
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Master's Theses

Summer 8-2012

Designing and Developing an Alternative Implementation of the Designing and Developing an Alternative Implementation of the

Digital Bathymetric Database, Variable Resolution (DBDB-V) Digital Bathymetric Database, Variable Resolution (DBDB-V)

Donald Lester Brandon Jr.
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/masters_theses

Recommended Citation Recommended Citation
Brandon, Donald Lester Jr., "Designing and Developing an Alternative Implementation of the Digital
Bathymetric Database, Variable Resolution (DBDB-V)" (2012). Master's Theses. 419.
https://aquila.usm.edu/masters_theses/419

This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been
accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For
more information, please contact Joshua.Cromwell@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/masters_theses
https://aquila.usm.edu/masters_theses?utm_source=aquila.usm.edu%2Fmasters_theses%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/masters_theses/419?utm_source=aquila.usm.edu%2Fmasters_theses%2F419&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu

The University of Southern Mississippi

DESIGNING AND DEVELOPING AN ALTERNATIVE IMPLEMENTATION OF

THE DIGITAL BATHYMETRIC DATABASE, VARIABLE RESOLUTION

(DBDB-V)

by

Donald Lester Brandon, Jr.

A Thesis
Submitted to the Graduate School

of The University of Southern Mississippi
in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Approved:

Iiean of the Graduate School

August 2012

ABSTRACT

DESIGNING AND DEVELOPING AN ALTERNATIVE IMPLEMENTATION OF

THE DIGITAL BATHYMETRIC DATABASE, VARIABLE RESOLUTION

(DBDB-V)

by Donald Lester Brandon, Jr.

August 2012

This documentation describes a project to design and develop an alternative

implementation of the Digital Bathymetric Database Variable Resolution (DBDB-V) that

will allow efficient ingestion into Geospatial Information System (GIS). DBDB-V is a

well-known storage facility for wide-reaching bathymetry. It is created, maintained, and

extensively used by the U.S. Navy, and it is seen in many applications within the public

sector. Environmental Systems Research Institute (ESRI) develops a popular suite of

GIS applications called ArcGIS Desktop that is used worldwide and offered to U.S. Navy

programs though the Commercial Joint Mapping Toolkit (CJMTK). This thesis will

examine the development of an ESRI-compatible spatial geodatabase (GDB) that will

hold the DBDB-V data and provide native data ingestion into ESRI products thereby

improving the efficiency of how bathymetry is used within the GIS. It will also

investigate tools needed to build and update the geodatabase as well as to provide access

to the data stored within it. The thesis will also consider test cases to validate the new

geodatabase and its tools.

11

)

ACKNOWLEDGMENTS

The author of this thesis would like to thank his thesis director, Dr. George Raber,

and the other committee members, Dr. Clifton Dixon, Dr. Gregory Carter, and Dr. Brian

Bourgeois for their professionalism, expertise, and hindsight offered during the duration

of this research effort. Also, he would like to thank Dr. Brian Bourgeois not only for his

support of the thesis material but for providing the extra push within the naval

community in an attempt to build up interest to back the research. Furthermore, he would

again like to thank Dr. George Raber for his endless patience during the progression of

this research and the coursework preceding it. Finally, the author would like to thank the

administrations at both the University of Southern Mississippi and the Naval Research

Laboratory for managing the insurmountable amount oflabor-intensive paperwork that

kept me confused on a daily basis. Without their support it would have been all the more

difficult to achieve this goal.

111

TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGMENTSiii

LIST OF TABLES v

LIST OF ILLUSTRATIONS vi

LIST OF CODE EXAMPLES viii

CHAPTER

I. INTRODUCTION l

Statement of Research

Background Information

II. LITERATURE REVIEW , ... 6

III. METHODOLOGY 8

Plan ofWork

Task Description

IV. ANALYSIS OF RESULTS 54

Test Plan Description

Test Plan Results

V. CONCLUSIONS 65

APPENDIX 70

WORK CITED ~ 80

iv

LIST OF TABLES

Table

1. Development Considerations ... 9

2. Selected Development Considerations 15

3. Root Table Attributes .. 18

4. Coordinate System Attributes 19

5. Resolution Table Attributes 21

6. Tile Name Table Attributes 22

7. Geographic Raster Collection Attributes 23

8. DBDB-V Conversion Time Measurements 52

9. Extent Rectangle Coordinates , 52

v

LIST OF ILLUSTRATIONS

Figure

1. 0.05 arc-minute resolution coverage from DBDB-V, version 6 3

2. ArcMap Displaying Vector and Raster Datasets 5

3. File Geodatabase Schema .. 17

4. Solution Explorer Showing Projects 24

5. DBDBVConverter GUI 25

6. DBDBVConverter Methods 27

7. DBDBV ArcHelper Public Methods 28

8. DBDBV ArcHelper Private Methods 30

9. DBDBVHdfllelper Methods 32

10. ResoultionAtts Table in ArcCatalog 33

11. DBDB-V Data Structure 34

12. Raster Generation Flowchart 40

13. Raster Correction During CreateDepthRaser Method42

14. DBDBVExtractor Tool 43

15. 2 Minute Resolution Selection46

16. 0.05 Minute Resolution Selection 47

17. 2 Minute Raster Comparison 54

18. 1 Minute Raster Comparison 55

19. 0.5 Minute Resolution Extraction 57

20. 0.05 Minute Resolution Comparison 56

Vl

'
..

21 . 0.05 Minute ResolutionMosaicking ... 51

22. 0.05 Minute Resolution Mosaic Comparison .. 58

Vll

LIST OF CODE EXAMPLES

Code Snippet

1. The DBDBVConverter Constructor .. 26

2. The CreateFGDB Method 29

3. The Method Calls for Creating Collections of Attributes 29

4. The Code to Add Fields to a Table ,31

5. The PopulateResolutionTable Method 36

6. The Call to the LoadResDictionary Method 38

7. The LoadResDictionary Method 3 8

8. The GetDepthArray Method .. 40

9. The OnMouseDown Method 44

10. Extract the Desired Raster from a Single Source Raster46

11. Clipping Multiple Rasters to an Extent Rectangle47

12. Mosaicking Multiple Rasters to the Desired Extracted Raster48

Vlll

CHAPTER I

INTRODUCTION

Statement of Research

1

The purpose of this thesis is to introduce a new approach to providing Digital

Bathymetric Database Variable Resolution (DBDB-V) bathymetry data to Environmental

Systems Research Institute (ESRI) based systems. The current implementation of

DBDB-V maintains the data using a file format that in earlier versions ofESRI was not

readily compatible. The approach mentioned in this research results in a native ESRI

database which will allow a smoother interface between the data and the GIS. The data

will be quicker to access, manipulate and manage than was previously possible. The

effort is intended to support programs in both the private and public sectors that require

bathymetric variables for a variety of scenarios. Hydrographic survey planning for

navigational aid or mineral research and oceanic modeling are examples of potential

research programs. It is relevant to the field of geography because it deals with the

spatial mapping of this environment and its variables.

Background Information

DBDB-Y

The DBDB-V is a digital database that stores ocean depths and their uncertainties

at various grid resolutions as well as in different levels of classification (NIMA 15). Four

classification levels exist (level O-level3) and each is a separate database with only the

first level being publically available. The other three are used primarily in situations

deemed classified or secret by U.S. government officials. The DBDB-V is developed and

maintained by NAVOCEANO, an organization comprised of military and civilians

employees whose primary focus is to provide oceanographic data to the U.S. military

branches. NA VOCEANO provides updates to the data on at least an annual basis and is

currently releasing version 6.2 of the database to the public. The version being used for

this research is version 6.0 which was released in the spring of2010.

The DBDB-V holds the bathymetric data in spherical coordinates systems and

allows extractions to be performed using those systems or planar coordinate systems.

2

The spherical coordinates (geographic or polar stereo graphic) are measured in arc

minutes and include 2.0, 1.0, 0.5, 0.1, and 0.05 arc-minute measurements while the planar

coordinates (Universal Transverse Mercator or Universal Polar Stereographic) are

measured in metric resolutions and include 50.0, 20.0, 10.0, 5.0, and 2.0 meter

measurements.

The coverage provided by the DBDB-V depends on which resolution of data is

selected. The 2 arc-minute resolution grid is the most complete, offering virtual

worldwide coverage. The 1 arc-minute grid provides coverage of the Strait of Gibraltar,

the Mediterranean Sea, the Red Sea, the Caspian Sea, the Aegean Sea, the Ionian Sea, the

Sea of Marmara, the Baltic Sea, the South China Sea, and most of the Pacific Coastline of

the United States. The 0.5 arc-minute grid provides scattered coverage along the Pacific

coastline and the Atlantic coastline of the United States, the eastern coastline of

Greenland, the waters around Iceland, and parts of the North Sea. The 0.1 arc-minute

grid covers only a small area around the coastline of the Carolinas and another small area

east of Madagascar. Finally, the 0.05 arc-minute grid offers coverage along the coastline

of the continental United States, Hawaii, and Puerto Rico. Figure 1 shows the 0.05 arc

minute resolution data coverage on a map.

Figure 1. 0.05 arc-minute resolution coverage from DBDB-V, version 6. The image
shows the coverage as orange rectangles. The image was generated using the tools
provided by NA VO that accompanied the bathymetric dataset.

3

The DBDB-V is stored using the Hierarchal Data Format, version 5, also referred

to as HDF5. HDF5 is a general purpose yet highly efficient storage and management

system for scientific data that is capable of handling large quantities of complex data

(The HDF Group). It is maintained by the HDF Group, a group of staff and students

from the University of Illinois. It is well suited for handling the large DBDB-V dataset

however; it does not integrate well with all GIS interfaces. In the case of our GIS

application, the tool used to interact with HDF data loads the data into the tool very slow

from the large DBDB-V dataset. Then, once in the tool, the data can only be loaded from

the extents of the selected tiles. Finally, the rasters that are loaded from the tool have no

spatial references defined so they are not georeferenced correctly.

The DBDB-V disc provides a collection of tools that allow access to the

bathymetry. These tools are both command-line based, written in ANSII C, and GUI-

based, a Java interface to one of the tools, and provide the ability to extract data, generate

4

subset databases, and edit the data in the primary database. The extraction tools

interpolate the data into raster datasets using one of three interpolation methods; Nearest

Neighbor, Bilinear Interpolation, or a Minimum Curvature Spline feathering

algorithm(Lockheed Martin 32). These tools are built upon a public Application

Programming Interface (API) that allows you to programmatically access and manipulate

the data structure.

The importance ofDBDB-V data in mission planning applications and ocean

modeling applications should not be under estimated. The gridded datasets are used to

model the ocean bottom in applications that generate survey line estimations, and the

higher resolution datasets may be used in applications that involve defining topology

characteristics such as seamounts or canyons. If mission planning systems are GIS

based, DBDB-V needs to be in a format that can be easily integrated into the application.

ESRJ ArcObjects

The GIS application used in this research consists of custom built tools created

using ESRI's ArcObjects. ArcObjects are Component Object Model (COM) components

that are implemented through a large collection of interfaces. They are an extensive set

of over 3,400 classes stored in more than 70 libraries and contain over 21,000 methods

and properties that can be used to build elaborate mapping applications (Burke, 9). They

are the building blocks of ESRI' s sophisticated ArcGIS Desktop suite of applications that

includes ArcMap, ArcCatalog, ArcScene, and ArcGlobe.

ArcObjects are responsible not only for the look and feel of an ESRI GIS

applicatioQ., but also for the underlying functionality that controls how the objects are

structured, used, and managed. They allow users to perform various levels of analysis on

5

geographical data. The analyses can be spatial, temporal, dimensional, and even based

on different types of networks. ArcObjects have classes that will allow a large number of

raster and vector data types to be incorporated into a GIS. Examples of raster data types

may include, but are not limited to, Tagged Image File Format (.tif), ERDAS Imagine,

(.img), and ESRI ASCII Raster (.asc). Vector data types may include shapefiles and

coverages. Figure 2 shows an example of ArcMap displaying some of the

aforementioned data types.

61o""r- _______ ljofo

D6 lil ~ x .., "" ~· ,,,......, • ~ !l t;~!;;I ~ !J :>o •?,_
~Elt'I O :: : : • !Jl · ~ 0 ~ :; ft t5 t. .,.. E:D ._. • •

••

1---------'1!)•1• .. .

Figure 2. ArcMap Displaying Vector and Raster Datasets. The shapefiles represent the
land objects and the raster data represents the bathymetry (the black and white image
files).

In addition to the ArcGIS Desktop, ESRI offers another way for users to access

the functionality of ArcObjects. The ArcEngine Software Development Kit (SDK)

provides the capability to create custom applications that can focus on very specific

objectives allowing the application to be streamlined to the needs of the user. This is very

useful because full featured GIS applications such as ArcMap are very complex and

difficult to learn. They may include many functions that are unnecessary to the purpose

of the user and they may conceal the ones that are actually desired. This makes

navigating a full featured GIS cumbersome. Creating custom applications can take

advantage of the full mapping features of the ArcObjects as well as console applications

that only take advantage of the geospatial processing power of the libraries. Using the

ArcEngine SDK, it is possible to develop GIS application for a number of different

operating systems other than Windows including various flavors of Linux and Solaris.

6

7

CHAPTER II

LITERATURE REVIEW

It is difficult to find literature that directly relates to the subject of this thesis

work. While many papers identify the use ofDBDB-V data in various projects, none

were found that specifically discuss the creation of an alternative storage mechanism that

is GIS compatible. One paper from the Oceans 1989 Proceedings titled Proposed

Internal Database Structure for Digital Bathymetric Database Production, authored by

Braud, Breckenridge, Current and Landrum, discusses the considerations for storing

DBDB data and also the limitations of storage and processing power for the computers of

that era. This paper considered the criteria for creating a database for the DBDB data but

when considering how far technology has come since the late 1980's, the information is

no longer relevant.

A paper titled Marine Geospatial Ecology Tools: An Integrated Framework for

Geoprocessing with ArcGIS, Python, R, MATLAB, and C++ and authored by Roberts,

-
Best, Dunn, Treml and Hap lin (20 1 0) discusses a set of tools that were developed for the

same reasons that this thesis exists; to overcome the complexities of dealing with HDF

formatted data as they relate to interacting with a GIS. However it does not demarcate if

this data is version four or version five of the HDF. This would be relevant when

regarding these tools for DBDB-V since newer versions of the bathymetry use the HDF5

format. It also does not mention that the tools would work for bathymetry specifically

since they were initially designed for coastal ecology and management.

Another paper of interest was one titled Examples of Carter Corrected DBDB-V

Applied to Acoustic Propagation Modeling authored by Fabre and Fabre. This was an

internal report of the Naval Research Laboratory that was released in March of 2008.

This report is interesting because it introduces some of the potential shortcomings of the

accuracy of the DBDB-V. It states that DBDB-V uses nominal depths rather than true

depths and discusses a methodology to correct the inaccurate depths. It also makes

mention of future releases of the DBDB-V, one being the current version used for this

research containing true depth as an extraction option.

8

VGRID: A Generic, Dynamic HDF5 Storage Model for Georeferenced Grid Data

is a paper authored in 2002 by Steed, Braud, and Koehler that discusses a "new"

technique for the storage and retrieval of bathymetric data. VGRID was considered to be

a potentially improved storage facility for the DBDB-V although it was actually designed

with another source of bathymetry in mind. One important point drawn from this paper is

the similarity that both the VGRID and the DBDB-V are structured from the HDF5

storage model. In fact, the VGRID has some features of the DBDB-V pulled into its

architecture such as the same available coordinate systems. The paper is a wealth of

information of the organization and functionality ofHDF5 and is invaluable to

understanding how the DBDB-V is structured.

Another paper, OAML Feathering Algorithm Overview, authored in 2003 by

Steed and William Rankin, discusses the OAML feathering algorithm. This algorithm

was the feathering method that was first included in the DBDB-V to allow data of

different resolutions to be combined into a single raster with a limited amount of

discontinuity along the edges. The paper gives an in-depth view into the methodology of

one of the more important interpolation algorithms within the DBDB-V which will

inevitably need to be implemented in this research at some point.

By far, the most useful document regarding the DBDB-V is the specification

itself, Database Design Description for the Digital Bathymetric Database - Variable

Resolution (DBDB-V) Version 6.0 (Lockheed Martin 2010). The specification gives an

in-depth description on topics such as spatial resolutions, coordinates systems, data

hierarchy, and input/output formats. It also discusses the underlying API and the tools

built on top of it that allow data management, matrix management, and extraction

management.

9

10

CHAPTER III

METHODOLGY

PlanofWork

Several elements had to be considered when developing a plan of work for this

research project. These included the primary audience of the research, the target GIS

interface, the SDK used to access the GIS libraries, the storage facility for the new

geospatial data objects, and the host operating system for the development environment.

Each element was scrutinized thoroughly to ensure that the research would maximize

potential usability while providing an efficient interface to a sophisticated collection of

bathymetric data.

Table 1

Development Considerations

Development Considerations

Audience GIS Interface
Development

Storage Facilities Host OS Language

DOD ESRI .NET
ESRI Personal

Windows
Geodatabase

Academia Quantum GIS Python
ESRI File

Linux
Geodatabase

Private Sector Java
PostGreSQL

Solaris
Database

C++

When considering the prospective users of the new geodatabase (GDB), care was

taken to include all potential user groups. The U.S. Navy produces the original DBDB-V

data so it is logical that they are the primary user of the data. The data is used

11

throughout the Navy for a wide variety of missions and by a large number of groups

within. NAVOCEANO is considered the key targeted user of the new data and has

offered useful suggestions as to how the data should look and feel and how the tools that

are going to be developed should interact with it. However, with the public availability

of the DBDB-V and a rapidly expanding knowledge of its existence, other conununities

have been quick to begin utilizing its vast amount of data in a variety of other projects.

Academia is one such example where colleges around the globe are beginning to

incorporate this data into their research projects. The University of Southern

Mississippi' s Department of Marine Science has expressed an interest in using this type

of dataset to project a better image of what the convergence of littoral zones and

shorelines is like along the northern Gulf of Mexico. While the input from the naval

conununity should be considered foremost, it should not be considered exclusive.

ESRI provides a powerful interface to GIS data but with that power comes a

seemingly endless number of ways to program a method to perform a single task. More

times than not, a programmer's choice of how to accomplish a task is not always the most

optimal manner available although this choice is usually not realized without iteration

and prototyping. Furthermore, while there are so many ways to program these methods

there are also a number of ways for this code to be integrated into the ESRI interface.

This includes providing the methods as ArcToolbox tools, ArcGIS Desktop embedded

components, or as standalone executables. These options are explored in the following

paragraphs.

The most conunon method of providing Arc Toolbox tools to the ArcGIS Desktop

interface for programmers is by writing code in the Python programming language.

12

Python is an interpreted programming language that has grown enormously in popularity

over the years. Until recent years ESRI has always leveraged Visual Basics for

Applications (VBA) as the scripting language of choice for developing these tools.

However, Python's growing following has led to it becoming the evident replacement to

VBA in future releases of ArcGIS Desktop and the primary scripting language used in

ArcGIS 10. Python provides access to ESRI' s geoprocessor tools and while this allows

Python to generate very powerful geoprocessing scripts, it limits what can be done with

this method since the geoprocessor only supports a portion of what ArcObjects can

provide.

Another option for designing the interface to the GIS would be to implement

embedded components into the ArcGIS Desktop. Embedded components can take the

fort? of menu items or tool bar items within the Desktop application. They can be coded

to utilize the GIS geoprocessor but can also be coded with pure ArcObjects. Coding in

ArcObjects has two major advantages over using the geoprocessor. First, using

ArcObjects provides much more functionality that is available with the geoprocessor

which allows sophisticated tool and application development. Second, code written in

ArcObjects is executed much faster than code using the geoprocessor, a fact that is

noticed during code execution, particularly during application startup. Using embedded

components affords users the full range of the tools available in the Desktop under the

stipulations of the installed license and while this may be beneficial in many situations, it

may also in some situations be considered overbearing or undesirable because the

additional tools can increase the complexity.

13

Standalone applications that are written using ArcObjects can have the advantage

over embedded components by streamlining the developed application. This allows a

smaller application with user interfaces that are easier to maneuver and functionality

specific to defined tasks. This is advantageous to users who are not familiar with all of

the intricacies of the Desktop and want to avoid the learning curve associated with

complex software. Also, users may desire an application that is specific to their needs.

That is not to say that an application cannot be a full featured GIS mapping environment

with virtually all the components of the Desktop suite available. It does mean, however,

that it could simply be a console application running in the background churning out

processed data to a user. As with embedded components, the most optimal manner of

development is using pure ArcObjects. However it is possible to integrate the ESRI

geoprocessor into the code as well. Overall, programming standalone applications using

ArcObjects provides the most flexibility when a specific objective is the goal. For the

purpose of this research, this was the selected method of development with the realization

that a conversion of the code to embedded components may eventually be desired.

The results of this project include very large datasets and how that data is stored

affects the efficiency of the tools used for its generation and display. Numerous storage

options are available for storing large quantities of geographical data but because ESRI is

the foundation for this work, it seemed appropriate to only consider those storage options

native to the ESRI environment. There are two practical options to consider: the personal

geodatabase and the file geodatabase.

The personal geodatabase is a Microsoft Access database that allows data to be

stored both spatially and non-spatially. The data can be queried or managed in ways

14

typical with the Access database, allowing concise searches to be performed. There is a 2

gigabyte size limit of the personal geodatabase due to the properties of the Access

database so with very large projects that can potentially consume a large amount of data

its practicality can come into question. Also, it only allows one user at a time to access

and edit its data. The personal geodatabase can store many useful forms of geospatial

data including feature classes, mosaic rasters, raster catalogs, and non-spatial tables.

These characteristics make the personal geodatabase a viable option for this research

project.

The file geodatabase is actually a system of binary files stored in a collection of

folders the allow ESRI software to store, manage, and manipulate spatial and non-spatial

data. Compared to the size limitations of the personal geodatabase the file geodatabase

seems almost boundless. It gives the user a default 1 Terabyte (TB) size limit per dataset

that can be configured to 256 TB. Like the personal geodatabase the file geodatabase can

ingest a large number of geospatial datasets as well as non-spatial tables. Unlike the

personal geodatabase, it allows multiple users to access the data although only one user

can edit the data at one time.

Two of the questions that always seem to arise in the scientific community are

which platform the development of the software should take place on and which

operating system would be most beneficial to the user. In many cases the decision to use

a specific platform for development may directly affect the platform required by the user

and vice-versa. They are not always difficult decisions to make but should always be

considered, and this research effort was no different.

15

Two essential factors involved in the selection of a development platform include

the desired development language and the software libraries required to construct the

applications. There are many development languages that are capable of producing cross

platform applications, or those applications that can be run on multiple operating systems.

Such languages include C++, Java, Python, Perl, and TcVTk. Other languages, such as

those that are based on the Microsoft .Net environment, are targeted only at the Windows

environment. These include Visual Basic, C#, F#, and IronPython.

Another important consideration is which software libraries are either required or

desired to develop the applications. There are many different APis that are available to

develop GIS applications and they differ in many ways. For example, ArcEngine is the

interface to ArcObjects, ERSI's extensive library for developing all of their GIS

applications. It provides components that allow a developer to create mapping

applications of various complexities and also allows efficient processing of many types of

geospatial data. However, in order to access the capabilities available through ArcEngine

a developer will pay a substantial amount of money. In contrast, an API is available at no

cost that will allow a developer to access the objects that are responsible for the structure

of Quantum GIS (QGIS). QGIS is a full-featured GIS application that provides a user

many of the same features that are available in ArcGIS Desktop. The API is developed

using the C++ QT library which makes it capable of being used for cross platform

development.

All of the previously mentioned factors were considered for this research project.

The decision as to which of these factors would be incorporated into the project was

greatly influenced by who was projected to be the primary user of this software.

16

NAVOCEANO is obviously that user since they are the most substantial user of the

original DBDB-V data. While NAVOCEANO does not depend solely on a single

operating system, Windows platforms have consistently been used throughout the

organization for many projects. That, factored in with the extensive use ofESRI systems

within NA VOCEANO, made it ideal for this research to focus effort towards a Windows-

based ESRI GIS application for not only the manipulation and display of the DBDB-V

data but also the storage of the converted data. Because of the flexibility of the file

geodatabase and the fact that it allows such large datasets, it was the logical choice for

the storage solution. The table below shows the considerations that were ultimately

selected based on the criteria determined in the previous paragraphs.

Table 2

Selected Development Considerations

Development Considerations

Audience GIS Interface
Development

Language
Storage Facilities Host OS

Academia Quantum GIS Python

Private Sector Java

C++

PostGreSQL
Database

Solaris

Several tasks were defined that influenced how this project would be approached

from a development standpoint. First, a valid geodatabase schema had to be developed

that would ensure that the data would be organized in such a manner that a smooth

17

transition could exist from the existing DBDBDV. Second, a geodatabase would need to

be created that supported that geodatabase schema and allows the existing DBDB-V data
-'

to be stored within it. Finally, a tool would need to be developed that would allow the

data to be accessed and manipulated to derive subsets that could be saved or used for

other purposes. These tasks are discussed in greater detail in the next section.

Task Description

Designing the geodatabase schema

The geodatabase schema provides the definition of the geodatabase and describes

how the entities within the geodatabase are structured. In a geodatabase, the entities can

be spatial (vector entities vs. raster entities) or non-spatial (tables).

Vector entities are those data that are most commonly used to represent

geographical features as points, lines, and polygons. The most common example of point

data would be places of interest (POI) which represent objects such as gas stations, post

offices, and schools. Lines features are used to represent objects such as administrative

boundaries, rivers, and roads while polygons are often used to signify national parks,

large bodies ofland and water, or city parcels. Feature classes and shapefiles are

common formats for vector data when working with an ESRI GIS. The raster entities

are gridded datasets whose resolution is based on pixel sizes. Rasters generally represent

image files but can also correspond to geographical features usually characterized by

vector datasets. There are many file formats for rasters. Some of the more popular ones

for an ESRI GIS are ASCII gridded rasters, ERDAS Imagine rasters, and GeoTIFF.

Standalone tables provide a means to incorporate various non-spatial data into the

geodatabase.

18

The schema also defines the interactions between the entities such as the

relationships and cardinality. Relationships defme how the different objects in the

geodatabase are related to each other. Relationships can be created between spatial

elements, between non-spatial entities, and between combinations of the two. They can

be based upon spatial characteristics (spatial relationships) or the attributes of the entities

(attribute relationships) and depend upon the objects being related. Cardinality

determines the number of times objects between the two entities can be related.

Relationships can have a one-to-one cardinality, a many-to-many cardinality, or a one-to

many cardinality. The one-to-one specifies that only one object of the origin element can

relate to one object of the destination element. The one-to-many (or many-to-one)

specifies that an object of one entity can relate to many objects of the other entities.

Finally, the many-to-many cardinality stipulates that many objects of the origin entities

may relate to many objects of the destination entities. There are other interactions that

can be defmed by a database schema, but for the scope of this project, they are not

relevant.

The schema for this project is straight-forward. It contains three raster catalogs,

four standalone tables, with no relationship classes defmed. Originally, the concept

included a series of relationships between the raster catalogs and the tables; however the

idea was abandoned for simplicity in terms of functionality. Instead, the schema relies on

a series of joins that connects the raster catalogs to the tables to provide information on

coordinate systems, resolution, tile boundaries, and DBDB-V information. These joins

will accomplish the same results as creating a collection of relationships with little or no

cost while processing. Figure 3 is a representation of the project schema and shows the

joins as color-coded lines.

I • Conidia a

Oli~D
Shape
Rister
N.me
Shape_Lencth
Shape _Area
complle_date
dltltype
unlts_of_meesure
roo_value
ellipsoid_offset
vertiCII_detum

root..CO«Gys __ ___ ... __
OlijectiD
Shape
Rister
N.me
Slwlpe_Lencth
Shape_Area
complie_date
datatype
units_of_measure
zoo_v~lue

elllpsold_offset
vertic.l_detum root __

CO«Gys_._
___ ... __

Raster
N...,e
Shape_Le
Shape_ArN
complie_date
daUtype
units_of_measure
zoo_value
elllpsold_offset
vertlcal_datum root __
CO«Gys __ ___ ... __

llllliiiiiiDftA

OlijediD
x_lntentll
y_lntentll
units_or_meiSure

,-ru_name

OlljecttD
horlzonul_d.uum
num_rows
nom_cols
polnt_scan_lieq
proj_lll-
projld
zone
hemmisphere
seml_major_uls
seml_mlnor _axis

fl~ttenlnc...,..tlo

ref_spllere_r~dlus

mndard_p.~raUel

fi~t_srd_;Nr~ll•l

second_std_p.~rallel

central_merldlan
latltude_of_orflln
f~lse_eastlnc
false_northlnl
true_sca .. _lultude
lon11tude_below_pole
cen_mer_sca .. _f..ctor
center _ion
center_llt
hellht_of_point
flm_polnt_lon
flm_polnt_iat
second _point _ion
second JICIInt _iat
hottne_azlmuth
lon_~•-~zlmuth

lnclln_ascendlnl_node t-t-t--!COOidsys __

"rru 'Ill

OlijectiD
security_key
south_ VII
north_val
east_ val
west_ val 1-+-- -1.__ .. _

otajec:tiD
file _format_ version
d~u_source

d~_,..~ion

comments
1roup_name
d~tab<ase_dn•
over~ll_securtty _ cl~ss
securlty_set_count
security_ class_ num
classlfvinLauttl_num
decllsslflcatlon_date_num
dlstributlon_sutement_num L-----------------1 root __

19

Figure 3. File Geodatabase Schema. The collections on the left represent the rater
catalogs that hold the raster information. The collections on the right represent the non
spatial tables holding important attributes. The various colored arrows represent the joins
that link the attri]?utes of the tables to the raster collections.

20

The entities of the database schema relate directly to the information that is

available to a user through the original DBDB-V application. The four tables represent

the non-spatial attributes that are stored within the DBDB-V and include attributes for

root, coordinate system, resolutions, and tile name categories.

Table 3

Root Table Attributes

RootAtts

Attribute Name Data Type Join Attribute

ObjectiD Object ID no
file format version Text no - -
data source Text no
data version Text no
comments Text no
group_name Text no
database date Date no
level Short Integer no
overall_ security_ class Short Integer no
security_ set_ count Short Integer no
security_ class_ num Text no
classifying_ auth _ num Text no
declassification date num Text no - -
distribution statement num Text no
root name Text yes

The root table, show in Table 3, provides attributes that defines version

information for the DBDB-V data. The attributes outline the version, source, level, and

distribution parameters of the DBDB-V data. These are important parameters when

working with DBDB-V because not all versions contain the same information and not all

levels ofDBDB-V are available or approved for all applications. The data_ version

attribute provides the version of the DBDB-V collection while the level attribute gives

21

the DBDB-V classification level. Level 0 DBDB-V is the only classification that is

publicly available. The distribution_statement_lOO attribute gives a descriptive message

of how the DBDB-V can be used.

Table 4

Coordinate System Attributes

CoordSysAtts

Attribute Name Data Type Join Attribute

ObjectiD Object ID no

Horizontal_ datum Text no

Rows long Integer no

Columns long Integer no

Point_scan_seq long Integer no

Projection_name Text no

Projection_id Short Integer no

Zone long Integer no

Hemisphere Short Integer no

lon_Z Double no

lat_Z Double no

SemiMajorAxis Double no

SemiMinorAxis Double no

FlatteningRatio Double no

RefSpherradi us Double no

Standard Parallel Double no

FisrtStandardParallel Double no

SecondSta nda rd Parallel Double no

CentraiMeridian Double no

Origin latitude Double no

FalseEasting Double no

FalseNorthing Double no

TrueScalelatitude Double no

longitudeBelowPole
Double no

22

Table 4 (continued).

CentraiMeridianScaleFactor Double no

Centerlongitude Double no

Centerlatitude Double no

HeightToPoint Double no

FirstPointlongitude Double no

First Poi ntlatitude Double no

SecondPointlongitude Double no

SecondPointlatitude Double no

HotineAzimuth Double no

LongitudeAtAzimuth Double no

lnclinationAscendingNode Double no

LongitudeAscendingNode Double no

Revolution Period Double no

LandsatRatio Double no

LandsatPathFiag Double no

SatelliteNumber Double no

Path Number Double no

OblateEq ua IArea M Parameter Double no

OblateEquaiAreaNParameter Double no

OblateEuaiAreaRotationAngle Double no

coordSysName Text yes

The coordinate system table, Table 4, provides attributes that defme the different

coordinate systems that are available within the DBDBV. There are forty-three attributes

within this table that correspond to various parameters used to calculate positions in one

of three coordinate systems; geographic, north polar stereo graphic, and south polar

stereo graphic. Variables such as the semi major axis, semi minor axis, hemisphere,

flattening ratio, and false eastings and northings are all defined in this Table. This Table

also includes values for the projection name and the horizontal datum.

23

Table 5

Resolution Attribute Table

ResolutionAtts

Attribute Name Data Type Join Attribute

ObjectiD Object ID no

x_interval Double no

y_interval Double no

units_of_measure Text no

res_name Text yes

The resolution table, shown in Table 5, provides attributes that define the

resolution of a given tile ofDBDBV data. The measure ofresolution is stored in two

attributes; the x_interval and y_interval. The unit_of_measure attribute determines what

those measurements correspond to, i.e. meters, miles or as in most cases ofDBDB-V,

arc-minutes. An arc-minute of resolution is equal to roughly 1 nautical mile at the

equator, or 1,852 meters (1160 degree).

Table 6

Tile Name Attribute Table

TileNameAtts

Attribute Name Data Type Join Attribute

ObjectiD Object ID no

security _key Long Integer no

south Double no

north Double no

Table 6 (continued).

east

west

tile_name

Double

Double

Text

no

no

yes

The primary purpose of the TileNameAtts table, Table 6 is to provide attributes

that describe the boundaries of a tile of DBDB-V data. The Table stores values for the

24

north, south, east, and west boundaries of the tile and the name that corresponds to that

tile. A record will be created for every tile of every resolution of every coordinate system

of the DBDB-V dataset.

The geospatial elements of the DBDB-V are represented in the schema by three

raster catalogs. A raster catalog is a table that stores a raster dataset in each of its records

including the raster and geographic information. One convenient characteristic of a raster

catalog is its ability to store attributes in addition to the raster datasets and their

properties. This allowed a number of important properties to be included in the schema

without the necessity for another table. The attributes included the compilation date of

the dataset, the units that were used for measuring the dataset, and the vertical datum (i.e.

mean sea level) of the dataset. These attributes are in addition to the properties of the

raster dataset. The complete listing of the raster catalog attributes, sixteen in all, are

listed in Table 7. The attribute table is similar between all three of the raster catalogs in

the geodatabase.

25

Table 7

Geographic Raster Collection Attributes

GeoRasterCollection

Attribute Name Data Type Join Attribute

ObjectiD Object ID no

Shape Geometry no

Raster Raster no

Name Text no

Shape_Length Double no

Shape_Area Double no

compile_date Text no

Data type Text no

units_of_measure Text no

zoo_value Double no

ellipsoid_ offset Double no

vertical_ datum Text no

root_name Text yes

coordSys_name Text yes

res_name Text yes

tile_name Text yes

Creating the Geodatabase

Using the schema described above, a geodatabase was developed that would

allow the complete storage of the DBDB-V dataset and all of its attributes. The storage

facility selected to house all of this information was the file geodatabase. The file

geodatabase was selected because it offers an enormous advantage over ESRI' s personal

geodatabase which utilizes a Microsoft Access approach, limiting it to 2GB size limits.

With the file geodatabase there is a 1 TB size limit per dataset but is configurable to

26

256TB. Also, feature storage of the file geodatabase requires one-third of the capacity of

the personal geodatabase which can result in significant performance improvements.

The process that generates the file geodatabase based on the schema defined

above resides within a Microsoft Windows Graphical User Interface (GUI) application.

The application is being developed using Visual C# 2010 Express Edition, a free version

of the popular Integrated Development Envirorunent (IDE) released by Microsoft. The

IDE provides a programming envirorunent for managing, editing, and debugging the

numerous files involved in creating the application.

In the .NET programming realm, all of the projects that make up an application

are managed within a solution. The solution for this research project consisted of six

projects, three of which were responsible for the GUis, two of which were helper classes,

and one of which generated a tool used within one of the GUis. Figure 4 provides a

listing of these projects as seen within the IDE, two which were directly affiliated with

the task of creating a geodatabase based on the schema provided.

Solution E:<plorer ... I! X

· -- I ~~ I ~ @1
!;; Solution 'dbDBDBVTooiSuite' (6 projects)
t> el dbDBDBVAoiTool
t> e1 dbDBDBVArcHelper
t> tfi1 dbDBDBVExtractor
t> eJ d bDBDBVHdfH el per
t> el dbDBDBVManager
t> e1 dbDBDBVT oGDB

Figure 4. Solution Explorer Showing Projects. The projects provide a structure for the
source code that makes up the various GUis and helper methods.

27

The purpose of the dbDBDBVToGDB project is to provide a user interface to the

code that creates the file geodatabase and then loads that geodatabase with data. It

presents a simple, easy to use GUI that offers a means to obtain user input that formulates

how a new geodatabase will be structured. Parameters on the GUI (Figure 5) determine

where the geodatabase will be stored, what name it will have, and what contents it will

hold. The input value for the input DBDB-V data file provides the path to the input

DBDB-V data. It will be explained further in the next section. The input value for the

output GDB path provides the path in which the geodatabase will reside. It does not

include the name of the geodatabase which is supplied as input to the next field. This

value must be hand-typed. The geodatabase name cannot be achieved through browsing.

The remaining dialog objects, the conversion parameters and buttons, will be discussed

later. The dialog has a status bar and a progress bar at the bottom which are both used to

monitor the data processing.

---- ~- --- A ~

' ~ ' " -- - - --

~ DBOBV Dllhl Fie:

l J a-...

()ljpLt DBOBV Geol lilt.._ Plllh:
a-...

()ljpLt DBOBVGeodlt.,_ Nlme:

CorMnion Panlneten

~ eor-t .. Coorclnlle s,am ~

~ GEO 0 NPS [1) SPS

eon..t II a-

Rudy. . ..

Figure 5. DBDBVConverter GUI. The DBDBVConverter GUI application provides the
functionality to create the file geodatabase.

28

The dbDBDBVToGDB project is comprised of three classes; Program.cs,

Forml .Designer.cs, and DBDBVConverter.cs. Program.cs is a Windows generated class

that is common in GUI applications and has a sole responsibility of configuring the

application and running it. Forml.designer.cs is also common to GUI applications

generated by Windows but is derived from the layout of the application within the

graphical designer. This is the class that gives the application its look and feel described

above.

DBDBVConverter.cs is the class that provides the functionality to the application.

It is a collection of event callbacks (methods that are linked to user interaction with the

GUI) and private methods (methods only visible to the class that defmes them) that

defmes the logic of the program. Methods can also be public methods (methods visible

to properly configured calling classes) as will be seen later, however this class contains

none. The constructor is also a vital piece to the DBDBVConverter.cs class as well as

any other class that contains ESRI components. The constructor is responsible for any

initialization that is necessary before the class is instantiated and made available to the

user. It is not always required or utilized but because an ESRI application must be bound

to a license it is required here. The code below is the constructor for this application.

The method ESRI.ArcGIS.RuntimeManager.Bind sets the application to run under a valid

ArcEngine or ArcGIS Desktop license. Figure 6 displays the methods and variables used

in the DBDBVConverter.cs class.

Code Snippet 1

The DBDBVConverter constructor

public DBDBVConverter()
{

mArchelper = new ArcHelper ();

}

mHdfHelper = new HdfHelper();

mErrList = new List<String>();

mLogFile = new StreamWriter(@"C:\Tmp\ConversionLog.log", true);
CreateLogHeader(mLogFile);
CreateLogFooter(mLogFile);

ESRI.ArcGIS. Runt i meManager .Bind(ESRI.ArcGIS. Product Code.EngineOrDesktop);
Initializecomponent();

sn.-s~ce d~~

I { P"blic ~rthl closs 0608VConverter 1 Fo""
{

privote ArcHdpor,.cl!clf'*r;
privote HdfHo l por -Helper;

P"blic HSFileid OICurltDF;

List<String> llfrrList;

private StreamWd ter lllosfile;

kndresion

.,_eglon Constructors/ Destructor

P"blic DIIIIIIConverter()Q

----<>0

.... sian Coll!Nocks

pri vote wid btninl"'tFile_Click(object sender , EventArgs e)Q

pri vlrte void btn0u1:put6DB_Click(object sender , EventArgs e)Q

pri vote void btnClose_Clict(object sender, EventArgs e Q

•O X

priwte void ckbxAllPar..t:ers_CheckedChanpd(obj ect sender., EventArgs e)Q

pri vlrte wid btnConvert_Click(object sender, EventArgs e)Q

kndr eaion

.,.eglon Privote Methods .

privrte void Createl ocfoot.er(StreaDJriter lotfile)Q

privote wid Creotel o&Horlder (Streo..,riter loaFile)Q

kndrqion

"' . ·I

29

Figure 6. DBDBVConverter Methods. This image shows the methods that are defined
in the DBDBVConverter class. The class contains methods that define the class, allow
user interaction with the GUI, and provide functionality to the GUI behind the scenes.

Also seen in the constructor is the instantiation of the class ArcHelper. ArcHelper

is a custom built class that includes the methods required to create, initialize, and load the

30

geodatabase. Complete public methods and variables defined in this class are seen in

Figure 7 while the private methods are seen in Figure 8.

- A1-cHolpor--d---- -.,.,..--.=-c._.~::--_,----..,...-.....,.,.----.-- - ----:---.-.,.,..,.----,----...,....-•-0 -X

sn~s~ce d~kc~l~r t { ("'k ,g., k<~>w

i: ::~;:·:ublic ~thods
public bool Creotef6DB(String fiUGDIIPoth, String fi~, ToolStripStatusLabd sbtusU.bd,

ToolStripProgress8ar prosresseor>O

I
I

)

E

l
t

public bool InitializeFileOOB(HSFileid curfC)f, IWOrkspace fi~ ToolStripStatusLabd stotusU.bel,
ToolStripProgresssar Pf"'Vessllor)U

public !Workspace OpenFileOOB(strins fileGdbP.th)Q

public bool LoedGdbTobles(IWorkspace curGDII, HSFildd curfC)f, Tool5tripStatuslabd st.tusU.bd,
ToolStripProgress8ar P""'Vesshr)Q

public bool t.o.deiroupToCatoJos(IWOrkspace fileOOB, HSFildd fileiD, String IJ'OU~,
Tool5tripStatusLabd s tltusU.bel, ToolStripP~ess8ar Prosresseor,
list<Stdng> errlist, Strea161riter llloB"ile)l:..:...:J

public bool CrelteOepthlloster(String tolpl>oth, String i-, String - · List<String> errl ist)Q

jlendre1ion

IPrtvat e llethod~

Figure 7. DBDBV ArcHelper Public Methods. This image shows the methods that are
considered public within the DBDBV Archelper.cs class. They are responsible for
interfacing with the geodatabase and its tables and catalogs.

r

I!

The first two methods listed in Figure 7 are responsible for initiating the structure

of the file geodatabase. The CreateFGDB method is a simple method that uses the ESRI

geoprocessor to create a new file geodatabase with the name provided from the

DBDBVConverter GUI in the directory defined by the path provided from the GUI. The

method is shown in the code below and it shows how the geoprocessor is setup and

executed to produce a new file geodatabase. The process is used in several different

methods within this research process but is avoided when possible due to the additional

overhead involved.

Code Snippet 2

The CreateFGDB method

public bool CreateFGDB(String fileGDBPath, String fileGDBName,
ToolStripStatusLabel statuslabel,
ToolStripProgressBar progressBar)

{

}

II Update status.
statuslabel .Text = "Creati ng the file geodatabase .• . ";
progressBar.Visible = true;
progressBar.PerformStep();

II Create the geoprocessor.
Geoprocessor geoPro = new Geoprocessor();
geoPro.OverwriteOutput = true;
geoPro.AddOutputsToMap = false;

II Create the tool to execute.
CreateFileGDB createGdbTool = new CreateFileGDB();
createGdbTool .out_folder_path = fileGDBPath;
createGdbTool .out_name = fileGDBName;

I I Create the GDB .
try
{

}

geoPro.Execute(createGdbTool, null);
return true;

catch
{

}

object severity = 2;
MessageBox .Show(geoPro.GetMessages(ref severity), "Error - Creating

Geodatabase ' " + fileGDBName + "' . " ,
MessageBoxButtons .OK, MessageBoxicon . Error) ;

return false;

31

The second method, InitializeFileGDB, is somewhat more sophisticated. First, it

utilizes an instance of an object of the class HdfHelper that is defmed in the

DBDBVHdfHelper project. This class provides an interface to the HDF API that

interacts with the DBDB-V to pull attributes and data values from it. The code below

shows an example of how the HdfHelper object is used within ArcHelper to get the

attributes from the DBDB-V dataset.

32

Code Snippet 3

The method calls for creating collections of attributes.

II Create the dictionaries of attributes .
Dictionary<String, Byte[]> datasetAtts =

HdfHelper . LoadDatasetDictionary(curHDF,
"geol e.e5eeel 214_584l depth");

Dictionary<String, Byte[]> coordSysAtts =
HdfHelper .LoadCoordSysDictionary(curHDF, "geo");

Dictionary<String, Byte[]> rootAtts = HdfHelper .LoadRootDictionary(curHDF);

Dictionary<String, Byte[] > tileNameAtts =
HdfHelper . LoadTilesetDictionary(curHDF, "ge0/e .e5eeel 214_584");

Dictionary<String, Byte[]> resAtts =
HdfHelper .LoadResDictionary(curHDF, "geol e.e5eee");

The DBDB-V contains five levels of attributes as described in an earlier section;

the root attributes, the coordinate system attributes, the resolution attributes, the tile name

attributes, and the dataset attributes. The code above calls five methods from the

HdfHelper object, shown in Figure 9, to build Dictionary objects to store the attributes .

...._ ...
1-ts:MIOI' ttw,··~

•OX

.. ja-. AWIIMWMoiJilW.._..,,.,.._~'tO'C!IO:IIISyo~

I

1

arcp.on 1'1'1-wte ~

,.s~t· bool •t...C~•l•<=~:~=·::g~~':;.'~!~~~ =::=o
private bool ~·T•l•(n.o.rtt.pace cwiCII', Oicti~Strtnc. tyu[)> cow4Sy,..,tu, n r iiiJ tMIU..Q

private bool ~i.MT»k(lNorksjNI<t clll"tCCf, Ol<t"-ry<strlllc. fytt (}> rHOlr.ttloM'n:s, stri.ne; uW...._Q
pri v•t.• lllool ~'T.W.t(lMCN"U,..::e cwnt~t, OictioMf'y<st r ltl&. t}o1:c{)> rootlltt.t, s t.ri/lt ~>D

pri wote void ,..bt.-.otT.,.l e (lhble tMle, lfS'U dd c~(J

pri v•te -1d ,.,bUTi~T-leo(tTioble c~~~rT.-le, HSHld d cunclf(]

pn. ... t e -:l.d ~eMMlutlot!Tellle(ITeble NI'"T~, HS,Udd cwte~~Q

pri:v.te -id ~~T-lt(n.t~le c...-T~. ttSf lld d ,.,..,..(]

,n..,.t. -u w-.tt.rlttU..(str~,. f~. str-int u~. nono f~Q

pri-t· -sd ~t-*#1'-~~!~~~~t~":t~!~~=~;~~;~~1~~0
,.i.,.u IS,.t~lAeftl"tow:t ~lJitof~(Oluloou.rycnrt,., eyte() > c:lltOS.ttl[J

private eouble(] tlt1:3MM-lt.(otct-1.oM.-ycsu~n&. •rttU> c:~o

private W [) ~(OictioNryut""'&. laoyte()> c~ct)[]

pri...re,l e() """iltfxttM:(DirtloMI")"C~ llyt.t() • cwTlleOUt)[J

Figure 8. DBDBV ArcHelper Private Methods. This image shows the methods that are
considered private within the DBDBV Archelper.cs class.

33

The second thing the InitializeFileGDB method does is call private methods

within its class that are responsible for adding the raster catalogs and non-spatial tables

into the file geodatabase. These are the first five private methods in the ArcHelper class

as shown in figure 8. The process behind these methods is to first create the raster

catalog or table in the file geodatabase and then create new fields that correspond to the

attributes of that level in the DBDB-V dataset. Programmatically, this is accomplished

by reading the attributes from the Dictionary objects that were created in earlier code and

using their values to generate fields within the new raster catalog or table. The code for

creating the fields in the ResolutionAtts table is a very simple example of this and is

shown below.

Code Snippet 4

The code to add fields to a table.

II Add fields to the table.
try
{

//Create a geoprocessing tool to add the fields .
AddField geoTool2 = new AddField();
geoTool2.in_table = curHDF.PathName + " \\" + tableName;

String[] strs = resolutionAtts.Keys .ToArray();

foreach (String str in strs)
{

geoTool2.field_name = str;
geoTool2 .field_alias = str;
geoTool2.field_is_nullable = "true";

switch (str)
{

case "units_of _measure" :
geoTool2.field_type = "Text ";
geoTool2.field_length = 25;
break;

case "x_interval " :
geoTool2 .field_type = "Double";
break;

case "y_i nterval" :
geoTool2.field_type = "Double";
break;

default:

}

}
}

break;

II Execute the tool .
geoPro . Execute(geoToo12, null);

catch
{

object num = 2;

34

MessageBox.Show(geoPro.GetMessages(ref num), "Error - Adding Fields t o Table -
" + tableName, MessageBoxButt ons .OK, MessageBoxi con .Error);

}
return false;

lil~sing Dir~ctiv~4

Bn.-s~ce d~l~r

I<
B public class Hdftldp~r

I {
B •region Variables

}

private String IOPathTolt>F ;I

kndregion

..-egi on Constr uctor s/ Destructor

public Hclflte~rOO

public Hclftte~r(String pathtolt>F)O

kndr egion

..-egion Public Methods

public HSfileid OpenfildD(String JNOthtoHOF)O

public void Closett>FData(HSfildd fileiD)O

static public Dictionary<String, Byte [] > LOildAootDictionary(HSfileid cuf"'l)f)O

stati c public Dictionary<Str i ng, Byte(] > LoadCoordSysDictionary(HSfileid cuf"'l)f, St r i ng coordSysH.-)0

static public Di ctionary<String, Byte (] > LOildResDictionary(HSfildd cuf"'l)f, String res-)0

static public Dictionary<String, Byte [) > LoadTilesetDictionary(HSfildd cuf"'l)f, String tile~->0

static public Dictionary<String, Byte[]> LoadDatasetDictionary(HSfildd cuf"'l)f, String dataset)O

static public byte[) ConvertTo8ytes(Array inputArray)O

public float [) 6etDepthArray(HSDataSetid dataset)O

kndr egion

. ..._.........,

Figure 9. DBDBVHdfHelper Methods. These methods provide the functionality to
interoperate with the DBDBD-V in its original format.

.i

35

Loading data into the geodatabase

Once the file geodatabase has been created and it has been loaded with empty

raster catalogs and non-spatial tables, viewed with ArcCatalog in figure 10, it needs to be

loaded with attribute values and DBDB-V data. From a user standpoint, the processes of

creating the geodatabase and filling it with data are seamless. However, from a

programming perspective, they are two very different procedures.

't 1~~~~~ ·• 11!!11~ X
.;.. .. ~,..:.. . .;_~.;, -~~ ~... .

- --- -~~- -~- --- ~-- -----
F~e Edit View Go Geoprocessing Customize Windows Help

i ~ t!i ~ ~ X u ,_:: ~ :;g Q I ~ fillill!:J)a ~t? - ~ +

Ill geo
Ill nps
lllsps
0 CoordSysAtts

D4'4iMM
IDI RootAtts liil
IDI TilenameAtts !;3 • I It • 1 • •• I tiiJ E3 I ()

+I I ~ -

• I :: :2' dnt"'6 '=:: "f'",'"~1 · ~ '-f>re,..:..·...:.iew_:___!l=r•========·~l _________ _j

Figure I 0. ResolutionAtts table in ArcCatalog. A view in ArcCatalog that shows the
table before any records have been added.

To understand how the process of loading the geodatabase had to work, it is

important to understand how the DBDB-V is fundamentally stored in the HDF format.

The DBDB-V data used for this research was DBDB-V version 6, level 0 and is saved in

the HDF5 format with the file name dbdbv6 level0c.h5. The file is organized as shown

in Figure 11.

According to the diagram, the DBDB-V contains five levels of data. The first

four contain elements that have attributes that must be extracted and stored in the file

geodatabase. DBDBV _v6.0_level0 is the root element of the DBDB-V dataset. It

contains the attributes listed in Table 1 with the exception of the first and last attribute in

36

the table. The next level in the diagram (geo, nps, and sps) represents the coordinate

systems that exist in the DBDB-V dataset. Each of these coordinate systems holds 43

attributes, seen in Table 2, that must be extracted. Next are the resolutions that are

labeled as the decimal values in the diagrams. There are three attributes for the

resolutions, as listed in Table 3. The fourth level in the DBDB-V dataset represents the

names of the tiles that exist for the given coordinate system at the given resolution. The

tile name attributes define the boundaries of the ensuing dataset and are shown in Table

4.

DBDBV _ vG.O_IeveiO

geo

nps

2.00000

~o_o depth

~0_1 depth

1.00000
0.50000
0.10000
0.05000

~ 2.00000
~ 0.50000

sps

~ 2.00000

Figure 11. DBDB-V Data Structure. This diagram shows the structure of the data inside
the DBDB-V dataset. The structure contains several layers of nested groups with the
actual data residing in the "depth" dataset.

The final level introduced in the diagram is special in that it not only contains

attributes that must be represented but also contains the data that will be used to build the

rasters in the raster catalogs. The attributes are among those listed in Table 7, the Table

that is associated with the raster catalogs. The dataset represents a 600 x 600 array of

37

doubles that signifies depths at the geographical locations defined by the collection of

attributes exposed through the DBDB-V levels navigated to get to that dataset.

Therefore, it was very important that as this extraction was occurring, order was kept and

the relationships between the various levels and the dataset were not compromised.

The extraction of the HDF datasets that held the DBDB-V information was an

extremely challenging undertaking. The extraction of the HDF datasets required using a

third party API called HDF5DotNet that wrapped the API produced by the HDF Group

(The HDF Group) to interact with the DBDB-V dataset in its native format. The DBDB

V had to be polled for attributes and depth values in order to fill the geodatabase, and the

API provided the functionality to accomplish this. The API is written in C++/CLI which

enables it to communicate with any DotNet language (C++, Visual Basic, and C#). The

version of the API used for this effort was HDF5DotNet 1.8.7.

The first step taken in populating the file geodatabase was to extract data from the

DBDB-V dataset that corresponded to the non-spatial tables in the geodatabase. So for

example, the RootAtts table in the geodatabase required the attributes from the root level

of the DBDB-V so they had to be extracted and saved into the geodatabase table. The

methods used to populate the non-spatial tables can be seen in Figure 8 and are

recognized as having a method name starting with the word "Populate".

Populating the tables required a series of loops nested within one another to build

the tables with every record possible from the DBDB-V. The ResolutionAtts table

provides us with a simple example of how this works. First, there are five possible

resolutions of data within DBDB-V; 0.05000 arc-minute, 0.10000 arc-minute, 0.50000

arc-minute, 1.00000 arc-minute, and 2.00000 arc-minute. There are three coordinate

38

systems above that which contain some assemblage of these resolutions. They are the

geographic (geo), north polar stereographic (nps), and south polar stereographic (sps)

coordinate systems. Only one of these, the geographic coordinate system, contains all of

the possible resolutions. Therefore, access is needed to only that group to get all of the

information on the available resolutions. According to the diagram shown earlier the

coordinate system group contains the resolution group, so a loop would be generated to

get each resolution from the geographic coordinate system and the attributes from each

resolution would be added as a record to the geodatabase table. The code used to

populate the ResolutionAtts table is shown next.

Code Snippet 5

The PopulateResolutionTable Method

private void PopulateResolutionTable(ITable curTable~ HSFileid curHDF)
{

II The geo group has all of the availabl e resolutions. We only need to use it
II to populate the GOB table.
St ring groupName = " geo" ;
HSGroupid geoGroup = HSG.open(curHDF, groupName);

long numGroups = HSG .getNumObjects(geoGroup);

II Loop through the avai lable resolutions .
for (int i = a; i < numGroups ; i++)
{

String objName = HSG.getObjectNameByindex(geoGroup~ (ulong)i) ;

II Create the di ctionary.
Dict iona ry<String~ Byte [] > curDictionary =

HdfHelper .LoadResDictionary(curHDF, groupName + "/" +

String[] keys= curDictionary.Keys.ToArray() j

!Cursor cursor = curTable . Insert(false);
IRowBuffer row = curTable.CreateRowBuffer();

try
{

foreach (String key in keys)
{

II Get the value for the key .

objName
)j

}
}

Byte[] value = null;
curDictionary.TryGetValue(key, out value) ;

int fieldNum = cursor.FindField(key);

!Field curField = cursor.Fields.get_Field(fieldNum);
IFieldEdit curFieldedit = (IFieldEdit)curField;

esriFieldType curType = curField.Type;

if (curType == esriFieldType .esriFieldTypeDouble)
{

row.set_Value(fieldNum, BitConverter.ToDouble(value, e));
}
else if (curType == esriFieldType.esriFieldTypeString)
{

row.set_Value(fieldNum, System.Text . Encoding.ASCII.GetString(value));
}

catch
{

MessageBox .Show("Could not create a table row ." , "Error- Creating Table
Rows.",

}
}

MessageBoxButtons .OK, MessageBoxicon .Error) ;
return;

}

II Find the _name field .
int fieldNum2 = cursor.FindField("res_name");

row.set_Value(fieldNum2, (object)objName);

cursor . InsertRow(row);
cursor. Flush();

The code relies heavily on standard ArcObjects interfaces to access the table' s

39

records and fields to add the attributes. However there are three significant lines of code

that need further explanation. First is the line " H5Groupld geoGroup = H5G.open(curHDF,

groupName);" that opens the group "geo" from the "curHDF" parameter, which is

essentially the DBDB-V dataset. The next line, " long nurnGroups =

H5G.getNurnObjects(geoGroup);" gets the number of objects from the newly opened group.

The "numGroups" variable is the number of objects that exist in that group and the

40

objects represent the resolutions. The variable drives the loop, and inside the loop there

is a call to the method LoadResDictionary, shown below.

Code Snippet 6

The call to the LoadResDictionary method.

Dictionary<String, Byte []> curDictionary =
HdfHelper .LoadResDictionary(curHDF, groupName + " / " + objName);

This method, briefly mentioned earlier, is the driving force behind the extraction for the

resolution attributes. It tunnels through the original DBDB-V dataset and gets the

attribute names and values and stores them in a Dictionary object that contains the name

as a string and the value as a Byte array. This Dictionary object is then used to add the

values to the respective fields for the current resolution in the loop. The code below is

from the LoadResDictionary method.

Code Snippet 7

The LoadResDictionary method.

static public Dictionary<String, Byte[]> LoadResDictionary{HSFileid curHDF, String
resName)
{

Dictionary<String, Byte[]> atts = new Dictionary<string, Byte[] >();

try
{

HSGroupid resGroup = HSG .open(curHDF, resName);
HSObjectWithAttributes resObj = {HSObjectWithAttributes)resGroup;

i nt numAtts = HSA .getNumberOfAttributes(resObj);

HSObjecti nfo res!nfo = HSO .getinfo(resObj);

for (i nt i = e; i < resinfo.nAttributes; i++)
{

HSAttributeid curAttid = HSA .openByindex(resObj, "." , HSindexType.CRT_ORDER,
HSiterationOrder . INCREASING, {ulong)i);

HSAttributeinfo curAttinfo = HSA .getinfo(curAttid);

string curAttName = HSA.getName(curAttid);

HSDataTypeid curAttType = HSA.getType(curAttid);
HST . HSTClass curAttClass = HST .getClass(curAttType);
HSDataTypeid curAttNativeType z HST .getNativeType(curAttType,

HST . Direction .ASCEND};

}

int bufferSize = HST .getSize(curAttNativeType);

Array buffer = Array .Createinstance(Type .GetType("System.Byte"}, bufferSize);
Byte[] bArray = ConvertToBytes(buffer);

HSA . read(curAttid, curAttNativeType, new HSArray<byte>(bArray));

atts.Add(curAttName, bArray);

return atts;
}
catch
{

}
}

return null;

41

The process is continued until the loop is complete and the table contains a record

for each resolution. The process is similar for the other tables albeit somewhat more

complex because additional loops are required to handle not only multiple resolutions in

multiple coordinate systems, but also multiple tile names in multiple resolutions and

multiple depths in multiple tile names. In other words, there are additional nested loops

to consider.

The final step required to populate the file geodatabase is to generate rasters from

the DBDB-V depth arrays and store them into the raster catalogs along with their

associated attributes. This functionality is outlined within the LoadGroupToCatalog

method of the ArcHelper class. The method used to add the attributes is similar to the

scenario discussed in the previous section and takes place after the raster data is extracted

from the DBDB-V and converted to a raster that can be ingested into the geodatabase.

The process of creating a raster from the DBDB-V dataset is extensive and the

steps involved can be more easily explained when following the pseudo code below in

Figure 12. The interesting part of the pseudo code is where the process of creating the

raster begins, or at the line stating, Build a float array from the depth dataset. The steps

42

required to get to the depth data are similar to the ones discussed earlier. The rasters that

are stored in the raster catalogs of the file geodatabase are GeoTIFF rasters. In order to

construct those rasters from ArcObjects however. the data needs to be stored in

something other than an array of values. ArcObjects has a class called FloatToRaster

that can create a raster from a binary file of float values as long as there is a header file

associated with it. The solution then, was to generate a float array from the values, get

the depth values from the float array and store them into a binary stream, and then create

a header file from the attributes to supplement the stream file. The code to generate the
I

float array from the DBDB-V dataset depth values is shown below, and the code to

generate the binary stream of float values is below that in code snippet 8.

Get all raster catalogs from the geodatabase
While there are raster catalogs in the list

Get the catalog corresponding to the passed in group name
Get the coordinate system that matches the catalog
Get all of the resolutions for that coordinate system
While there are resolutions in the list

Get the tile names associated with the current resolution
Get the depth dataset associated with the tile
Build a float array from the depth dataset
Write out a binary fit file from the array
Create dictionaries from attributes
Write out an ASCII hdrfile from the dictionaries in this path
Create the depth raster (geotiff) from the fit and hdrfiles
Flip the raster over to get the proper raster
Add the raster to a record in the geodatabase
Add the attributes to a record in the geodatabase
Get the next tile in the resolution

Get the next resolution in the coordinate system
Get the next raster catalog
End

Figure 12. Raster Generation Flowchart. This flowchart describes the process of
generating rasters and adding the information to the geodatabases.

Code Snippet 8

The GetDepthArray method

public float[] GetDepthArray(HSDataSetid dataset)
{

HSDataTypeid datasetType = HSD .getType(dataset);
HST .HSTClass datasetClass = HST .getClass(datasetType);
HSDataTypeid datasetNativeType = HST.getNativeType(datasetType,

HST .Direction .ASCEND);

long storageSZ = HSD.getStorageSize(dataset);

float[] dArray = new float[6ee * Gee * 4];

HSD .read(dataset, datasetNativeType, new HSArray<float>(dArray));

return dAr ray;
}

private void WriteFltFile(String filePath, String FileName, float[] floatValues)
{

if (File .Exists(filePath + "\\ " + FileName))
{

File .Delete(filePath + " \\ " + FileName);
}

43

System.IO. FileStream fileStream = new System.IO. FileStream(filePath + " \\ " +
FileName,
FileMode.OpenOrCreate
, FileAccess .Write);

}

BinaryWriter binWriter = new BinaryWriter(fileStream);

fo r (int 1 = e; 1 < floatValues . Length; 1++)
{

}

float val = floatValues[l];
binWriter.Write(val);

binWriter.Close();
fileStream .Close();

In order to create the header file to accompany the fit file, Dictionary objects had

to be created for the coordinate system, the resolution, and the tile name that

corresponded to the depth dataset. This is because the attributes from them were required

to build the header file. The coordinate system attributes were used to define the spatial

reference of the raster as well as the number of rows and columns in the raster. The

resolution attributes were used to define the cell size of the raster and the tile name

attributes were used to define the extents of the raster. An example of a header file is

shown below.

NCOLS 600
NROWS 600
XLLCORNER 0
YLLCORNER -90
CELLSIZE 0 . 0333333333333333
NODATA VALUE 32767
BYTEORDER LSBFIRST

Once the two files were generated, the raster was built using the ESRl

geoprocessor and the FloatToRaster tool. The results of this, however, were not as they

44

were expected and additional processing had to be performed to get the necessary raster.

The problem with the output raster was the values in the cells were read from one comer

along they-axis but added at the opposite comer of they-axis. To rectify this error

another ESRl geoprocessing tool had to be invoked. The Flip tool in ESRl will take a

raster as input and flip the north-south values while leaving the east/west cell values

intact. Consider the examples in Figure 13. Once the raster was corrected it was added

to the geodatabase, followed by its attributes in the same manner described earlier.

Original Flipped

Figure 13. Raster Correction During CreateDepthRaster Method. The original raster
generated from the DBDBDV depth dataset (left) and the corrected version (right).

45

Creating the data extraction tool

The data extraction tool (DBDBVExtractor) was designed to interact with a

geodatabase created using the DBDBVConverter tool. The concept is to create a

rectangular area, dubbed an area of interest, which will act as an extraction extent and

then build a new raster from the data that falls within it. That raster can then be saved in

a variety of formats for use in other applications or planning scenarios.

file Jjelp

Conlral8

Cutent Geodatabase:

holidey.gdb

0 GEO 0 NPS 0 SPS

@ Beot Avalable 0 0.5 MirUe

0 0.05Nnte 0 10MirUe

0 0.1 loh.te 0 2.0 MirUe

Rudy.

Figure 14. The DBDBVExtractor tool shown with a geodatabase loaded but no areas
created.

The DBDBVExtractor tool is a standalone, custom GIS application built using

ESRI' s ArcObjects. It has a map area where geospatial data can be created and

manipulated, and it provides many standard GIS functions such as panning, zooming, and

switching between views. The GUI allows an extraction to be created from one of the

three coordinate systems. The resolution can be selected from one of the five available

resolutions. The "best available" option will provide a raster that has been feathered

together from different resolutions as data availability permits, although this option has

not been implemented yet.

46

One of the distinctive features of this tool is the ability to make an extraction

based on an area of interest, that is, an extent boundary that defines the area where the

data is to be extracted from. The dbAOITool is built as a plug-in to the

DBDBDVExtractor application and is visible as a button on the GUI's toolbar. When the

button is activated it allows user interaction in the map area to defme a rectangular box.

When the box is drawn its extents are placed in the application's extent boxes on the left

side of the GUI. When the call is made to extract the data the values in these boxes are

passed to the method to defme the extraction' s boundary.

The important method within the tool, where most of the work is performed, is the

call back that ·is invoked when a mouse button is pressed. This method,

dbAOITool.OnMouseDown, senses when a mouse button is pressed and determines

whether it is the left button or right button. It is not concerned with any other buttons on

the mouse in the event that the mouse has more than two. If the left button is pressed,

held down, and dragged, a rectangle will be drawn to the screen. When the button is

released, the rectangle is fmished and the north, south, east, and west extents will be

added to the GUI. If the right button is pressed, the rectangle will be cleared from the

screen and the extents will be cleared from the GUI. The complete code for the

dbAOITool.OnMouseDown is shown below.

Code Snippet 9

The OnMouseDown method

public override void OnMouseDown(int Button, int Shift, int X, int Y)
{

}

if (Button == 1)
{

}

II Set the color for the rectangle .
IRgbColor rgbColor = new RgbColorClass();
rgbColor.Red = 255;
!Color rectColor = rgbColor;

II Set up the symbol .
ISimpleFillSymbol fillSymbol = new SimpleFillSymbolClass();
fillSymbol .Outline .Color = rectColor;
fillSymbol .Outline .Width = 19;
fillSymbol.Style = esriSimpleFillStyle . esriSFSHollow;

!Symbol symbol = (ISymbol)fillSymbol;

II Set up a drawing environment.
IScreenDisplay display = m_activeView.ScreenDisplay;
display.StartDrawing(display.hDC, (Int16)esriScreencache .esriNoScreenCache);

try
{

}

II Set up the polygon to draw to screen.
m_aoiGeometry = m_aoiRubberBand .TrackNew(display, symbol);

display.SetSymbol(symbol);
display .DrawRectangle(m_aoiGeometry . Envelope);

catch
{

II Catches an error if the user lifts the mouse button without moving it.
}

display.FinishDrawing();

II Update the coordinates.
extractorForm.UpdateCoordinates(m_aoiGeometry.Envelope.UpperLeft.Y,

m_aoiGeometry . Envelope.LowerLeft .Y,
m_aoiGeometry.Envelope.LowerLeft.X,
m_aoiGeometry . Envelope . LowerRight.X);

if (Button == 2)
{

}

m_activeview.Refresh();
extractorForm.ClearCoordinates();

47

48

The method dbDBDBVExtractor.ExtractByResolution is responsible for the

extraction of the DBDB-V data from the raster catalog. The extraction of the data is

performed in one of two ways depending on how the area of interest intersects the

DBDB-V data to be extracted. First, it is possible the data to be extracted comes from

only one raster in the raster catalog. This occurs if the extent rectangle falls completely

within a single raster. This is determined by a spatial query that results in a selection set

containing all of the rasters that intersect the extent rectangle as shown in Figure 15. If

this number is one then the method to perform the extraction is simplified and is

performed using the code shown below.

Code SnippetlO

Extract the desired raster from a single source raster.

II Get the dataset from the current item .
IRasterCatalogitem curcatalogitem = (IRasterCatalogitem)featCursor.NextFeature()j
IRasterDataset curRasterDataset = curCatalogitem.RasterDatasetj

II Extract a geodataset and set the raster.
IExtractionOp extractOp = new RasterExtractionOpClass()j
IGeoDataset outputGeoDataset =

extractOp.Rectangle((IGeoDataset)curRasterDataset, clipEnvelope, t r ue)j

!Raster extractedRaster = (IRaster)outputGeoDatasetj

Figure 15. 2 Minute Resolution Selection. This image shows the 2 minute resolution
raster (light blue) selected for the extent rectangle (red).

49

If the spatial query returns a selection set with a count greater than one then more

than one raster intersects the extent rectangle, shown in Figure 16, a more sophisticated

approach will need to be used to extract the data. This approach requires clipping each

individual raster and preserving only the data that falls within the extent rectangle

followed by performing a mosaic on the raster data that has been preserved. The clip

procedure utilizes an object of type IRasterCollection from ArcObjects to store each of

the clipped rasters. The unclipped rasters are accessed through the use of a feature

cursor, clipped, and then pushed to the collection.

Figure 16. 0.05 Minute Resolution Selection. This image shows the 0.05 minute
resolution rasters (light blue) selected for the extent rectangle (red).

Code Snippet 11

Clipping multiple rasters to an extent rectangle.

IRasterCollection m_rasColl = (IRasterCollection)new MosaicRasterClass();

II Build the raster collection.
IRasterCatalogitem rasCatitem = (IRasterCatalogitem)featCursor.NextFeature();

while (rascatitem I= null)
{

}

IRasteroataset rasDataset = rasCatitem.RasterDataset;

I I Try to clip .
try
{

}

!Raster tempRaster = rasDataset.CreateDefaultRaster();
IRasterGeometryProc3 tempRasterGeomProc = new RasterGeometryProcClass();
tempRasterGeomProc.Clip(clipEnvelope, tempRaster);
m_rasColl.Append(tempRaster);

catch
{

return null;
}

An IMosaicRaster object is used to seamlessly connect all of the rasters in the

collection to produce a single raster. The collection created during the clip process is

query interfaced to the IMosaicRaster class and is saved as a temporary Geo TIFF file.

This provides the raster that is returned as the final extracted raster.

Code Snippet 12

Mosaicking multiple rasters to the desired extracted raster.

IMosaicRaster m_mosaic = {IMosaicRa ster)m_rasColl;
m_mosaic.WhereClause = "";

ISaveAs m_saveAS = {ISaveAs)m_mosaic;
IRasterDataset rasDataset =

50

{IRasterDataset)m_saveAS .SaveAs("tmp_" +
selectedFeatureClass.FeatureClassiD.ToStrin
g(),

tmpWS, "TIFF");

mExtractionDataset = rasDataset;

!Raster extractedRaster = rasDataset.CreateDefaultRaster();

51

After the raster is created, regardless of the method used to do so, statistics are

calculated so the raster can be properly displayed in the DBDVExtractor map area or any

other application that it is going to be viewed in. Calculating the statistics provides the

application the minimum, maximum, and median values of the raster as well as its

standard deviation. These values make it possible to assign various color ramps to the

raster for display. Also, the raster extent is set to that of the extraction extent rectangle

that was used to build it so that the map interaction is acceptable. Finally, the NoData

value of the raster is set to -10 so that it matches the NoData value used in the original

DBDB-V dataset. This value is used in the raster where there is no bathymetry data, for

example, over land. This should not be confused with areas in which no data was

available from the original data. These values usually are null.

CHAPTER IV

ANALYSIS OF RESULTS

Test Plan Description

52

In order to validate a file geodatabase that was created using the

DBDBVConverter tool and to test the functionality of the DBDBVExtractor tool, a test

plan was created that considers the creation of a new geodatabase and the extraction of

several rasters from that geodatabase. The test plan calls for the creation of the database

and then considers five different areas, each covering a specific resolution ofDBDB-V

data. The ability of the application to save the extractions and the use of those saved

rasters in alternate applications are considered.

Test Plan Results

The first phase of the test plan involved generating a new file geodatabase and

populating it with DBDB-V data. The tool used for this process was the

DBDBVConverter application, the first of several tools in the DBDBVToolSuite created

during this research project. There are three coordinate systems available in the DBDB

V dataset; the geographic coordinate system is used to store values between 80 S and 84

N, the north polar stereographic coordinate system is used to store values north of 84 N,

and the south polar stereo graphic system is used to store the values south of 80 S. The

tool is capable of generating a file geodatabase containing any combination of these

coordinate systems or a single coordinate system. Regardless of which coordinate system

option is selected, the geodatabase that is created will contain a raster catalog for each but

only those selected will be populated.

A separate file geodatabase for each coordinate system was created for each test

plan and the conversion from HDF to the geodatabase raster catalogs was performed

53

individually. This approach was used because of an apparent processing error when

considering values contained in the two polar regions. Creating the three separate

geodatabases allowed not only a clean raster catalog of the geographic coordinate system

values that could be used for testing but also generated two for the polar regions that

could be used for troubleshooting later.

One of the questions proposed for this research was how the storage size of a new

geodatabase solution for DBDB-V data would compare to the highly efficient HDF5 data

structure currently in use. The DBDB-V used for this project was version 6, level 0

which was released October 2010. The DBDB-V dataset holds a total of 1,707 tiles (600

x 600 arrays) of depth data at various resolutions in the three different coordinate

systems. It's on disk storage requirements were approximately 525MB for the data

which was stored as a single .h5 file (.h5 being the extension for an HDF version 5 file).

In contrast, the data after the conversion was stored in three separate file

geodatabases which if viewed without the help of an ESRI based application appears as

typical operating system directories with a .gdb extension. The contents of this directory

are a collection of binary files that represent everything inside the GDB including the

raster catalogs that hold the DBDB-V depth values. Each of the databases only holds

data from the coordinate system they represent. Therefore, the file geodatabase

representing the geographical coordinate system contains data for 1,675 of the original

1, 707 data tiles, the north polar stereographic geodatabase holds data from 23 of the tiles,

and the south polar stereographic geodatabase holds data from the remaining 9 tiles. The

total space required from the geodatabase representing the geographic coordinate system

is 597MB. The geodatabase for the north polar stereographic data required

54

approximately 9MB while the south polar stereographic geodatabase required

approximately 5MB. This resulted in a total storage requirement of 611MB. While this

is slightly larger than the HDF format currently used it is more than adequate for housing

the new format.

While the format is suitable for storing the DBDB-V data, the process of

converting the data from one format to the other is somewhat extensive. The cost in time

to perform the conversions for the two polar coordinate systems is negligible. The small

amount of data in either of them allows the conversions to be finished in a matter of

minutes. However, the large number of tiles to be converted in the geographic coordinate

system requires a great deal of processing to be performed that can take upwards of seven

hours to complete. While this may seem cumbersome it should be realized that this

processing is a single event which is followed by extremely quick extraction methods.

These results from these extraction methods are discussed later. The table below shows

the processing time required to create and populate each of the three geodatabases.

Table 8

DBDB-V Conversion Time Measurements

Coordinate Number of Number of Time to Time to Populate Total
System Resolutions Tiles Create Tables Raster Catalogs Time

Geographic 5 1,675 02:30:00 05:14:06 07:44:06

North Polar
2 23 - 1 00:03:00 00:01:08 00:04:08

Stereographic
South Polar

1 1 00:01:00 00:00:27 00:01:27
Stereographic

Totals 1,706 02:34:00 05:15:41 07:49:41

55

The file geodatabase for the geographic coordinate system listed above was used

to test the capability to extract data from a file geodatabase in order to display it as a

raster or to export it to other formats that could potentially be used in other applications.

This geodatabase was selected because it contains data from all five of the resolutions

available within DBDB-V. The test plan involved setting up one area of interest for each

of the resolutions of data. The areas were carefully selected to be sure that both methods

of extraction, single-tile and multi-tile, were represented. The DBDBVExtractor tool was

used to test the ability of extracting and saving the DBDB-V data from the geodatabase.

The tool generates the bounding box extent in values measured in decimal degrees and

the values for each area are shown in the Table below.

Table 9

Raster Boundary Values

Resolution
Geographical North South

East Boundary West Boundary
Location Boundary Boundary

2 minute
Gulf of

28.777811 25.0088374 -94.346623 -89.048970
Mexico

1 minute Sicily 38.833142 35.354269 11.981383 17.045076
0.5 Irish Sea {Isle

54.479614 53.932813 -4.892036 -4.259649
minute of Man)

0.1 North
34.818928 34.312543 -76.788847 -76.374787

minute Carolina Coast
0.05

Hawaii 20.436332 20.149888 -156.380407 -156.093963
minute

0.05 Hawaii
20.995255 18.904326 -157.169682 -154.754298

minute {multiple)

The 2 minute scenario was set up in the Gulf of Mexico, south of Louisiana and

Texas and covering approximately 222,500 sqlkm. It is a fairly large area but with a very

course dataset the raster extraction process and the display of the results were very quick

56

(within 3 seconds). In comparison to the extraction of the DBDB-V using the existing

Java interface the process was equally as quick if not slightly quicker using the

DBDBVExtractor tool. Furthermore, the raster that was created using the new tool was

identical to the one created using the existing Java interface. The images in the figure

below show the comparison.

Java Extraction DBDBVExtractor Extraction Extraction Saved as <:ieoTIFF

Figure 17. 2 Minute Raster Comparison. A comparison between the Java extraction
(left), the DBDBVExtractor extraction (middle), and the result of saving the extraction to

another image file (right).

The 1 minute scenario was set up to include the coastal waters around the island

of Sicily in the Mediterranean Sea. The area is slightly smaller than the one in the first

test case at approximately 173,700 sq/km. The depths range from 2m near the shores,

indicated by the darker coverage in the images (figure 18) to 3,780m further from land,

indicated by the whiter shades of coverage. As with the first test case, any differences

between the Java extraction and the one done with the new tool are unnoticeable. The

differences in the near shore are related to the feature classes making up the shorelines

being different and not due to differences in the rasters.

Java Extraction DBDBVExtractor Extraction

Figure 18. 1 Minute Raster Comparison. This image is a comparison between the Java
extraction (left) and the DBDBVExtractor extraction (right).

The test case for the 0.5 minute resolution was created in the Irish Sea and was

similar to test case two in that the extraction area surrounded an island, in this case the

Isle of Man. The area covered approximately 2,400 sqlkm with a cell size of roughly

900m. Figure 19 attempts to communicate the fact that, although much better than the

two courser resolutions, 0.5 minute resolution still loses its visual effectiveness as the

57

raster is zoomed. Again, this area was extracted from a single tile ofDBDB-V data and

the extraction process was exceptionally fast within the DBDBVExtractor tool. On the

other hand there seemed to be an increase oftime in the Java extraction process even

though only one tile was used, along the manner of several seconds. The two extractions

were comparable with no known differences noticed.

The area selected for the fourth test case, covering the 0.1 resolution data, was

created to cover an area just offshore ofthe North Carolina coast and the Bogue Sound

covering about 2,000 sq/km of mostly water. The 0.1 resolution offers an optimal cell

size of approximately 200m. The results for this test case are inconclusive as the

58

DBDBVExtractor tool reported that no data was available in this area for extraction. An

extraction using the Java extraction tool from the original DBDB-V data verified that this

assessment was incorrect.

__ 02212012190100 Odl>

-.) '".......-. • u_,.
e..os....... 1.0,._,.

G l~ 20.,._.

Figure 19. 0.5 Minute Resolution Extraction. This is a DBDBVExtractor extraction of
the 0.5 minute resolution and a zoomed image of the raster. The graininess of the image

is due to the cell size of 900m.

Two test cases were employed when considering the 0.05 resolution due to an

issue that is present in the DBDBVExtractor when an extraction required data from more

than one DBDB-V tile. The issue is related to the display of the extracted data only; the

extraction itself results in a legitimate raster. This is demonstrated in the following

paragraphs.

The first test case looks at a scenario where an extraction is performed in an area

where only one tile is used. This allows a comparison to be made on this resolution

similar to those seen in the previous test cases. The first case uses an area that was

defined in the cut between the islands of Hawaii and Maui just east of the Ranier

59

Seamount. Because the tiles holding the DBDB-V get smaller with decreasing changes

in the size of the resolution, the area defined here was considerably smaller than the other

test cases. The area was around 990 sq/km and the grid had a cell size of approximately

90m. The depths within the area were between 490.6m and 3,175.4 with the deepest

water being in a trench coming from the center of the cut between the islands. Figure 20

show a comparison between the Java extraction and the DDBBVExtractor extraction

after it was exported to a GeoTIFF file. Looking closely at the bottom left comer, a

slight difference is noticed in the images. However, this is due to the two extraction

extent rectangles not being precisely matched and not the raster data being off. If the two

images were to be overlaid, the images match nicely.

Java Extraction
DBDBVExtractor Extraction

Saved to GeoTIFF

Figure 20. 0.05 Minute Resolution Comparison. This image is a comparison between
the Java extraction (left) and the exported DBDBVExtractor extraction (right).

The second test case for the 0.05 minute resolution was created in the same area

but used a much larger area than the previous one. The area was about 58,674 sq/km

with a cell size approximately 90m. The size of this area required the extraction to be

built from 30 DBDB-V data tiles (Figure 21).

File Ut v- - "'-' S4lection Geopoc....., CustomGo - IWI>
l D ~ i1 3 !. ®@ x ., ,. ~ - 1z.as..4so --; ~ ~ G3III Iiil l!:l >- ' ? il

'~El. t'l o :: :: + ""' IJI · ~ ~t • y ~ .:.: a 1l!l ~ n I!ID
~~~~~====~J•x r---------------------------------~~----
~g ~~ ~ 
8 ., ...,... 

lll li!l -
lll 0 jovoEmoct.,IIOOSMinl 
Ill 0 jova&bKI.J •05Min2 • .,c 
Ill li!l ~_ .... _p005min_.,.,Kt2.1if 

li!lgco 
Ill 0 dbdblo6_t ... _p005min_.,.,KI 
Ill 0 dbdblo6. t ... _p005min_.,.,Kt.tl 
Ill 0 jovoEmKI.J>IOSMin 
Ill 0 jova&bKI.J>IOSMin_.K 
Ill 0 jova&bKIJ>(IMin 
Ill 0 jova&bKI_p(IMin.oK 
Ill 0 jovoEmKI_ptSMin 
Ill 0 jovoEmKVISMin.osc 
Ill 0 jovoEmKIJMin 
Ill 0 jova&bKI.)Min_.K 

Ill 0 ""'tdion.)Min 

Ill 0 --.)Min.Of 
fB 0 jova&bKI.)nNn 
Ill 0 jovoEmoct..zm;n_.K 

._ _ _____ ___, I!!!)• I " " , 

Figure 21. 0.05 Minute Resolution Mosaicking. The figure shows ArcMap displaying 
the raster created by the DBDBVextractor tool. The tiles used for the extraction are 
shown in yellow overlapping the grey rectangle. 

Using the Java extractor, the process took about 45 seconds to create the raster 

compared to 15 seconds using the DBDBVExtractor tool. As mentioned earlier, when 

the DBDBVExtractor tool is executed for a multi-tile extraction the raster that gets 

created contains the expected data. However, when the raster is displayed within the 

tool' s view, the raster is shown as a grey rectangle rather than as one detailing depth. 

60 

The figure above contains the grey rectangle which would represent the depth raster. For 

reasons yet to be determined, the application is displaying a raster that has not had 

statistics calculated (the min, max, and mean values) which are needed for display. The 



61 

images in Figure 22 show the two rasters as a side by side comparison after calculating 

the statistics manually for the raster generated with the new tool. As with other cases, no 

major differences are noticed between the two rasters. 

Java Extraction DBDBVExtractor Extractic•n 

Figure 22. 0.05 Minute Resolution Mosaic Comparison. This image is a comparison of 
the rasters that were extracted from multiple tiles. DBDBVExtractor is not automatically 
generating the statistics for the image on the right. 



CHAPTERV 

CONCLUSION 

62 

The purpose of this research was to explore the possibilities of creating an 

alternative method of integrating DBDB-V data within an ESRI based GIS application. 

The project looked at the current state of the DBDB-V and how it can currently be 

ingested into the ESRI systems. A system was designed that would accommodate all of 

the information stored in the current DBDB-V dataset, both attributes and depth values. 

A tool was built that would construct and populate that storage facility and another tool 

was built that would search and pull information from it. 

Three questions were considered during this research that would justify it as 

viable effort to improve the efficiency of ingesting DBDB-V data into ESRI products. 

First, would the storage of the data in a new format require more space on disk and if so, 

would the extra space be within the tolerance of the system it w~ used on and would the 

additional size degrade functionality? Second, would the process of converting the 

database be an effort worth undertaking? Third, will the new tools perform efficiently 

enough to operate in place of the current toolset? 

Quite simply, the answers to all of these questions were positive. The file 

geodatabase format selected to hold the DBDB-V information only increased the required 

storage space by 86MB, or approximately fourteen percent. Such a small increase would 

be irrelevant on most systems and would not make any significant difference when 

searching for or processing information. The process of converting the HDF version of 

the DBDB-V to the file geodatabase format was somewhat time-extensive but not as 

much so to warrant abandoning this research effort. Although a full conversion required 



63 

over seven hours to complete, the conversion could be left to run on its own without user 

interaction and would only need to be done once with each new release of the DBDB-V. 

Finally, the DBDBVExtractor tool performed very well when compared to the Java tools 

used with the HDF version of the DBDB-V. In the several tests that were conducted the 

new tool performed at or above the level of the Java tools. 

The components that have been created for this research comprise a promising 

implementation of a storage facility and associated tools for the DBDB-V. However, 

there is still work that could be done that could improve them. For example, when 

executing the DBDBVConverter tool the conversions for the data within the two polar 

coordinate systems contain errors and therefore were not considered for this project. 

Also, there was an issue discovered when mosaicking multiple rasters when executing the 

DBDBVExtractor tool. When multiple rasters from the file geodatabase were used for an 

extraction, the display of that extraction was erroneous even though the actual raster data 

was sound. While this did not affect the results when saving the extraction to file it is a 

small nuisance when using the tool. Furthermore, two operations originally discussed as 

major pieces of the overall project design are ongoing. First, a method to provide "data 

smoothing,, needs to be created that will allow depth data from various resolutions of 

DBDB-V to be joined to provide the best available depth representation possible. This 

would be similar to the feathering techniques available with the current release of the 

DBDB-V. Second, consideration should be given to the management of the data once the 

geodatabase is in place. Updates should be handled by the software rather than needing 

to recreate a new file geodatabase at each new release of the DBDB-V. 



64 

APPENDIX 

GLOSSARY OF TERMS 

Application Programming Interface- "A set of interfaces, methods, protocols, and tools 
that application developers use to build or customize a software program. APis make it 
easier to develop a program by providing building blocks of prewritten, tested, and 
documented code that are incorporated into the new program. APis can be built for any 
programming language." (GIS Glossary). 

ArcCatalog- The application within the ArcGIS desktop that deals with GIS data 
management. 

ArcGIS Desktop - A collection of applications developed by ESRI that allow interaction 
with Geospatial data. These applications include ArcMap, ArcCatalog, ArcGlobe, and 
ArcScene. 

Arc Minute -An angular measurement that is equal to 1/60 of one degree. 

Attributes - Characteristics that are associated with geospatial elements of a file 

geodatabase, identified as the fields of the tables and raster catalogs. 

Bathymetry - The science of measuring water depths in an effort to determine seafloor 
topology and/or morphology. 

Callbacks - Programming methods that provide interaction between the user and the 
GUI, often providing a means to call desired processing operations. 

Cardinality- For database relationships, determines how the objects from various classes 
are associated with one another. 

Cell Size - the size of each cell in a raster. 

CHRTR - ANA VOCEANO data format that holds gridded data. The format may be 
binary or ASCII. 

Commercial Joint Mapping Toolkit (CJMI'K)- A Department of Defense program 
between ESRI and NGA TASC that provides a collection ofESRI applications and 
extensions free of charge to approved federal programs. 



Constructor - The method that is called when an object of a class is instantiated. 

Cross-platform - In programming, having the ability to utilize a piece of software or a 

dataset on more than one operating system. 

C# Programming Language -A simple, object-oriented programming language that is 

part of the .NET Framework. It has syntax based on C++ and Java. 

DBDB-V- Digital Bathymetric Database- Variable Resolution- A bathymetric 
database that provides water depths at various resolutions. 

Embedded Components - In ESRI, a tool or command that is embedded into a toolbar 
that runs inside the ArcGIS Desktop. 

Feathering- In this application, feathering refers to the smoothing of data along edges 

where the resolutions of the data are different. 

65 

File Geodatabase - an ESRI geodatabase that is stored as a collection of files in a folder. 

G 

Geoprocessing - "A GIS operation used to manipulate GIS data" (GIS Glossary). 

Geospatial Information System - "An integrated collection of computer software and data 
used to view and manage information about geographic places, analyze spatial 
relationships, and model spatial processes. A GIS provides a framework for gathering and 
organizing spatial data and related information so that it can be displayed and analyzed" 
(GIS Glossary). 

GeoTIFF- A TIFF image file that provides geo-referenced information. 

Graphical User Interface - The graphical part of an application that allows user 
interaction for input into an application. 

Hierarchical Data Format - Represents a data storage facility that can handle very 
complex datasets and a suite of tools/ APis to handle that data. 



I 

Integrated Development Environment - An application that provides all of the tools 

needed to develop applications for a given programming environment such as .NET. 

Interpolate- To define new data points within the range of a set of known data points. 

66 

Interpretive Programming Language - a language whose programs are translated and run 

at the same time. 

M 

Methods - Function calls in a programming language that allows specific processing to 

take place. 

Mode/Builder- "The interface used to build and edit geoprocessing models in ArcGIS" 
(GIS Glossary). 

Mosiac- To merge all of the information from several rasters seamlessly, resulting in 
one final raster . 

. NET Framework- A Microsoft software framework that is intended to be used for 

modem Windows programming. 

0 

Operating System - Software that is responsible for the management and functionality of 
the hardware inside a computer. 

Personal Geodatabase - In ESRI, a data storage component that is based on the 
Microsoft Access database scheme. 

Places of Interest- Points on a map that have some geospatial meaning. 

Planar Coordinate System -A coordinate system that is projected and drawn on a plane 
(flat surface). 

Private Methods- Methods that are only visible to the class that defines them. 

Public Methods - Methods that are visible to properly configured calling classes. 



Q 

Query Interface - The act of determining if a pointer of a given type can be cast on a 
specific object. 

67 

Raster Catalog - A table that contains raster datasets as its records and attributes that are 
associated with that set of raster datasets. 

Read-only- Concerning a user's access to a file or file system, read-only states that a 
user can only read the given file and does not have permission to write, delete, or 

execute. 

Relationships - Defmes how objects in a database schema are related to one another. 

Schema - A design for databases that defines the entities, their attributes, and the 

relationships between this entities. 

Scripting- Using a set of instructions from an interpreted programming language, such 
as Python, to run some geoprocessing. 

Spatial Query - A query on geospatial information based on a spatial relation between 
the two objects. 

Spherical Coordinate System -A coordinate system based on elevation and azimuth 
(latllon). 

v 
{\ 

Visual Basics for Applications - A subset of the Visual Basic programming language that 
allows programming components inside Windows applications. It was formerly the 
language of choice for ArcGIS desktop components. 

Wrapper- A method or set of methods that act as an interface between different 
programming languages or libraries. 



WORK CITED 

ArcGIS Desktop 10 I ArcGIS resource Center. Environmental Systems Research 

Institution. n.d. Web. June 3, 2012. 

68 

Braud, Jim, Breckenridge, John, Current, J., and Landrum, Jerry. "Proposed Internal 

Database Structure for Digital Bathymetric Database Production. " Oceans 1989 

Proceedings 3 (1989): 914-919. Print. 

Burke, Rob. "Getting to Know ArcObjects." Getting to Know ArcObjectsfree pdf 

download FreeDownload.IS. 2011. Web. June 3, 2012. 

Desktop Help 10. 0- Welcome to the ArcGIS Help Library. Environmental Systems 

Research Institution. May 14, 2012. Web. June 3, 2012. 

Fabre, Josie. and Fabre, David. "Examples of Carter Corrected DBDB-V Applied to 

Acoustic Propagation Modeling. " Naval Research Laboratory Internal Report 

NRL/MR/7182-08-9100 (2008). Print 

GIS Glossary - GIS WikiiThe GIS Encyclopedia. November 9, 2010. Web. June 26, 

2012. 

HDF5 Technologies. The HDF Group. May 16,2011. Web. June 3, 2012. 

Lockheed Martin. "Database Design Description for the Digital bathymetric Database -

variable Resolution (DBDB-V) Version 6.0." Stennis Space Center, MS. 2010. 

Print. 

NIMA- MP. "MIL-PRF-32030- Database Design Description for the Digital 

Bathymetric Database - Variable Resolution (DB DB-V) Version 6.0. " Reston, 

VA. 2010. Print. 



69 

Roberts, Jason J., Best, Ben D., Dunn, Daniel C., Treml, Eric A., and Haplin, Patrick N. 

"Marine Geospatial Ecology Tools: An Integrated Framework for Geoprocessing 

with ArcGIS, Python, R, MATLAB, and C++. " Environmental Modeling & 

Software 25:10 (2010). 1197-1207. Print. 

Sandy, Richard J. "The Navy's Bathymetric Databases .. . From the Sea. " Sea 

Technology November 1996. 53-56. 1996. Print. 

Steed, Chad A. Braud, James E., and Koehler, Kim.A. "VGRID: A Generic, Dynamic 

HDF5 Storage Model for Georeferenced, Grid Data." Oceans 2002 MI'SIIEEE 

Proceedings 25 (2002). 900-907. Print. 

Steed, Chad A. and Rankin, William E. "OAML Feathering Algorithm Overview." 

Formal Report NRL/FR/7440--03-10,052. U.S. Naval Research Laboratory. 

2003. Print. 


	Designing and Developing an Alternative Implementation of the Digital Bathymetric Database, Variable Resolution (DBDB-V)
	Recommended Citation

	Brandon_Donald_Lester_Jr_August2012_002_TitlePage
	Brandon_Donald_Lester_Jr_August2012_003_Pageii
	Brandon_Donald_Lester_Jr_August2012_004_Pageiii
	Brandon_Donald_Lester_Jr_August2012_005_Pageiv
	Brandon_Donald_Lester_Jr_August2012_006_Pagev
	Brandon_Donald_Lester_Jr_August2012_007_Pagevi
	Brandon_Donald_Lester_Jr_August2012_008_Pagevii
	Brandon_Donald_Lester_Jr_August2012_009_Pageviii
	Brandon_Donald_Lester_Jr_August2012_010_Page1
	Brandon_Donald_Lester_Jr_August2012_011_Page2
	Brandon_Donald_Lester_Jr_August2012_012_Page3
	Brandon_Donald_Lester_Jr_August2012_013_Page4
	Brandon_Donald_Lester_Jr_August2012_014_Page5
	Brandon_Donald_Lester_Jr_August2012_015_Page6
	Brandon_Donald_Lester_Jr_August2012_016_Page7
	Brandon_Donald_Lester_Jr_August2012_017_Page8
	Brandon_Donald_Lester_Jr_August2012_018_Page9
	Brandon_Donald_Lester_Jr_August2012_019_Page10
	Brandon_Donald_Lester_Jr_August2012_020_Page11
	Brandon_Donald_Lester_Jr_August2012_021_Page12
	Brandon_Donald_Lester_Jr_August2012_022_Page13
	Brandon_Donald_Lester_Jr_August2012_023_Page14
	Brandon_Donald_Lester_Jr_August2012_024_Page15
	Brandon_Donald_Lester_Jr_August2012_025_Page16
	Brandon_Donald_Lester_Jr_August2012_026_Page17
	Brandon_Donald_Lester_Jr_August2012_027_Page18
	Brandon_Donald_Lester_Jr_August2012_028_Page19
	Brandon_Donald_Lester_Jr_August2012_029_Page20
	Brandon_Donald_Lester_Jr_August2012_030_Page21
	Brandon_Donald_Lester_Jr_August2012_031_Page22
	Brandon_Donald_Lester_Jr_August2012_032_Page23
	Brandon_Donald_Lester_Jr_August2012_033_Page24
	Brandon_Donald_Lester_Jr_August2012_034_Page25
	Brandon_Donald_Lester_Jr_August2012_035_Page26
	Brandon_Donald_Lester_Jr_August2012_036_Page27
	Brandon_Donald_Lester_Jr_August2012_037_Page28
	Brandon_Donald_Lester_Jr_August2012_038_Page29
	Brandon_Donald_Lester_Jr_August2012_039_Page30
	Brandon_Donald_Lester_Jr_August2012_040_Page31
	Brandon_Donald_Lester_Jr_August2012_041_Page32
	Brandon_Donald_Lester_Jr_August2012_042_Page33
	Brandon_Donald_Lester_Jr_August2012_043_Page34
	Brandon_Donald_Lester_Jr_August2012_044_Page35
	Brandon_Donald_Lester_Jr_August2012_045_Page36
	Brandon_Donald_Lester_Jr_August2012_046_Page37
	Brandon_Donald_Lester_Jr_August2012_047_Page38
	Brandon_Donald_Lester_Jr_August2012_048_Page39
	Brandon_Donald_Lester_Jr_August2012_049_Page40
	Brandon_Donald_Lester_Jr_August2012_050_Page41
	Brandon_Donald_Lester_Jr_August2012_051_Page42
	Brandon_Donald_Lester_Jr_August2012_052_Page43
	Brandon_Donald_Lester_Jr_August2012_053_Page44
	Brandon_Donald_Lester_Jr_August2012_054_Page45
	Brandon_Donald_Lester_Jr_August2012_055_Page46
	Brandon_Donald_Lester_Jr_August2012_056_Page47
	Brandon_Donald_Lester_Jr_August2012_057_Page48
	Brandon_Donald_Lester_Jr_August2012_058_Page49
	Brandon_Donald_Lester_Jr_August2012_059_Page50
	Brandon_Donald_Lester_Jr_August2012_060_Page51
	Brandon_Donald_Lester_Jr_August2012_061_Page52
	Brandon_Donald_Lester_Jr_August2012_062_Page53
	Brandon_Donald_Lester_Jr_August2012_063_Page54
	Brandon_Donald_Lester_Jr_August2012_064_Page55
	Brandon_Donald_Lester_Jr_August2012_065_Page56
	Brandon_Donald_Lester_Jr_August2012_066_Page57
	Brandon_Donald_Lester_Jr_August2012_067_Page58
	Brandon_Donald_Lester_Jr_August2012_068_Page59
	Brandon_Donald_Lester_Jr_August2012_069_Page60
	Brandon_Donald_Lester_Jr_August2012_070_Page61
	Brandon_Donald_Lester_Jr_August2012_071_Page62
	Brandon_Donald_Lester_Jr_August2012_072_Page63
	Brandon_Donald_Lester_Jr_August2012_073_Page64
	Brandon_Donald_Lester_Jr_August2012_074_Page65
	Brandon_Donald_Lester_Jr_August2012_075_Page66
	Brandon_Donald_Lester_Jr_August2012_076_Page67
	Brandon_Donald_Lester_Jr_August2012_077_Page68
	Brandon_Donald_Lester_Jr_August2012_078_Page69

