into the effect of marsh patch shape on nekton assemblage
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