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ABSTRACT 

A COMPARISON OF TWO BOUNDARY METHODS FOR 

BIHARMONIC BOUNDARY VALUE PROBLEMS 

by Jaeyoun Oh 

May 2012 

The purpose of this thesis is to solve biharmonic boundary value problems using two 
different boundary methods and compare their performances. The two boundary methods 
used are the method of fundamental solutions (MFS) and the method of approximate 
fundamental solutions (MAFS). The Delta-shaped basis function with the Abel regularization 
technique is used in the construction of the approximate fundamental solutions in MAFS. 
The MFS produces more accurate results but needs known fundamental solutions for the 
differential operator. The MAFS can provide comparable results, and is applicable to more 
general differential operators. The numerical results using both methods are presented. 
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NOTATION AND GLOSSARY 

General Usage and Terminology 

The notation used in this text represents fairly standard mathematical and computational 

usage. In many cases these fields tend to use different preferred notation to indicate the same 

concept, and these have been reconci-led to the extent possible, given the interdisciplinary 

nature of the material. In particular, the notation for partial derivatives varies extensively, 

and the notation used is chosen for stylistic convenience based on the application. While it 

would be convenient to utilize a standard nomenclature for this important symbol, the many 

alternatives currently in the published literature will continue to be utilized. 

The blackboard fonts are used to denote standard sets of numbers: IR for the field of real 

numbers, C for the complex field, Z for the integers, and Q for the rationals. The capital 

letters, A ,B, ... are used to denote matrices, including capital greek letters, e.g., A for a 

diagnonaI matrix. Functions which are denoted in boldface type typicaliy represent vector 

valued functions, and real valued functions usualiy are set in lower case roman or greek 

letters. Lower case letters such as i, j ,k ,l ,m,n and sometimes p and dare used to denote 

indices. 

Vectors are typset in square brackets, e.g., [·], and matrices are typeset in parenthesese, 

e.g., (·). In general the norms are typeset using double pairs of lines, e.g., II· II, and the 

abolute value of numbers is denoted using a single pairs of lines, e.g., I· I. 

viii 



Chapter 1 

INTRODUCTION 

1 

The traditional numerical methods such as the finite element method (FEM) and the finite 

difference method (PDM) for solving partial differential equations are domain methods 

[3] . The domain methods require a mesh to the interior of a domain to approximate a 

solution. The boundary methods only require the numerical discretization on the boundary 

of a domain, with no mesh for the interior of a domain. They cost less than the domain 

methods in numerical modeling. They also have the benefits of easy refinement for the mesh 

and applicability to the moving boundaries. 

The purpose of the thesis is to solve biharmonic boundary value problems using two 

boundary methods: the method of fundamental solutions (MPS) and the method of approxi­

mate fundamental solutions (MAPS) and to compare the numerical results obtained by these 

methods. 

We consider the biharmonic equation 

Lu = V 4u = 0, inn, (1.1) 

where n is a simply connected domain in ~ 2 . The biharmonic problem arises in Stokes fluid 

flow and the elasticity in engineering fields [5], also in structural and continuum mechanics 

with applications to thin beams and plates [4, 7, 9]. 

The boundary conditions are given by 

u(x,y) = g1 (x,y) , on an, 
au an (x,y) = g2(x,y) , on an, 

(1 .2) 

(1.3) 

where g1 (x,y) and g2(x,y) are respectively the Dirichlet and Neumann data specified on 

an, and n denotes the outward normal of an. 
We will use the methods MPS and MAPS for solving (l.1)-(1.3). In paper [5], several 

applications of MPS methods are reviewed. The MPS is shown to have the same benefits of 

the boundary element method (BEM) which has been adopted as a generic term in various 

numerical methods that use techniques of the boundary methods [3]. Besides, the MPS has 

advantages over the BEM since it requires relatively fewer boundary points and singularities 



2 

for accurate results. The MFS has been used to solve PDEs [2, 5, 6, 7, 13, 15], and it is 

applicable when a fundamental solution of the differential operator is known. The adaptivity 

of the MFS has also been shown by allowing the singularities to move. 

The MAPS is applicable to more general differential operators. It is coupled with appro­

priate regularization technique in the construction of approximate solutions. The MAFS has 

been considered for extending the applicability of the MFS because the fundamental solution 

of a given differential equation is not always available. In [IO], a boundary method of Trefftz 

is suggested, and it follows the general scheme of the MFS, except the approximate solution 

can be obtained without knowing the fundamental solution of the differential operator. The 

MAPS for the heat conduction problem and for the ill-posed Cauchy problem can be found 

in [11, 13], and the MAFS are shown to provide satisfactory solutions. 

We introduce the scheme of MFS method in Chapter 2. In Chapter 3, we introduce the 

MAPS incorporating the Delta-shaped basis functions with Abel regularization technique. In 

Chapter 4, we provide numerical results to compare the performances of the two numerical 

methods. 
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Chapter 2 

THE METHOD OF FUNDAMENTAL SOLUTIONS 

2.1 The Fundamental Solutions of Elliptic PDEs 

We consider a boundary value problem governed by the equations of the form 

Lu= 0, in .Q, (2.1) 

where L is an elliptic differential operator, and .Q is a bounded domain in IR2 or IR3 . A 

fundamental solution of the equation (2.1 ), G(x, ~ ), is a function satisfying 

LG(x, ~) = <5(x - ~), x,~ E :!Rn, n = 2 or 3, (2.2) 

where c5(x- ~) is the Dirac Delta function, and~ is the singularity of the fundamental 

solution. The function G( x, ~) is defined everywhere except at x = ~. 
The idea of the formulation of the MFS method was first proposed by Kupradze and 

Aleksidze [5, 8]. The fundamental solution G(x, ~) is used as a basis function in formulating 

the numerical solution. The expression of the approximate solution can be written as a linear 

combination of the fundamental solutions 

K 

u(x) = [a;G(x,~i) , (2.3) 
i = I 

where ~i are the singular points of the fundamental solutions G(x, ~i), and a; are coefficients 

to be determined by boundary conditions. 

The fundamental solutions of some elliptic operators, such as the Laplace operator, the 

Helmhotz operator, and the modified Helmholtz operator are given in the following for the 

cases n = 2 and n = 3 [2, 5, 6, 15]. 
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{

_I lnJx-~J , ifn=2, 
• L=V2, G(x,~) = 2n I . -

- J J:. J ' 1f n - 3, 4n x- ~ 

(2.4) 

{ 

iHJ(kJx- ~ J), if n = 2, 
• L = V2 + k?-, G(x, ~) = e- iklx- ~I 

- I J:. J ' if n = 3, 4n x- ~ 

(2.5) 

{ 

__ I Ko(kJx- ~ J) , if n = 2, 
2 .2 J:. 2n 

• L = V -~, G(x,~) = e- klx- ~I 

I 
J:. J' if n = 3, 4n x- ~ 

(2.6) 

where i = v=I, HJ in (2.5) is the Hankel function of the second kind of order zero, and Ko 
in (2.6) is the modified Bessel function of the second kind of order zero. The fundamental 

solution for the biharmonic operator L = V4 is 

{ 

1 2 . 
-Jx - ~ J In Jx - ~ J, 1f n = 2, 

G(x,~) = 8f 
SnJx - ~ J, ifn=3. 

(2.7) 

2.2 Construction of the Approximate Solution 

We can rewrite the biharmonic equation ( 1.1) as 

(2.8) 

which implies that a solution of the Laplace equation is also a solution of the biharmonic 

equation. Hence, we can approximate the solution of the biharmonic boundary value prob­

lem ( 1.1 )-( 1.3) by a linear combination of the fundamental solutions of both the biharmonic 

operator and the Laplace operator. We let the approximate solution of the problem ( 1.1 )-( 1.3) 

· be expressed as 

K1 K1+K2 

u(x,y) = L CjGJ (x,y; ~i , 1Ji) + L CjGz(x,y; ~i , 1J;) , (2.9) 
i= 1 i= Ki + l 

where G1 (x,y; ~;, 11i) is a fundamental solution for the biharmonic operator with singularity at 

( ~i , 1J;) and G2 (x,y; ~i, 1J;) is a fundamental solution for the Laplace operator with singularity 

at ( ~i , 1Ji). 
As in [7], we use the fundamental solutions for n = 2, 

(2.10) 
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(2.11) 

where 

(2.12) 

We choose N collocation points {(xj,Yj)}J=i on i)Q, and K =Ki+ K2 singular points 

{ ( l;i , Tli) H~i outside of domain n. Requiring (2.9) to satisfy the boundary conditions at the 

boundary collocation points will lead to the linear system 

where A and b are given by 

A = ( a°di d~2 ) , 
dn dn 

b = ( ;~ ) . 

The entry that is in j-th row and i-th column is determined as follows: 

G2(xj ,Yj; l;i , Tli), for j = 1 · · ·N1, i =Ki+ 1 ··· Ki +K2, 

i)i)~i(xj ,Yj; l;i ,Tli) , for j=Ni+l·· ·Ni+N2, i= l·· ·K1 , 

iJG2 
dn (xj ,Yj ;l;i , Tli), for j = Ni+ 1 ···Ni +N2, i =Ki+ 1 · ·· Ki +K2, 

81 (xj,Yj), for j = 1 · · ·Ni , 

g2(xj ,Yj), for j =Ni+ 1 ···Ni +N2. 

(2.13) 

(2.14) 

The derivative in the direction of the outward normal of the boundary is defined by 

iJF .... 
dn = VF ·N, 

where N is a normal vector at a given point (f(t),g(t)), and 

N= <g,-j >_ 
Jj2+g2 

(2.15) 

(2.16) 



Chapter 3 

THE METHOD OF APPROXIMATE FUNDAMENTAL 
SOLUTIONS 

3.1 Delta-Shaped Basis Functions 

6 

In this section, we introduce the Delta-shaped basis functions [10, 11, 14] which is to be 

used for the construction of the approximate fundamental solutions. The eigenfunctions 'Pn 

and eigenvalues An of the Sturm-Liou ville problem on the interval (-1 , 1] 

are given by 

-<p" (x) = A 2<p(x) , 

<p(-l)=<p(l)=O, 

'Pn(x) = sin(An(x+ I)) , An= n;, n = 1, 2, · · ·. 

(3.1) 

(3.2) 

(3.3) 

The eigenfunctions 'Pn (x) form an orthogonal system on (-1, 1] with the scalar product 

11 ( ) ( ) ~ {O, if n =I= m, 
'Pn X 'Pm X dx = Un,m = . 

-I I , 1f n = m. 

Some regularization techniques and the formulas of the regularization factors are dis­

cussed in [11]. Here, we use the Abel regularization technique. For the heat equation, 

dw(t ,x,~) 
dt 

with the initial distribution to be 
00 

w(O,x,~) = o(x-~) = L 'Pn(~)'Pn(x). 
n= I 

We look for a solution that is in the same form of the series as in (3 .5), 

00 

w(t ,x,~) = L Wn(t)(f)n(~)'Pn(x). 
n= I 

Substitute (3.6) into (3.4), and we obtain 

Wn(t) = e- An\ 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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The regularizing coefficient is set as 

(3.8) 

where a is the time moment. 

The Delta-shaped basis function is the truncated form of (3.6), and it is a smooth function 

defined by 
M 

I(x,~) = L rn(a)<pn(~)'Pn(x), (3.9) 
n=I 

where M is a shape parameter since the support of the basis function decreases as M increases 

[14]. In [12, 14], the solutions of PDEs are approximated directly by Delta-shaped basis 

functions employing collocation points from both the interior and the boundary of the domain. 

The values of Mand a are coupled parameters, and we choose any a E [0.005,0.01] for 

M ::; 30, a E [0.001 ,0.005] for 30 < M::; 50, and a E [0.0012,0.0015] for 50 < M ::; 100 

[13]. 

3.2 Construction of Approximate Fundamental Solutions 

As we consider the two dimensional problem of ( 1.1 )-( 1.3), we extend one dimensional 

Delta-shaped basis functions to the two dimensional case, i.e., 

l(x,y; ~, 1)) - c~ r.q,,, m q,,, (x)) (fir m'I',,, ( 1)) q,,,, (y)) 
M 

= L rnrm<pn( ~ )<pm( 11 )<pn(x)<pm(Y) (3.10) 
n,m=I 

M 

= L Cn,m(~ ,11)'Pn(x)<pm(Y) , 
n,m=l 

where Cn,m( ~, 11) = rnrm'Pn( ~ )<pm( 11 ). 
We use the Delta-shaped basis functions as the forcing term to obtain the approximate 

fundamental solutions [11]. An approximate fundamental solution of a differential operator 

Lis a function R(x,y; ~, 11) satisfying 

LR(x,y; ~, 11) = I(x,y; ~, 11 ). (3.11) 

Since the Delta-shaped basis functions are in the form of a finite sum of trigonometric 

functions, we assume that the approximate fundamental solution is written as a finite series 

of trigonometric functions as well [ 11]. We let 

M 

R(x,y;~,11) = L Dn,m(~ ,11)'Pn(x)<pm(Y) , (3.12) 
n,m=I 
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where the coefficients Dn m are to be determined. , 

By following the scheme (3.10)-(3.12), the approximate fundamental solution of the 

biharmonic equation can be obtained. We let R(x,y; ~, 1J) denote an approximate fundamen­

tal solution for L = V4. Substitute (3.10) and (3.12) into (3.11) with L = V4 to determine 

Dn,m ( ~, 1J ), i.e., 

M 

V4R(x,y; ~,TJ) = L Dn,m(~ ,1J)V4(cpn(x)cpm(Y)) 
n,m=l 

M 

= L Dn,m(~ ,TJ)(A:+2A;A;+A!)'Pn(x)cpm(Y) (3.13) 
n,m=l 

M 

= L Cn,m(~, TJ)'Pn(X)'P,n(y). 
n,m=I 

Thus, we have 
D (J:) Cn,m(~,TJ) 

n,m ~,TJ = (AJ+~)2' (3.14) 

Two types of fundamental solutions are used in the computation of an approximate 

solution in the MFS approach. For comparison purpose, we consider using the approximate 

fundamental solutions of both the biharmonic and the Laplace operators. The approximate 

fundamental solution for the Laplace operator can be obtained similarly, 

M 

V2R(x,y; ~,TJ) = L Dn,m(~ ,1J)V2(cpn(x)cpm(Y)) 
n,m=l 

M 

= L Dn,m(~, 1J )(-A;- ~)cpn(x)cpm(Y) (3.15) 
n,m=I 

M 

= L Cn,m(~ , TJ)'Pn(x)cpm(Y) , 
n,m=I 

and 

(J:) Cn,m(~,TJ) 
Dn,m ~, 1J = - A;+~ (3.16) 

Let R1 and R2 denote respectively the approximate fundamental solutions for the bi­

harmonic and the Laplace operators. As in (2.9), we let the approximate solutions of the 

problem (1. 1)-(1.3) be expressed as a linear combination of R1 and R2 as follows, 

K1 K1 + K2 

u(x,y) = [c;R1(x,y;~;,1J;)+ L, c;R2(x,y;~;,1J;) , (3.17) 
i= l i= K1 + l 

where the coefficients c; are to be determined by solving a linear system. The linear system 

is constructed in the same manner as the MFS such that 

(3.18) 



9 

where A and b are given by 

b = ( ;~) . (3.19) 

The entry that is in j-th row and i-th column of the matrix A can be obtained by evaluating 

R1, R2, iJR1/iJn, and iJRif dn, which is similar to the structure of the linear system in the 

MFS approach discussed in Chapter 2. 



Chapter 4 

COMPARISON OF MFS AND MAFS 

4.1 Solving Biharmonic Boundary Value Problems 

10 

In this chapter, we provide numerical examples by MFS and MAFS, which are the methods 

discussed in Chapter 2 and Chapter 3. Both approaches result in linear systems for determin­

ing the unknown coefficients. In our calculation, we let the number of boundary collocation 

points N be as twice as the number of source points K, i.e., the linear system from either 

method is overdetermined. 

The test points {T;}~ 1 are generated on the boundary and inside the domain to test the 

accuracy of the numerical results. The approximate solution is evaluated at the test points 

and is compared to the exact solution. We provide the mean square root error 

l N, 

E1 = \ - I,(u(T; )- u(T;))2. 
Ni i= I 

To see how the error is relative to the magnitude of the solution, we also provide the relative 

mean square root error, 

J ~I E~ 1 (u(T;) - u(T;) )2 
E2 = -'---======--

~, E~ 1 (u(T;))2 

4.2 Numerical Examples 

Let Q be a circular domain of radius 0.5. For the MFS approach, we let the source points 

be distributed on a circle of a radius 1 for Example 1, and a circle of a radius 0.95 for 

Example 2. However, in the MAFS approach, the source points must be located inside the 

region [- 1, l ] x [- 1, I] because the approximate fundamental solutions are constructed by 

eigenfunctions 'Pn (x) that vanishes at x = ± 1; therefore, we choose the radius 0. 95 for the 

location of source points for both examples. 

We let Ni = 100 and these test points are distributed on an and in Q. The distribution 

of the test points are shown in Figure ( 4.1 ). Also, the distribution of source points for the 

examples are shown in Figures (4.2) and (4.3). 
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I · 

Figure 4.1: Distribution of test points 

1--,,-.--.~.-. --
0 o o< o•., .,CIC. 

0.5 ,.· 0 · . • • 
C 

• i 
-0.5 0 0 

•' 
O OO o ,,_ 0 0 .:, 0 

· !1 -0.5 · !1 -0.5 0 0.5 1 0 0.5 

Figure 4.2: Distribution of the source points for Example 1 by MFS(Left) and MAFS(Right) 

1~--.-. . ~ . . -.. -.~~ 
c:,~ •, 

0.6 ....... . 

0 
....... . 

0~ : . . . . . 
..0.5 \ oo .. • o 

v., ,i,• 
0 00 00?~0·0~0 

·!1 -0.5 0 0.5 1 

Figure 4.3: Distribution of the source points for Example 2 by MFS(Left) and MAFS(Right) 
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Example 1. We consider ( 1.1 )-( 1.3) with the boundary conditions g I and g2 given by 

.x2 + y2 
gi(x,y) = -

4 
, 

g2(x,y) = - (x2 + y2). 

The exact solution to the problem is 

x2 +y2 
u(x,y) = -

4 
, 

which is shown in Figure (4.4). 

0.5 

-0.5 -0.5 

Figure 4.4: The graph of the exact solution for Example 1. 

The results for K2 being zero in (2.9) and (3.17) are shown in Tables (4.1) and (4.2), and 

the results when K2 is not zero are shown in (4.3) and (4.4). 

The results of MFS using fundamental solutions of Biharmonic operator are shown 

in Table ( 4.1 ), and those using fundamental solutions of both Biharmonic and Laplace 

operators are shown in Table (4.3). The MFS provides highly accurate results in either case. 

The results of MAFS using approximate fundamental solutions of Biharmonic operator are 

shown in Table (4.2), whose accuracy are much lower than that of MFS. However, the MAFS 

using both the approximate fundamental solutions of Biharmonic and Laplace operators 

show much better accuracy. The results by MAFS are excellent and comparable to those by 

MFS when the shape parameter M = I 00 and the boundary collocation points are increased 

to N = 301 and N = 40 I. 
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Table 4.1: Example 1: Results of MFS when using fundamental solutions of Biharmonic 
operator (G1) . 

N1 N2 K E1 E2 
71 70 70 1.1108. 10- 11 3.6766 · 10-H> 
101 100 100 1.3567 · 10- 17 4.4904 . 10- 16 

151 150 150 1.7830 · 10- 17 5.9013. 10- 16 

201 200 200 1.1888 . 10-17 3.9347 · 10- 16 

Table 4.2: Example 1: Results of MAFS when using approximate fundamental solutions of 
Biharmonic operator (R1) . 

M a N1 N2 K E1 E2 
30 0.007 71 70 70 7.4390. 10- 4 2.4600 • 1 o-L 
50 0.005 71 70 70 1.1000 · 10-3 3.7800 · 10-2 

70 0 .0015 71 70 70 2.3000 · 10- 3 7.6800 · 10- 2 

100 0.0015 71 70 70 2.3000 · 10- 3 7 .6900 · 10- 2 

30 0.007 101 100 100 5.4958 . 10- 4 1.8200 • 10-L 
50 0.005 101 100 100 3.8234 · 10- 4 1.2700 · 10- 2 

70 0.0015 101 100 100 2.5100· 10- 4 8.3000 · 10- 3 

100 0.0015 101 100 100 2.0186 · 10-4 6.7000 · 10-3 

30 0.007 151 150 150 7 .4476. 10- 4 2.4600 · 1 o-L 
50 0.005 151 150 150 3.8306 · 10-4 1.2700 · 10-2 

70 0.0015 151 150 150 2.4136 · 10-4 8.0000 · 10-3 

100 0.0015 151 150 150 2.1146 · 10- 4 7 .0000 · 10- 2 

30 0.007 201 200 200 5.2320. 10-4 1.7300 · 10-L 

50 0.005 201 200 200 3.8464 · 10- 4 1.2700 · 10-2 

70 0.0015 201 200 200 2.7707 · 10- 4 9.2000 · 10-3 

100 0.0015 201 200 200 2.6925 · 10-4 8.9000 · 10- 3 
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Table 4. 3: Example 1: Results of MFS when using fundamental solutions of both Biharmonic 

and Laplace operators (G1 + G2). 

N1 N2 K E1 E2 
71 70 70 4.2724 .10-11 1.4141. 10- 15 

101 100 100 2.6659 · 10- 17 8.8235 · 10- 16 

151 150 150 1.3653 . 10-16 4.5187 · 10- 15 

201 200 200 1.8343 · 10- 16 6.0709 . 10- 15 

Table 4.4: Example 1: Results of MAFS when using approximate fundamental solutions of 
both Biharmonic and Laplace operators (R1 + R2). 

M a N1 N2 K E1 E2 
30 0.007 71 70 70 4.1073 · 10-:i 1.4000 . 10- 3 

50 0.005 71 70 70 2.0719 · 10- 6 6.8572 · 10-5 

70 0.0015 71 70 70 1.7520 · 10- 9 5.7988 · 10-8 

100 0.0015 71 70 70 1.7536 · 10- 9 5.8040 · 10- 8 

30 0.007 101 100 100 4.1074 · 10-:, 1.4000 · 10- j 

50 0.005 101 100 100 2.0719 · 10-6 6.8575 · 10-5 

70 0.0015 101 100 100 1.5217·10- 11 5.0365 · 10- 10 

100 0.0015 101 100 100 3.6143 · 10- 12 1.1962 · 10- 10 

30 0.007 151 150 150 4.1074 · 10- 5 1.4000.10- 3 

50 0.005 151 150 150 2.0719 · 10- 6 6.8575 · 10- 5 

70 0.0015 151 150 150 1.3344. 10- 11 4.4165 · 10- 10 

100 0.0015 151 150 150 2.3270 · 10- 16 7.7018 · 10- 15 

30 0.007 201 200 200 4.1074 · 10-:i 1.4000 . 1 o- j 

50 0.005 201 200 200 2.0719 · 10-6 6.8575 · 10-5 

70 0.0015 201 200 200 1.0433 · 10- 11 3.4529 · 10- 10 

100 0.0015 201 200 200 1.5389· 10- 15 5.0935 · 10- 14 
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Example 2. We consider ( 1.1 )-( 1.3) with the boundary conditions g1 and g2 given by 

g1(x ,y) = - e2Ysin(2x) -ccos(y), 

g2(x, y) = - 2xe2Y cos(2x) - 2ye2Y sin(2x) - xc cos(y) + ye sin(y). 

The exact solution is 

u(x, y) = - e2Ysin(2x)-excos(y) , 

which is shown in Figure (4.5). 

0.5 

--0.5 --0.5 

Figure 4.5: The graph of the exact solution for Example 2. 

We notice that it is necessary to use fundamental solutions or approximate fundamental 

solutions of two types of differential operators in MFS/MAFS approach. In Example 

2, we compare results by MFS and MAFS using two types of fundamental solutions or 

approximate fundamental solutions. In Table ( 4.5), the MFS approach achieves an accuracy 

of order 10- 16 at large number of collocation points. In Table ( 4.6), the MAFS achieves 

better and better results as M and the number of boundary collocation points increase. The 

results by MAFS with (M, a ) = (100,0 .0015) are excellent and comparable to those by 

MFS when the boundary collocation points N = 301 and N = 401 . 
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Table 4.5: Example 2: Results of MFSwhen using fundamental solutions of both Biharmonic 
and Laplace operators (G1 + G2). 

N1 N2 K E1 £ 2 
71 70 70 9.7404 . 10- 11 8.1482· lQ-II 

101 100 100 4.3775 · 10- 15 3.6619 · 10- 15 

151 150 150 6.7508 · 10- 16 5.6473 · 10-16 

201 200 200 7.8799 · 10- 16 6.5918·· 10- 16 

Table 4.6: Example 2: Results of MAFS when using approximate fundamental solutions of 
both Biharmonic and Laplace operators (R1 + R2). 

M a N1 N2 K E1 £2 
30 0.007 71 70 70 1.8264 . 10-4 1.5279 . 10-4 

50 0.005 71 70 70 9.2951 · 10- 6 7.7757 · 10- 6 

70 0.0015 71 70 70 8.0598 · 10- 8 6.7423 · 10- 8 

100 0.0015 71 70 70 8.0641 · 10-8 6.7459 · 10-8 

30 0.007 101 100 100 1.8265 · 10- 4 1.5279 . 10- 4 

50 0.005 101 100 100 9.2948 · 10- 6 7.7755 · 10- 6 

70 0.0015 101 100 100 7. 1508 · 10- I I 5.9819 · 10-11 

100 0.0015 101 100 100 3.5055 . 10- 11 2.9325 . 10- 11 

30 0.007 151 150 150 1.8265 . 10- 4 1.5279. 10- 4 

50 0.005 151 150 150 9.2949 · 10- 6 7.7755 · 10- 6 

70 0.0015 151 150 150 4.6697 · 10- 11 3.9064 . 10- 11 

100 0.0015 151 150 150 1.5459 · 10- 15 1.2932 · 10- 15 

30 0.007 201 200 200 1.8265 . 10-4 1.5279 · 10-4 

50 0.005 201 200 200 9.2949 · 10-6 7.7755 · 10- 6 

70 0.0015 201 200 200 4.8189· 10- 11 4.0312 · 10-II 

100 0.0015 201 200 200 1.5187. 10- 15 1.2704· 10- 15 
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We use a square domain [-0.5 ,0.5] x [-0.5,0.5] for Example 3 and let the source 

points be distributed on a circle of radius 0.95 for both the MFS and the MAFS approaches. 

The distribution of source points and the test points for Example 3 are shown in Figures 

( 4.6)-( 4. 7). 

1 
0 

0 0 0 0 
0.8 0 0 

0 0 

0.6 0 0 

0 .4 
0 0 

0 0 

0.2 0 0 

01<) 0 

-0.2 0 0 

-0.4 
0 0 

0 0 

-0.6 0 0 
0 0 

-0.8 0 0 
0 0 Q 0 0 

-1 
-0.5 0 0.5 1 -1 

Figure 4.6: Distribution of the source points for Example 3. 

0.: ::: ::: - - - - - -- - - -

0.4 t, 0 0 0 0 0 0 0 0 ' ~ 

0.3 0 0 0 0 0 0 0 0 ' 

0 .20 0 0 0 0 0 0 0 0 0 

0 .1 
I~ 0 0 0 0 0 0 0 0 C 

0 
I~ 0 0 0 0 0 0 0 0 <? 

-0.1 

-o.l 0 0 0 0 0 0 0 0 <? 

-0.3 ~ 0 0 0 0 0 0 0 0 ? 

-0.4) 0 0 0 0 0 0 0 0 ? 

-0:~ .5 - - - - . - - - -- - - 0 - - - 0.5 

Figure 4. 7: Distribution of test points for Example 3. 
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Example 3. We consider (1.1)-( 1.3) with the boundary conditions g1 and g2, where g, 

is given by 

g 1 (x,y) = - 98cos(3x) sinh(3y) - 98cos(3x) cosh(3y) 

- 10sin(3x) sinh(3y)- 10 sin(3x)cosh(3y) , 

and g2 is given by 

at (x,O) on an, 

at (0,y) on an. 

g2(x,y) = 294xsin(3x) sinh(3y) + 294xsin(3x) cosh(3y) 

- 30xcos(3x) sinh(3y) - 30xcos(3x) cosh(3y) , 

g2(x,y) = - 294ycos(3x) cosh(3y) - 294ycos(3x) sinh(3y) 

- 30ysin(3x)cosh(3y) -30ysin(3x) sinh(3y) , 

The exact solution is 

u(x,y) = - 98cos(3x) sinh(3y) - 98cos(3x) cosh(3y) 

- 10sin(3x) sinh(3y) - 10 sin(3x) cosh(3y) , 

which is shown in Figure (4.8). 

.····:··. 

··· \··. 
100 .· ., ... · 

0 

.300 

-400 ······· 
··,,. 

···-. ··· .. : 
-500 ·· ··· ·· ... 
0.5 ·--·:· 

0.5 

-0.5 -0.5 

Figure 4.8: The graph of the exact solution for Example 2. 

In Example 3, we compare results by MFS and MAFS on the square domain using 

two types of fundamental solutions or approximate fundamental solutions. In Table ( 4. 7), 
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the MFS provides accurate results of order 10-14 when the boundary collocation points 

N = 400. In Table ( 4.8), the MAFS when N is about 300 achieves an accuracy of order 

1 o-8, which is comparable to the result by the MFS at N = 200. Mostly, the MAFS provides 

better results with (M, a)= (70,0.0015) and (M, a)= (100,0.0015) . 

Table 4.7: Example 3: Results ofMFSwhen using fundamental solutions of both Biharmonic 
and Laplace operators (G1 + G2). 

N1 N2 K E1 E2 
68 68 68 1.4000 · 10- j 1.0432. 10- 5 

100 100 100 8.5373 . 1 o-6 6.2163 · 10- 8 

148 148 148 4.9637 · 10- 9 3.6142 · 10- 11 

200 200 200 2.4342 · 10- 12 1.7724. 10- 14 

Table 4.8: Example 2: Results of MAFS when using approximate fandamental solutions of 
both Biharmonic and Laplace operators (R1 + R2). 

M a N1 N2 K E1 E2 
30 0.007 68 68 68 1.1090 · 10- I 8.0715. 10- 4 

50 0.005 68 68 68 3.0600 · 10-2 2.2281 · 10-4 

70 0.0015 68 68 68 1.3000 · 10- 3 9.1479 · 10- 6 

100 0.0015 68 68 68 1.3000 · 10-3 9.1479 · 10-6 

30 0.007 100 100 100 7.0500. 10- 2 5.1366. 10- 4 

50 0.005 100 100 100 2.7000 · 10-2 1.9674 · 10-4 

70 0.0015 100 100 100 1.3384 · 10- 5 9.7453 · 10- 8 

100 0.0015 100 100 100 1.3381 · 10- 5 9.7434 · 10- 8 

30 0.007 148 148 148 8.9500 · 10- L. 6.5155. 10- 4 

50 0.005 148 148 148 1.7700 · 10- 2 1.2857 . 10- 4 

70 0.0015 148 148 148 2.2685 . 1 o-6 1.6518 · 10- 8 

100 0.0015 148 148 148 · 2.2666 · 10-6 1.6503 · 10- 8 

30 0.007 200 200 200 7 .2900 · 10-L. 5.3116 . 10- 4 

50 0.005 200 200 200 1.5600 · 10- 2 1.1373 · 10- 4 

70 0.0015 200 200 200 2.8088 . 1 o-6 2.0451 · 10-8 

100 0.0015 200 200 200 2.4397 . 1 o-6 1.7764 · 10- 8 
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The MATLAB has been used for perfonning the above calculations. Although the results 

from using the MAFS are promising, much longer processing time for MAFS is noticed. 

In order to optimize the performance and make use of the features of MATLAB, the code 

should be further vectorized. 



Chapter 5 

CONCLUSION 
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We solve biharmonic boundary value problems using the MFS and the MAPS. In spite 

of the accurate results the MPS provides, it has limitations since it is only applicable to 

differential operators whose fundamental solutions are known. In general the results by 

MAPS is not as accurate as MFS. But the results of MAPS improve and are comparable 

to the those of MPS when the number of collocation points increase with appropriate 

values of shape parameter and regularizing coefficients. We also note that it is necessary to 

use two types of fundamental solutions or approximate fundamental solutions in MFS or 

MAPS. Considering the rapid convergence of the MPS, the MAPS has a disadvantage of 

computational costs since it requires more function evaluations. The merit of MAPS is its 

applicability to more general type differential operators. Both methods can be extended to 

solving higher-dimensinal PDEs of elliptic type. 
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