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ABSTRACT

APPROXIMATION OF THE SCATTERING AMPLITUDE USING NONSYMMETRIC

SADDLE POINT MATRICES

by Amber Robertson

December 2014

In this thesis we look at iterative methods for solving the primal (Ax = b) and dual
(AT y = g) systems of linear equations to approximate the scattering amplitude defined by
gT x = yT b. We use a conjugate gradient-like iteration for a unsymmetric saddle point matrix
that is contructed so as to have a real positive spectrum. We find that this method is more
consistent than known methods for computing the scattering amplitude such as GLSQR or
QMR. Then, we use techniques from "matrices, moments, and quadrature" to compute the
scattering amplitude without solving the system directly.
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and com-
putational usage. In many cases these fields tend to use different preferred notation to
indicate the same concept, and these have been reconciled to the extent possible, given the
interdisciplinary nature of the material. In particular, the notation for partial derivatives
varies extensively, and the notation used is chosen for stylistic convenience based on the
application. While it would be convenient to utilize a standard nomenclature for this impor-
tant symbol, the many alternatives currently in the published literature will continue to be
utilized.

The blackboard fonts are used to denote standard sets of numbers: R for the field of
real numbers, C for the complex field, Z for the integers, and Q for the rationals. The capital
letters, A,B, . . . are used to denote matrices, including capital Greek letters, e.g., Λ for a
diagnonal matrix. Functions which are denoted in boldface type typically represent vector
valued functions, and real valued functions usually are set in lower case roman or Greek
letters. Lower case letters such as i, j,k, l,m,n. Vectors are typset in bold, and matrices are
typeset in square brackets, e.g., [·]. In general the norms are typeset using double pairs of
lines, e.g., || · ||, and the abolute value of numbers is denoted using a single pairs of lines,
e.g., | · |. Single pairs of lines around matrices indicate the determinant of the matrix.

vii
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Chapter 1

INTRODUCTION

1.1 The Scattering Amplitude Problem

The scattering amplitude, in quantum physics, is the amplitude of the outgoing
spherical wave relative to that of the incoming plane wave. [11] It is useful when it is of
interest to know what is reflected when a radar wave is impinging on a certain object. The
scattering amplitude can be computed by taking the inner product of the right hand side
vector g of the dual system

AT y = g (1.1)

and the solution x of the primal system

Ax = b. (1.2)

Applications of the scattering amplitude come up in nuclear physics [1], quantum
mechanics [17], and computational fluid dynamics (CFD). [4] One particular application is
in the design of stealth planes.[1]

The scattering amplitude gT x = yT b creates a relationship between the right hand
side of the dual system and the solution to the primal system in signal processing. The
field x is determined from the signal b in the system Ax = b. Then the signal is received
on an antenna characterized by the vector g which is the right hand side of the dual system
AT y = g, and it is expressed as gT x. We are interested in efficiently approximating the
scattering amplitude. It is informative to look at methods that other researchers have used to
solve this problem, which will be discussed below.

The solution of the linear system (1.2) is important for many applications. This
solution can be obtained in many different ways depending on the properties of the matrix
A. The LDLT factorization can be used to solve some problems with a symmetric matrix,
or a Cholesky factorization can be used if the matrix is also known to be positive definite.
[13] However, for large, sparse systems, an iterative method is preferred. The conjugate

gradient method is the preferred iterative method for a symmetric positive definite matrix
A. [13] However it is much more difficult to find this solution for a matrix that is not
symmetric positive definite. In the case that we have a matrix that is not symmetric, we
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can use methods like the biconjugate gradient (BiCG) [3] and generalized minimal residual

(GMRES) methods.[20] If we have a matrix that is symmetric but indefinite, SymmLQ [25]
[22] is the iterative method of choice. Since the scattering amplitude depends on both
the primal and dual problem, we want to use methods that take both the primal and dual
problems into account, like the quasi-minimal residual (QMR) [19] and generalized least

squares residual (GLSQR) methods.[26]

1.2 Approximation of the Scattering Amplitude

The methods of this thesis introduce a conjugate gradient-like approach since, for
large sparse matrices, it is best to use an iterative approach, such as conjugate gradient.
Conjugate gradient has a very rapid convergence if A is near the identity either in the sense
of a low rank perturbation or in the sense of the norm. In [13] it is stated that

Theorem 1. If A = I +B is an n×n symmetric positive definite matrix and rank(B)=r then

the Hestenes Stiefel conjugate gradient algorithm converges in at most r+1 steps.

Theorem 2. Suppose A ∈ Rn×n is symmetric positive definite and b ∈ R. If the Hestenes

Stiefel algorithm produces iterates xk and κ = κ2(A) then

‖x−xk‖A ≤ 2‖x−x0‖A

(√
κ−1√
κ +1

)k

,

where ‖w‖A =
√

wT Aw.

It is also stated in [13] that the accuracy of xk is often better than this theorem
predicts and that the conjugate gradient method converges very rapidly in the A-norm if
κ2(A)≈ 1, where κ2(A) is the condition number of A. We see in [11] that the matrix AT A

gives a system with a symmetric matrix that is also positive definite when A is invertible.
However, the problem with using AT A is that now

κ2(A) = ‖A‖2‖A−1‖2 =
σmax(A)
σmin(A)

,

which is the condition number in the two-norm that is also equal to the largest singular
value over the smallest, is squared for AT A. Since this increases the sensitivity of the matrix,
possibly making it ill-conditioned, this thesis explores alternative approaches. Thus, we
want to try a matrix that can be guaranteed to have real, positive eigenvalues that allows us
to use a conjugate gradient-like approach. It is not necessarily symmetry that we seek, but
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we do want real, positive eigenvalues. The matrix we want to look at is the nonsymmetric
saddle point matrix from [7]

M =

[
ATWA AT

−A 0

]
.

We assume that the matrix W is symmetric positive definite and want to choose W so
that we can guarantee M has real, positive eigenvalues. In this thesis we use several different
approaches to compute the scattering amplitude: modified conjugate gradient, unsymmetric
Lanczos with perturbation of the initial vectors, and unsymmetric block Lanczos. These
iterative approaches to solving the linear system and computing the scattering amplitude are
used with the matrix M. We see some improvement in the rate of convergence for some of
these methods. We will also try some of these approaches (unsymmetric Lanczos, block
GLSQR, and symmetrizing of the initial vectors) with a symmetric matrix C, where

C =

[
0 A

AT 0

]
.

The scattering amplitude is uTC−1v where,

u =

[
b
0

]
v =

[
0
g

]
.

This thesis is organized as follows. In Chapter 2 we discuss the known methods for
solving a large linear system with iterative approaches to compute the scattering amplitude
such as Bidiagonalization or least squares QR (LSQR), quasi minimum residual (QMR),
and block generalized LSQR (GLSQR). Chapter 3 will give some necessary background
on matrices, moments, and quadrature (MMQ). The MMQ background is necessary to
understand the methods of this thesis because we want to approximate an expression of the
form

uT f (A)v,

where u and v are N-vectors, f (λ ) = λ−1 , and A is an N×N matrix. In Chapter 4 we will
introduce the methods of this thesis all using the matrix M including modified conjugate
gradient, bilinear form, unsymmetric block Lanczos, and perturbation of initial vectors using
unsymmetric Lanczos. Chapter 5 will include an analysis of the numerical results. The
conclusions and discussion of possible future work will be given in Chapter 6.
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Chapter 2

METHODS FOR SOLVING THE LINEAR SYSTEMS OF THE
PRIMAL AND DUAL PROBLEMS

2.1 QMR approach

The QMR approach [19] is based on the spectral decomposition A = XDX−1;
also the basis of the QMR approach is the unsymmetric Lanczos [13] [21] process which
generates two sequences

Vk =
[

v1 v2 . . . vk
]

Wk =
[

w1 w2 . . . wk
]

that are biorthogonal, meaning V T
k WK = I. We have the following relations:

AVk = Vk+1Tk+1,k, (2.1)

ATWk = Wk+1T̂k+1,k. (2.2)

where the tridiagonal matrices

Tk+1,k =



α1 γ1
β1 α2 γ2

β2
. . . . . .
. . . . . . γk−1

βk−1 αk
βk


=

[
Tk,k

βkeT
k

]

and

T̂k+1,k =



α̂1 γ̂1

β̂1 α̂2 γ̂2

β̂2
. . . . . .
. . . . . . γ̂k−1

β̂k−1 α̂k

β̂k


=

[
T̂k,k

β̂keT
k

]

have block structures in which Tk,k and T̂k,k are not necessarily symmetric.
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The residual, r = b−Ax, in each iteration can be expressed as

‖rk‖ = ‖b−Axk‖

= ‖b−Ax0−AVkck‖

= ‖r0−Vk+1Tk+1,kck‖

= ‖Vk+1(‖r0‖e1−Tk+1,kck)‖ (2.3)

with a choice of v1 =
r0
‖r0‖ where r0 = b−Ax0 and xk = x0 +Vkck. We now have the quasi-

residual ‖rQ
k ‖= ‖‖r0‖e1−Tk+1,kck‖. Then we choose w1 =

s0
‖s0‖ , where s0 = g−AT y0 and

yk = y0 +wkdk. Then the dual residual is ‖sQ
k ‖= ‖‖s0‖e1− T̂k+1,kdk‖. The vectors ck and

dk are the solutions of the least squares problems for minimizing ‖rQ
k ‖ and ‖sQ

k ‖. So now
the solutions can be defined as

xk = x0 +Vkck (2.4)

yk = y0 +Ukdk. (2.5)

2.2 LSQR approach

In LSQR [11] [22], a truncated bidiagonalization is used in order to solve the primal
and dual problems approximately. The bidiagonal factorization of A is given by A =UBV T

where U and V are orthogonal and B is bidiagonal. Thus, the primal and dual systems can
be written as

UBV T x = b (2.6)

V BTUT y = g. (2.7)

Now we can solve (2.6) by solving the following two systems

Bz = UT b (2.8)

x = V T z, (2.9)

and we can solve (2.7) by solving

BT w = V T g (2.10)

y = UT w. (2.11)

We need to use the following recurrence relations in an iterative process to produce a
bidiagonal matrix

AVk = Uk+1Bk (2.12)

ATUk+1 = VkBT
k +αk+1vk+1eT

k+1 (2.13)
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where Vk and Uk are matrices with orthonormal columns, and

Bk =


α1
β2 α2

β3
. . .
. . . αk

βk+1

 .
Also we have that

AT AVk = ATUk+1Bk = (VkBT
k +αk+1vk+1eT

k+1)Bk

= VkBT
k Bk + α̂kvk+1eT

k+1 (2.14)

and
α̂k+1 = αk+1βk+1.

Because Bk is bidiagonal, it follows that BT
k Bk is symmetric and tridiagonal. It can

be seen from (2.14) that (2.12) and (2.13) implicitly apply Lanczos iteration to AT A. Now
this iterative process can be used to obtain the approximate solution to the primal and dual
systems. We define the residuals at step k as

rk = b−Axk (2.15)

sk = g−AT yk (2.16)

where
xk = x0 +Vkzk yk = y0 +Uk+1wk.

The goal of the LSQR approach is to obtain an approximation that minimizes the norm
of the residual. That is, the norm ‖rk‖ = ‖b−Axk‖ is minimized. When working with
the primal and dual problems, this approach is limited due to the relationship between the
starting vectors

AT u1 = α1v1.

The above relationship does not allow v1 to be chosen independently.

2.3 Generalized LSQR (GLSQR)

The GSLQR method [26] [11] overcomes the disadvantages of the last method by
choosing starting vectors u1 =

r0
‖r0‖ and v1 =

s0
‖s0‖ independently where, for an initial guess

of x0 and y0, r0 = b−Ax0 and s0 = g−AT y0. It is based on the factorizations

AVk = Uk+1Tk+1,k =UkTk,k +βk+1uk+1eT
k (2.17)

ATUk = Vk+1Sk+1,k =VkSk,k +ηk+1vk+1eT
k (2.18)
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From the above we get that

βk+1uk+1 = Avk−αkuk− γk−1uk−1 = ck (2.19)

ηk+1vk+1 = AT uk−δkvk−θk−1vk−1 = dk, (2.20)

where the recursion coefficients αk, γk, ηk, and θk are chosen to make Uk and Vk have
orthonormal columns, which yields

αk = uT
k Avk, (2.21)

γk = uT
k−1Avk+1, (2.22)

δk = vT
k AT uk, (2.23)

θk = vT AT uk+1. (2.24)

We can define uk+1 =
ck
βk

and vk =
dk
ηk

, where βk = ‖ck‖, and ηk = ‖dk‖. Now we have that

Tk+1,k =


α1 γ1
β2 α2

. . . . . . γk−1
βk αk

βk+1

 Sk+1,k =


δ1 θ1

η2 δ2
. . .

. . . . . . θk−1
ηk δk

ηk+1

 .

The residuals can be expressed as follows

‖rk‖= ‖r0−Uk+1Tk+1,kxk‖= ‖‖r0‖e1−Tk+1,kxk‖, (2.25)

and
‖sk‖= ‖s0−VkST

k+1,Kyk−αk+1vk+1eT
k+1yk‖. (2.26)

The solutions xk and yk are

xk = x0 +‖r0‖VkT−1
k,k e1 (2.27)

yk = y0 +‖s0‖UkS−1
k,k e1. (2.28)
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Chapter 3

MATRICES, MOMENTS, AND QUADRATURE

3.1 Gaussian Quadrature

Gaussian quadrature can be used to approximate the bilinear form

uT f (W )v, (3.1)

where W is a symmetric matrix, using the eigendecomposition W = QΛQT and Q is orthog-
onal. [8] The scattering amplitude relates to (3.1) in that it is a bilinear form of this kind,
where f (λ ) = λ−1. With substitution we get that

uT f (W )v = uT Q f (Λ)QT v. (3.2)

Therefore,

uT f (W )v = α
T f (Λ)β =

n

∑
i=1

f (λi)αiβi, (3.3)

where α = QT u and β = QT v. which is the Riemann Stieltes integral:

uT f (W )v =
∫ b

a
f (λ )dα(λ ), (3.4)

where

α(λ ) =


0 if λ < a = λ1

∑
i
j=1 α jβ j if λi ≤ λ < λi+1

∑
n
j=1 α jβ j if b≤ λn ≤ λ

(3.5)

and a and b are the smallest and largest eigenvalues of A [8]. Now we can arrive at the
quadrature formula ∫ b

a
f (λ )dα(λ ) =

N

∑
j=1

w j f (t j)+
M

∑
k=1

vk f (zk)+R[ f ] (3.6)

where the weights w j,vk, and the nodes t j are unknown, and the nodes zk are prescribed.
For example, for a Gaussian rule, M = 0 since no nodes are prescribed, but for a Gauss-
Lobatto rule, M = 2 and the zk’s are a and b. We can compute the nodes and weights of
the quadrature rules by applying the Lanczos process to the symmetric matrix W . Then the
eigenvalues of the matrix Tk, that is produced by Lanczos, will represent the nodes of the
quadrature rule, and the first components of the corresponding eigenvectors of the matrix Tk

can be used to compute the weights. The advantage to this is that we do not have to find a
full solution of the primal problem Ax = b, so it is much more efficient.
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3.2 The Lanczos Method

In this section we recall an iterative method called the Lanczos method [23] [24] [13]that
generates a sequence of approximations to the solution of Ax = b, where each residual is
orthogonal to all previous residuals. The residuals are defined as

rk = b−Ax(k).

The algorithm is as follows:

k = 0,rk = b,qk = 0,x(k) = 0
while x(k) is not coverged do

βk = ‖rk‖2

qk+1 = rk/βk

k = k+1
vk = Aqk

αk = qT
k vk

rk = v−αkqk−βk−1qk−1

x(k) = β0QkT−1
k e1

end while

The tridiagonal matrix

Tk =


α1 β1
β1 α1 β2

. . . . . . . . .
βk−2 αk−1 βk−1

βk−1 αk

 ,

the Jacobi matrix, is generated by the Lanczos algorithm. Here we have that V T
k Vk = I,

where

Vk =
[

v1 v2 . . . vk
]
.

In this thesis we will use a version of the Lanczos algorithm for unsymmetric matrices.

3.3 Golub-Kahan bidiagonalization

This method [11] computes the scattering amplitude Jpr(x) = gT x directly using a
relationship between Gauss quadrature and Lanzcos. This approach is nothing more than the
Lanczos process applied to the matrix AT A, however, we do not want to do this because A
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suffers a loss of information due to roundoff error when computing the product AT A . Using
the fact that x = A−1b, p = AT b, and f (A) = A−1, a symmetric system can be obtained from

Jpr(x) = gT (AT A)−1AT b = gT (AT A)−1p = gT f (AT A)p, (3.7)

so that we can now use the Lanczos process to obtain the nodes and weights for the
quadrature rule. We use the following symmetrized version of (3.7),

Jpr(x) =
1
4
[
(g+p)T (AT A)−1(p+g)− (g−p)T (AT A)−1(g−p)

]
. (3.8)

The reason we use the symmetrized version is that by computing quadratic forms such as
uT f (A)u, rather than bilinear forms such as uT f (A)v where u 6= v, it is guaranteed that the
measure α(λ ) is positive and increasing, which leads to a numerically stable quadrature
rule.

Here we will analyze the Gauss rule where we apply the Lanzcos process to AT A to
get

AT AVN =VNTN + rNeT
N , (3.9)

where VN has orthonormal columns and

TN =


α1 β2

β2 α2
. . .

. . . . . . βN
βN αN

 .
The nodes of ∫ b

a
f (λ )dα(λ ) =

N

∑
j=1

ω j f (t j)+RG[ f ]

are determined by the eigenvalues of TN , where the residual RG[ f ] for f (x) = 1
x is given by

RG[ f ] =
1

η2N+1

∫ b

a

[
N

∏
j=1

(λ − t j)]
2dα(λ )

]
.

In this case, the residual RG[ f ] will always be positive since the eigenvalues of the matrix
AT A are positive. Therefore the scattering amplitude will always be underestimated by
the Gauss rule. Instead of applying the Lanczos process to the matrix AT A we can just
use the LSQR procedure which was presented in the previous chapter. Since the matrix
TN is tridiagonal and symmetric, computing the eigenvalues and eigenvectors is relatively
inexpensive. [13]
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If we apply the conjugate gradient method to a symmetric positive definite matrix A,
(TN)

−1
(1,1) can be computed by [11]

(TN)
−1
(1,1) =

1
‖r0‖2

N−1

∑
j=0

α j‖r j‖2. (3.10)

It can be shown [9] that the remainder RG[ f ] in the Gauss quadrature approximation, where
f (A) = A−1, is equal to the error at step k in the iterative method. That is,

‖x−xk‖AT A
‖r0‖

= RG[ f ]. (3.11)

Therefore, this method can be used to approximate the error for the Conjugate Gradient
method applied to the system AT Ax = p.

3.4 Approximation of the scattering amplitude using GLSQR (the block case)

This method uses a block approach along with GLSQR to approximate the scattering
amplitude. [8] The idea behind the block approach is to use a quadrature rule to approximate[

u v
]T f (C)

[
u v

]
,

where
u =

[
b
0

]
, v =

[
g
0

]
, (3.12)

and
C =

[
0 A

AT 0

]
.

This yields the following matrix integral,

∫ b

a
f (λ )dµ(λ ) =

[
bT 0
0 gT

][
0 A−T

A−1 0

][
b 0
0 g

]
=

[
0 bT A−T g

gT A−1b 0

]
,

(3.13)

where µ(λ ) is a matrix-valued measure in which each entry is a measure of the form (3.5).
The general quadrature formula is∫ b

a
f (λ )dα(λ ) =

k

∑
i=1

Ci f (Hi)Ci +R[ f ],

where Hi and Ci are symmetric 2×2 matrices. [10, 5, 14] This can be simplified a little by
letting Hi = QiΛiQT

i , where Qi is a matrix whose columns are the eigenvectors of Hi, and
Λi is a diagonal matrix containing the eigenvalues. Thus we get

k

∑
i=1

Ci f (Hi)Ci =
k

∑
i=1

CiQi f (Λi)QT
i Ci. (3.14)



12

Each term in the sum in (3.14) can be rewritten as

f (λ1)z1zT
1 + f (λ2)z2zT

2 , (3.15)

where z j is the jth column of CiQT
i , and λ j is an eigenvalue of Hi. Thus, the final form of

the quadrature rule is

f (λ1)z1zT
1 + f (λ2)z2zT

2 =
2k

∑
i=1

f (θi)uiuT
i . (3.16)

Given the following recurrence relation of orthogonal polynomials

λ p j−1(λ ) = p j(λ )B j + p j−1(λ )D j + p j−2(λ )BT
j−1

where p0(λ ) = I2, p−1(λ ) = 0, these polynomials are orthogonal with respect to the measure
µ(λ ). The above equation can be written as

λ [p0(λ ), . . . , pk−1(λ )] = [p0(λ ), . . . , pk−1(λ )]Tk +[0, . . . ,0, pk(λ )Bk]
T

where the matrix Tk that is generated by Block Lanczos [12] is defined by

Tk =


D1 BT

1
B1 D1 BT

2
. . . . . . . . .

Bk−2 Dk−1 BT
k−1

Bk−1 Dk

 .

Now the quadrature rule

∫ b

a
f (λ )dα(λ ) =

2k

∑
i=1

f (θi)uiuT
i +R[ f ],

can be obtained, where the nodes θi are the eigenvalues of Tk and the "weights" are uiuT
i ,

where ui consists of the first two components of the eigenvector corresponding to θi. [8]
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Chapter 4

ITERATIVE METHODS FOR UNSYMMETRIC SADDLE POINT
MATRICES

The matrix M, defined as follows

M ≡
[

ATWA AT

−A 0

]
,

where A and W are matrices, is a nonsymmetric saddle point matrix. It can be shown that
if the matrix W is symmetric positive definite, meaning that yTWy > 0 for all y 6= 0, then

xT Mx≥ 0. To show this we first let x =

[
y
z

]
. Then xT Mx can be written as

xT Mx =
[

yT zT ][ ATWA AT

−A 0

][
y
z

]
.

Carrying out this product, we get xT Mx = yT (ATWA)y− zT Ay+ yT AT z. It is easy to
see that this product (which results in a scalar value) reduces to yT (ATWA)y due to the
cancellation of terms.

Now if we let r = Ay for any non zero vector y, then rT = (Ay)T = yT AT . Since W

is symmetric positive definite, we have that yT (ATWA)y = rTWr > 0, since r is nonzero
due to A being invertible. Now that we have shown that xT Mx≥ 0, we need to show equality.
To do this we note that while x 6= 0, any component of x could equal 0, so long as there is at
least one non-zero component. If we assume y = 0, then xT Mx = yT (ATWA)y = 0. That is,
whether y is nonzero or not, xT Mx = rTWr≥ 0.

We want to choose W so that the matrix M has a real positive spectrum, meaning it
has all real, positive eigenvalues, so it is suitable for a conjugate gradient iteration. To make
this choice we need to first note that

M(γ)≡ Jp(M) = J(M− γI) =
[

ATWA− γI AT

A γI

]
where p is a polynomial of degree one in the form p(ζ ) = ζ − γ for γ ∈ R and

J≡
[

I 0
0 −I

]
.
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The goal here is to determine if there exists a symmetric positive definite matrix M(γ)

with respect to which M is symmetric, meaning that M is M(γ)-symmetric if M(γ)M =

MTM(γ) = (M(γ)M)T . Let us first define a generic nonsymmetric saddle point matrix

A=

[
Â B̂T

−B̂ Ĉ

]
with blocks Â, B̂, and Ĉ. Now define M(γ) = Jp(A). We can use the results from [18] that
state the following:

Lemma 1. Let the matrix

J≡
[

I 0
0 −I

]
be conformally partitioned with A. Then

(1) A is J-symmetric, i.e. JA=ATJ= (JA)T , and for any polynomial p,

(2a) p(A) is J-symmetric, i.e Jp(A) = p(AT )J= (Jp(A))T , and

(2b) A is Jp(A-symmetric), i.e (Jp(A))A=AT (p(A)T )J= (Jp(A)A)T .

Theorem 3. The symmetric matrix M(γ) is positive definite if and only if

λmin(Â)> γ > λmax(Ĉ) (4.1)

where λmin and λmax denote the smallest and largest eigenvalues, respectively, and

‖(γI−Ĉ)−1/2B̂(Â− γI)−1/2‖2 < 1. (4.2)

A sufficient condition that makes M(γ) positive definite can be derived from the
above theorem.

Corollary 1. The matrix M(γ) is symmetric positive definite when (4.1) holds, and, in

addition,

‖B̂‖2
2 < (λmin(Â)− γ)(γ−λmax(Ĉ)). (4.3)

For γ = γ̂ ≡ 1
2(λmin(Â)+λmax(Ĉ)), the right hand side of (4.3) is maximal and (4.3) reduces

to

2‖B̂‖2 < (λmin(Â)−λmax(Ĉ)). (4.4)

Corollary 2. If there exists a γ ∈R so that M(γ) is positive definite then A has a nonnegative

real spectrum and a complete set of eigenvectors that are orthonormal with respect to the

inner product defined by M(γ). In case B̂ has full rank, the spectrum of A is real and

positive.
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Using the previous results from [18], the following can be shown.

Theorem 4.
w >

2σmax(A)
λmin(AT A)

. (4.5)

where W = wI. If we assume W to be symmetric positive definite a proper selection of W

can be made so that

M =

[
ATWA AT

−A 0

]
has real, positive eigenvalues. Therefore, the selection of W makes the matrix M suitable

for a conjugate gradient iteration.

Proof: We need to satisfy (4.1) with a proper selection of γ . Let

γ =
1
2
(λmin(ATWA))

from Corollary 1. Because of how γ is defined, γ satisfies the following

λmin(ATWA)> γ, (4.6)

which means (4.1) is also satisfied. Now we need to choose W so that (4.4) from Corollary 1
holds true. We have

2‖AT‖2 < λmin(ATWA) (4.7)

2σmax(A)< λmin(ATWA) (4.8)

where ‖AT‖2 = ‖A‖2 is equal to the largest singular value of A. If we let W = wI, then

λmin(ATWA) = wλmin(AT A)

rearranging (4.8) gives the following choice of w,

w >
2σmax(A)
λmin(AT A)

. (4.9)

Then the matrix W satisfies the requirements to make M(γ) be symmetric positive definite
and that A= M has a real, positive spectrum from Corollary 2. This result makes the matrix
suitable for a conjugate gradient-like iteration in the sense of Lemma 2 below.
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4.1 Modified Conjugate Gradient Approach

Here we will introduce a Conjugate Gradient (CG) approach that solves a linear
system with the matrix

M ≡
[

ATWA AT

−A 0

]
. (4.10)

This matrix is not symmetric; however, the spectrum is entirely contained in the right half
of the complex plane. This follows from the fact that xT Mx ≥ 0. We know that there
exists a conjugate gradient-like method for solving systems with this matrix M because M

is diagonalizable with real, positive eigenvalues when the bilinear form is a proper inner
product, (u,v)G = uT Gv if G is symmetric positive definite, with respect to which M is
symmetric. Meaning a matrix is G-symmetric if GM is symmetric or (Mu,v)G = (u,MvG),
if the norm of A is small enough (see (4.4)).

Let the vectors p and b be defined as

b =

[
ATWc+d
−c

]
p =

[
d
0

]
(4.11)

where Ax = c and pT x is the scattering amplitude for given vectors c and d. The following
conjugate gradient method is based on a given inner product (u,v)G = vT Gu for solving the
linear system of the form Mx = b.

Algorithm 4.1
Input: System matrix M, right hand side vector b, inner product matrix W , initial guess
x0

Require: r0 = b−Mx0

for i = 0,1, . . . until convergence do
αi =

(x−xi,pi)G
(pi,pi)G

xi+1 = xi +αipi

ri+1 = ri−αiMpi

βi+1 =− (ri+1,pi)G
(pi,pi)G

pi+1 = ri+1 +βi+1pi

end for

We have the inner product matrix W =M(γ)M given by [18]. In [18] we see the choice of
W gives a working CG from the following lemma.

Lemma 2. Suppose that the symmetric matrix M(γ) is positive definite, and M =A. Then

Algorithm 4.1 is well defined for M and G =M(γ)M, and (until convergence) the scalars αi
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and βi+1 can be computed as

αi =
(ri,ri)M(γ)

(Mpi,pi)M(γ)
(4.12)

βi+1 =
(ri+1,ri+1)M(γ)

(Mri,ri)M(γ)
. (4.13)

Since we are using a modified conjugate gradient method, we need each residual to
be orthogonal to each previous residual.

Theorem 5. Each residual rk as defined in the above algorithm is orthogonal to all previous

residuals with respect to M(γ) ,i.e. (rT
i ,r j)M(γ) = 0, where i 6= j.

Proof: We know that ri+1 = ri−αiApi. Let αi be defined as in (4.12). Also, we
know that all of the search directions are orthogonal, i.e. pT

i M(γ)Ap j = 0 for i 6= j. We
want to show that riM(γ)r j = 0. This will be shown by induction, where the base case that
we want to show is

rT
i+1M(γ)ri = 0, i = 0,1, . . . . (4.14)

To show this we use the definition of αi and the expression for the search directions in the
above algorithm, ri+1 = ri−αiApi. Now we have that

rT
i+1M(γ)ri = rT

i M(γ)ri−
rT

i M(γ)ri

pT
i A

TM(γ)pi
pT

i A
TM(γ)ri. (4.15)

Reindexing the definition of the residual from the algorithm yields the following expression
for ri

ri = pi−βipi−1.

Substituting this into (4.15) gives

rT
i+1M(γ)ri = rT

i M(γ)ri−
rT

i M(γ)ri

pT
i A

TM(γ)pi
(pT

i A
TM(γ)pi−βipT

i−1A
TM(γ)pi) (4.16)

Rearranging the last term in (4.16) yields

pT
i−1A

TM(γ)βipi = pT
i M(γ)Aβipi−1 = 0

because M(γ) is symmetric, and we already know that the search directions pi are orthogonal
with respect to M(γ). Now it is easy to see that the denominator in (4.16) and the last factor
in the numerator cancel leaving

rT
i+1M(γ)ri = rT

i M(γ)ri− rT
i M(γ)ri = 0.
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Now we need to show that each residual is orthogonal to all previous residuals. We will do
this by showing rT

i M(γ)ri−d = 0, where d > 1. Our induction hypothesis is rT
i−1M(γ)ri−d =

0. To show this, first shift the indices to get the expression

ri = ri−1−αi−1Api−1.

Rearranging the recurrence relation for the search directions yields

ri−d = pi−d−pi−1−dβi−d.

Using this expression for ri and ri−d we get,

rT
i M(γ)ri−d = rT

i−1M(γ)ri−d−αi−1pT
i−1AM(γ)(pi−d−pi−1−dβi−d)

= rT
i−1M(γ)ri−d−αi−1pT

i−1A
TM(γ)pi−d +αi−1pT

i−1A
TM(γ)pi−1−dβi−d,

where
rT

i−1M(γ)ri−d = 0

by the induction hypothesis. Now we are left with

rT
i M(γ)ri−d =−αi−1pT

i−1A
TM(γ)pi−d +αi−1pT

i−1A
TM(γ)pi−1−dβi−d = 0,

where both terms are 0 due to the orthogonality of the search directions.

4.2 Unsymmetric Lanczos

When A is not symmetric, it is not possible to generate a sequence of solutions xk to
Ax = b in which each residual rk = b−Axk is orthogonal to all previous residuals, using
only a three-term recurrence relation as Lanczos does. The unsymmetric Lanczos process
[21, 13] generates bases for two Krylov subspaces: one with A and one with AT . These
bases are made to be biorthogonal by the three term recurrence relations

βkqk+1 = Aqk−αkqk− γk−1qk−1 (4.17)

γkpk+1 = AT pk−αkpk−βk−1pk−1. (4.18)

This is a method that we will try with the unsymmetric matrix M. The algorithm for
unsymmetric Lanczos is as follows:

Algorithm 4.2
Input: System matrix A, right hand side vector q, right hand side of the dual system p.
Require: q0 = 0,p0 = 0,r0 = q1,s0 = p1
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while (rk 6= 0) and (sk 6= 0) and (sT
k rk 6= 0) do

αk = qT Ap
βk = ‖rk‖2

γk =
sT

k rk
βk

qk+1 =
rk
βk

pk+1 =
sk
γk

k = k+1
rk = (A−αI)qk− γk−1qk−1

sk = (A−αI)T pk−βk−1pk−1

end while

The resulting tridiagonal matrix Tk has the form :

Tk =


α1 γ1

β1 α2
. . .

. . . . . . . . .
. . . . . . γk−1

βk−1 αk

 (4.19)

Then the bilinear form that we are trying to find to approximate the scattering amplitude is
computed by uT A−1v≈ (uT v)eT

1 T−1
k e1 [8].

Now, we can use this unsymmetric Lanczos approach to approximate the scattering
amplitude. The expressions given for the scattering amplitude in this section come from
the previous chapter on "matrices, moments, and quadrature" (MMQ). In Chapter 3, it was
assumed that the matrix was symmetric; however, techniques from MMQ can be generalized
to unsymmetric matrices. [10]

An approach with perturbation of the vectors u and v can be taken. [8] We use the
perturbed bilinear form

uT f (A)(u+δv) (4.20)

together with
uT f (A)u, (4.21)

where δ is some given constant, to compute the scattering amplitude J. In this case

y1 ≈ uT A−1(u+δv),

y2 ≈ uT A−1u,

and J = y1−y2
δ

.
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4.3 Unsymmetric Block Lanczos

If we want to use the matrix M directly with the unsymmetric Lanczos approach,
we can adapt unsymmetric Lanczos to the block case. Again, we need to generate a pair of
biorthogonal Krylov subspaces for this method. [11]

Algorithm 4.3
Input: System matrix A, right hand side vector u, right hand side of the adjoint vector v.

R0 = [u v]
R0 = X1B0 (QR factorization)
GT = RT

0 R0B−1

Yi = R0G−1

for i = 1,2 . . . until convergence do
Di = Y T

i MXi

Ri = MXi−XiDi−Xi−1GT

Pi = MTYi−YiDi−Yi−1BT
i−1

Ri = XiBi−1(QR factorization)
GT = PT

i RiB−1
i−1

Yi = PiG−1

end for

The resulting block-tridiagonal matrix is

Tk =


D1 GT

1

B1 D2
. . .

. . . . . . . . .
. . . . . . GT

k−1
Bk−1 Dk

 , (4.22)

and the scattering amplitude is j12 where

J = GT
0 e12XB0, (4.23)

with

e12 =


1 0
0 1
0 0
...

...

 ,
and X = T−1e12.
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Chapter 5

ANALYSIS OF NUMERICAL RESULTS

In this chapter, we will analyze the results from the methods described in this thesis.
These methods include QMR from Section 2.2, GLSQR from Section 2.3, and modified
CG with M from Section 4.1. We have duplicated the results from [11] for GLSQR and
QMR and will compare them against the results for our modified CG method. We then show
results for symmetrized initial vectors with C, unsymmetric Lanczos with C and M from
Section 4.2 (bilinear form), Block GLSQR with C from Section 3.4, perturbation with M

from Section 4.2, and unsymmetric block Lanczos with M from Section 4.3. This chapter
also includes an analysis of the eigenvalues of M and C. We can get a better idea of why
particular methods perform in certain ways by looking at the eigenvalues of those matrices.

We need to first define the following matrices,

C =

[
0 A

AT 0

]
where C is a symmetric matrix, and M is our unsymmetric saddle point matrix

M =

[
ATWA −A

AT 0

]
where W is defined from (4.9). These examples are from [11].

5.1 Example 1

This example uses the matrix created by A=sprand(n,n,0.2)+speye(n) in MAT-
LAB where n=100, and the maximum number of iterations is 200. This creates a random
sparse n×n matrix, where 0.2 is the density of uniformly distributed nonzero entries, and
adds this to the identity.
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Figure 5.1: Example 1 with the matrix A

In Figure 5.1 we see that at the beginning of the iteration Modified CG reaches a
better approximation in fewer iterations than either QMR or GLSQR. Although GLSQR
eventually outperforms Modified CG, it takes about 120 iterations before it shows any sign
of convergence at all. Then it converges rapidly.
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Figure 5.2: Example 1 with the matrix C

We can see that Block GLSQR outperforms both the symmetrized method with the
symmetric matrix C, and bilinear form with C. However, bilinear form C does much better
than symmetrized with C reaching the maximum number of iterations without showing any
sign of convergence.
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Figure 5.3: Example 1 with the matrix M

Figure 5.3 shows that bilinear form with M oscillates a little bit but starts to converge
toward 200 iterations. Perturpation with M appears to do something similar, but it has
several more sudden spikes throughout the iterations. Unsymmetric block Lanczos with M

appears to fail for this example.

5.2 Example 2

Example 2 uses the ORSIRR_1 matrix from the Matrix Market collection, which
represents a linear system used in oil reservoir modeling. This matrix can be obtained from
http://math.nist.gov/MatrixMarket/.
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We see that modified CG starts out with the lowest error in the 2-norm of the residual.
Also we see that in both Figure 5.4 and Figure 5.1 that modified CG is more consistent than
either GLSQR or QMR. Although QMR actually outperforms GLSQR and Modified CG, it
takes about 400 iterations to do so.

From Figure 5.5 it can be seen that bilinear form with C is the only method showing
any sign of convergence. Both block GLSQR with and symmetrized with C fail in this case.

We see in Figure 5.6 that perturbation with M is the only method that converges,
although it takes about 200 iterations to do so. Both bilinear form with M and unsymmetric
Lanczos with M fail.

5.3 Example 3

First define the circulant matrix

J =


0 1

0 . . .
. . . 1

1 0

 .
Now the matrix used in this example A=1e-3*sprand(n,n,0.2)+J, where n=100, can be
constructed in MATLAB.
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Figure 5.4: Example 2 with the matrix A
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Modified CG starts out steady and consistent again in this Figure 5.7 as we see in
Figure 5.4 and Figure 5.1. Eventually, GLSQR converges, taking about 70 iterations to do
so, while QMR fails to show any sign of convergence.

In this Figure 5.8, block GLSQR outperforms symmetrized with C and bilinear
form with C by converging at about 140 iteration. Bilinear form with C also shows some
signs of convergence, but will take more than 200 iterations to converge, and the error in
symmetrized with C seems to be slowly descreasing.

Figure 5.9 shows that unsymmetric block Lanczos with M, perturbation with M, and
bilinear form with M converge rapidly.

5.4 Example 4

We need to first define

D1 =

 1000
. . .

1000

 ∈ Rp,p D2 =


1

2
. . .

q

 ∈ Rq,q

where n = p+q and Σ = diag(D1,D2). Now we can define A =UΣV T , where U and V are
orthogonal matrices. For this example we use n = 100 and D1 ∈ R90,90.

0 500 1000 1500 2000 2500
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Iterations

E
rr

o
r 

in
 S

c
a

tt
e

ri
n

g
 A

m
p

lit
u

d
e

 

 

Block GLSQR with C

Symmetrized with C

Bilinear form with C

Figure 5.5: Example 2 with the matrix C
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From 5.10, we see that modified CG starts off with the best approximation, but only
for about 15 iterations. Then it is overtaken by GLSQR. Also, we can see that QMR fails to
converge at all.

In Figure 5.11 we see Block GLSQR and symmetrized with C both converged
rapidly, though it takes symmetrized with C a few more iterations to do so. This is unlike
the results from previous examples where we saw that bilinear form with C outperformed
symmetrized with C. This is likely due to the spreading out of eigenvalues of the matrix
C. In this example, symmetrized with C works better because most of the eigenvalues are
clustered around 1000, whereas in other examples the eigenvalues are more spread out.

Figure 5.12 shows that perturbation with M and bilinear form with M converge
rapidly, while unsymmetric Lanczos with M fails to converge.
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Figure 5.6: Example 2 with the matrix M
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Figure 5.7: Example 3 with the matrix A
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Figure 5.8: Example 3 with matrix C

5.5 Example 5

This example uses the same definition of D1, D2, and A from Example 4. In this
example we will let n = 100 again, and D1 ∈ R50,50.
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Figure 5.9: Example 3 with matrix M
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Figure 5.10: Example 4 with the matrix A

Figure 5.13 shows the same trend we have been seeing, that Modified CG is more
consistent at the beginning than any other method. At about 65 iterations GLSQR outper-
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Figure 5.11: Example 4 with the matrix C
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Figure 5.12: Example 4 with the matrix M

forms Modified CG, and QMR fails to converge again.
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Figure 5.13: Example 5 with the matrix A
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Figure 5.14: Example 5 with matrix C

It can be seen from Figure 5.14 that block GLSQR with C outperforms both methods.
Symmetrized with C does eventually converge at about 150 iterations, while bilinear form
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with C fails to converge at all.
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Figure 5.15: Example 5 with the matrix M

From Figure 5.15 we see that it takes more iterations in this example, but bilinear
form with M and perturbation with M eventually start to converge around 100 iteration. In
this example unsymmetric Lanczos with M fails to converge.

5.6 Example 6

This example uses the same definition of D1, D2, and A from Example 4. In this
example we will let n = 1000 again, and D1 ∈ R600,600.

From Figure 5.16 we see that Modified CG shows the best results for the first 600
iterations. GLSQR takes many iterations to converge in this case, and QMR does not
converge at all.

5.7 Analysis of Eigenvalues of the Matrices M and C

In Figure 5.17 the eigenvalues of M from Example 1 are much more spread out than
the eigenvalues of C from Example 1.

We simulate the effect of preconditioning, as done in Figure 5.18, by transform-
ing A so that the eigenvalues of M and C are compressed. Now we can look at Ex-
ample 1 with the random sparse matrix multiplied by 0.1, i.e., the matrix created by
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Figure 5.16: Example 6 with the matrix A
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Figure 5.17: Eigenvalues of M and C from Example 1

A=0.1*sprand(n,n,0.2)+speye(n) in MATLAB, we get Figure 5.19. From Figure 5.19
we see that when the eigenvalues are compressed, modified CG converges rapidly.



34

0 20 40 60 80 100 120 140 160 180 200
10

−1

10
0

10
1

10
2

Iterations

M
a

g
n

it
u

d
e

 o
f 

E
ig

e
n

v
a

lu
e

s

 

 

Eigenvalues of M

Eigenvalues of C

Figure 5.18: Eigenvalues of M and C from Example 1 with sparse matrix multiplied by 0.1.
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Figure 5.19: Example 1 with M (eigenvalues compressed)
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Chapter 6

CONCLUSIONS AND FUTURE WORK

The results from this thesis show that the Modified CG method is much more
consistent and reliable than GLSQR or QMR. Modified CG only takes a few iterations to
make fairly significant progress while GLSQR takes many iterations in most cases, and
QMR rarely makes any progress. If preconditioning is used with Modified CG, as is usually
done with a conjugate gradient method, we have provided evidence that it will drastically
speed up the convergence rate. This is done by making the matrix closer to the identity. In
Example 1 this is done by multiplying the random sparse matrix that is added to I by a small
factor, like 0.1, thus simulating the effect of preconditioning. A future goal would be to
combine modified CG with preconditioning.

In the future, we also want to look at trying to relate our modified conjugate gradient
method with M to a quadrature rule. There are some difficulties in trying to do this because
we have orthogonality with respect to the inner product matrix W , in this case. However,
we wish to try to relate modified CG to a quadrature rule that would compute the scattering
amplitude directly. The scattering amplitude is defined in terms of the standard inner product;
it is this incompatibility of inner products that makes relation of modified CG to a quadrature
rule difficult.



36

BIBLIOGRAPHY

[1] Arnett, D. Supernovae and Nucleosynthesis: An Investgation of the History of Matter, from the
Big Bang to the Present, Princeton University Press, (1996).

[2] Björck, A. "A Bidiagonalization Algorithm for Solving Ill-posed Sytem of Linear Equations".
BIT, 41 (2001), pp. 659-670.

[3] Brezinski, C., Redivo-Zaglia, M. "Look-Ahead in BiCGSTAB and Other Product-Type Methods
for Linear Systems," BIT, 35 (1995), pp. 275-285.

[4] Giles, M. B., Pierce, A. "An introduction to the adjoint approach to design", Flow, Turbulence,
and Combustion, 65 (2000), pp. 393-415.

[5] Golub, G. H. "Some modified matrix eigenvalue problems", SIAM Review, 15 (1973), pp.
207-211.

[6] Golub, G. H., Eisenstat, S. C., Dahlquis, G. "Bounds for the error of linear systems of equations
using the theory of moments", J. Math. Anl. Appl., 37 (1972), pp. 207-211.

[7] Golub, G. H., Lambers, J. V. Private communication, (November 6, 2007).

[8] Golub, G. H., Meurant, G. "Matrices, Moments, and Quadrature". Proceedings of the 15th
Dundee Conference, June-July (1993), Longman Scientific and Technical, (1994), pp. 105-156.

[9] Golub, G. H., Meurant, G. "Matrices, Moments, and Quadrature. How to compute the norm of
the error in iterative methods", BIT, 37 (1997), pp. 687-705.

[10] Golub, G. H., Meurant, G. Matrices, Moments, and Quadrature with Applications, Princeton
University Press, (2010).

[11] Golub, G. H., Stoll, M., Wathen, A. "Approximation of the Scattering Amplitude and Linear
Systems". ETNA, 23 (2008), pp. 178-203.

[12] Golub, G. H., Underwood, R. "The block Lanczos method for computing eigenvalues", Mathe-
matical Software III, 7 (1977), pp. 361-377.

[13] Golub, G. H., Van Loan, C.F.: Matrix Computations, The Johns Hopkins University Press
(1996).

[14] Golub, G. H., Welsch, J. "Calculation of Gauss Quadrature Rules" Math. Comp., 23 (1969), pp.
221-230.
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