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ABSTRACT 

ZIFAZAH: A SCIENTIFIC VISUALIZATION LANGUAGE FOR TENSOR FIELD 

VISUALIZATIONS 

by Haipeng Cai 

August 2012 

This thesis presents the design and prototype implementation of a scientific visual­

ization language called Zifazah for composing and exploring 3D visualizations of diffusion 

tensor magnetic resonance imaging (DT-MRI or DTI) data. Unlike existing tools allowing 

flexible customization of data visualizations that are programmer-oriented, Zifazah focuses 

on domain scientists as end users in order to enable them to freely compose visualizations 

of their scientific data set. Verbal descriptions of end users about how they would build and 

explore DTI visualizations are analyzed to collect syntax, semantics, and control structures 

of the language. Zifazah makes use of the initial set of lexical terms and semantical pat­

terns to provide a declarative language in the spirit of intuitive syntax and usage. Along 

with sample scripts representative of the main language design features, some new DTI 

visualizations created by end users using the novel language have also been presented. 
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CHAPTER I 

INTRODUCTION 

Visualization tools often support user customization, which allows changes of the visu­

alization so as to help users gain better understanding of the underlying data, thus facilitating 

knowledge discoveries about the data that would be hard to achieve otherwise. However, 

the support of user creativity is usually constrained by the limits of predefined options or 

functionalities for the customizations. An effective way to address these constraints is to 

offer users a programming environment in which they can freely compose towards desir­

able visualizations of their data through a visualization language. While such languages 

have been proposed and successful in the infonnation visualization (Info Vis) community 

[17, 25, 12], there is a lack of end-user visualization language for 3D scientific visualiza­

tion (SciVis). Based on our many discussions with domain users, we have recognized that 

domain scientists want a visualization of their own data to be designed and built by them­

selves. Now that the success of visualization languages for Info Vis is probably attributed 

to their capabilities of empowering users to design their own visualizations, what if domain 

scientists have a visualization tool that is powerful but easy to maneuver so that they can 

fully control the design elements and visual components to create whatever visualization 

they really have in mind? 

A recently advanced MRI technique, diffusion tensor imaging (DTI), has proven ad­

vantageous over other imaging techniques in that it enables in vivo investigation of bio­

logical tissues and, through three-dimensional (3D) tractography [8], explorations of the 

distribution and connectivity of neural pathways in fibrous tissues like brain white matter 

and muscles. Further, as one way to visualize DTI data, 3D visualization of the streamline 
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data model derived from the tractography can illustrate the connectivity of fiber tracts and 

structures of anatomy, and therefore provides a powerful means to assist neuroscientists in 

clinical diagnosis and neurosurgical planning. 

I proposed a visualization language as the first tool of this kind for DTI visualizations 

because DTI is complex enough to stimulate a design that would be useful for simpler and 

similar visualization problems such as that of flow visualization. Although mainly driven by 

neurologists' need for conducting their clinical tasks with DTI visualizations, this language 

design would also be reusable in a broader range in 3D SciVis. Motivated by the needs of 

spatial explorations in 3D scientific visualizations because of the spatial constraints within 

the data, the present language is particularly useful in empowering domain scientists to build 

3D visualizations that best meet their specific needs. Furthermore, the language can facil­

itate domain scientists' effective use and exploration of the visualizations as well because 

it allows them to customize essential elements of visualization with the maximal flexibility 

by applying their best understanding of the domain data to the visualization composition 

process. Illuminated by Bertin's Semiology of Graphics [9] , I designed the language to 

allow users to compose symbols in 3D visualizations, including visual encoding methods 

and other causes that affect visualization task performance. 

To capture the design elements of the language, I have conducted experimental studies 

with domain scientists in DTI who are expected users of this language, and I have summa­

rized design principles for the language out of their descriptions of visualization making and 

exploration, from which basic lexical terms such as verbs, prepositions, and conjunctions 

were also reduced. With these principles and language elements, I have developed alan­

guage prototype, named Zifazah, as an initial implementation of the visualization language 

I am proposing. To target non-programmer users like neural medical doctors, Zifazah is 

designed to be a high-level declarative language. Also, for an easier usage for users with­

out any programming skills and experience, Zifazah is currently developed as a procedural 

language that contains only an intuitive type of control structure, i. e. the sequential struc-
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Figure 1. A screenshot of the Zifazah programming interface, consisting of a programming 
text board (upper left), a simple debugging output window (bottom left) and the visualiza­
tion view (right). 

ture. As such, users can write Zifazah scripts as simply as if they verbally describe the 

process of authoring visualizations in sequence. Figure 1 gives an outlook of the Zifazah 

progranm1ing interface. 

The following usage scenarios briefly show the utility of Zifazah. In the first scenario, 

an end-user first loads a whole DTI model and then programs to vary tube size in the default 

streamtube visualization by fractional anisotropy (FA) and tube color by fiber distance to 

the viewing point in a specific brain structure. In the end, the user can change the stream tube 

representation of another brain region to ribbons. In the second scenario, a user filters fibers 

according to an estimate of linear anisotropy (LA) threshold and then gradually adjusts 

the threshold until satisfied. The user then further cuts off the selected fibers outside a 

target brain region through spatial commands with precisely calculated movements and 

thus reaches the tubes of interest. As the final example, a user can get the size of a brain 
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structure in tem1s of the number of fibers, average FA in a brain region, and other common 

DTI mctrics after reaching the target fibers. In each of these scenarios, the user achieves 

each step by writing a declarative program statement in the script editor, and the results arc 

reflected in the visualization view (see Chapter V). 

Apart from a visualization language that helps domain scientists build DTI visualiza­

tions by themselves to exactly meet their specific needs with the visualizations, this work 

also contributes several design features to general DTI visualizations including: (1) visual 

symbolic mapping based on color, size and shape, as is new for scientific visualizations; 

(2) lexical representations of spatial relationships for 3D object visualization and manipu­

lations; and (3) data encoding flexibility built upon the migration of Bertin's semiological 

principles to scientific visualizations. 

This language will be the first of its kind. The following snippet gives a quick view of 

how a Zifazah program looks. This script describes an exploratory process of an end user 

with the streamtube model [33] of a human brain DTI data set, in which different fiber 

bundles are filtered according to threshold of DTI metrics and customized with various 

visual encoding methods. 

LOAD '' /tmp/ a llfb _tagged. data" 

SELECT "CC" 

SELECT "FA in [0 .2, 0.25]" IN "IFO" 

UPDATE color BY FA I N "CC" 

SELECT "LA > 0.35" IN "CST'' 

UPDATE shape BY line IN "CC" 

UPDATE shape BY tube IN "IFO" 

UPDATE s ize BY FA WITH 0.1,20 IN "IFO" 

As shown in this example, a Zifazah program is essentially an intuitive sequence of steps, 

each carrying out a single visual transfom1ation of data. Although the script is written in a 
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textual form as in a traditional computer programming language, each of the statements is 

more like a high-level command. Also, there is no logic structure other than the sequential 

one in Zifazah, which makes this language fairly easy to learn and use for end users in 

medical field. 

The rest of this t hesis is organized as follows. I frrst give general background and dis­

cuss related work _in Chapter II. In Chapter III I detail design principles and supporting 

language clements and then brief implementation issues in Chapter IV. Chapter V expands 

the details of the three usage scenarios introduced above and gives the corresponding Zi­

fazah scripts and running results. I discuss other design considerations of the language and 

design features to be fully implemented that arc integral to the overall language design in 

Chapter VI before finally concluding the thesis in Chapter VII. 
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CHAPTER II 

BACKGROUND AND RELATED WORK 

VisuaJization of DTI Models 

In general, DTI data sets can be visualized using various approaches ranging from direct 

volume rendering of tensor field [21] to geometry rendering of the fiber model derived 

from tensor field. With geometry rendering, DTI fibers are usually depicted as streamlines 

[20], streamtubes and streamsurfaces (33]. In order to explore 3D visualizations of the 

fiber geometries, 2D embedding and multiple coordinated views [19], along with various 

interactive techniques [10, 29], have been employed. 

Many other powerful tools have also been developed for exploring DTI visualizations 

[6, 19, 32, 7, 10]. However, due to the data complexity, domain users' needs for performing 

their various tasks in daily practice have not yet been fully satisfied by using those tools. 

To give users more flexibility, some of the visualization tools are made highly configurable 

by allowing a wide range of settings (28, 31 , 29]. Nevertheless, it is still challenging to 

design a thoroughly effective visualization tool to meet all the needs of users. For instance, 

MediNRIA (31] provides rich predefined functionalities yet does not allow end-user com­

position of visualizations. For another example, Slicer [28] is made very powerful via the 

integration of various function models, working like a data processing and visualization tool 

suite, but it is not designed for users to create their own visualizations in order to satisfy 

their typical domain tasks. Also, although sometimes able to meet specific requirements, 

higher flexibility of a visualization tool may even make the tool more complex to use for 

domain users [22]. 
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Composable Visualizations 

Since pioneering the automatic generation of graphic representation [24], Mackinlay's 

work has been extended lately into a visual analysis system armed with a set of interface 

commands and defaults representing the best practices of graphical design [25], upon which 

a commercial so~ware called Tableau was developed. In his work, the generation of vi­

sualizations was automated thanks to the application of a series of design rules and made 

adaptable to users with a wide range of design expertise via constrained flexibilities by those 

design rules. With Zifazah, I also intend to provide an environment in which end users can 

flexibly build their own visualizations like Tableau. However, instead of targeting visual 

analysis in the context of two-dimensional (2D) information visualization, Zifazah primar­

ily aims at end-user visualization making and exploration with 3D scientific data such as 

DTI. Also, compared to the visual specifications in Tableau, like those in its predecessor 

Polaris [30], textual programming is the main means for end users to interact with visu­

alizations of interest in Zifazah. Similar to Polaris in tenns of using visual operations to 

build visualizations, dynamic queries [29] aims to support retrieving DTI fibers instead of 

querying relational database in Polaris. 

As a toolkit, Protovis gives users high-level usage flexibility, even programmability, yet 

imposes constraints upon user programs through implicit rules to produce effective visual­

izations [12]. This tool has been evolved into its descendant named D3 [13] for a better 

support of animation and interaction. Zifazah shares some Protovis features like address­

ing non-programmer audiences and having concise and easy-to-learn grammar. However, 

different from Protovis that uses simple graphical primitives called marks to construct in­

fom1ation visualizations and mainly targets web and interaction designers, Zifazah targets 

neuroscientists instead and enables them not only to flexibly construct, but also to effec­

tively explore, in the context of scientific visualizations exemplified by that of DTI data. 
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Visualization Languages 

Processing [17] is more a full-blown programming language and environment than 

a traditional visualization tool. Built with the full Java programming language facilities, 

Processing integrates the underlying visual design rules to help users build beautiful yet in­

fonnative visualizations with the support of interaction design. Although developed to be 

accessible for new ·users and non-programmers, Processing is more oriented to users with a 

certain level of programming skills and might still be challenging for domain users like neu­

roscientists who are the primary audience I address. A sister visual programming language 

of Processing, Processing.js [2] also targets web developers. By contrast, Zifazah is dis­

tinct in that it empowers end users to explore scientific data through intuitive syntax within 

a sequential structure rather than offering a full set of programming features in a traditional 

computer language as Processing does. Like Zifazah, Impure [1] is also a programming 

language for data visualizations that targets non-programmers. Although supporting vari­

ous data sources, this completely visual language is developed for infom1ation design rather 

than for scientific visualizations. 

Although a natural language like WordsEye [ 11] for visualizations might be appealing 

to ordinary users without any programming knowledge, I do not attempt the entirely de­

scriptive nature for Zifazah as WordsEye did at the current stage. In tem1s of lexical and 

syntax design, Zifazah is similar to Yahoo! 's Pig Latin [ 14 ], which is a new data processing 

language associated with the Yahoo! Pig data handling environment that balances between 

a declarative language and a low-level procedural one. The language supports data filtering 

and grouping with parallelism by its map-reduce programming capability. However, this 

language does not handle visualizations or any form of graphical representations but focus­

ing on ad-hoc data analysis. Also, Zifazah is set apart from Pig Latin in the target audience 

again, since the latter mainly serves software engineers. 

The Proto vis specification language [ 18] is a declarative domain-specific language (DSL) 

that supports specification of interactive infom1ation visualizations with animated transi-
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tions, providing an approach to composing custom views of data using graphical primitives 

called marks that are able encode data by dynamic properties, which is similar to the map­

ping of object properties to graphical representations in another Info Vis language presented 

by Lucas and Shieber [23]. To some extent, both languages are comparable to Microsoft's 

ongoing project Vedea, aiming at a new visualization language [4] in tem1s of syntactic 

design and programming style, although its design goals are closer to that of Processing. 

Also in the Info Vis domain, Trcvil [3] is a progrmnming language based on its prede­

cessor Trcvis [5], a framework used for context tree visualization and analysis. It supports 

composing visualizations but is dedicated to the visualization of unordered trees. Peter­

son et al. discuss another specific-purpose language [27] that serves the composition of 

visualizations of mathematical concepts like those in basic algebra and calculus. 

Recently, Metoyer et al. [26] report from an exploratory study a set of design implica­

tions for the design of visualization languages and toolkits. More specifically, their findings 

infonn visualization language design through the way end users describe visualizations and 

their inclination to use ambiguous and relative, instead of definite and absolute, terms that 

can be refined later via a feedback loop provided by the language. Their findings also dis­

close that end users tend to express in generally high-level semantics. During the design of 

the present language, I have benefited from these findings and actually have reflected them 

in the development of Zifazah. 
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CHAPTER III 

LANGUAGE DESIGN 

In this chapter, I first brief end-user descriptions on composing DTI visualizations from 

which design requirements and principles, as follow a summary of the language symbols 

and description ofZifazah data model, are extracted and motivated respectively. The devel­

opment of Zifazah is driven by end-user requirements with DTI visualizations and the de­

sign principles are embodied in the language features of Zifazah. After each ofthe language 

features, Zifazah language elements that meet the feature are detailed, including related 

lexical tcm1s and syntactic patterns. Instead of describing the implementation techniques, 

which are highlighted in Chapter IV, this chapter emphasizes how the design principles and 

language elements address the end-user requirements. 

Design Motivations 

The design ofZifazah is motivated by the needs of typical end users I target for compos­

ing DTI visualizations by themselves, which can be derived from their verbal descriptions 

about visualizations they would desire in my many interviews and discussions with them . 

I report just a few representative example comments from them on visualizations produced 

beforehand by computer scientists. 

The participants include neurologists and neural physicians, both conducting clinical 

diagnosis with DTI data visualizations. In a typical interview, participants are presented 

visualizations of the same DTI brain data set composed differently by manipulating vari­

ous visual elements and the compositions are done by computer scientists, who then revise 

the composing process according to the comments of participants. As a result, either the 
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unsatisfactory visualizations are fmally modified to meet participants' requirements or sug­

gestions for achieving the desirable visualizations are received if the current too l is not 

capable of composing the desirable ones. 

As an example, multiple visual mappings of depth values to size and color docs not 

enhance the visualization of DTI model as expected. Surprisingly, " ... it is misleading to 

have the different size" while color has already been used to discern depth, and " ... would 

rather have it stay the same size as I spin it around." However, visual mapping of depth 

to color is still preferable since " ... I like it with the color. That is what I need to look at." 

Nevertheless, the composed coloring scheme in which color is mapped by depth might also 

be useful " ... if determined by the principal eigenvalues." And " ... I think that color is a good 

idea but prefer color by orientation ... " etc. 

There is also a call for doing analysis in the composing environment(" .. . A !so, one thing 

for fibers, I am looking at for analysis purposes"). Emphatically, both classes of participants 

unanimously "want to do the analysis over here on the same page, that will be good, too, 

rather than opening it up again and trying to do it. .. It will all come together. It will all be 

integrated into one .... " 

These observations all suggest that domain users, exemplified by the typical end users of 

Zifazah above, potentially ask for a high-level tool, aLLowing them to define a self-controlled 

sequence of operations that works towards a visualization precisely meeting their own spe­

cific needs. By allowing users to compose with well-designed visual elements, a program­

ming environment can provide the capabilities for neurologists to create their own visual­

izations, by which the present work is justified. 

Furthem1ore, the work with Zifazah is substantially grounded upon the semiology of the 

graphic sign-system and especially the taxonomy about the properties and characteristics 

of retinal variables [9] in tenns of the syntax and semantics design for the scientific visu­

alization language. Zifazah incorporates a subset of the properties and characteristics that 

are most relevant, according to neurologists ' verbal descriptions about DTI visualizations, 



12 

to the language structure and content: size variation, color variation, and shape variation. 

For one thing, corresponding syntax tem1s arc built into the language core as basic symbols. 

For another, semantics associated with these terms are designed to support composing DTI 

visualizations with respect to these retinal variables by allowing free manipulations of the 

attributes ofrelated variables. While the semiology and taxonomy is originally formu lated 

to guide the design of 2D graphical representations, I extend them into the 3D graphical 

environment and employ them in the case of DTI visualizations. 

It is fairly noteworthy, and common as well, in participants' verbal descriptions that 

spatial terms are frequently used and most of the tcm1s related to spatial locations are relative 

besides those measured in precise units. That Zifazah is designed to be a spatial language is 

exactly in response to the concems of my target end users with the spatial relationship of data 

components in the scientific data model being visualized. The participants' descriptions 

are also in accordance with the fact that spatial constraint is a defining data characteristic 

of scientific visualization. Consequently, Zifazah includes a set of syntactic and semantic 

supports for spatial operations in order to meet end-user needs for composing 3D scientific 

visualizations like that of DTI models. 

Intending to be an initiative of an end-user programming approach to scientific visu­

alizations, Zifazah is designed to support an environment in which domain scientists as 

end users can compose highly customizable visualizations reflecting their thinking process 

with the graphical representations of their data set. Since Zifazah is designed for DTI vi­

sualizations, the language design primarily deals with DTI data. In this context, language 

elements of the present Zifazah are derived from experimental study with neuroscientists 

using diffusion MRI data models. As a matter of fact, the symbols and syntax of the current 

version of Zifazah are extracted from verbal descriptions by neurologists using DTI about 

how they would create and explore DTI visualizations. As often referred to as end users, 

neuroscientists, neurologists and other medical experts who conduct clinical practice with 

DTI data and its visualizations are the primary audience the Zifazah language targets. 
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Language Symbols 

Table I . Zifazah Language Symbols and Keywords 

Verbs LOAD, SELECT, LOCATE, UPDATE, CALCULATE 

Prepositions IN, OUT 

Conjunctives BY, WITH 

Operators 0 ,<,<=,>,>=,==,=,+,-

built-in routines AvgFA, AvgLA, NumFiber 

Constants shape, color, size, depth, FA, LA, sagittal, axial, coronal, 
CC, CST, CG, IFO, ILF, DEFAULT, RESET 

The core content of Zifazah itself is a simple set of language symbols and keywords. 

End-user actions intended with DTI visualizations are triggered through five key verbs that 

are all complete words in natural English. Prepositions are used for targeting scope of data 

of interest and conjunctives for connecting statement tem1s. All operators used in Zifazah 

are exactly the same as those used in elementary math. Specifically, [] serves as range op-

erator here for giving a numerical bound that is used in conditional expressions and + and -

are relative (increment and decrement) operators rather than serving arithmetical operations 

(addition and subtraction). Several built-in routines are provided in Zifazah for simple data 

statistics and analysis in DTI visualizations: AvgFA and AvgLA calculates the average FA 

and average LA of a scope of fibers respectively, and NumFiber gives the number of fibers 

in a fiber bundle. Among the reversed Zifazah constants, the aforementioned five major 

fiber bundles in human brain model are included. 

In these language symbols, all verbs and prepositions are directly picked up from my 

neurologist collaborators' common descriptions of visualization composition and explo-

ration in natural language. Fiber bundle constants(CC:corpus callosum, CST:corticospinal 

tracts, CG:cingulum, ILF:inferior longitudinal fasciculus, and IFO:inferior frontal occipital 

fasciculus) are also suggested by them and operators, built-in routines and other constants 

are reduced fTom our requirement analysis of their verbal descriptions. As shown in Table 1, 
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current Zifazah implementation contains a small set of symbols. However, the language has 

been designed to be scalable to increase in each type of symbol listed in tcm1s of imple­

mentation techniques. 

Data Model and Input 

For the design goals with target end users, Zifazah docs not have any specific data types 

and does not deal with any low-level data processing either. Instead, Zifazah focuses on 

visual transformations in 3D visualization. As previous examples disclose, I have used a 

classified geometrical data model derived from DTI volumes, in which fibers arc clustered 

in tem1s of brain anatomy. In the present data model as input to Zifazah, each fiber has 

been manually tagged with anatomical cluster identity as one of the five major bundles. 

Currently, Zifazah's ability to recognize the constants for the major anatomical bundles de­

pends on these cluster tags in the structure of the data model input. However, the language 

design is not restricted to handling only clustered data. Actually, Zifazah is freely adapt­

able to an unclustered data model, although data target specification with the major bundle 

constants will be processed as the whole model then (see Figure 6 and the source script). 

Nevertheless, Zifazah's capability of spatial operations empowers users to explore regions 

of interest (ROis) in the unclustered data models. 

In a Zifazah program, the first step is to indicate the source of data model by giving the 

name of a data file. As an example, a Zifazah data input statement is written as: 

normalBrain = LOAD ''data/normalS1. dat '' 

where the LOAD command parses the input file and creates data structures that fully de­

scribe the data model, including identification of the cluster tags. This input specification 

statement can also update current data model at the beginning of the visualization pipeline 

if it is not the first step in a Zifazah script. The evaluation is optional and, when provided, 

saves the result to a variable (norma/Brain here) for later reference. This is not used in the 
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current version of Zifazah but is required for exploring multiple data sets concurrently (sec 

Chapter VI). 

Task-driven Language 

The language design of Zifazah is originally driven by the visualizat-ion tasks that do­

main users need to perfonn in their ordinary clinical practices. Among others, some ofthcir 

typical tasks are (1) checking integrity of neural structures of a brain as a whole; (2) examin­

ing fiber orientation in a ROI or fiber connectivity across ROis; (3) comparing fiber bundle 

sizes between brain regions; (4) tracing the variation ofDTI quantities such as FA along a 

group of fibers; and (5) picking particular fibers according to a quantitative threshold, etc. 

When using DTI visualizations, not only looking for the whole data model, neurologists 

are also inclined to concentrate on regional details. In the case of brain DTI visualizations, 

they often narrow down the view scope toward a relatively large anatomical area in the first 

place and then dive into a specific ROI. In other words, they tend to pay more attention to 

ROis than to the whole brain. More specifically, in the visualizations where neural path­

ways are depicted as streamtubes, the ROis are usually clusters of fiber tracts called fiber 

bundles. For instance, at the beginning of a visualization exploration, one of the neurolo­

gist collaborators intends to look into frontal lobe fibers within the intersection of two fiber 

bundles, CST and CC, and ignores all other regions of the model. Further, suspicious of 

fibers with average FA under 0.5 for a cerebral disease with which the brain is probably 

afflicted, the user goes on to examine exactly the suspect fibers. Later on, the user focuses 

on the small fiber region to see how it differs from typical ones, in tenns of orientation and 

DTI metrics, for instance. 

Zifazah is designed as a task-driven language to support this requirement process through 

high-level primitives such as SELECT and common arithmet-ical conditional operators in­

cluding a range operator in. Zifazah is mainly featured with facilities for step-by-step data 

filtering with these primitives. For example, suppose the user above is to explore the fibers 



of interest, he can write in Zifazah as follows: 

SELECT "FA < 0.5" IN "CST" 

SELECT "FA < 0.4" IN "CC" 
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As the result, fibers in both specific bundles with average FA under 0.5 will be highlighted 

to help users focus on the local data being explored. On top of this, the user can customize 

the visualization of the filtered fibers through various visual encoding methods using the 

UP DATE syntax. This is particularly useful when he wants to keep the data already reached 

in focus before moving to explore other relevant local data in order to add more fibers 

into his focus area, or when he simply seeks for a more legible visualization of the data 

first reached. The instance below, following the same example, illustrates how a better 

depth perception achieved by a type of depth encoding, together with a differentiating shape 

encoding, are added up to the two selected fiber bundles respectively. 

SELECT "FA < 0.5" IN "CST" 

SELECT "FA < 0.4" IN "CC" 

UPDATE depth BY color IN "CST 11 

UPDATE shape BY ribbon IN "CC" 

This simple sequence of commands help users locate desirable fiber tracts with high accu­

racy while allowing flexible customization upon current visualizations. With this language, 

users compose intuitive steps to finish tasks that are difficult to achieve by visual interac­

tions. In this case, tracts of interest (TOTs) are first focused and then further differentiated 

for more effective exploration through improved legibility. In general, Zifazah's design 

emphasizes this task-driven process of visualization exploration, which fits the thinking 

process of end users with the present visualizations. Figure 2 shows the resulting visualiza­

tion. 

Filtering data in order to reach an ROI is an operation frequently used during our neu­

rologist co llaborators' explorations in DTI visualizations. Zifazah offers two commands 
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Figure 2. Illustration of the task-driven design of Zifazah. 

for data filteting: SELECT and LOCATE. The data filtering syntax pattern in Zifazah is as 

follows: 

SELECT condition lspatialOperation INIOUT target 

r esult = LOCATE condition IN IOUT target 

With similar functionality, these two commands have different semantics: SELECT exe­

cutes filtering in an immediate mode by highlighting target fibers while LOCATE perfonns 

an offline filtering operation, retrieving target fibers and sending the result to a variable 

without causing any change in the present visualization. Also, SELECT provides rela­

tive spatial operations through moving anatomical cutting planes. In fact, it is tempting to 

combine these two commands into one while differentiating the two semantics (by recog­

nizing the presence of variable evaluation and taking spatial operations as an alternative 

to the condition term) . However, I still keep these two commands separate based on end­

user comments asking for a more straightforward understanding of the semantics and easier 



18 

memory of language usage. For example, 

SELECT 11 LA <= 0. 72 11 IN 11 ALL 11 

par t i aliLF = LOCATE 11 FA in [0 .5,0 .55] 11 OUT 11 ILF" 

The SELECT statement will filter fibers in the whole DTI model with average anisotropy 

greater than 0.72 (by putting them in the contextual background) and highlight all other 

fibers. In comparison, the LOCATE statement will not update the visualization but pick 

up fibers outside the ILF bundle having average FA value in the specified range. Note that 

when no specific data encoding applied, different colors will be applied to ROI fibers in 

different major bundles in Zifazah for discerning one ROI from another when there is more 

than one highlighted. Also, filtered fibers will still be in semi-transparency as the contextual 

background rather than being removed from the visualization. 

Spatial Exploration 

One of my main design goals with Zifazah is to provide a language with which users 

are able to operate spatial structures. I found that my neurologist collaborators tend to fre­

quently use spatial terms such as "para-sagittal", "in", "out", "mid-axial" and "ncar coro­

nal", etc. in their descriptions about DTI visualizations in the 3D space. They also use 

a set of other general spatial tem1s including "above", "under", "on top of'', "across" and 

"between", etc. like what Metoyer et al. found [26] and more domain-specific ones such 

as "frontal", "posterior" and "dorsal", etc. At present, Zifazah contains only a subset rather 

than all of these spatial tem1s. 

In such a 3D data model as that from DTI, spatial relationships between data compo­

nents are one of the essential characters, which are actually typical of 3D scientific data in 

general. Accordingly, composing a DTI visualization necessitates the capability of using 

spatial operators with domain conventional terms in order to describe the process of visual­

ization authoring. In response, Zifazah supports spatial operations through two approaches 
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combined. First of all, three visible cutting planes that help guide in the three conventional 

anatomical views, namely the axial, coronal and sagittal view respectively, are integrated 

in the visualization view (see Figure 1). Then, flexible manipulating operations upon the 

three planes are built into the Zifazah spatial syntax defrnitions. This enables end users to 

navigate in the dense 3D data model with a highly precise filtering capability exactly as 

they examine a brain model in clinical practice. 

For instance, suppose the streamtube representation of a DTI model being programmed 

is derived using unit seeding resolution from DTI volumes with a size of 256 x 256 x 31 

captured at a voxel resolution of 0.9375mm x 0.9375mm x 4 .52mm, and suppose both the 

axial and coronal planes are located at their initial position so that nothing is cut along these 

two views. In order to examine suspect anomaly in the brain region of the occipital lobe, a 

medical doctor attempts to filter the data model so that approximately only this region will 

be kept. For this task, the corresponding Zifazah script can be written as: 

SELECT "coronal +159.25" 

SELECT "axial -27 .5" 

SELECT "sagittal +183.2" 

Similarly, relative movements can be imposed on the sagittal plane as well. These simple 

relative operators included in Zifazah in support of spatial exploration are also infom1ed 

by the design in1plications found before [26], although they mainly come fTOm user re­

quirements of performing DTI visualization tasks pertaining to spatial operations. Figure 3 

shows the resulting visualization. 

Data Encoding Flexibility 

According to Bertin's semiotic taxonomy [9], graphically encoding data with key visual 

elements such as color, size, and shape plays a critical role in the legibility of 2D graphical 

representations. In 3D visualizations, occlusion effect as an import factor in depth percep-
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Figure 3. Illustration of the design of Zifazah as a spatial language. 

tion has a detrimental impact on the overall legibility, and depth cues (DC) are an ordinal 

dimension in the design space of 3D occlusion management for visualization [ 16]. 

We have combined both aspects in our Zifazah language design: symbolic mapping of 

color, size, and shape for 2D graphical legibility enhancement and depth encoding, also via 

common visual elements such as color, size, value (amount of ink), and transparency, as 

depth cues for occlusion reduction in the 3D environment. As already shown in the previ­

ous example scripts, Zifazah allows end users to freely customize DTI visualizations using 

either a single data encoding scheme alone or compound encoding scheme by flexibly com­

bining multiple encoding methods. The latter leads to a mixed visualization as illustrated 

in Figure 1. 

In their composing or exploratory process with DTI visualizations, users often attempt 

to examine more than one data focus simultaneously and would like to differentiate one 

focused ROI from others so that they will not get lost themselves within the multiple ROis. 
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There are also other occasions under which the users have difficulty in navigating along the 

depth dimension even in a single ROI. The data encoding flexibility in Zifazah is driven by 

both of the two user attempts. For an example, suppose a user has composed the streamtube 

visualization of a brain DTI data set with default data encoding (unifom1 size, color, and 

shape without depth cues) and now wants the overall encoding scheme to be different across 

fiber bundles. In order to achieve this effect, an example Zifazah snippet can be written as 

follows: 

SELECT "ALL" 

UPDATE shape BY LINE IN "CST" 

UPDATE size BY FA IN "CG" 

UPDATE color BY FA IN "IFO" 

UPDATE depth BY transparency IN "CG" 

UPDATE depth BY val ue IN "CC" WITH 0.2,0.8 

UPDATE depth BY color IN "ILF" 

Then, in the resulting visualization, each of the five major bundles will be visually disparate 

from others since all these bundles are encoded differently. Figure 4 shows the resulting 

visualization. Oftentimes, once one ROI or more is filtered out, it is also necessary to 

Table 2. Combinatorial Rules of Constants in UPDATE Statement of Current Zifazah Im­
plementation 

varl var2 parameters 

shape line, tube, rib bon NIA 

color FA, LA N/A 

SIZe FA, LA minimal, scale 

depth size,eolor,value, lower,upper 
transparency 

DEFAULT N/A N/A 

RESET N/A NIA 
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Figure 4. Flexible data encoding built in the design of Zifazah. 

examine the selected fibers more carefully. For this purpose, Zifazah allows users to impose 

various data encoding schemes upon data targets. Such visualization customization is done 

by the UPDATE command, which always works in an immediate mode and updates the 

current visualization after execution. The general UPDATE syntax pattern is: 

UPDATE var1 BY var2 WITH par a1 , . . . ,par aN IN lOUT target 

where varl indicates an attribute, such as shape, color, size, depth, etc. , of current visual­

ization to be modified, and var2 gives how the actual updating operation is to be performed 

in tenns of its relation to var 1. The parameter list ending the statement presents extra infor­

mation that the updating requires, as is specific to a particular data encoding operation. Like 

the target specification (optional with all commands as stated before), the BY clause and 

WITH clause are both optional. Table 2 lists all possible combinations of var l , var2 and 

associated parameter list already developed in present Zifazah. In the table, "lower, upper" 

gives the bound of depth mapping and "minimal,scale" indicates the minimum and the scale 
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of variation in size encoding. DEFAULT and RESET, when going with the verb UPDATE, 

act as a command for revoking all data filtering and data encoding operations respectively. 

The following script shows how to inspect the change of FA along fibers in a ROI by map­

ping FA value to tube size, which results in a more intuitive perception of the FA variation 

in that ROI. 

UPDATE RESET 

partialiLF =LOCATE "FA in [0.5,0.55]" OUT "ILF" 

UPDATE size BY FA IN "partialiLF" 

Flat Control Structure 

Another main design goal with Zifazah is to provide a declarative language environ­

ment for domain end users who have neither programming skills and experience, nor basic 

understanding of computer program structures. Consequently, we purposely eliminate the 

conditional and iteration stmctures from the language design of Zifazah and only keep the 

most intuitive one, i.e. the sequential structure, since this simple structure is much more 

intuitive than the other two. This features Zifazah with a flat control structure that is es­

sential for achieving the design goal. Meanwhile, Zifazah uses high-level semantics to 

overcome its weakness in expressing user task requirements for lack of these two missed 

control structures through two approaches addressing the requirements for them. 

First, requirement for an iteration structure usually stems from the needs to operate on 

multiple targets. In Zifazah, operation target is a common term in all syntax patterns to 

indicate the scope of data to focus on. I address this requirement through enumeration and 

target term defaults in Zifazah syntax patterns. On the one hand, with enumeration, end 

users simply list all targets in the target term to avoid iteration. For example, suppose a 

user intends to select three bundles and then to change size encoding for two of them; his 

Zifazah script can include: 
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SELECT "CST,CC,CG" 

UPDATE size BY FA IN "CST,CG" 

As such, no iteration structure for looping through the multiple targets is needed. On the 

other hand, with tem1 default, when missing a target tem1 in a single statement, "ALL" will 

be assumed as a default scope, meaning the whole data model will be the target. This rule 

is applicable for all types of Zifazah statements, which means that target tem1 is optional in 

all Zifazah syntax patterns. 

Second, requirement for a conditional structure comes from users' requests for a means 

to express conditional processing. For example, they often fil ter fibers according to FA 

thresholds. In Zifazah, conditional expression can be flexibly embedded in a statement to 

avoid this structure. It has been shown in previous examples how to embed conditional 

expressions in SELECT statements. For syntactic simplicity, condition is expressed in UP­

DATE statements indirectly through variable reference, as the following another example 

snippet shows. Therein LOCATE is an alternative to SELECT but it results in a storage 

of the fibers filtered into a variable for later reference instead of highlighting those fibers 

immediately as SELECT does (see Section III for detailed language elements). 

suspfiber s =LOCATE "FA in [0.2,0.25]" IN "CST,ILfl' 

UPDATE s ize BY FA IN "suspfibers " 

Figure 5 shows the resulting visualization . 

Fully Declarative Language 

Since the end users of Zifazah are medical experts who prefer natural descriptions over a 

programming style ofthinking according to my talks with them, elements even slightly close 

to those in a computer programming language have been changed to be as declarative as 
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Figure 5. Illustration of the flat control structure of Zifazah program. 

possible. In Zifazah, all types of statements are designed to be in a consistent pattern: started 

with a verb, fo llowed by operations and, optionally, ended by data target specification, 

with optional evaluation of statement result to a variable for later reference if provided. 

This syntax consistency has been applied even to the data measurement statement where 

invocation of built-in numerical routines is involved. To measure the number of fibers in a 

selected bundle, for instance, instead of writing as: 

CALCULATE NumFibers("CST") 

users with Zifazah write 

CALCULATE NumFibers IN "CST" 

In addition, all keywords in Zifazah arc case insensitive in order to reduce typing errors. 

Neuroscientists comment that these features make the language easy to learn and intuitive 

to usc. 
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As exemplified above, besides visually examining the graphical representations, medi­

cal experts often need to investigate the DTI data itself in a quantitative manner. In clinical 

practice of neuroscientists using DTI, quantities such as average FA and number of fibers 

are important DTI tractography-bascd metrics for assessing cerebral white matter integrity 

[1 5]. In fact, these metrics are usually used in our end-user description ofDTI visualizations 

as well. Accordingly, Zifazah provides capabilities to calculate some DTI mctrics most fre­

quently used in end users' practice of diagnosis through built-in numerical routines. The 

following pattem shows the Zifazah data analysis syntax. 

val = CALCULATE metricRoutine INIOUT target 

At the current stage of Zifazah development, metricRoutine can be one of AvgFA, AvgLA 

andNumFibers, whose functions have been described before. In this syntax pattern, keeping 

the resulting value by evaluation is optional and sometimes useful when being referred to 

afterwards (see usage scenario 3 described in Chapter V). For example, in order to sum up 

fibers with average FA falling within a particular range and then figure out average LA of 

the target fibers, an end user can write the following script in Zifazah: 

fo cusFiber = LOCATE "FA >= 0.285" 

CALCULATE NumFiber s in "focusFiber" 

CALCULATE AvgFA in "focusFiber" 

After running, the script above will dump results in the output window in the Zifazah pro­

gramming environment as shown in Figure 6. 
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Figure 6. Result of an example script showing Zifazah as a fully declarative language. 
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IMPLEMENTATION 
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Zifazah is declarative in its general fom1 with support of certain programming language 

features, such as variable referencing and arithmetical and logical operations. At this early 

stage, the language scripts are not executed via a fully-featured interpreter or compiler but 

a string-parsing-based translator of descriptive text to visualization pipeline components 

and manipulations upon them. The core of Zifazah is implemented on top of the Visu­

alization Toolkit (VTK) using C++. The rendering engine is driven by the visualization 

pipeline and legacy VTK components ranging from various geometry filters to data map­

pers. However, in order to support language features such as mixed data encoding, a group 

of new pipeline components like those for view-dependent per-vertex depth value ordering 

has been extended on top of related VTK classes, and many legacy VTK components have 

been tailored for specific needs of visualizations in Zifazah. 

In particular, the Zifazah script interpreter has also been implemented primarily as data 

fi lters in the VTK visualization pipeline. For instance, filtering according to thresholds of 

DTI metrics is developed as a set of separate VTK filters each serving a specific metTic. As 

such, interpreting a Zifazah script is to translate the text, according to defined syntax and 

semantics, to data transformations in the VTK pipeline. For achieving the data encoding 

flexibility, multiple VTK data transfom1ation pipelines have been employed. 

Additionally, the overall programming interface is implemented using Qt for C++. In­

teractions like triggering the execution of a Zifazah program, serializing and deserializing 

the text script, etc. are all developed with Qt widgets, although the interactions with the 

visualization itself are handled using legacy VTK facilities with necessary extensions. Fig­

ure 1 illustTates the look of the current Zifazah programming interface. Both the code editor 



29 

and "debugging" information window are dockable widgets, which facilitates the script pro­

gramming by allowing free positioning and resizing as opposed to the visualization view. 

Since our language is non-programmer oriented, program debugging skills are not ex­

pected of users. Consequently, instead ofbuilding a full-blown debugging environment as 

seen in almost all integrated development environments (IDEs), we simply use a dockable 

output window to prompt users with all error messages caused by invalid syntax or unrec­

ognized language syn1bols. We have made use of GUI utilities of Qt for C++ to dump, 

after running a script, those messages to tell what is wrong and where in natural language 

descriptions with different levels of errors (fatal, warning, and notice, etc.) differentiated 

by different combinations of font size, type, and color of the text. Resulting values out of 

running data analyzing statements are also displayed in this output window. I do not set a 

separate window for displaying those numerical results in order to simplifY the program­

ming interface and, alternatively, we use remarkably disparate text background and under­

score to highlight them among other messages. Also, natural language description has been 

used to present those numerical results so that they are easy to read and understand for end 

users. 
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CHAPTERV 

USAGE SCENARIOS 

In this chapter, we describe several sample tasks done by neurologists with visualiza­

tions of a brain DTI model using the Zifazah language. The usage scenarios associated with 

the sample tasks are representative of some typical real-world visualization tasks of neuro­

scientists and neurological physicians with expertise in DTI in their clinical practices. The 

usages range from visualization customization and exploration to DTI data analysis, cover­

ing the main language features and functionalities of the current Zifazah implementation. 

In the following scenarios, Dr. Josh M. Anderson, a vascular neurologist and an end 

user of Zifazah, has a geometrical model derived from a brain DT-MRI data set and wants 

to compose and explore visualizations of the data for diagnosis purposes. For each of the 

scenarios, Josh fulfills his task by programming a Zifazah script that describes his thinking 

process for that task and then clicks the "Run" button to execute the script. Josh programs 

with Zifazah syntax references showing on a help window and corrects any term that is typed 

incorrectly with the assistance of error messages displayed in the output window. Once the 

script is interpreted correctly, either the visualization is changed or numerical values appear 

in the output window, as the results of script execution. Scripts and running results are 

presented at the end of the description of each usage scenario. 

Scenario 1: Composing Visualizations 

To start with, Josh specifies a data file that contains the geometries of the brain DTI 

model using the LOAD command. By default, running this single statement gives a stream­

tube visualization of the model with uniform visual encoding across all major bundles and 
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without depth encoding. Suspicious of the association of a known disease named Corpus­

Callosum-Agenesis (CCA) with the distribution of neural pathways at the intersection of 

the CC and CST bundles, Josh continues to customize the streamtube representation by 

mapping FA to tube radius along each CST fiber since he is interested in the FA changes 

of CST at the intersection, and encoding depth values of CC fibers to colors so that he can 

easily discern the genu and splenium fibers in the CC bundle along the depth dimension in 

the coronal view. Finally, Josh also wants to highlight the IFO fibers preferably represented 

with ribbons. Since the IFO bundle is roughly perpendicular to the CST bundle, he likes 

to take it as a reference as wel l. To ach ieve this task, Josh writes the final script after error 

corrections as: 

LOAD "/ home/josh / braindti . data" 

Select "CC , CST , IFO" 

Update size BY FA IN "CST 11 

Update depth BY color IN "CC" 

Update shape BY ribbon IN 11IF0 11 

The result in the visualization view is shown in Figure 7. 

Scenario 2: Examining ROis 

It is quite common for neurologists to examine particular regions of interest (ROis) 

rather than the whole brain when using DTI visualizations. In this task, Josh is only in­

terested in all fibers within the temporal lobe area that belong to the CO bundle and CST 

fibers in the parietal lobe area that have average LA value no larger than a threshold to be 

detem1ined. The SELECT command with relative spatial operations using the anatomical 

planes enables Josh to precisely reach the ROis he desires. He firstly aims to filter fiber 

tracts outside the temporal and parietal area by adjusting the three cutting planes with rela­

tive movements and then starts trying to reach the exact target fiber tracts using both fiber 
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Figure 7. Screenshot of the visualization resulted from running the Zifazah program written 
in scenario 1. 

bundle filters and conditional expression related to LA. With respect to the LA threshold 

undecided, Josh initially begins with an estimate and then keeps refming until he gets the 

accurate selection of target fibers. In the end, he has a runnable script written in Zifazah as: 

LOAD "/home/ j osh/ braindti . data'' 

Sel ect "axial +63.35" 

Sel ect "sagittal +71" 

Sel ect "coronal -48 .5" 

Select "sagittal -0.25" 

Select "axial +7.2" 

Select "CG" 

Sel ect "LA <= 0.275" IN "CST " 

As the result, Figure 8 shows the ROis that Josh programs for. 
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Figure 8. Screenshot of the result after running the Zifazah program that examines ROis in 
scenario 2. 

Scenario 3: Calculating Metrics 

Beyond visual examinations, neurologists often request quantitative investigations of 

their DTI models as well. In this scenario, Josh attempts to check the white matter integrity 

in his brain model due to the limited reliability ofDTI tractography. For a rough estimation 

of the integrity, he uses the CALCULATE command to retrieve the size, in terms of the 

number of fibers, and average FA ofboth the whole brain and representative bundles. With 

the average FA he has requested before, Josh goes further to make use of it to kick out CST 

fibers with average FA below the bundle-wise average. Josh writes the following script and 

obtains what he needs: 

LOAD 11 / home/ j osh/braindti . data" 

Select "ALL" 

Calculate Numfibers 
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Calculate AvgFA 

cstFAavg = Calculate AvgFA in "CC" 

Calculate NumFibers in "CST" 

Update reset IN 11 ALL 11 

Sel ect "FA >= cstFAavg 11 IN "CC" 

Figure 9 shows both the numerical values computed and the updated visualization using 

one of the values through variable reference. 

Figure 9. Screenshot of the running result of Zifazah script written for an end-user task in 
scenario 3. 
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CHAPTER VI 

DISCUSSION 

Since our language addresses scientific visualizations and targets non-progranm1crusers, 

it is designed to be fully declarative with flat control structure. While these two design fea­

tures make the language easy to usc for domain users, it can cause difficulties in debugging 

the script since many low-level computations and control logics behind the high-level syn­

tax are hidden for the users. In order to minimize such drawbacks of the current Zifazah 

design, the script interpreter has been developed to strictly check each current statement and 

stop further executions of the script once current return signals abnormal behaviors, such 

as importing invalid data input and referring to unknown variables. 

In addition, regarding the execution mode, the current implementation of Zifazah does 

not follow a real-time interactive running mode by which the visualization is updated once 

the script changes. Instead, the progranm1ing interface requires a separate user interaction, 

such as clicking a button or pressing a key, for running the present script. This design 

is for interface simplicity and lower computational perfom1ance requirement, although a 

progranm1ing environment with otherwise real-time update is easy to implement. 

While at the prototype stage, Zifazah is still under active development with an intention 

to add more useful features to this visualization language for the purpose of better user 

experience and more powerful language expressiveness from end-user perspectives. 

Concurrent multiple-model exploration: While exploring more than one DTI model 

in order, i .e. switching data input from one to another using the LOAD command, has been 

supported, concurrent exploration of multiple models has not yet been implemented. How­

ever, requirements for doing so do exist among our end users. As an example, one typical 
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case is to examine two brain models in which one is known as normal and another suspi­

cious of a brain disease. This is often seen in clinical practice since the side-by-side com­

parison is helpful for efficient recognition of cerebral anomalies or simply finding structural 

differences. Corresponding Zifazah commands and related other types of symbols can be 

extended for such concurrent explorations. Among other changes, the evaluation of LOAD 

statements results to an identifier (a handle, for instance) can be utilized to identify a specific 

model out of multiple ones simultaneously explored. 

Improved usability: Although Zifazah has been designed to be fully declarative and 

many features have been developed expressly for maximum usability, such as flat control 

structure and consistent syntax pattern, the usability of the overall programming environ­

ment can be further improved in two aspects. First of all, apart from a help window showing 

all symbols and syntactical details, which has already been implemented, context-aware au­

tomatic word completion can be built into the script editor so that users would not need to 

remember language keywords. Also, statement templates can be provided in the interface 

so that users can program a statement simply by filling blanks followed by clicking a but­

ton to confirm (then the statement will be added into the editor). Secondly, instead of only 

displaying error messages after execution, highlighting error-prone words when they are 

being typed is an additional editor feature. 
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CHAPTER VII 

CONCLUSION 

I have presented a visualization language for exploring 3D DTI visualizations and de­

scribed the design principles and language features of it derived from end-user descriptions 

about how to customize and explore such visualizations. I have already developed some 

functions and features carefully selected for the proposed language, Zifazah, and described 

the elements of the language. A primary design goal with Zifazah is to initiate a scientific 

visualization language that is non-programmer oriented, especially for domain scientists 

who have no programming experience and skill to create and explore in their own visual­

izations. For this purpose, I have emphasized design features of Zifazah that particularly 

support the design goals. 

I have also described representative usage scenarios of Zifazah apart from many exam­

ple scripts written in the language before presenting its main content. These scenarios show 

that the new language is appealing to domain users, and it is promising to further develop 

the prototype towards a more capable and usable language for exploring more scientific 

visualizations. 

While the development of the language as a whole is still at its early stage, the language 

core has already been implemented and more features are being extended on top of the 

current design. Among many possible directions to follow, I briefly discussed two main 

prospective features to follow up. With Zifazah I have presented a new approach, i.e. the 

end-user programming approach, to exploring DTI visualizations in 3D environment. 
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