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ABSTRACT 

THE DROSOPHILA T-BOX TRANSCRIPTION FACTOR MIDLINE FUNCTIONS 

 WITHIN THE INSULIN/AKT AND C-JUN-N-TERMINAL KINASE  

SIGNALING PATHWAYS TO REGULATE INTEROMMATIDIAL   

BRISTLE FORMATION AND CELL SURVIVAL 

by Qichuan Chen 

December 2014 

From a genetic and allelic modifier screen, we report that the Drosophila 

melanogaster T-box transcription factor midline (mid), a homolog to the human TBX20 

gene, interacts with dFOXO within the insulin receptor (InR) and the c-Jun-N-terminal 

kinase (JNK) signaling pathways to regulate interommatidial bristle (IOB) formation. 

Previous studies have identified mid’s role in cell fate specification of sensory organ 

precursor cells in conjunction with the Notch-Delta signaling pathway (Das et al., 2013). 

The Notch, InR, and JNK signaling pathways regulate dFOXO activity under conditions 

of stress.  Thus, we determined the effects of oxidative stress and metabolic stress by 

exposing mid-RNAi flies to paraquat and starvation conditions, respectively.  We found 

that oxidative stress suppressed the mid-RNAi phenotype while starvation had no 

significant effect. We next assayed Mid and H15, a paralog of Mid, via Western blot 

analysis and report that Mid exhibits a nucleocytoplasmic distribution pattern that is 

altered within the mid-RNAi mutant while H15 was found exclusively within the 

cytoplasmic fraction.  This opens the possibility that Mid and/or H15 may regulate 

cytoplasmic targets upstream of dFOXO. The evidence suggests that Mid utilizes the InR, 
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JNK, and Notch signaling pathways to regulate cell fate specification, differentiation, and 

survival during third instar larval development. 
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CHAPTER I 

INTRODUCTION 

The midline Gene Expresses a T-box Transcription Factor 

The Drosophila melanogaster T-box transcription factor midline (mid) gene, a 

homolog of human TBX20, has been shown to regulate the cell fate specification and 

organogenesis of the developing heart, CNS, and eye tissues (Das et al., 2013; Leal, Qian, 

Lacin, Bodmer, & Skeath, 2009; Miskolczi-McCallum, Scavetta, Svendsen, Soanes, & 

Brook, 2005; Qian, Liu, & Bodmer, 2005; Reim, Mohler, & Frasch, 2005).  Members of 

the large T-box transcription factor protein family, characterized by a conserved, 

palindromic T-box DNA-binding domain, are expressed in a vast array of vertebrate and 

invertebrate organisms (Degnan et al., 2009; Muller & Herrmann, 1997). In mammalian 

species, this transcription factor family consists of 18 genes within 5 subfamilies: Tbx1 

(TBX1, TBX10, TBX15, TBX18, TBX20, and TBX22), Tbx2 (TBX2, TBX3, TBX4, and 

TBX5), Tbx6 (TBX6 and TBX16), T (T-BRAIN1, EOMESODERMIN, T-BET, and 

TBX21), and Brachyury (BRACHYURY and TBX19). Within Drosophila, the family 

contains eight genes: brachyenteron, dorsocross-1, dorsocross-2, dorsocross-3, 

optomotor-blind, optomotor-blind-related-gene-1, H15, and mid (Buescher et al., 2004; 

Griffin et al., 2000; Penton, Selleck, & Hoffman, 1997; Poeck, Hofbauer, & Pflugelder, 

1993; Porsch et al., 1998; Reim et al., 2003).  

Development of the Drosophilia Eye 

 Located within the compound eye of Drosophila melanogaster are the ommatidia, 

which form a highly organized neurocrystalline lattice structure containing a field of 

approximately 800 ommatidial units (Waddington & Perry, 1960; Perry, 1968; Ready et 
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al., 1976).  Found within each ommatidial unit are eight photoreceptor neurons referred to 

as R1-R8 cells that are located below four lens-secreting cone cells and surrounded by 

two primary pigment cells (Tomlinson & Ready, 1987) (Figure 1).  Enclosing the R1-R8 

photoreceptor cluster are six secondary pigment cells, three tertiary pigment cells, and 

three bristle cells that are shared with adjacent photoreceptor clusters (Ready, Hanson, & 

Benzer, 1976).  This arrangement of ommatidial units across the eye results in a total of 

approximately 400 interommatidial bristle (IOB) complexes that each contain a shaft cell, 

socket cell, sheath cell, and sensory neuron. 

 

Figure 1. A schematic diagram of the ommatidial unit. The superficial ommatidial unit 

consists of 4 cone cells (green) underneath a lens (white dome) and surrounded by 2 

primary pigment cells (yellow).  These cells share 3 bristles (blue), 6 secondary (orange) 

and 3 tertiary (red) pigment cells with adjacent ommatidial units.  Deeper within the 

ommatidial unit, the R1-R6 photoreceptor cells surround the R7 (black) and R8 (gray) 

cells.  The R7 cell is located superficial to the R8 cell. 



3 
 

 
 

The development of the Drosophilia eye begins within the eye-antennal imaginal 

disc during the third-instar larval stage in which a wave of differentiating epithelial cells 

called the morphogenetic furrow moves across the eye imaginal disc from the posterior 

region to the anterior region (Figure 2).  This wave of differentiation compresses the 

monolayer of epithelial cells that comprise the imaginal disc and is then delimited by the 

morphogenetic gradient created by several retinal determination transcription factors 

including Hedgehog (Hh), Decapentaplegic (Dpp), and Wingless (Wg) (Greenwood & 

Struhl, 1999; Heberlein, Wolff, & Rubin, 1993; Treisman & Rubin, 1995; Wiersdorff, 

Lecuit, Cohen, & Mlodzik, 1996).  Within the morphogenetic furrow, Hh initiates a 

signaling cascade to create a Dpp gradient that activates ato, a proneural gene which 

generates intermediate groups. Once this morphogenetic furrow continues anteriorly, the 

selected posterior proneural cells begin to specify the R8 cells and subsequently recruit 

the remaining photoreceptor cells to form a photoreceptor neuron cluster (Curtis & 

Mlodzik, 2000).  Anterior to the morphogenetic furrow, however, the cells largely remain 

undifferentiated as a result of Wg inhibition of Hh and Dpp (Treisman & Rubin, 1995).  

Recently, studies have hypothesized that the Dpp morphogenetic gradient created in the 

morphogenetic furrow crosses into the pre-proneural zone anterior to the morphogenetic 

furrow and selects grandmother pre-SOP (GPS) cells (Das et al., 2013).  The GPS cells 

are postulated to be held in stasis until the pupal stage of development (Das et al., 2013). 
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Figure 2. Model of sensory organ precursor selection within the eye imaginal disc. The 

morphogenetic furrow (yellow column) establishes a dpp gradient (scalloped lines) from 

high (black) to low (light gray) anterior to the furrow.  In this pre-proneural zone anterior 

to the morphogenetic furrow, the low dpp signaling begins selection of the grandmother 

pre-SOP (white circle). As the morphogenetic furrow moves anteriorly, hh secreted from 

posterior SOP cells blocks dpp signal and initiates R8 neuron (blue circle) selection from 

the intermediate group via Notch/Delta lateral inhibition.  From there, the R8 neuron 

recruits R1-7 photoreceptor neurons to form a photoreceptor neuron cluster (green 

rosetta). mid potentially activates hh signaling in the posterior photoreceptor neuron 

clusters. 
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The Notch/Delta signal transduction pathway functions to select a single neuronal 

SOP cell surrounded by epithelial cells that have assumed “default” fates via a lateral 

inhibition mechanism.  This neuronal cell fate adoption requires increased expression of 

proneural proteins Achaetae (Ac) and Scute (Sc) in addition to increased expression of a 

Notch receptor transmembrane ligand, Delta (Artavanis-Tsakonas, Matsuno & Fortini, 

1995; Cubas, de Celis, Campuzano, & Modolell, 1991; Muskavitch, 1994; Skeath & 

Carroll, 1991; Skeath & Carroll, 1994; Skeath & Doe, 1996) (Figure 3).   

Once selected, proneural SOP cells express Delta ligands and activate the Notch 

receptors of neighboring cells via juxtacrine signaling (Schroeter, Kisslinger, & Kopan, 

1998) (Figure 3B).  The activation of Notch causes a cleavage of the Notch receptor 

allowing the Notch intracellular domain (NICD) to translocate into the nucleus, complex 

with Mastermind (Mam), and remove the co-repressors of Su(H): Groucho (Gro), 

Hairless (H), and the C-terminal Binding Protein (CtBP) (Barolo & Posakony, 2002; 

Barolo, Stone, Bang, & Posakony, 2002; Helms et al., 1999; Nagel et al., 2005; Nagel & 

Preiss, 2011; Nam, Piotr, Pear, Aster, & Blacklow, 2007). The removal of Su(H)’s co-

repressors switches Su(H) from a co-inhibitor of the gene Enhancer of Split [E(spl)] into 

a co-activator (Ligoxygakis, Yu, Delidakis, & Baker, 1998).  Upon activation, E(spl) 

guides the cells into an epithelial cell fate by inhibiting the expression of ac and sc 

(Jimenez & Ish-Horowicz, 1997).  Within the Delta-sending, proneural SOP cells, 

however, ac and sc expression is increased as a result of the undisturbed co-repression 

complex on Su(H) (Castro, Barolo, Bailey, & Posakony, 2005).  
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Figure 3. A schematic diagram of Notch signaling pathway. The Notch receptor is 

activated upon Delta binding and the Notch intracellular domain (NICD) is cleaved. The 

NICD translocates into the nucleus to regulate the expression of the E(spl) gene complex. 

 

 Concurrent to the lateral inhibition of neighboring cells, the SOP cell undergoes 

Notch regulated asymmetric division to produce the cellular components of the 

mechanosensory bristle complex (Hartenstein & Campos-Ortega, 1984).  The SOP cell 

(pI neuroblast) first divides into two precursor cells, pIIa and pIIb, and asymmetrically 

segregates Numb, a Notch antagonist, toward the pIIb cell (Figure 4) (Rhyu, Jan, & Jan, 

1994).  The pIIb cell then utilizes the Notch signaling pathway to prevent pIIa from 

adopting the same cell fate and blocks Notch signaling from pIIa with Numb (Rhyu et al., 

1994).  This process is repeated with the division of pIIa into a socket and shaft cell 

where the shaft cell receives the asymmetric load of Numb (Rhyu et al., 1994).  

Similarly, the pIIb cell divides into a pIIIb cell and a glial cell (Rhyu et al., 1994).  The 

glial cell eventually migrates away from the bristle complex while the pIIIb cell again 
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utilizes the asymmetric segregation of Numb and Notch signaling to produce a sheath cell 

and neuron (Rhyu et al., 1994). 

 

Figure 4. The Numb/Notch interaction dictates asymmetric cell division of SOP cells. pI 

neuroblasts divide into pIIa and pIIb precursor cells and segregate Numb asymmetrically. 

Numb in the pIIb cell blocks Notch signaling to pIIb while pIIb initiates Notch signaling 

within pIIa.  pIIa divides into two cells of which the Numb inheriting cell adopts the shaft 

cell fate and the Notch responder adopts the socket cell fate. pIIb divides with the 

inheritor of Numb adopting the neuroglia cell fate and the Notch responder, pIIIb, 

dividing further.  The Notch responder of the pIIIb division adopts the sheath cell fate 

while the non-responder adopts the neuron cell fate. (Rebeiz, Miller & Posakony, 2011, 

pp. 215-225). 
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mid and TBX20 Regulation of Eye Development 

While mid and TBX20 have been extensively studied within the developing heart 

and CNS (Leal et al., 2009; Miskolczi-McCallum et al., 2005; Qian et al., 2005; Reim et 

al., 2005), recent research has only begun to unravel mid’s function within the developing 

Drosophila eye (Das et al., 2013). In mice, Tbx20 is highly expressed within the neural 

retina periphery and within the optic cup of early-staged fetuses (Meins, Henderson, 

Bhattacharya, & Sowden, 2000).  In adult mice, Tbx20 is expressed in the neural retina, 

pigment epithelium, and optic nerve (Meins et al., 2000).  TBX20 expression is detected 

in the neural retina, pigment epithelium, optic nerve, and sclera in human fetal eye tissue 

(Kraus, Haenig, & Kispert, 2001; Meins et al., 2000).  By week 13 of gestation in 

humans, TBX20 expression in the ganglion cell layer and neuroblastic layer of the neural 

retina is higher than in the sclera, optic nerve, and cornea (Meins et al., 2000).  In 

Drosophila third-instar larvae (3oL), mid is highly expressed in the photoreceptor neurons 

of the imaginal eye-antennal disc (Das et al., 2013).  The mid gene has been found to 

regulate the cell fate specification of proneural SOP cells into neuronal ganglion mother 

cells via the Notch/Delta signaling pathway (Das et al., 2013) (Figure 3).  

mid is an Anti-apoptotic Factor 

Recently, Das et al. (2013) reported an increase of caspase-3 signaling in the eye-

antennal imaginal discs of mid-RNAi strains suggesting that mid functions as an anti-

apoptotic factor during early eye development. Moreover, studies of the vertebrate mid 

homolog TBX20 have shown that TBX20 regulates estrogen-mediated cardiomyocyte 

protection by suppressing apoptosis within mouse and human hearts under oxidative 

stress conditions (Shen et al., 2013).  The anti-apoptotic response triggers the down-
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regulation of p38 mitogen-activated protein kinase (MAPK), caspase-3, and Bax while 

activating Bcl-2, an inhibitor of apoptosis (Shen et al., 2013). The p38 MAPK is a 

member of the mitogen-activated protein kinase family responsive to stress conditions. 

Caspase-3 is a member of the caspase signaling cascade that initiates programmed cell 

death (Han, Richter, Li, Kravchenko, & Ulevitch, 1995).  Lastly, Bax and Bcl-2 function 

antagonistically within the intrinsic apoptotic pathway. Bax disrupts the lipid bilayer of 

the outer mitochondrial membrane causing destabilization (Renault, Teijido, Antonsson, 

Dejean, & Manon, 2013).  Conversely, Bcl-2 prevents destabilization of the outer 

membrane (Renault et al., 2013).  Permeabilization of the mitochondrial membrane by 

Bax2 creates pores that allow for the release of cytochrome c from the mitochondria.   

Release of cytochrome c into the cytoplasm activates the caspase cascade which results in 

apoptosis. Taken together, these studies suggest that mid and Tbx20 are functionally 

conserved. 

The regulation of apoptosis within the T-Box transcription factor family is not 

limited to the Mid and Tbx20 T-box transcription factors.  Brachyury mutants in Xenopus 

laevis and mouse tissues exhibit high levels of apoptosis (Conlon & Smith, 1999). 

Conversely, in mouse embryonic fibroblast, the expression of TBX3 promotes cell 

survival through the inhibition of the tumor suppressor protein p53 (Carlson, Ota, Song, 

Chen, & Hurlin, 2002). Most members of the T-box transcription factor family, however, 

have not been shown to regulate cell survival.  

mid Interacts with dFOXO 

In an effort to further understand mid function within the developing eye, the Leal 

lab carried out a genetic modifier screen to identify mid-interacting genes. From this 
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screen, the lab identified dFOXO as a mid-interacting gene (Das et al., 2012). The 

dFOXO gene encodes a Forkhead Box Subgroup O transcription factor vital for the 

regulation of apoptosis, cell cycle arrest, and DNA repair. The dFOXO transcription 

factor is also responsive to metabolic, oxidative, and genotoxic stress responses (Brunet 

et al., 1999; Calnan & Brunet, 2008; Kannan & Fridell, 2013; Wang, Bohmann, & Jasper, 

2005). dFOXO plays a significant and evolutionarily conserved role downstream of both 

the Insulin/Insulin-like receptor (InR) signal transduction pathway and c-Jun N-terminal 

Kinase (JNK) signal transduction pathway (Essers et al., 2004; Garofalo, 2002; Ikeya, 

Galic, Belawat, Nairz, & Hafen, 2002; Luo, Puig, Hyun, Bohmann, & Jasper, 2007; 

Wang et al., 2005) (Figure 5).  The JNK signaling pathway is a mitogen-activated protein 

kinase (MAPK) family member conferring cellular resistance to stress.  The discovery of 

a functional collaboration between mid and dFOXO promises to yield further insight into 

mid’s role as an anti-apoptotic factor. 
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Figure 5. Schematic depiction of the InR and JNK signaling pathway to regulate the 

Notch signaling pathway. The InR/PI3K/Akt and JNK signal transduction pathways 

regulate transcription by affecting the specific phosphorylation status of dFOXO where 

the d14-3-3 protein is required for dFOXO to shuttle into the nucleus. Alternatively, the 

dFOXO protein can shuttle into the nucleus independently of d14-3-3 downstream of the 

JNK pathway via phosphorylation of an alternative site by Bsk (JNK). 

 

The InR and JNK are Stress Signaling Pathways 

The InR pathway regulates cell survival and apoptosis mediated by the action of 

secreted insulin and insulin-like peptides (dILPs) released from neurosecretory cells in 

the brain known as insulin-like peptide producing cells (IPCs) (Puig, Marr, Ruhf, & 

Tijan, 2003; Puig & Tijan, 2005; Tettweiler, Miron, Jenkins, Sonenberg, & Lasko, 2005). 
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A humoral link between the fat body and larval brain stimulates dILPs release from IPCs 

(Geminard, Rulifson, & Leopold, 2009). In Drosophila, dILP2, dILP5, and dILP6 

circulating within the hemolymph bind to dimeric InR, a receptor tyrosine kinase 

complex, and stimulate the autophosphorylation of an intracellular carboxyl-terminal 

domain leading to a cascade of phosphorylation events driven by adaptor proteins and 

several kinases (Figure 5) (Grewal, 2009; Hay, 2011; Nielsen, Luo, Biteau, Syverson, & 

Jasper, 2008; Rulifson, Kim, & Nusse, 2002). Activated InR recruits the adaptor protein 

Chico, a homolog of the insulin receptor substrate (IRS), which interacts and activates 

phosphatidyl inositol 3’-OH kinase (PI3K), a protein located within the plasma 

membrane, via an SH2 domain (Clancy et al., 2001; Leevers, Weinkove, MaDougall, 

Hafen, & Waterfield, 1996).  Activated PI3K phosphorylates phosphotidyl inositol 4,5 

bisphosphate (PIP2) and converts the protein into phosphotidyl inositol 3,4,5-triphosphate 

(PIP3).  Conversely, the tumor suppressor phosphatase and tensin homolog (PTEN) 

reverts PIP3 back into PIP2 (Maehama et al., 2004; Oldham et al., 2002). PIP3 recruits 

dAKT (also known as protein kinase B or PKB) by binding to the pleckstrin homology 

domain within dAKT and exposes the T308 site for recruitment and phosphorylation by 

phosphoinositide dependent kinase 1 (PDK1) (Georgescu, 2011).  Phosphorylation of 

dAKT at S473 by target of rapamyacin (TOR) or DNA-dependent protein kinases (DNA-

PK) leads to a fully activated dAKT that regulates substrate-specific downstream targets 

in both the cytoplasm and the nucleus (Lu, Huang, & Basu, 2006; Zhang, Stallock, Ng, 

Reinhard, & Neufeld, 2000). Pleckstrin homology domain leucine-rich repeat protein 

phosphatase (PHLPP) directly dephosphorylates dAKT at S473 while protein 

phosphatase 2A (PP2A) dephosphorylates dAKT at T308 (Garofalo et al., 2003; Kuo et 
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al., 2007).  Additionally, polyphosphorylation of dAKT at both T308 and S473 sites 

triggers partial ubiquitination by the E3 ubiquiting-protein ligase Neural Precursor Cell 

Expressed Developmentally Down-regulated 4 (NEDD4) (Vecchione, Marchese, Henry, 

Rotin, & Morrione, 2003). 

Conversely, the c-Jun N-terminal kinase (JNK) pathway in Drosophila is a 

signaling cascade that includes the JNKKK slipper (slp), JNKK hemipterous (hep) and 

JNK basket (bsk) (Glise, Bourdon, & Noselli, 1995; Hay, 2011; Riesgo-Escovar, Jenni, 

Fritz, & Hafen, 1996; Sluss et al., 1996; Weston & Davis, 2007) (Figure 5).  

Transcription of the vertebrate targets of JNK is regulated by the TF activator-protein 1 

(AP-1), a complex of Jun and Fos, and is conserved in Drosophilia with Bsk 

phosphorylation of D-Jun and D-Fos.  This AP1 complex of heterodimerized D-Jun:D-

Fos promotes expression of puckered (puc), a MAPK phosphatase that feedback inhibits 

bsk (Glise & Noselli, 1997; Kockel, Homsy, & Bohmann, 2001).  Connector-of-kinase to 

AP-1 (Cka), a scaffold protein, assists in the JNK pathway in both the cytosol as well as 

in the nucleus.  In the cytoplasm, Cka recruits phosphorylated Hep and unphosphorylated 

Bsk which results in the phosphorylation of Bsk (Chen et al., 2002).  Within the nucleus, 

Cka assists Bsk to phosphorylate AP-1 (Chen et al., 2002). 

Stress Signaling Pathways Regulate dFOXO 

dFOXO is a downstream target of the InR and JNK stress-signaling pathways that 

function antagonistically.  Active dAkt phosphorylates dFOXO, thereby allowing d14-3-

3 to bind to dFOXO (Nielsen et al., 2008).  The evolutionarily conserved 14-3-3:dFOXO 

complex blocks dFOXO’s nuclear localization signal and ultimately sequesters dFOXO 

within the cytoplasm (Figure 6) (Brunet et al., 1999; Puig et al., 2003; Tzivion, Dobson, 
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& Ramakrishnan, 2011; Vanhaesebroeck & Aless, 2000; Vanhaesebroeck & Waterfield, 

1999). Under conditions of metabolic stress, however, cytoplasmic dFOXO is 

hypophosphorylated and translocates back into the nucleus. In the nucleus, dFOXO 

regulates the expression of several target genes including myc, 4e-bp, glucose-6-

phosphatase (G6P), and InR (Junger et al., 2003; Luo et al., 2007; Mattila, Kallojarvi, & 

Puig, 2008; Puig et al., 2003; Puig & Tijan, 2005). dFOXO also acts as a positive 

transcriptional feedback regulator by activating the expression of the InR (Puig et al., 

2003). 

Under conditions of adequate nutrition, dAkt phosphorylates dFOXO to create a 

docking site for which d14-3-3 can bind and sequester dFOXO in the cytoplasm. Under 

conditions of oxidative stress, however, the JNK signaling pathway antagonizes the InR 

signaling pathway by promoting the nuclear translocation of cytosolic-sequestered 

dFOXO bound to the d14-3-3 protein (Hay, 2011).  In human cell culture, activated JNK 

induces phosphorylation of both FOXO3 and 14-3-3, resulting in the release of FOXO3 

from the complex and promotion of FOXO3 nuclear translocation (Figure 6). (Sunayama, 

Tsuruta, Mayuyama, & Gotoh, 2005; Tsuruta et al., 2004). Previous chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) and RNA-seq data examining 

differential expression of genes also report that within the adult mouse heart, genes 

involved in stress, immune response, and development were downregulated in TBX20 

ablated mice compared to wild type mice (Sakabe et al., 2012).  Conversely, genes 

essential for metabolism were found to be upregulated (Sakabe et al., 2012). 
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Figure 6. InR and JNK signaling pathways are balanced to regulate dFOXO. A) Under 

normal conditions, dAkt blocks dFOXO nuclear localization by phosphorylating dFOXO 

to create a d14-3-3 docking site.  B) Under conditions of nutritional stress, dAkt is 

inactive allowing dFOXO to translocate into the nucleus.  C) Under conditions of 

oxidative or genotoxic stress, the JNK pathway is activated to phosphorylate dFOXO at a 

separate site.  This phosphorylation results in dFOXO translocation into the nucleus.  D) 

Under conditions of adequate nutrition and oxidative stress, dAkt is activated creating the 

d14-3-3 docking site.  Active JNK phosphorylates dFOXO at a separate location and also 

phosphorylates d14-3-3.  Phosphorylation of d14-3-3 releases dFOXO from the d14-3-3 

and allows dFOXO to enter into the nucleus. (Greer & Brunet, 2005, pp. 7410-7425). 

 

Thesis Objectives 

 This thesis seeks to establish whether the T-box transcription factor gene, midline, 

interacts with the Forkhead Box-O transcription factor gene, dFOXO, via the 

Insulin/Insulin-like Receptor (InR) and c-Jun N-terminal Kinase (JNK) pathways to 

regulate interommatidial bristle formation. First, we plan to characterize the genetic 

interaction of mid with dFOXO and members of the InR and JNK pathways using genetic 
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and allelic modifier screens. Since dFOXO is a key regulator of stress responses, we aim 

to elucidate mid’s role in regulating cell survival under conditions of physiological stress 

by inducing oxidative and nutritional stress within wild-type and mid mutant larvae.  

Finally, we will investigate whether Mid and its paralog, H15, are detected within the 

nucleus and cytoplasm.  Toward this goal, we will utilize the Western blot assay to probe 

for Mid and H15 within the nucleus and cytoplasm of wild-type and mid mutant larvae. 

  



17 
 

 
 

CHAPTER II 

METHODOLOGY 

Fly Stocks 

Drosophila melanogaster strains were maintained at 25oC on standard cornmeal-

yeast-agar media on a 12 hour light-dark cycle. Oregon-R flies were used as wild-type 

(WT) and the yw;+/+;FRT82dFOXO25/TM6 Tb Hu line was provided by Ernst Hafen 

(Junger et al., 2003) (Figure 7) (Tables 1 & 2). We used the UAS-Gal4 system (Brand 

and Perrimon, 1993) and the eye-specific driver GMR-Gal4 balanced on chromosome III 

(a gift from Tanya Wolff; Hay et al., 1994) to express UAS-mid-RNAi in WT and specific 

mutant backgrounds (provided by Rolf Bodmer) (Qian et al., 2005). 

The GFP-dFOXO transgenic line w1118;P{GMR59G09-GAL4}attP2 and the 

following lines were obtained from the Bloomington Stock Center (Bloomington, 

Indiana): Df(3R)ED5634 (stock 9228), Df(3R)Exel7321 (stock 7977), Df(3R)BSC617 

(stock 25692),  and Df(3R)BSC470 (stock 24974) (Table 3). Except where noted, all of 

the following stocks of mutant alleles listed in Table 1 were also obtained from the 

Bloomington Stock Center (IN). 
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Table 1 

Comprehensive list of all stocks tested 

 

Note. A single asterisk indicates a stock obtained from the Vienna Drosophila Resource Center.  A double asterisk indicates a stock 

received from Ernst Hafen. 
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Collecting Eye Images for Genetic and Allelic Modifier Screens 

We screened a fraction of isogenized DrosDel deficiency lines obtained from the 

Bloomington Stock Center by crossing each line to UAS-mid-RNAi/CyO;GMR-Gal4/TM3 

(mid-RNAi) flies exhibiting a sensitized genetic mutation for mid characterized by an 

approximate 50% decrease of bristle complexes (Das et al., 2013). Bristles were counted 

from one-day old female progeny generated from the cross that were maintained at 25oC. 

Groups of ten flies of the genotype UAS-mid-RNAi/+;GMR-Gal4/Df(3) or UAS-mid-

RNAi/+;GMR-Gal4/allele (as well as other progeny of select genotypes) were transfixed 

to a slide with clear nail polish lacquer and submerged in water. The complete eye field 

was viewed under a high-power Leica M165C dissection microscope. A series of images 

were collected along 10-15 focal planes and digitally recorded using a Leica DFC 

camera. These images were flattened to create a final montage using Image Pro Plus 

software to correct for eye curvature and to digitally tag bristles within the dorsal half of 

the eye for accurate quantification (Media Cybernetics Inc., Bethesda, MD). Using these 

methods, we identified several deficiency lines that modified the mid mutant phenotype 

(unpublished data). Of these lines, flies heterozygous for Df(3R)ED5634 (88A4;88B1) 

placed within the mid-RNAi genetic background significantly suppressed the mid mutant 

phenotype. Overlapping deficiency analyses were carried out and the outcome is reported 

in the results section as well as in Figure 8 and Table 3. 

Oxidative Stress Studies 

WT OR and mid-RNAi flies were maintained in population cages and allowed to 

lay eggs for 4 hours on 150 mm apple-juice caps with yeast paste. After 4 hours, the 

plates were removed and lightly watered every day until the eggs developed into three-
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day old 3oL. The 3oL were starved for 6 hours and then transferred to vials with 1% agar 

in ddH2O and 0.5% yeast paste mixed with or without paraquat until larvae transitioned 

into pupae. The doses of paraquat tested were 1, 5, 10, 20, and 30 mM.  After eclosion, 

30 treated and nontreated one-day old female flies were exposed to Flynap (Carolina 

Biologicals) for anesthesia, collected, and mounted with nail polish on a glass slide for 

gathering eye images as previously described. Paraquat was obtained from Sigma Aldrich 

(St. Louis, MO).   

Metabolic Stress Studies 

WT OR and UAS-mid-RNAi/CyO;GMR-Gal-4/TM3 flies were maintained in 

population cages and then allowed to lay eggs for 4 hours on grape juice caps with yeast 

paste. Approximately 80 hours after egg laying, 3oL larvae were transferred into vials 

with either standard fly medium or starvation medium (8% agar in PBS) for 24 hours.  

UAS-mid-RNAi flies were transferred to media conditions after 88 hours due to a slight 

delay of their growth.  After 24 hours, 30 flies were collected and dorsal ommatidial 

bristles were scored using a Leica DFC295 light microscope with Image-Pro Analyzer 

7.0 software (Media Cybernetics). Ommatidial areas were measured using ImageJ (NIH). 

Purification of Nuclear and Cytoplasmic Extracts 

We followed the protocol of Udvardy and Schedyl (1984) with only slight 

modifications to obtain relatively pure nuclear and cytoplasmic fractions. Approximately 

0.5 gm (~500 µl wet volume) of WT, mid-RNAi, and dFOXOΔ94 3oL were collected and 

snap frozen under liquid nitrogen for storage. Frozen 3oL larvae were pulverized under 

liquid nitrogen with a mortar and pestle and dounce homogenized on ice in cold “Buffer 

A” containing 0.25M sucrose, 60 mM KCl, 15 mM NaCl, 15 mM Tris-HCl (pH = 7.5), 
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0.1 mM EGTA, 1 mM EDTA, 1mM dithiothreitol, aprotonin (2 µg/ml), and leupeptin 

(0.5 µg/ml). The homogenate was spun at 5,000 RPM (3,024 x g) using the JA-20 rotor 

for 5 minutes to remove debris. NP-40 was then added to a final v/v concentration of 

0.2% followed by a short 5 second vortex and three 10 second high-frequency pulses on 

ice using a Fisher sonic dismembrator model 300. The nuclei were pelleted at 5,000 RPM 

for 10 minutes using the JA-20 and the cytoplasmic extract was isolated (supernatant). 

The nuclear pellets were resuspended in “Buffer A*” without EDTA and EGTA, but 

supplemented with 1 mM CaCl2.  The nuclei were spun again at 5,000 RPM for 10 

minutes and resuspended in “Buffer A*”.  We validated that nuclei were isolated using 

the trypan blue exclusion test and observing the extract under a high-magnification 

compound light microscope. Cytoplasmic and nuclear extracts were flash frozen in liquid 

nitrogen and stored at -70oC until further use. All chemicals used were obtained from 

Sigma-Aldrich (St. Louis, MO). 

Western Analyses 

We used the Bradford assay (Pierce Biochemical) to measure protein 

concentrations of nuclear and cytoplasmic fractions for loading equivalent sample 

amounts for SDS-PAGE. We ran the samples on either a 4-15% gradient gel (Bio-Rad) or 

a 10% gel and then transferred the proteins to a polyvinylidene difluoride (PVDF) 

membrane for immunoblotting with rabbit anti-Mid antibody at a 1:1000 dilution (Leal et 

al., 2009), guinea-pig anti-H15 antibody at a 1:5000 dilution (Leal et al., 2009), mouse 

anti-LaminC antibody at a 1:1000 dilution (Developmental Studies Hybridoma Bank, 

Iowa, WI), or mouse anti-tubulin antibody at 1:333 dilution (Developmental Studies 

Hybridoma Bank, Iowa, WI) for 4 hours at 25oC in PBST (PBS containing 0.1% Tween) 



22 
 

 
 

containing 5% milk (Carnation®) followed by three 10 minute rinses with PBST. The 

PVDF membrane was next incubated with secondary anti-rabbit, anti-guinea pig, or anti-

mouse antibodies conjugated to horse radish peroxidase at a dilution of 1:30,000 for 1 hr 

at 25oC. Following this incubation and three 5 minute washes with PBST, we used the 

Amersham ECL Prime Western Blotting Detection Reagent from GE Healthcare to 

develop the immunoblot. We also carried out either Coomassie Blue or Ponceau-S 

staining of the PVDF membrane after the protein transfer to check for equivalent loading 

of proteins. 

Statistical Analyses 

The mean and standard errors of the mean were calculated using Microsoft Excel 

software. The IOB counts for each genotype were statistically analyzed using Shaprio-

Wilk’s test for measuring the normal distribution of each data set (JMP10 software, SAS 

Institute Inc.). We also estimated the equal variance between groups using the Barlett’s 

test. Data sets that met the assumptions of a normal distribution and equal variance were 

then analyzed using the one-factor ANOVA and Tukey’s HSD to generate p values 

between assessed pairs of data. Data sets exhibiting unequal variance or an unequal 

distribution were analyzed by the Wilcoxon rank-sum test. All of the probability values 

were calculated setting the level of significance (α) to 0.05.  

Software Programs 

Confocal images were assembled using Adobe Photoshop CS6 software (Adobe 

Systems, Inc.). We used GraphPad Software, Inc. (La Jolla, CA) to present data in bar 

chart format. Image J (NIH) was used to measure the surface area of compound eyes.  
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CHAPTER III 

RESULTS 

A Genetic Modifier Screen Identifies dFOXO and Novel  

Gene Candidates that Interact with mid 

We combined the UAS-Gal4 binary expression system (Brand & Perrimon, 1993) 

with RNAi methodology (Lee & Carthew, 2003) to generate a perpetual line of UAS-mid-

RNAi;GMR-Gal4 (mid-RNAi) mutant flies. The GMR-Gal4 driver targets the reduction of 

mid within and posterior of the morphogenetic furrow (MF) in the eye imaginal disc of 

3oL. The MF is a contractile wave of differentiating tissue from which precursor cells are 

recruited in stepwise fashion to form clusters of cells that will develop into ommatidia, 

the unit facets of the adult eye. One-day old female mid-RNAi mutant flies exhibit 

compound eyes characterized by an approximate 50% loss of interommatidial bristles 

(IOBs), ommatidial fusion, reduced pigmentation, and cell death (Figure 7B) (Das et al., 

2013).  

From a genetic modifier screen, we found that placing the Dros Del chromosomal 

deficiency line Df(3R)ED5634 in a heterozygous mutant state within the UAS-mid-

RNAi;GMR-Gal4 background suppressed the mid-RNAi mutant phenotype. UAS-mid-

RNAi/+;GMR-Gal4/Df(3R)ED5634 progeny exhibited an ~20% loss of bristles compared 

to the ~58% loss observed in mid-RNAi progeny (Figure 7C) (Table 2). F1 progeny 

carrying either the UAS-mid-RNAi, GMR-Gal4 transgenes or the heterozygous 

Df(3R)ED5634 deficiency alone expressed normal numbers of IOBs approximating those 

quantitated for wild-type (WT), Oregon-R (OR) flies (Figure 7D) (Table 2).  
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Figure 7. dFOXO collaborates with Mid to regulate SOP formation and survival. (A) WT 

and (B) mid-RNAi compound eyes exhibit features previously described in Das et al. 

(2013). The WT eye displays a uniform ommatidial array while the mid-RNAi eye is 

grossly deformed with cell fusion, reduced pigmentation, and a significant loss of IOBs. 

(C) Placing mid-RNAi in a heterozygous Df(3R)ED5634 background suppresses the 

mutant phenotype with a partial recovery of bristles. (D) The bar chart represents mean 

bristle numbers +/- SEM quantitated for 10 eyes per experimental group. Statistical 

analyses indicates a significant decrease in bristle numbers within mid-RNAi eyes and a 

significant recovery of bristles in UAS-mid-RNAi/+GMR-Gal4/Df(3R)ED5634 eyes. (E) 

An internal control generated from the cross of the genotype UAS-mid-

RNAi/+;FRT82dFOXO25/TM3 is represented. (F) A mid-RNAi compound eye generated 

from a progeny of the cross depicts a significant loss of interommatidial bristles. (G) 

Placing mid-RNAi flies in a heterozygous dFOXO25 background significantly suppresses 

the mutant phenotype (p*=0.0002). (H) Placing mid-RNAi flies in a heterozygous 

dFOXOEY16506 background partially suppresses the mutant phenotype (p**=0.0002). (I) 

The bar chart shows the mean bristle numbers and SEM for eyes from ten flies of the 

genotypes shown in panels E-H. (A’-C’) and (E’-H’) are scanning electron microscope 

images of replicate compound eyes showing the WT and mutant bristle phenotypes. 

Comparisons of data represented by bar charts are indicated by brackets linking specific 

data sets. The values represented in the bar charts shown in panels (D) and (I) are 

reported within Table 1, respectively, in addition to statistical data with p-value 

parameters. Other genotypes of progeny generated from parental crosses were 

phenotypically WT (data not shown). 
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Table 2 

Comparisons of whole eye IOB mean counts of dFOXO mutant alleles and the deficiency 

line Df(3R)ED5634 

 

Note. Each column represents a specific genotype and the mean whole eye IOB count +/- SEM. The first two uncolored columns are 

additional F1 progeny recovered in the genetic modifier screens which do not carry the GMR-Gal4 driver line. The green, red, and 

blue labeled columns correspond to the similarly labeled genotypes shown in Figure 2.  Recovery was determined as the percentage 

change between the flies with the mid-RNAi condition (red column) and flies with a heterozygous deficiency interval or mutant allele 

in the background of the mid-RNAi condition (blue column). The data sets represented in the bar graph were statistically analyzed 

using tests as described in detail in section 4.9 of the methods. 

Df(3R)ED5634 deletes the cytological region 88A4-88B1. We initiated 

overlapping chromosomal deficiency mapping to further delimit the cytological interval 

harboring mid-interacting genes. Df(3R)BSC617 deletes cytological interval 88A8-88B1 

which partially overlaps with 88A4-88B1 (Table 3). We found that one-day old adult 

UAS-mid-RNAi/+;GMR-Gal4/BSC617 flies did not suppress the mid-RNAi mutant bristle 

phenotype (Table 3). We next validated this result by generating UAS-mid-RNAi/+;GMR-

Gal4/Df(3R)Exel7321 flies where Df(3R)Exel7321 deletes the cytological region 88A9-

88B1 (Figure 8). Since the bristle numbers of UAS-mid-RNAi/+;GMR-

Gal4/Df(3R)Exel7321 eyes again recapitulated the mid-RNAi mutant phenotype, we were 

able to delimit the chromosomal interval harboring mid-interacting genes to 88A4-88A8 
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with confidence (Table 3). We also generated UAS-mid-RNAi/+;GMR-

Gal4/Df(3R)BSC470 flies. The Df(3R)BSC470 line deletes region 88A11 to 88B1 (Figure 

8). The bristle numbers of UAS-mid-RNAi/+;GMR-Gal4/Df(3R)BSC470 also 

recapitulated the mid-RNAi phenotype (Table 3).   

Table 3 

Dorsal IOB counts for chromosomal deficiency lines 

 

Note. Each column represents a specific genotype and the mean dorsal IOB count +/- SEM.  The first two uncolored columns are 

additional F1 progeny recovered in the genetic modifier screens which do not carry the GMR-Gal4 driver line. The green-labeled 

genotype represents an F1 progeny heterozygous for both the mutant allele and the GMR-Gal4 driver line which provides a WT 

phenotype of bristle numbers that are nearly equivalent to those of OR flies. The red-labeled genotype represents an F1 progeny 

designated as a mid-RNAi condition except where there is a “P”. The “P” label indicates that an internal F1 mid-RNAi genotype was 

not generated from the cross and the genotype represents a parental mid-RNAi compound eye (UAS-mid-RNAi/CyO;GMR-Gal4/TM3). 

The blue-labeled genotype represents an F1 progeny that places a heterozygous mutant allele or UAS-RNAi-TRiP line of an InR 

pathway member in a mid-RNAi background to assay for enhancement or suppression of the mid-RNAi phenotype. Recovery was 

determined as the percentage change between the flies with the mid-RNAi condition (red column) and flies with a heterozygous mutant 

allele in the background of the mid-RNAi condition (blue column). The data sets represented in the bar graph were statistically 

analyzed using tests as described in detail in section 4.9 of the methods. 
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Figure 8. Chromosomal deficiency mapping analyses narrow the cytological region 

harboring mid-interacting genes. The cartoon illustrates the mapping analyses carried out 

by crossing overlapping deficiency lines with the mid-RNAi line. The cartoon was 

adapted from a schematic illustrated in GBrowse (Flybase.org). The endpoints of the 

delimited region harboring mid interacting genes are 3R:14,017.903..14,100.457 

(Cytological region 88A4-88A8). 

 

The 88A4-88A8 region deletes the following genes listed in the order of their 

reported loci within the genome (Flybase.org): roadkill (rdx), Cyp6d5, CG3061, CG9922, 

dFOXO, Npc2b, CCHa1, CG9920, and pk1r (Figure 8). We placed a null mutant allele 

and/or transgenic RNAi line of each gene within the mid-RNAi background to identify 

potential mid-interacting genes by screening for suppressors of the mid-RNAi phenotype. 

We found that placing mutations of rdx, Cyp6d5, CG9922, dFOXO, and pkr1 in the mid-

RNAi background significantly suppressed the mid-RNAi mutant phenotype (Table 4). 

IOBs were recovered and tissue integrity was partially recovered (data not shown).   

As discussed, dFOXO functions downstream of the InR and JNK signaling 

pathways.  We decided to pursue the functional characterization of dFOXO as a mid-

interacting gene to elucidate the mid-specific transcription factor regulatory network 

guiding the specification of cells as well as promoting their survival. The latter 

relationship associating a novel survival function for mid has only been reported for one 

T-box gene, T-bet. The T-bet gene has been shown to regulate cytokine production under 



28 
 

 
 

conditions of stress in differentiating T-helper cells within the immune system of the 

mouse (Rockwell, Zhang, Fields, & Klaassen, 2012; Szabo et al., 2000).  

We first placed a heterozygous mutant allele of dFOXO, dFOXO25, in the mid-

RNAi background to determine whether UAS-mid-RNAi/+;GMR-Gal4/dFOXO25  flies 

recapitulated the suppression of the mutant eye bristle phenotype observed in UAS-mid-

RNAi/+;GMR-Gal4/Df(3R)ED5634 flies. We found that bristles were significantly 

increased in UAS-mid-RNAi/+;GMR-Gal4/dFOXO25 adult eyes (Figure 7G, I) (Table 2). 

The deposition of pigment was also recovered throughout the adult eyes of UAS-mid-

RNAi/+;GMR-Gal4/dFOXO25 flies (Figure 6G). We next placed a semi-lethal mutant 

allele of dFOXO in the mid-RNAi background designated dFOXOEY16506. The 

dFOXOEY16506 line is one of several enhancer trap lines designed to track the dFOXO 

expression pattern using a surrogate B-galactosidase reporter gene inserted downstream 

from the dFOXO enhancer region. The dFOXOEY16506 P-element insertion is also located 

approximately 18 kb downstream from the dFOXO promoter region before the coding 

region for the dFOXO transcription factor DNA-binding motif. Placing dFOXOEY16506 in 

a heterozygous state in the mid-RNAi background partially recovered bristles (Figure 7H, 

I) (Table 2) indicating that the C-terminal domain of the dFOXO protein expressed from 

the dFOXOEY16506 mutant allele retained partial functional activity. These results identify 

dFOXO as a novel and specific mid-interacting gene. 
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Table 4 

Dorsal mean IOB counts of mid-interacting candidate genes identified from a genetic 

modifier screen 

  

Note. Each column represents a specific genotype and the mean dorsal IOB count +/- SEM.  The first two uncolored columns are 

additional F1 progeny recovered in the genetic modifier screens which do not carry the GMR-Gal4 driver line. The green-labeled 

genotype represents an F1 progeny heterozygous for both the mutant allele and the GMR-Gal4 driver line which provides a WT 

phenotype of bristle numbers that are nearly equivalent to those of OR flies. The red-labeled genotype represents an F1 progeny 

designated as a mid-RNAi condition except where there is a “P”. The “P” label indicates that an internal F1 mid-RNAi genotype was 

not generated from the cross and the genotype represents a parental mid-RNAi compound eye (UAS-mid-RNAi/CyO;GMR-Gal4/TM3). 
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The blue-labeled genotype represents an F1 progeny that places a heterozygous mutant allele or UAS-RNAi-TRiP line of an InR 

pathway member in a mid-RNAi background to assay for enhancement or suppression of the mid-RNAi phenotype. Recovery was 

determined as the percentage change between the flies with the mid-RNAi condition (red column) and flies with a heterozygous mutant 

allele in the background of the mid-RNAi condition (blue column). The data sets represented in the bar graph were statistically 

analyzed using tests as described in detail in section 4.9 of the methods. 

 

Allelic Modifier Studies Place mid Genetically within the InR/Akt Signaling Pathway 

We undertook allelic genetic modifier studies by placing mid-RNAi flies within 

either heterozygous null mutant alleles and/or transgenic RNAi lines available for genes 

known to function within the InR/Akt genetic pathway including dInR, chico, dPI3K, 

dPTEN, dPDK1, dAkt, dTOR, and Thor. The Thor gene encodes the 4E-BP protein. We 

also assayed a different mutant allele of dFOXO, dFOXOΔ94. Instead of counting all of 

the bristles of the compound eye, we counted bristles generated in the dorsal half of the 

eye since these numbers provided more accurate bristle counts of montaged images 

obtained from the light compound microscope. All heterozygous mutant alleles and 

RNAi lines of the InR pathway exhibited normal bristle numbers compared to WT flies 

(data not shown) and were each independently crossed to mid-RNAi flies to carry out the 

modifier screen. With the exception of dPDK1 and Thor, every mutant allele or 

transgenic RNAi line of each gene placed in the mid-RNAi background significantly 

suppressed the mid mutant phenotype (Table 5).  

The most effective suppressors of the mid-RNAi phenotype recovered a majority 

of IOBs and exhibited normal cell morphology, especially within the peripheral region of 

the eye (Figure 8). Statistically significant suppressors placed in the UAS-mid-

RNAi/+;GMR-Gal4/+ background included dFOXOΔ94, TRiP-dILP6, TRiP-PI3K, and 

TRiP-PTEN where compound eye bristles were recovered by approximately 46-59% 

(Figure 9) (Table 5). The TRiP designation indicates an RNAi transgenic line (Ni et al., 



31 
 

 
 

2009). The TRiP-dTOR, TRiP-dInR and TRiP-dILP5 compound eyes exhibited a 

moderate recovery of bristles by 23%, 28%, and 39%, respectively (Figure 9) (Table 5). 

Less statistically significant suppressors included TRiP-dILP2, TRiP-Chico, and TRiP-

dAkt where bristles still were recovered by ~23-66% (Figure 9) (Table 5).         
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Figure 9. An allelic modifier screen indicates that mid antagonizes most members of the 

InR signaling pathway. Each horizontal series of panels consists of three images of 

specific F1 genotypes of the compound eyes of one-day old female progeny generated 

from the parental cross of mid-RNAi flies with a mutant allele or RNAi line available for 

the allele (designated by TRiP) of the InR pathway. These images are followed by a bar 

graph represented with a primed alphabetical letter. The bar graph summarizes the mean 

bristle numbers +/- the SEM of each genotype highlighted by green, red, and blue colors 

that correspond with the coloring of the three matching subpanel titles. The green-labeled 

genotype represents an F1 progeny heterozygous for both the mutant allele and the GMR-

Gal4 driver line which provides a WT phenotype of bristle numbers that are nearly 

equivalent to those of Oregon-R flies (Das et al., 2013). The red-labeled genotype 

represents an F1 progeny designated as a mid-RNAi condition except where there is a 

“P”. The “P” label indicates that an internal F1 mid-RNAi genotype was not generated 

from the cross and the genotype represents a parental mid-RNAi compound eye (UAS-

mid-RNAi/CyO;GMR-Gal4/TM3). The blue-labeled genotype represents an F1 progeny 

that places a heterozygous mutant allele or UAS-RNAi-TRiP line of an InR pathway 

member in a mid-RNAi background to assay for enhancement or suppression of the mid-
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RNAi phenotype. Statistical comparisons among designated genotypes are represented by 

brackets where all comparisons are statistically significant and represented by one, two, 

or three asterisks. For reviewing the p-values represented by the asterisks refer to Table 3. 

The data sets represented in the bar graph were statistically analyzed using several tests 

as described in detail in section 4.9 of the methods. The genetic data suggest that mid 

antagonizes most members of the InR receptor pathway. Based upon the broad range of 

suppression, mid appears to genetically antagonize specific alleles in a dosage-dependent 

manner. 
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Table 5 

Data comparisons from an allelic modifier screen assaying members of the InR/Akt 

signaling pathway 

 

Note. Each column represents a specific genotype and the mean dorsal IOB count +/- SEM.  The first two uncolored columns are 

additional F1 progeny recovered in the genetic modifier screens which do not carry the GMR-Gal4 driver line. The green, red, and 

blue labeled columns correspond to the similarly labeled genotypes shown in Figure 3.  Recovery was determined as the percentage 

change between the flies with the mid-RNAi condition (red column) and flies with a heterozygous mutant allele in the background of 

the mid-RNAi condition (blue column). The data sets represented in the bar graph were statistically analyzed using tests as described in 

detail in section 4.9 of the methods. 
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Allelic Modifier Studies Place mid Genetically within the JNK Signaling Pathway 

Similarly, we carried out an additional allelic modifier study by placing mid-RNAi 

flies within either heterozygous null mutant alleles or RNAi lines available for genes 

known to function within the JNK signaling pathway. We found that the compound eyes 

of flies with TRiP-hep, TRiP-cka, TRiP-bsk, and TRiP-fos placed in the mid-RNAi 

background exhibited a significantly suppressed mid-RNAi phenotype, where bristles 

were recovered by 26-46% (Figure 10) (Table 6). Less significantly, the mid-RNAi 

mutant phenotype was suppressed with TRiP-slpr and TRiP-jun with a recovery of ~16% 

and ~41% bristles, respectively (Figure 10) (Table 6). The UAS-mid-RNAi/+;GMR-

Gal4/pucDN compound eyes also showed a suppressed mid-RNAi phenotype where 

bristles were recovered by ~27% (Figure 10G) (Table 6). Based upon these results, we 

propose that mid functions downstream of bsk within the JNK signaling pathway to 

antagonize InR/Akt signaling by relieving a negative feedback inhibition loop mediated 

by Puc to block Bsk activity (Figure 10H). In addition, mid antagonizes the JNK pathway 

at the level of hep and cka (Figure 10B). 
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Figure 10. An allelic modifier screen shows that mid antagonizes specific JNK pathway 

members. Each horizontal series of panels consists of three images of specific F1 

genotypes of the compound eyes of one-day old female progeny generated from the 

parental cross of mid-RNAi flies with a mutant allele or RNAi line available for the allele 

(designated by TRiP) of the JNK pathway. These images are followed by a bar graph 

represented with a primed alphabetical letter that summarizes the mean bristle numbers 

+/- the SEM of each genotype highlighted by the green, red, and blue colors shown on the 

first three subpanel titles corresponding with the colored bars of the graph. The green-

labeled genotype represents an F1 progeny heterozygous for both the mutant allele and 

the GMR-Gal4 driver line which provides a WT phenotype of bristle numbers that are 

nearly equivalent to those of OR flies (Das et al., 2013). The red-labeled genotype 

represents an F1 progeny designated as a mid-RNAi condition except where there is a 

“P”. The “P” label indicates that an internal F1 mid-RNAi genotype was not generated 

from the cross and the genotype represents a parental mid-RNAi compound eye (UAS-

mid-RNAi/CyO;GMR-Gal4/TM3). The blue-labeled genotype represents an F1 progeny in 

which a heterozygous mutant allele or UAS-RNAi-TRiP line of a JNK pathway member is 

placed within a mid-RNAi background to assay for enhancement or suppression of the 

mid-RNAi phenotype. Statistical comparisons among designated genotypes are 

represented by brackets where all comparisons are statistically significant and represented 

by one, two, or three asterisks. For reviewing the p-values represented by the asterisks 

refer to Table 4. The data sets represented in the bar graph were statistically analyzed 

using several tests as described in detail in section 4.9 of the methods. The genetic data 

suggest that mid antagonizes seven members of the JNK pathway in a dosage-dependent 

manner. (H) The schematic represents the genetic hierarchy of the JNK signaling 

pathway. 
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Table 6 

Data comparisons from an allelic modifier screen assaying members of the JNK 

signaling pathway 

 

Note. Each column represents a specific genotype and the mean dorsal IOB +/- SEM count.  The first two uncolored columns are 

additional F1 progeny recovered in the genetic modifier screens which do not carry the GMR-Gal4 driver line. The green, red, and 

blue labeled columns correspond to the similarly labeled genotypes shown in Figure 4.  Recovery was determined as the percentage 

change between the flies with the mid-RNAi condition (red column) and flies with a heterozygous mutant allele in the background of 

the mid-RNAi condition (blue column). The data sets represented in the bar graph were statistically analyzed using tests as described in 

detail in section 4.9 of the methods. 
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Mid Exhibits a Nuclear and Cytoplasmic Distribution 

Based upon the broad scope of the genetic data, we addressed the possibility that 

Mid may interact directly or indirectly within N, InR/Akt, and/or JNK signaling pathway 

members located within the cytoplasm and/or nucleus to regulate neuronal cell fate 

specification and survival. Moreover, from previous immunofluorescent antibody 

labeling studies with specific cytoplasmic and nuclear markers, we detected Mid and its 

paralog H15 expressed within both the cytoplasm and nucleus of wild-type (WT) 

Oregon-R (OR) eye imaginal discs of third-instar (3oL) larvae (data not shown). To 

biochemically confirm that Mid and H15 exhibits a cytoplasmic and nuclear distribution, 

we undertook Western analyses of nuclear and cytoplasmic extracts isolated from OR and 

UAS-mid-RNAi/CyO;GMR-Gal4/TM3 3oL whole tissue homogenates (Figure 11). The 

western blot shows a Mid-specific band migrating at approximately 72 kDa in both the 

cytoplasm and nucleus of OR and mid-RNAi (Figure 11). However, the Mid distribution 

in mid-RNAi appears to be slightly more cytoplasmic compared to that of OR.  Mid also 

displayed a doublet band in the nuclear fraction, perhaps suggesting that Mid may have 

been phosphorylated.  The Mid band is also not a clean solid band but instead had a 

smear effect similar to the running of DNA. Curiously, H15 was found to be completely 

within the cytoplasmic fraction as well as running at approximately 36 kDa, half of the 

expected weight of 72 kDa (Figure 11). We confirmed clean fractionation by observing 

Lamin C within the nuclear fractions and β-tubulin within the cytoplasmic fractions. 
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Figure 11. Mid is detected in both the cytoplasm and nucleus of WT 3oL tissues. Western 

blot analysis indicates that Mid is expressed within cytoplasmic and nuclear fractions 

isolated from 3oL whole tissue homogenates.  Mid expression is found to be more 

cytoplasmic and less nuclear in mid-RNAi conditions compared to OR.  H15 is entirely 

cytoplasmic and not found within the nuclear fraction.  Lamin C and β–Tubulin were 

used as loading controls for the nuclear and cytoplasmic fraction, respectively. 
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A Low Level of Paraquat-induced Oxidative Stress Suppresses the mid-RNAi  

Mutant Phenotype by Partially Recovering IOBs 

Since the JNK pathway reacts to oxidative stress by neutralizing reactive oxygen 

species (ROS) (McCubrey, LaHair, & Franklin, 2006) and Mid genetically antagonizes 

several JNK pathway members, we determined whether oxidative stress affects the 

development of IOBs in WT and mid-RNAi mutant flies. Three-day old 3oL were fed 

0.5% yeast paste alone or 0.5% yeast paste containing increasing doses of paraquat (1, 5, 

10, 20, and 30 mM) until eclosion approximately 5 days later (Figure 12A). Paraquat 

increases ROS and is a neurotoxic reagent (Mollace et al., 2003). We found that larvae 

fed with 1 mM paraquat generated viable, one-day old adult OR and mid-RNAi mutant 

flies (Figure 12A). While 1 mM paraquat-treated OR flies developed normally they 

exhibited lower numbers of IOBs compared to untreated OR flies (Figure 12A). 

Conversely, the eyes of 1 mM paraquat-treated mid-RNAi flies exhibited significantly 

higher numbers of bristles than untreated mid-RNAi flies (Figure 12A). Increased doses 

of paraquat at 5, 10, and 20 mM gradually restored the IOB bristle count of OR and mid-

RNAi mutant flies to that detected at 0 mM paraquat (Figure 12A). Treatment with a 30 

mM dose of paraquat resulted in poor brain development in some larvae as well as a 

headless phenotype in surviving adult mid-RNAi flies (data not shown).  

We next determined whether inducing metabolic stress via a starvation paradigm 

affected the development of IOBs in one-day old female WT and mid-RNAi flies. 

Following a starvation period of 24 hours during late 3oL stages, both WT and mid-RNAi 

flies exhibited a concomitant decrease in IOBs (Figure 12B) and eye size (data not 

shown). Such a result suggests that mid is genetically active within the Akt and JNK 
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signaling pathways in association with oxidative stress to regulate SOP cell fate 

specification and bristle formation.  

 

Figure 12. A low level of paraquat-induced oxidative stress suppress the mid-RNAi 

mutant IOB phenotype while metabolic stress has no effect on the mid mutant phenotype. 

Dorsal interommatidial bristles were counted from OR and mid-RNAi flies treated with 

increasing dosages of paraquat (0mM, 1mM, 5mM, 10mM, and 20mM) to induce 

oxidative stress. (A) While a 1 mM dose of paraquat results in a 9% loss of bristles 

compared to untreated (0 mM paraquat) WT flies (p* = 0.0018), mid-RNAi flies fed 1 

mM paraquat exhibit a 21% recovery of bristles compared to untreated mid-RNAi flies 

(p* = 0.0237). Increasing doses of paraquat gradually recover bristle counts to the 

baseline levels detected at 0 mM paraquat (untreated flies) in both WT and mid-RNAi 

strains. (B) Induction of metabolic stress through starvation results in a similar loss of 

bristles in both OR (12% loss) and mid-RNAi (8% loss) flies. We scored 30 eyes for IOB 

counts for all control and experimental groups. The error bars denote the mean bristle 

count +/- SEM. The p values are assessed by one-factor ANOVA and Tukey’s Honest 

Significant Difference (HSD). 
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CHAPTER IV 

DISCUSSION 

Mid Antagonistically Regulates dFOXO 

Through our allelic modifier screen to enhance or suppress a mid-RNAi mutant 

phenotype with members of the InR and JNK signaling pathway, we present evidence of 

mid antagonism with members of both signaling pathways and most significantly, 

dFOXO.  These results suggest that Mid antagonistically interacts with the InR and JNK 

pathways upstream of dFOXO.  

We propose a model in which Mid complexes with the co-repressors of Su(H), 

Gro, H, and CtBP, to compete with the co-activator complex of Su(H), dFOXO, Mam, 

and NICD for binding affinity to Su(H) (Figure 13). Based on our model, Mid prevents 

dFOXO from removing the co-repressors of Su(H) in the absence of the NICD.  Thus, 

within wild-type pre-SOP cells, Su(H) inhibits E(spl) and drives proneural SOP cell fate 

adoption. Under mid-RNAi conditions, however, the weakened co-repressor complex can 

no longer prevent dFOXO from ejecting the co-repressors and thereby activates Su(H) 

without NICD. Activated Su(H) drives expression of E(spl) which promotes the adoption 

of the epithelial cell fate.  It is possible that specification of potential proneural SOP cells 

into epithelial cells yields the mid-RNAi mutant eye phenotype. Upon introduction of a 

dFOXO loss-of-function mutant allele in the background of the mid-RNAi phenotype, we 

detected a nearly complete recovery of SOP neuronal cell fates, suggesting that a 

stoichiometric balance between Mid and dFOXO is required to regulate Su(H) activation. 

Previous evidence supports our model by placing mid genetically within the 

Notch/Delta signaling pathway downstream of N but upstream of E(spl) in the genetic 
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hierarchy (Das et al., 2013). Further, Mid has previously been suggested to directly bind 

with Gro via Mid’s Engrailed homology-1 domain to regulate the segment polarity gene 

wingless (Formaz-Preston, Ryu, Svendsen, & Brook, 2011). Mid interaction with Gro is 

also conserved in mammalian and amphibian systems as well: studies report TBX-20, 

binds directly with the Gro ortholog, Transducin-like Enhancer of Split (TLE) 

(Kaltenbrun et al., 2013). Additional evidence has suggested that Foxo1, the mammalian 

homolog of dFOXO, plays a crucial role in removing the co-repressors of Csl, the 

mammalian homolog of Su(H), in complex with the Mam/NICD (Kitamura et al., 2007). 

The removal of the Csl co-repressors increases expression of Hes1, the mammalian 

homolog of E(spl), within in vitro mouse cell cultures (Kitamura et al., 2007). Past 

studies have indicated an intrinsic link between the Notch, InR, and JNK signaling 

pathways in regard to the development of a multitude of tissues (Dutriaux, Godart, 

Brachet, & Silber, 2013; Hsu & Drummond-Barbosa, 2011; Zecchini, Brennan, & 

Martinez-Arias, 1999).  Most recently, the InR and Notch signaling pathways were 

reported to regulate the bristle formation of the peripheral nervous system (Dutriaux et 

al., 2013). Taken together, the evidence appears to support the model that Mid is involved 

in a co-repressor/co-activator relationship with dFOXO to regulate Su(H) at the E(spl) 

enhancer region. 
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Figure 13. A model depicting the hypothetical mechanism by which Mid and dFOXO 

interact to regulate neuronal SOP cell fates. Mid functions to preserve Gro-H-CtBP co-

repression of Su(H) in the absence of NICD.  (A) Without the nuclear localization of NICD 

to form a complex with dFOXO, Mid prevents dFOXO from removing corepressors of 

Su(H) and leads to the adoption of the SOP cell fate. (B) Nuclear translocation of NICD to 

complex with dFOXO bypasses Mid inhibition of dFOXO and allows dFOXO to 

exchange Su(H) corepressors Gro-H-CtBP for co-activator Mastermind.  This results in 

expression of E(spl) and the adoption of the epithelial cell fate. 

 

Mid Exhibits Bifunctional Regulation of the InR and JNK pathways 

From our proposed model, we expect that in the mid-RNAi background, 

decreased dFOXO activity via disruption of the JNK pathway results in the Mid-co-

repressor complex keeping Su(H) in a co-repressive state and as a result, more cells adopt 

the SOP cell fate to create a suppression of the mid-RNAi phenotype. Likewise, 

upregulating dFOXO via the InR pathway should lead to an increased conversion of 

Su(H) into a co-activator and enhance the mid-RNAi phenotype. However, our results did 

not agree with this prediction. In contrast, disruption of many InR alleles placed in the 

mid-RNAi background suppresses the mid-RNAi phenotype and recovers bristles. 

Curiously, allelic modifier candidates that were antagonistic to the InR and JNK 

pathways such as PTEN and puckered, respectively, did not enhance the mid-RNAi 

phenotype.  Decreased PTEN and Puckered both suppressed the mid-RNAi phenotype. 

In the InR pathway, PTEN represses PI3K by converting the protein back into 

PI2K and inhibits AKT signaling.  Thus, we expected reduced PTEN to enhance the mid-
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RNAi phenotype.  Oddly, we found that Mid antagonistically regulated AKT and PTEN 

signaling.  PTEN, a tumor suppressor gene, has been shown to promote apoptosis when 

overexpressed in the Drosophila eye (Huang et al., 1999).  Further, as an inhibitor of cell 

growth, reduced PTEN expression has been shown to induce cell proliferation (Huang et 

al., 1999). The increased levels of apoptosis seen in Das et al. (2013) in the mid-RNAi 

eye may have resulted from increased PTEN expression. When we knocked down both 

PTEN and mid expression together we may have returned apoptotic-signaling levels back 

to normal and recovered bristles.  

The results with puckered also suggest that there may be cross-talk with other 

pathways involving the JNK pathway.  The JNK pathway, for example, is involved in 

compensatory proliferation and is expressed in cells near apoptotic cells in response to 

cellular injury.  This proliferative pathway utilizes Decapentaplegic and Wingless signals 

secreted from the apoptotic cells as well as pro-apoptotic genes reaper and hid (Ryoo, 

Gorenc, & Steller, 2004). We may have activated a cellular proliferative aspect of JNK 

instead of the apoptotic pathway, or both in competition, when we reduced puckered 

expression in the mid-RNAi background.  Apoptotic cells releasing Reaper and Hid may 

initiate proliferative pathways in nearby non-apoptotic cells as compensation. These 

results with PTEN and Puckered suggest that Mid may serve a bifunctional role in 

regulating the InR and JNK signaling pathways.   

The mid-RNAi Phenotype is Responsive to Oxidative Stress 

We attempted to determine the effects of metabolic and oxidative stress using a 

starvation and paraquat exposure paradigm, respectively.  The results showed that 

induction of metabolic stress through starvation did not have a significant effect on the 
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mid-RNAi phenotype compared to wild-type flies.  Both starved strains resulted in a 

smaller bristle count but the flies were smaller in general as well as specifically in the 

ommatidium.  This decrease in size as a result of starvation has been reported previously, 

suggesting that the effect of starvation is primarily due to elements of the InR pathway 

instead of an interaction between mid and the InR pathway under starvation (Tu & Tatar, 

2003).  However, the starvation paradigm is only one aspect of AKT signal regulation. 

As reported, we found a significantly different response toward oxidative stress 

between OR and mid-RNAi strains exposed to paraquat at 3oL.  At 1 mM paraquat, we 

found that OR strains had a significant decrease in ommatidial bristles while mid-RNAi 

strains demonstrated a significant increase in ommatidial bristles.  As the dosage of 

paraquat increases, the ommatidial bristles gradually return back to match the results of 

the 0mM control.  At low doses, JNK may be activated under mid-RNAi conditions to 

neutralize reactive oxygen species and recover bristles.  Oxidative stress activates the 

JNK and increases dFOXO activity and is effectively an indirect gain-of-function 

dFOXO assay.  This suggests that mid may play a pro-apoptotic role under low oxidative 

stress.  At high levels of stress, there may be an averaging of effect through cross talk 

with various other pathways, in addition to the JNK, which leads to the gradual 

restoration of the mid-RNAi phenotype. 

Our findings deviate from the model hypothesized in Calnan and Brunet (2008) in 

which JNK invokes differential responses based on the amount of stress within the cells.  

In their model, low levels of stress initiate a pro-survival response to resist stress while 

high levels of stress active an apoptotic response by JNK.  Here, we find the opposite is 

true with low levels of stress inducing bristle loss in wild-type flies and high levels of 
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stress resulting in cellular resilience. It is possible that our results deviate from the Calnan 

and Brunet model due to flies refusing to ingest the food containing higher doses of 

paraquat.  The flies may sense a disturbance in the food and refuse to eat it as 3oL.  Thus, 

the flies were never truly exposed to the high levels of paraquat and subsequently 

reflected bristle counts similar to that of the 0 mM control.  If such an event occurred, it 

is possible that Calnan and Brunet’s model still holds where high dosages of oxidative 

stress through paraquat causes JNK to induce apoptosis instead of conferring stress 

resistance.  We would predict that after an initial increase of bristles in the mid-RNAi 

flies at low doses, there would be a gradual decrease in bristles as the dosages increased. 

Overall, our results show a differential response to low levels of paraquat between OR 

and mid-RNAi flies which supports mid interaction through the JNK as a pro-apoptotic 

element.   

Mid and H15 are Detected in the Cytoplasm and Nucleus 

 Through Western blot analysis, we detected Mid and H15 within the cytoplasmic 

fraction, a phenomenon not yet shown in literature but observed via immunofluorescence 

of the T-box gene Tbx-20 in fibroblast cells (Stennard et al., 2003) and Tbx-5 in chicken 

hearts (Bimber, Dettman, & Simon, 2007).  After testing H15 protein levels, we found 

that H15 was almost exclusively cytoplasmic and H15 levels remained constant in the 

mid-RNAi strain compared to OR. This result, in addition to the significant decrease in 

size, is very curious.  Although a paralog to Mid and sharing 89% identity, H15’s 

function has been less characterized and often only in conjunction with Mid (Buescher et 

al., 2006; Leal et al., 2009; Miskolczi-MaCallum et al., 2005; Qian et al., 2005; 

Svendsen, Formaz-Preston, Leal, & Brook, 2009). In the mid-RNAi flies, levels of Mid 
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were found to be increased in the cytoplasmic fraction and decreased within the nuclear 

fraction compared to OR.  It is possible that the mid-RNAi effect caused a cytoplasmic 

relocalization to effect upstream targets of dFOXO such as the InR receptor or Bsk. 

Surprisingly, the levels of Mid loss within the mid-RNAi strain were much higher than 

hypothesized considering that the mid-RNAi effect was thought to be localized 

exclusively to the eye using GMR-Gal4.  This suggests that the GMR-Gal4 may have off-

target effects and causes a decrease of mid expression in other tissue types as described in 

previous studies (Li, Li, Zheng, Zhang, & Xue, 2012). 
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CHAPTER V 

FUTURE DIRECTIONS 

 The central aim of this thesis is to elucidate mid’s transcriptional network and to 

specifically uncover mid’s interaction with dFOXO, a vital component of several 

developmental and physiological pathways, within the model organism Drosophila 

melanogaster.  These studies have taken steps towards achieving the aims but must be 

further clarified in the future in order to achieve a full understanding of mid’s gene 

regulatory network. 

Test the Proposed Model 

 While these studies have led to the formation of a proposed model in which Mid 

antagonizes dFOXO directly as a co-repressor of Su(H), we must test the model.  First, 

we can examine Mid binding affinity to Su(H) and Gro by co-immunoprecipition (co-IP) 

to demonstrate that Mid is a factor within the Su(H) co-repressive complex. This 

experiment is critical in determining the exact mechanism in which Mid antagonizes 

dFOXO.  The current model, in conjunction with recent literature, hypothesizes that Mid 

directly binds to the co-repressor complex to inhibit dFOXO’s ability to remove the co-

repressors from Su(H) but is still unconfirmed (Kaltenbrun et al., 2013). 

 In addition to co-IP, probing the differential expression of E(spl) between OR and 

mid-RNAi flies would provide further support for our model. In collaboration with Dr. 

Glenmore Shearer, we can perform this experiment with qRT-PCR to measure the E(spl) 

expression levels. Under our model, mid-RNAi flies should express increased of E(spl) 

compared to OR.   

 



50 
 

 
 

Examine Other Metabolic Stressors 

 In our metabolic stress experiment, we eliminated nutrient intake as a source of 

stress.  In doing so, we effectively inhibited the AKT pathway to alter dFOXO activity.  

We saw a similar decrease in bristle numbers in both OR and mid-RNAi flies but 

detected that both strains were smaller in overall size (data not shown).  The small size 

confirms that the AKT pathway was, at minimum, altered to limit growth and 

proliferation.  Members within the lab are currently examining the effects of the 

reciprocal stress, excess nutrients and glucose, on the mid-RNAi phenotype by feeding 

the flies food supplemented with additional fat or sucrose.  In these experiments, AKT 

would experience increased activation to inhibit dFOXO by cytoplasmic sequestration.  

This may exacerbate the mid-RNAi phenotype and lead to a decrease of IOBs.  If we 

detect increased IOB loss, we could further confirm increased cytoplasmic sequestration 

of dFOXO as well as examine Mid response via western blot analysis of 

nucleocytoplasmic fractions. 

Explore GMR-Gal4 Off Target Effects 

 Our examination of mid-RNAi effects utilizes the UAS/Gal4 binary system 

developed by Brand and Perrimon (1993) in conjunction with GMR-Gal4, an eye specific 

promoter.  Recent studies have shown that GMR-Gal4 has off target effects in the leg and 

wings in addition to the eye (Li et al., 2012). Thus, studying the off target effects of mid-

RNAi may be helpful in elucidating the true interaction between dFOXO and mid.  Fat 

bodies, for example, release InR-pathway-activating dILP proteins which we found to be 

antagonized by mid genetically.  The fat body and salivary gland also sends mitogenic 

signals to the eye imaginal disc to begin cellular proliferation (Delanoue et al., 2010; 
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Germinard et al., 2009; Kannan & Fridell, 2013).  We can perform immunofluorescence 

to examine mid expression levels in various tissues of the mid-RNAi strain.  There may 

be off target effects on the fat body, brain, or salivary glands which, when identified, can 

allow us to fully understand the implications of mid-RNAi expression by GMR-Gal4. 

Develop the mid Gene Regulatory Network 

 Currently, we have performed genetic modifier screens utilizing chromosomal 

deficiencies to identify potential mid interacting candidates.  In the future, we can 

perform ChIP-seq using anti-Mid antibody to determine global DNA binding sites for 

Mid. These binding sites would provide targeted mid-interacting candidates to explore 

further. If our proposed model holds, Mid would be observed at the enhancer region of 

E(spl).  Additionally, we could utilize RNA-seq to look at global differential expression 

changes resulting from mid-RNAi knockdown in various tissues and developmental time 

points.  This, in conjunction with the ChIP-seq binding site data, can extensively refine 

our target pool outside of the CNS and eye model systems. 
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