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ABSTRACT 

The effect of pesticides on Apis mellifera mortality as well as their effect on the 

transcriptional regulation of antioxidant genes was the aim of this study. Unlike previous 

studies, the work here shows the combined effects of pesticides imidacloprid and 

coumaphos on worker bees at levels likely encountered by workers using both 

toxological and molecular analysis. Bee brood were collected from hives and incubated 

until hatching. The 1 day old bees were then segregated and subjected to varying 

concentrations of coumaphos and imidacloprid both independently and in concert. 

Workers from each treatment group were removed and stored in RNA-later until they 

were used for molecular analysis. The 10 antioxidant genes monitored here comprised of 

both primary and secondary antioxidants. Four of the secondary antioxidants used were 

seleno-like genes found in the genome. These showed differential expression throughout 

the bee’s development as well in the presence of pesticides.  
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CHAPTER I - INTRODUCTION 

Honey bees are some of the most important pollinators in the United States and around 

the world. In the United States most honey bees are Apis mellifera, the European honey 

bee. They were introduced to North America 400 years ago by the European settlers 

(Urbana, 2006).  Honey bees are estimated to pollinate 35% of the human diet (Klein et 

al., 2007), while insect pollination attributes $20 billion to the GDP (Gallai, 2009). For 

the last 60 years the honey bee population in the United States has decreased more than 

50%, see Fig 1, (vanEngelsdorp and Meixner, 2010). Initially the population decline was 

attributed to pesticides (Atkins, 1975). However, in the last decade the idea that no one 

factor alone is responsible for the consistent honey bee decline or colony collapse 

disorder, CCD (vanEngelsdorp et al., 2009).  Though some countries have seen an incline 

managed honey bees the United States has reported consistent losses in managed honey 

bee colonies, see Figure 2 (Bruckner et al., 2018). 

 

 

Figure 1: Percent 

change in number of 

managed bee 

colonies between 

1961 and 2006 in 

selected countries in 

Europe and North 

America 

(vanEngelsdorp and 

Meixner, 2010). 
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HONEY BEE BIOLOGY 

Apis mellifera are a eusocial species; like other social insects, all members of the 

hive serve special roles to better the hive. Honey bees live in a hive comprised mainly of 

a wax comb. The hive contains a honeycomb made up of thousands of hexagon cells. 

These cells are used for the development of young bees, as well as honey and pollen 

stores. The constituents of the hive are comprised of the 3 types of adult bees and the 

developing brood. The adult bees present in a hive are a queen, about 60,000 workers and 

a few hundred drones depending on the season. The queen’s main purpose is to lay eggs 

Figure 2: Managed honey bee colony loss reported by the Bee Informed network. 

Yellow bars show reported winter losses from October 1st to April 1st. The orange bars 

represent the total colony loss for a given year and include the losses reported from 

April 1st to October 1st.  Grey bars represent the accepted anticipated colony loss by 

those surveyed (Bruckner et al., 2018).  



 

3 

and is the only sexually developed female in the hive (Hoover et al. 2003). The workers 

are non-sexually developed females who have specialized features that allow them to 

collect pollen, feed the developing brood and queen, build the honeycomb, 

thermoregulate the hive, and perform all activities to maintain the hive. Worker bees are 

the engine of the hive and play numerous roles depending on their age and the need of the 

hive (Page and Peng, 2001). The drones are sexually developed males whose purpose is 

to mate with the queen. 

HONEY BEE DEVELOPMENT 

All 3 types of adult bees undergo the same stages of development however, the 

duration of these stages vary based on the type of bee that is developing. Honey bee 

development has 3 phases; egg, larva, and pupae. The term brood is used to collectively 

refer to developing bees in any of these stages.  

 

Figure 3: Honey bee development from egg to adult (left to right). The queen lays the 

egg in the wax cell made by the workers. As the larva develops the workers feed the 

larvae until it is fully grown. Once fully grown the worker caps the cell. The pupa 

undergoes metamorphosis and emerges as an adult.  
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The queen will lay 1 egg per cell in the honeycomb. After a few days the egg 

hatches and at that time the larval stage begins. For the next 5 or 6 days the nurse worker 

bees will feed the larvae using specialized brood food glands then the worker will cap the 

cell, sealing the larvae in. Once the cell is capped the developing young is in the pre-

pupal stage. Within the cell the pupae begins to take on its adult form and develop 

pigment.   

 

SEASONAL CHANGES 

Throughout the year the population of the hive is dynamic. In the spring the hive 

is awakened from its more dormant winter period and the main goal of the hive is 

reproduction. The queen lays eggs and the workers begin collecting pollen and water to 

liquefy thick honey for developing brood. Once the brood develop; the hive population 

begins to bloom and the scarce drones become more prevalent. As the population grows 

so does the work done by the hive. By mid-spring the worker bees are at full force and 

surpluses of honey and pollen begin to accumulate. As the population continues to grow 

the hive starts getting crowded and can sometimes lead to swarming and the creation of a 

new hive.  

The formation of a new hive is brought about just before the virgin queen 

emerges. The old queen and the majority of the hive constituents rush out of the hive and 

will cluster together while scouts look for a site to construct a new hive (Seeley 2010). 

Once found, the queen and her entourage migrate there and quickly begin building 

combs, laying eggs and gathering nectar and pollen. In the old hive, the remaining bees 

continue to care for developing brood and collect resources. Once the new queen emerges 

she must secure her position as the queen. She searchers the hive for any other queens 

and will fight to the death until only one remains. Once the surviving queen is a week or 

so old she will emerge from the hive to mate with one or more drones in the air. Upon 

returning and only after mating the nurse bees care for the queen who begins laying eggs 

shortly thereafter.  

By summer the population is at its highest numbers and the focus of the hive 

shifts toward winter survival. The day length is the longest so workers are able to forage 
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for longer lengths of time. In these long summer days the worker bees have their shortest 

expected life span of five to six weeks (Amdam and Omholt, 2002). In late summer and 

early fall there is less pollen available in the environment so to conserve resources for the 

winter the remaining drones are removed from the hive and the workers prevent them 

from re-entering. At this point, the queen does not lay as many eggs and the workers 

collect propolis from trees to seal any cracks. In the winter months, like in the summer, 

the worker thermoregulate the hive and care for the queen and brood. In these months the 

older adult bees die and fewer numbers of adults are emerging however, young adult 

workers in the colder months can live up to 6 months (Page and Peng, 2001).  

 

COLONY COLLAPSE DISORDER 

Unlike normal winter losses in the spring of 2007 and again in 2008 the United 

States experienced a severe loss of managed honey bee colonies (vanEngelsdorp et al., 

2007; vanEngelsdorp et al., 2008). A large portion of these colonies had a few common 

characteristics: (1) excessive brood populations with a sudden loss of adult worker bees, 

(2) lack of dead worker bees in or around the affected hive, (3) delayed invasion of pests 

into the hive as well as delayed cleptoparasitism from other colonies (Cox et al., 2007). 

Since then, these symptoms have been used to characterize the phenomenon referred to as 

Colony Collapse Disorder, or CCD.  Though annual colony losses of managed hives have 

remained high >23%, the number of CCD cases responsible has been decreased from 

60% in 2008 to just over 30% in 2013 (EPA). 

 

ANTIOXIDANTS 

Apis mellifera like most social insects they rely on grooming and hygienic 

interactions rather than a robust immune system. Honey bees encode fewer genes involved 

in immune and antioxidant pathways than most other insects (Wilson, 2006; Corona and 

Robinson, 2006). Upon sequencing the honey bee genome, it was also found that Apis 

mellifera has evolved more slowly than most other insects including Drosophila (Wilson, 
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2006). The honey bee innate immune system strongly relies on reactive oxygen species, or 

ROS, which serve as the first line of defense to protect the bee from a pathogenic state.  

The honey bee immune system can be triggered by tissue injury when the 

exoskeleton is breached or the presence of pathogen associated molecular patterns, 

PAMPs. The innate immune system’s cellular response is triggered and uses cytokines and 

cytokine like signals to recruit phagocytic cells to the site; many of these signals are thought 

to be reactive species. Specialized phagocytic cells in the insect, haemocytes, are recruited 

to the site and will engulf and enzymatically degrade any cells they do not recognize as 

self or determine are terminally damaged. As a result of these signals and by the action of 

the haemocytes different immune pathways can be activated based on the PAMPs 

encountered (Hoffman and Reichhart, 2002; Chain and Anderson, 1983; Brutscher et al., 

2015). 

 

 

ROS AND THE HONEY BEE 

Antioxidants can be categorized as primary and secondary antioxidants. Primary 

antioxidants are those that act directly on reactive oxygen species, or ROS. Secondary 

antioxidants function to recycle those primary antioxidants and to repair damage brought 

about by oxidative stress. Currently, there are 39 antioxidants that have been uncovered in 

the genome and represent 10 protein groups (Corona and Robinson, 2006). 

Reactive oxygen species is generated in the honey bee as a byproduct of aerobic 

respiration as well as in response to biotic and abiotic stressors. The main source of ROS 

in the honey bee is mitochondrial respiration. Manganese containing SOD, or SOD2, is 

responsible for regulating ROS in the mitochondria; which through the formation of 

H2O2, is one of the most important contributors to regulating and maintaining the ROS 

gradient between the cytosol and the mitochondrial matrix (Hauptman et al., 1996). 

Reactive oxygen species can be very harmful to cells by damaging proteins, disrupting 

gradients and interfering or altering the cells basic biochemistry and pathways.  
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Cytochrome P450, or CYP, is the main component responsible for the 

microsomal detoxification of xenobiotics.  CYPs are cytoplasmic and the specific 

isoforms present are required for the breakdown of different toxic compounds 

(McDonnell and Dang, 2013). Upon degradation by CYP, ROS and other charged 

substrates are produced. These reactive products are inactivated by constituent 

antioxidants such as the GST to prevent cellular damage (McDonnell and Dang, 2013).  

The immune system of the honey bee also makes use of the aggressive nature of 

ROS molecules. Phagocytic hemocytes serve as the first line of defense, when activated it 

initiates a signaling cascade via the phenoloxidase system. Phenoloxidase is the main 

oxidase responsible for arming the immune response through a large oxygen influx. To 

prevent damage to host tissue antioxidant expression is also activated initially in the form 

of catalase but uses peroxidase as pathogenesis persists. 

 

Primary Antioxidants 

Superoxide dismutase catalyzes the disassembly of superoxide’s into oxygen and 

hydrogen peroxide.   Honey bees contain two types of superoxide dismutase proteins, 

SOD1 and SOD2. SOD1, AKA copper/zinc SOD or cu/znSOD, is the cytoplasmic SOD 

and is highly prevalent in the thorax and muscles of worker bees due to foraging (Schippers 

et al., 2006; Williams et al., 2008). SOD2 is the mitochondrial version, which will be 

discussed with more detail below.  

Catalase acts on hydrogen peroxide to produce oxygen and water. In the honey bee, 

its highest levels of expression have been found in the intestine of a newly fertilized queen. 

The presumption is that it is due to the high oxygen demand of the developing embryo (Li 

J et al., 2009). The queen has a higher basal expression of antioxidants than the other hive 

constituents and is thought to be the reason why the life expectancy of a queen is up to 10 

times longer than the rest of the bees (Page and Ping, 2001; Weirich et al., 2002).  

Peroxidase acts on hydrogen peroxide like catalase but uses a secondary antioxidant 

as an electron donor, such as thioredoxin or glutathione. Insects code for 3 genera of 

peroxidases; thioredoxin peroxidase peroxidoredoxins or TPX’s (Radyuk et al., 2001), 

phospholipid-hydroperoxide or GTPX (Missirlis et al., 2003), and glutathione S-
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transferase or GST (Taba and Aigki, 2000). Honey bees lack antioxidant genes in the 

glutathione S-transferase (GST) family epsilon while the delta class only has one 

representative (Collins et al., 2004; Corona et al., 2005; Yee-Tung et al., 2017). These two 

GSTs, delta and epsilon, are highly important for pesticide detoxification. Unlike delta and 

epsilon classes the honey bee has more sigma GSTs; these are primary thought to play a 

role in lipid peroxidation and are localized to tissue that has a large metabolic load (Singh, 

2001). 

 

Secondary Antioxidants 

Methionine sulfoxide reductase, Msr, is involved in protein repair by catalyzing 

the TRX-dependent reduction of methionine sulphoxide to methoionine (Moskovitz, 

1996; Kumar, 2002). MsrA can act on both free and protein bound methionine but MsrB 

exclusively acts on protein bound methionion.  

TrxR1 or thioredoxin reductase functions to recycle the primary antioxidants, 

thioreduction and glutathione S-transferase (Kanok, 2001). The genome of the honey bee 

shows a reduction in the number of TrxR1 transcripts compared to other insects (Corona 

and Robinson, 2006). In humans; TrxR1 is a selenoprotein containing selenocystine 

 

SELENIUM AND SELENOPROTEIN 

Selenium is commonly found in environment in low concentrations and its 

distribution varies greatly ranging from 0.01-2 mg/kg (Winkel et al., 2015). In alkaline 

soils; agriculture runoff can lead to a buildup in its bioavailable forms, selenate SeO4
2- and 

selenite SeO3
2- (Wu, 2004).  Some plants will hyperaccumulate selenium in selenium rich 

soils and can have concentrations of 15,000 mg/kg by their dry weight (Winkel et al., 

2015). Selenium is an interesting micronutrient in that the even for larger organisms like 

humans the tolerance window is narrow with a recommended dietary allowance of only 55 

μg to 400 μg per day (institute of medicine, 2000). Moving outside the dietary window can 

have drastic consequences weather it be selenium deficiency or selenium toxicity.  
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Selenate has been shown to cause increased mortality in honey bees most strongly 

affecting the larval stages. Treatment with as little as 0.6 mg/L resulted in a reduction in 

capped brood, increased pupal development time, and as a result lower total worker weight 

for the colony (Hladun et al., 2013). In some cases, after chronic exposure to Selenium no 

capped brood were present in the hive. However, adult bees were able to withstand a 5x 

increase in selenium accumulation (Hladun et al., 2016). Acute feeding of both 

predominate forms of selenium show that selenate is more toxic to larvae, LD50 0.72 mg/L, 

than selenite LD50 of 1.0 mg/L. While in adult foragers, both forms of selenium have an 

LD50 of 58 mg/L (Hladun et al., 2013).   

Further characterization of uncharacterized Seleno-like proteins is needed in Apis 

mellifera. According to the literature Apis mellifera does not possess Selenoproteins 

(Chapple and Guigo, 2008). However, its close relative Apis cerana has been shown to 

possess them. These Seleno-like proteins possess a high degree of similarity to known 

selenoproteins found in other species in both coding sequence as well as conserved 

domains.  

In a recent study comparing the expression of antioxidant genes, TrxR1 and 

SOD1, in Apis mellifera and Apis cerana it was shown that in response to both chemical 

and environmental stressors both species exhibited very similar expression profiles. 

However, the magnitude of the response was greater in A. mellifera when exposed to 

increased, 37°C, or decreased temperature, 4°C, compared to the control, 27°C. When 

injected with the oxidants, hydrogen peroxide and paraquat, the profiles as well as their 

relative expression were proportional over the course of 9 hours in both species (Koo et 

al., 2016). 

Selenoproteins have been functionally classified into 6 categories, which include 

their role as peroxidases and reductaces, protein folding, redox signaling, hormone 

metabolism, and selenium synthesis and transport (Gonzalez-Flores et al., 2013). It 

should be noted that non-selenum containing homologues have been found across almost 

all domains in life (Gonzalez-Flores et al., 2013). When comparing the functionality of 

selenocysteine, Sec, containing proteins to identical homologues containing cysteine, 

Cys, in place of sec it was found that functionality was retained but the loss of sec 
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resulted in a lower enzymatic activity (Johansson et al., 2006; Gonzalez-Flores et al., 

2013). The advantage for incorporating Sec into the active site of a protein is a result of 

the innate properties of selenium. When Cys containing proteins are overoxidized they 

inactivated but the Sec versions of these proteins prevent overoxidation and can be 

recycled even after reaching a more oxidized state and is more reactive than its non Sec 

containing relative (Hondal and Ruggles, 2011; Gonzalez-Flores et al., 2013). 

If the classical selenosystem is found to be intact in Apis mellifera it would go 

against the popular assumption that the necessary selenomachinery is absent. If the 

classical selenosystem is absent but selenoproteins are present; it could prove to broaden 

our understanding into the underlying machinery or alternative regulatory network of 

selenoproteins as well as provide new insight into the detoxification genes found in the 

honey bee. If both the selenosystem and selenoproteins are absent then selenoproteins 

could serve as a target in the varroa mite. Further investigation of the seleno-system in 

Apis melliferia may prove to be crucial in not only understanding how the bee’s cope 

with pollinating selenium rich areas but also may provide an alternative for the treatment 

of Varroa destructor by targeting the selenoprotein dependent machinery.  

 

VARROA MITE (Varroa destructor) 

Varroa destructor is the most harmful parasite to the honey bee. Varroa 

destructor is a mite that not only requires the honey bee for feeding but also for 

reproduction. The female mite can feed on adult or pupae honey bees by ingesting the 

honey bees hemolymph causing physiological and developmental issues. In addition, the 

exchange of fluids can provide a vector for the transmission of viruses such as DWV and 

the wound created from feeding can cause secondary infections. 
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PESTICIDES (COUMAPHOS AND IMIDACLOPRID) 

Pesticides used in agriculture are designed to target specific pests while remaining 

relatively benign to non-target organisms. Unlike laboratory conditions, bees may come in 

contact with numerous pesticides that when combined could cause responses more drastic 

than exposure to any of the individual chemicals alone. Unintended exposure to pesticides 

is one of the many suspected causes for CCD, along with other environmental stressors 

may attribute separately or synergistically have potential effects on bees (Cox et al., 200; 

vanEngelsdrop and Meixner, 2010). Coumaphos is an organophosphate with acaricidic 

properties and is commonly used by beekeepers to control the parasitic mite (Varroa 

destructor). Coumaphos acts systemically by irreversibly binding the enzyme 

acetylcholinesterase, AChE, at its active site and results in over stimulation of the receptor, 

AChR. (TOXNET, 1975-1978). A fraction of the coumaphos is consumed by a bee, the 

majority is spread throughout the colony by eusocial interactions such as trophallaxis 

(Bevk et al., 2012; van Buren et al., 1992a; van Buren et al., 1993) and has been reisolated 

from honey, wax, and royal jelly (Wallner, 1999; Tremolada et al., 2004; Martell et al., 

2007; Smodis Sker et al., 2010). 

The acute toxicity of coumaphos becomes more potent to bees as they age with the 

lethal dose (LD50) varying from 3 to 6 μg (van Buren et al. 1992b). Chronic exposure to 

coumaphos has been demonstrated to negatively impact foraging behavior, cause a reduced 

size in the hypopharyngeal glands, increase the rate of apoptosis, and increase mortality in 

brood (Smodis Sker et al., 2010). Though coumaphos is reported as being weakly toxic to 

honey bees even at low concentrations it has been shown to impair the honey bee immune 

system (Desneux et al., 2009), hinder mobility and increase involuntary gut movements 

(Williams et al., 2013) more work is needed to determine its affects when combined with 

other commercially available pesticides that would normally or possibly be encountered 

during foraging (Extension Toxicology Network, 2001). In a study conducted on honey 

bees demonstrating symptoms of CCD; residues of 121 pesticides, and coumaphos 

concentrations ranging from 1.0 μg/Kg to 919 mg/Kg were isolated from 98 % of wax 

samples (Mullin et al., 2010).   
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Imidacloprid is one of the most widely used pesticides and is the active ingredient 

in nearly all commercially available pesticides. Like coumaphos, it acts on the central 

nervous system by interfering with the transmission of the neurotransmitter acetylcholine. 

Though coumaphos mode of action is accomplished by inhibiting AChE, imidacloprid 

works by mimicking acetylcholine, ACh. Imidacloprid has been shown to act by binding 

to the post-synaptic nicotinic acetylcholine receptors, nAChRs, in the central nervous 

system of insects (Matsuda and Sattelle, 2005) and has been found to be highly toxic to 

honey bees, with acute oral LD50 from 0.004 to 0.005 μg per bee (EFSA, 2012). 

Imidacloprid has been shown to alter development of the honey bees hypopharyngeal 

glands resulting in a reduced diameter of the acinal ducts and increased cell death 

(Smodis et al., 2010). Both contact and oral administration of imidacloprid have been 

conducted to evaluate its toxicity on honey bees (Suchail et al., 2000; Decourtye et al., 

2004). Residues of imidacloprid in treated crops can exceed this LD50, with levels of 2–

3.9 μg/kg in pollen and less than 2 μg/kg in nectar (Bonmatin et al., 2003: Schmuck et 

al., 2001). The working hypothesis here is that; upon exposure to pesticides 

detoxification genes/enzymes will be upregulated in the bee to alleviate its effects. 

Pesticides can be found in the environment can have ranging concentration. To 

assess the lethality of coumaphos from environmentally reported samples concentrations 

ranging from 11,500 PPB to 185,200 PPB will be used. To assess the effect of both 

coumaphos and imidacloprid independently and in concert imidacloprid will be used in 

concentrations of 5 PPB and 20 PPB.  
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CHAPTER II – HYPOTHESIS AND SPECIFIC AIMS 

Hypothesis: 

Upon exposure to pesticides detoxification genes/enzymes will be upregulated in the bee 

to alleviate its effects. 

 

Specific Aims: 

1) Evaluate bee mortality rate when chronically exposed to varying concentrations of 

pesticides through their diet. 

2) Study how chronic exposure to pesticides regulates select antioxidant genes and if 

uncharacterized possible antioxidant genes show differential expression in response 

to exposure.  
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CHAPTER III  - METHODS 

 

 

 

Figure 4: Experiential design (1-3) and the number of treatment groups in each 

experiment. Experiments 1 and 2 were used to evaluate the mortality rates of worker 

bees when chronically exposed to pesticides. Experiment 1 was used to evaluate the 

mortality rates of worker bees when chronically exposed to coumaphos. Experiment 2 

was conducted to determine the mortality rates when both coumaphos and imidacloprid 

were consumed at concentrations likely encountered while foraging.  Samples for the 

antioxidant gene study were polled from experiment 3. Additives to the diet were mixed 

to the Pro Winter patty (patty) as base sugar candy. 
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Specific Aim 1: 

Evaluate bee mortality rate when chronically exposed to varying concentrations of 

pesticides through their diet. 

 

Experiment 1: Caged bees were exposed to coumaphos concentrations ranging 185,200; 

92,600; 46,300; 23,150 and 11,500 PPB with 2 control cages. Coumaphos was 

administered by incorporation into Pro Winter Patties by dissolving into 266 μL of acetone 

for each 10 g paddy. Each group will be given 1 g of patty initially with more added as 

needed. 15; 3-day-old worker bees were used for each treatment group. The control groups 

consisted of two treatment groups. The first contained only acetone without the addition of 

coumaphos, the other did not contain acetone or coumaphos (see Figure 4 Experiment 1). 

Each treatment group was replicated 5 times, dead bees were collected daily, and food 

consumption was recorded.  

 

Experiment 2 and 3: ProWinter Patties were again used here to assess the mortality and 

transcriptional effect of the pesticides coumaphos and imidacloprid. Six treatment groups 

were used here coumaphos at 92,600 PPB, imidacloprid at 5 PPB, imidacloprid at 20 PPB 

as well as both coumaphos at 92,600 PPB and imidacloprid at 5 PPB and coumaphos at 

92,600 PPB and imidacloprid at 20 PPB as well as one control group with no pesticides 

(See Figure 4 Experiment 2 and 3). For experiment 2 each treatment group will be 

replicated 5 times, For experiment 3 each treatment group will be replicated 3 times. For 

both experiments dead bees were collected daily, and food consumption was recorded. 

 

 

Specific Aims 2: 

Study how chronic exposure to pesticides regulates select antioxidant genes and if 

uncharacterized possible antioxidant genes show differential expression in response to 

exposure.  
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The transcriptional expression of primary and secondary antioxidants in honey bees was 

assessed in multiple life stages, when exposed to pesticides, infected with the parasitic mite 

Varroa destructor as well as when exposed to pesticides, coumaphos and imidacloprid. 

Worker bees were collected from hives managed by the Mississippi State University. The 

baseline expression of antioxidants for each life stage (adult, pupae, and larvae) as well as 

select tissue types (midgut, and brain) in those stages were used to determine if the 

antioxidant genes are being differentially regulated throughout their development or within 

the specific tissue. Three biological replicates of each sample were preserved in RNAlater. 

Upon collection samples were kept on ice while transported to the University of Southern 

Mississippi in Hattiesburg, MS. Upon receipt samples were kept at -80°C until analysis 

was preformed. To determine the effect of pesticides on the transcriptional activity of 

antioxidants 1-day-old worker bees were treated with Coumaphos at 92,600 PPB, 

Imidacloprid at 5 PPB, Imidacloprid at 20 PPB as well as both Coumaphos at 92,600 PPB 

and Imidacloprid at 5 PPB and Coumaphos at 92,600 PPB and Imidacloprid at 20 PPB 

(See Figure 4 Experiment 3). Living adult workers were collected at both 10 and 20 days 

after exposure to determine the impact of the pesticides on the select antioxidant genes 

transcriptional activity. RNA Extraction and qRT-PCR: 

Each sample collected was manually homogenized via pestle in lysis solution. 

The homogenized product was then quickly spun down and supernatant was extracted 

using a 20g needle to avoid removing cellular debris. All proceeding steps were done in 

accordance with the manufacturers provided protocol (inventogen RNA extraction).  

RNA concentration and purity was assessed using nanodrop. Samples containing 

contaminants as determined by their 260/280 and 260/230 ratios were discarded or re-

purified.   

Isolated mRNA was set to a concentration of 500 ng before being used to generate 

cDNA (iscript kit, BioRad). Technical triplicates containing 7.5 ng of cDNA was used to 

asses transcriptional expression by SYBR green using qRT-PCR. The results were then 

normalized against four reference genes, see table 1. The data was then normalized to 

housekeeping genes (Rp49, Rps5a, Tbp-f and RpL32) to determine the relative gene 

expression by the CFX maestro software (Biorad) using the calculated ΔΔCq. The 
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graphic used to depict the transcriptional expression of genes were also generated using 

the CFX maestro software.  

 

 

Gene 
ID 

Gene description  Accession ID Primers F and R  

Housekeeping Genes  

Rp49 Ribosomal Protein 49 AF441189 GTCACCAGAGTGATCGTTACA 
GGGCATCAAATATTGTCCCTTAAA 

 

Rps5a Ribosomal protein S5a GB11132 GTACCTACCACGACGACATTA 
CACAATTCCAGCGACCAAATAA 

 

Tbp-f TATA box binding factor XM_393492 GGAGGAGATACTCCAGCTATGTA 
CATCTGGTACCGTTGGTGTATAA 

 

RpL32 Ribosomal protein L32 AF441189.1 GAGAAACTGGCGTAAACCTAAAG 
GTTGGCAACATATGACGAGTTT 

 

Target Genes  

Primary Antioxidants  

Cat Catalase NP_001171540.1 TCCACTCATTCCTGTTGGTAAG 
GCCGGATCGAAGGCTATTT 

 

Sod 1 Superoxide dismutase 1 NP_001171498.1 CGTTCCGTGTAGTCGAGAAAT 
GGTACTCTCCGGTTGTTCAAA 

 

Sod 2 Superoxide dismutase 2 NP_001171519.1 TGCAGCAAGACGTATCCTATTT 
CATGGTGCTTTGAATGGTGAAG 

 

Secondary Antioxidants  

MsrA Methionine sulphoxide reductase A NM_001178047.1 GGGCCGGTGATTGTTTATTTG 
CAACGACTTCTGTATGATCACCT 

 

MsrB Methionine sulphoxide reductase B XM_006569172.1 GTATTAGATCAGGGACGAGTCAAG 
CATCCATCGTAGTTCTCTCCAA 

 

Trxr1 Thioredoxin reductase AY329357.1 CGTCCACCAACTCGTAGATTAG 
CTAGTACAACTTCTACATCCTCCAAA 

 

SelK Selenoprotein K-like NM_001278332.1 CGTCCACCAACTCGTAGATTA 
CTAGTACAACTTCTACATCCTCCAAA 

 

SelT Selenoprotein T-like XM_623426.5 ACAGCCACCAGCATCATT 
GGACCACACAGGAACATCATT 

 

SelS Small VCP/p97-interacting protein-like XM_006559143.1 TGGGTGATGGTTCTAGAGGATA 
CACATTTCCTCAGCCTCGAATA 

 

SelM 15kDa selenoprotein M like protein XM_006557387.2 CGATATCCACGTGCTGTTCT 
TCGGATCTAAACCTCTAACGTATTT 

 

 
Data Analyses.  

Mortality difference and variance (ANOVA) within and between the treatment 

groups were analyzed using Statgraphic software. By Dr. Alec Gregorc at the USDA-

Table 1.  Shows the identification, description and NCBI accession numbers for both 

housekeeping and target genes to be used in this study. Sequences of the primers used for 

each gene are also provided. 
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ARS Thad Cochran Southern Horticultural Research Laboratory in Poplarville, MS. 

Variances in bee mortality across the different levels of treatment were compared using 

Fischer’s F-tests or Tukey tests. 

 

Bee Rearing Conditions: 

Experiments were conducted at the USDA-ARS Thad Cochran Southern 

Horticultural Research Laboratory in Poplarville, MS. Combs with capped brood were 

collected from 3 colonies and incubated at 35°C in darkness. 1-day-old workers were 

collected and placed into cups labeled for each treatment group. Cups and cages were 

modified to allow air movement and provide access to remove dead bees. Each treatment 

group was given supplementary water and Pro Winter sugar Paddy (Mann Lake LTD). 

Analytical standard grade coumaphos (Pestanal, CAS #56-72-4) and imidacloprid 

(Pestanal, CAS #138261-41-3) were used. ProWinter Patties are made at the beginning of 

the experiment and stored in the at 4 °C until needed.  
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CHAPTER IV – RESULTS 

Begin a new chapter here. When comparing the larval to the pupal stages of development; 

the primary antioxidants Catalase SOD1 and SOD2 were strongly expressed with greater 

than five fold regulation than was seen in the pupae (5.87, P<0.0001; 6.56, P<0.0001; and 

Figure 5: The transcriptional expression and heat map of Antioxidant genes per life stage and 

within select tissues. The primary and secondary antioxidant genes relative gene expression are 

grouped horizontally for the larval, pupal and adult stages of development. The relative expression 

is also shown for the midgut of a young adult and larvae, and the brain of a young adult and six day 

old adult. The relative expression of antioxidants found in these life phases and specific tissues are 

represented in the heat map to right. The qPCR regulation threshold value was set at P = 0.05, gene 

expression below this value were not considered up or down-regulated. Error bars represent the 

Standard Errors SE. 
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6.99, P<0.005 respectively). The pupae showed a higher expression of the secondary 

antioxidants MsrB 5.57, P<0.005 and SelS 8.27, P<0.0001 while SelK and SelT were 

slightly down regulated by 1.2, P<0.05; P<0.005. 

When comparing the pupae to the young worker both primary antioxidants SOD1 and 

SOD2 showed a marked increase of regulation (6.72, P<0.0001 and 16.78 P<0.005). The 

secondary antioxidants  MsrA and MsrB were also highly increased (6.88, P<0.0001 and 

6.53, P<0.0001) with SelK and TrxR1 both showing just over a two fold increase 

(P<0.0001) compared to the pupal phase.  

Within in the isolated tissues the midgut and brain remained rather consistent. The most 

notable, and only found to be statically significant, difference being  MrsA which showed 

a expression of 3.49 higher in the midgut of the adult compared to that of the larvae 

P<0.005, see Fig 5.  
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Specific Aims 1: 

Evaluate bee mortality rate when chronically exposed to varying concentrations of 

pesticides through their diet. 

 

 

Coumaphos effects 

on bee survival 

(Experiment 1).   

Caged bees exposed 

to coumaphos 

concentrations of 

185,200; 92,600; 

46,300; 23,150 and 

11,500 ppb (185,200 

mg/kg; 92,600 

mg/kg; 46,000 

mg/kg; 23,150 mg/kg and 

11,500 mg/kg) remained 

active throughout the 

experiment. Even in the 

bees exposed to the 

highest levels of 

coumaphos behavior such 

as grooming appeared 

normal for worker bees in 

all treatment groups. 

Coumaphos concentration 

had a high correlation on bee mortality in the first 9 days (F = 12.38; df = 6; P < 0.001) 

with the highest mortality being represented by the two highest coumaphos concentration 

of 92,600 and 185,200 ppb, Fig. 6. Mortality rates for the three lower concentrations 

Figure 6. Bee mortality (%) after 9 days of feeding on five 

coumaphos concentrations. Incrementally halved 

concentrations of coumaphos are: 185,200 ppb; 92,600 ppb; 

46,300 ppb; 23,150 ppb and 11,500 PPB, incorporated in Pro 

Winter sugar patties. Group VI control bees received a diet of 

patty with the acetone solvent. Group VII control bees were 

fed only patty. Letters that are the same indicate means that 

are not significantly different according to the Tukey HSD 

test (P < 0.05). Bars indicate mean ±1 standard deviation. 
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11,500 to 46,300 ppb were relative non toxic to the bees compared to the control 

treatment whose ProWinter patty was only supplemented with the coumaphos solvent 

acetone, Fig. 6.  

 

Coumaphos and imidacloprid interaction (Experiment 2).  

 

In the first 15 days the addition of both coumaphos and imidacloprid treatments induced 

significant 

levels of bee 

mortality (F = 

6.18, dF = 53, 

P < 0.01), Fig. 

7. Coumaphos 

had the highest 

rate of 

mortality in all 

treatment 

groups. When 

coumaphos at 

the same 

concentration was 

amended with 

imidacloprid at 

both 5ppb and 20 

ppb a lower 

mortality rate was 

observed 

compared to the bees treated with coumaphos alone. However, when administered alone 

imidacloprid at 5 ppb imidacloprid and imidacloprid at 20 ppb were relatively non-toxic 

compared to any coumaphos treatment groups, Fig. 7 and 8. Again, the addition of 

Figure 7. Cumulative bee mortality across six treatment 

groups. Treatments included coumaphos (92,600 ppb), 

imidacloprid (5 and 20 ppb), and their combinations. All 

treatments incorporated Pro Winter sugar patty (patty). Control 

bees received only patty, no other additives were used. 
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coumaphos at 92,600 ppb was very toxic killing more than half of the workers by 9 days 

and almost all by day 15, Fig.  6 and 7. The addition of imidacloprid to bees fed 

coumaphos at 92,600 ppb seemed to alleviate the toxic effects of coumaphos alone while 

proving more harmful than imidacloprid alone at both imidacloprid at 5 ppb imidacloprid 

and imidacloprid at 20 ppb, Figs. 7 and 8.   

 

Figure 8. Cumulative mortality after 9 days of feed on patty tented with 

pesticides. Caged-bees were fed Pro Winter sugar patty (patty) containing 92,600 ppb 

coumaphos (co); 5ppb imidacloprid (im), 20 ppb imidacloprid, 92,600 ppb 

coumaphos & 5 ppb imidacloprid, 92,600 ppb coumaphos + 20 ppb imidacloprid, and 

a control where caged bees received patty without additives. Letters that are the same 

indicate means that are not significantly different according to the Tukey HSD test 

(P<0.05). Bars indicate mean ±1 standard deviation. 
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Specific Aims 2: 

Study how chronic exposure to pesticides regulates select antioxidant genes and if 

uncharacterized possible antioxidant genes show differential expression in response to 

exposure.  

 

Antioxidant gene expression.  

The expression of 10 antioxidant genes varied significantly among treatments during the 

ten-day feeding period. Bees fed with 5 PPB imidacloprid for ten days showed significant 

down regulations in three different target genes: Cat (P < 0.001), MsrA and TrxR1 (P < 

0.01), Fig.  
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Figure 9: Consumption rate of Pro Winter sugar patty amended with 

or without coumaphos and imidacloprid insecticides, or their 

combinations. Letters that are the same indicate means that are not 

significantly different according to the Tukey HSD test (P < 0.05). Bars 

indicate mean +1 standard deviation. 
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10A. Both SelT and MsrB genes expressed up-regulations but were not considered 

significant based on the normalization of our dataset while conducting the gene study, 

because they exceeded the critical P-value of 0.05. The higher concentration of 

imidacloprid (20 PPB) led to a significant up-regulation in catalase activity (Cat: P < 

0.001) along with three other genes (TrxR1, SelK, MsrB; P < 0.05), while Sod2 was 

down-regulated (P < 0.001), Fig. 10B.  

Figure 10A . Volcano plot and bar graph for the expression of antioxidant genes at 10 

and 20 days after exposure to imidacloprid 5PPB.. All gene studies were normalized 

using the housekeeping genes mentioned in Table 1. The qPCR regulation threshold 

value was set at P = 0.05, gene expression below this value was not considered up or 

down-regulated. Level of significances are P < 0.05 *, P< 0.01 **, P < 0.001 *** and 

error bars are the Standard Errors SE.  
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The latter figure shows down and up regulations of the SelT and MsrA genes, 

respectively. Coumaphos showed no changes in the first sampling date (day 10), 

however, at day 20, two genes were down regulated (Cat; P < 0.001) and (TrxR1; P < 

0.05), Fig. 10C. Cat and MsrA were both down regulated in bees fed for 10 days on 

coumaphos and 5 ppb imidacloprid mixture, Fig. 8D. The final treatment (coumaphos 

and 20 ppb imidacloprid) showed significant down regulation in a single target gene 

(Sod2; P < 0.001), Fig. 10E. Figure 10E’s Clustergram classifies the data and generates a 

hierarchal tree based on the degree of similarity of expression for both target genes and 

Figure 10B. Volcano plot and bar graph for the expression of antioxidant genes at 10 

and 20 days after exposure to coumaphos 92,600 PPB.. All gene studies were 

normalized using the housekeeping genes mentioned in Table 1. The qPCR regulation 

threshold value was set at P = 0.05, gene expression below this value was not 

considered up or down-regulated. Level of significances are P < 0.05 *, P< 0.01 **, P 

< 0.001 *** and error bars are the Standard Errors SE.  
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treatments. This dendrogram revealed close similarities between (control vs imidacloprid 

5PPB), (coumaphos vs imidacloprid 20 PPB), while the mixture of coumaphos and 

imidacloprid, regardless the imidacloprid concentrations, seemed to have similar effects 

on the regulation of the target genes, Fig. 10E.           

 

Figure 10C . Volcano plot and bar graph for the expression of antioxidant genes at 10 

and 20 days after exposure to coumaphos 92,600 PPB.. All gene studies were 

normalized using the housekeeping genes mentioned in Table 1. The qPCR regulation 

threshold value was set at P = 0.05, gene expression below this value was not 

considered up or down-regulated. Level of significances are P < 0.05 *, P< 0.01 **, P 

< 0.001 *** and error bars are the Standard Errors SE.  
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Figure 10D. Volcano plot and  bar graph for the expression of antioxidant genes at 10 

and 20 days after exposure to coumaphos 92,500 PPB and imidacloprid at 5 PPB.. All 

gene studies were normalized using the housekeeping genes mentioned in Table 1. 

The qPCR regulation threshold value was set at P = 0.05, gene expression below this 

value was not considered up or down-regulated. Level of significances are P < 0.05 *, 

P< 0.01 **, P < 0.001 *** and error bars are the Standard Errors SE.  
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Figure 10E. Volcano plot, bar graph and clustergram for the expression of antioxidant 

genes at 10 and 20 days after exposure. The volcano plot on the top left shows the 

differential expression of genes when exposed to coumaphos and imidacloprid 20 PPB 

plot after 10 and 20 days. The clustergram on the top right shows the heat map for the 

expression of each treatment group and depicts the similarity of the expression 

profiles using a dendrogram. All gene studies were normalized using the 

housekeeping genes mentioned in Table 1. The qPCR regulation threshold value was 

set at P = 0.05, gene expression below this value was not considered up or down-

regulated. Level of significances are P < 0.05 *, P< 0.01 **, P < 0.001 *** and error 

bars are the Standard Errors SE.  
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CHAPTER V – DISCUSSION 

In Figure 5, we determined that our uncharacterized seleno-genes are being 

expressed in the honey bee and are being done at varying rates depending on the 

developmental stage of the bee. The heat map depicting the expression profiles of the 

genes of antioxidants tested show the expression of the uncharacterized seleno-transcripts 

are grouped with the antioxidants tested, with the exception of SelS whose expression 

pattern is the least like any others seen here. This suggests that they may be co-regulated 

along with other antioxidants. When treated with pesticides, as seen in Fig 10, the trend 

of the uncharacterized seleno-transcripts grouping with characterized antioxidants is 

again seen however the relatedness of the individual genes changes. 

Taking both distributions into account it can be inferred that the when the worker 

is exposed to pesticides these uncharacterized seleno like genes are being differentially 

regulated by upstream mechanism resulting in similar profiling in an attempt to 

compensate for the toxic effects imposed by the pesticides. Based on the expression and 

function of known selenoproteins in other organisms the interaction between antioxidants 

and these possible selenoproteins is proposed, Fig 11. It is also possible that the well 

characterized antioxidants are being independently regulated of each other or in a 

reciprocal fashion with a fixed minimum thus creating large gaps in their expression 

profiles and the seleno-transcripts are showing profiles similar to the antioxidants 

because of the innate programed regulation between the characterized antioxidant 

profiles.  

Here we have shown that these Seleno-transcripts are expressed and are 

differentially expressed depending on the life stage as well as the tissue type. It seems 
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that these seleno-transcripts most likely code for a functional protein that under oxidative 

stress fits the characteristics of secondary antioxidants being up regulated to mitigate 

oxidative stress induced by pesticides. The information generated here cannot determine 

nor refute that these are co-regulated with other antioxidants. However, it does seem they 

are involved in oxidative stress based on the related expression to other antioxidants. 

Further research would be needed incorporating a broader population of target transcripts 

to determine the degree of relatedness and possible co-regulation of the uncharacterized 

seleno-transcripts and the well characterized antioxidant transcript.  It can safely assumed 

they also possess a more diverse roll outside of their antioxidant activity in development 

as well as modulating cellular processes. Further characterization of their activity as well 

as the regulation is needed to understand what role they are playing in the honey bee.   

The mortality of bees administered coumaphos at range of concentrations from 

11,500 PPB to 185,200 PPB, Fig 6. This range is relevant when considering 

concentrations as high as 30,000 PPB have been found in bees with bee products being 

found to contain 43,400 PPB (Tremolada et al., 2004).  In addition, coumaphos is 

commonly added to bee hives by beekeepers in the form of CheckMite strips to treat and 

prevent Varroa destructor infestation. If the presence of coumaphos induced a metabolic 

burden or resulted in an immune response by the phenyl oxidase system the antioxidant 

expression should also be increased as a function of increased activity in the endoplasmic 

reticulum. The molecular data obtained here at both 10 and 20 days after exposure shows 

that catalase activity is down regulated in all treatment groups receiving the coumaphos 

imidacloprid cocktail which could be a result of an innate antioxidant response seen in 

insects upon pathogen exposure and results in a shift to favor the use of peroxidases, to 
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prevent lipid peroxidation, while downregulating Catalase (Dubovskiy et al., 2008). This 

phenomenon is thought to promote the opportunity of mutations that can give rise to 

increased resistance. And may be the what is observed here.  This seems likely, 

especially in the treatment groups receiving imidacloprid at 5 PPM, since the down 

regulation of catalase is accompanied by an up regulation of secondary antioxidants that 

are needed for peroxidase recycling. This mechanism may also be the reason that upon 

infestation by Varroa destructor a downregulation of primary antioxidants was observed 

accompanied by an up regulation in SelS, SelM, and SelT, see Fig S1.  

Though, seemingly unapparent in the molecular assays we found that the toxic 

effects of Coumaphos when amended with imidacloprid conferred increased resistance to 

coumaphos, Fig. 7. When comparing this finding to the consumption rates it is apparent 

that at least one mechanism this is accomplished through is decreased consumption, Fig 

9. Though the mechanism of detection is unclear it seems that the bees may be more 

prone to detecting the presence of the pesticides when encountered together as opposed to 

alone.  
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Imidacloprid levels of 20 PPB and above have been shown to results in decreased 

foraging, communication and learning as well as other altered behavior in honey bees 

(Decourtye and Devillers, 2010; Meikle et al. 2016; Pisa et al., 2015). These findings 

accompanied with the decreased food intake found here, Fig. 9, seems that imidacloprid 

levels result in alteration of the bees metabolic rate. The implication could be key to 

understanding and modulating the metabolic pathways in the honey bee. If imidacloprid 

is impeding the binding of acetylcholine, ACh, to its receptors, AChRs, resulting in a 

Figure 11: Illustration of the primary and secondary antioxidants activity in event of 

oxidative stress such as exposure to pesticides. Details are given on the role of seleno-

like proteins as regulators in reducing oxidative stress in the endoplasmic reticulum 

ER and maintaining protein quality 
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decreased basil metabolic rate before blocking essential nAChRs essential for proper 

neurological it is possible that imidacloprid has a stronger affinity for the nAChRs based 

on the composition of certain subunits which governing metabolic processes within the 

bee. Thus at low concentrations, here 5 PPM, imidacloprid would bind and increase the 

metabolic process they modulate. This would agree with the finds honey bees have 

increased foraging activity after exposure to imidacloprid at 5 PPM (Decourtye and 

Devillers, 2010). At higher concentrations, here 20 PPM, imidacloprid will flood the 

receptors resulting in extended excitation and desensitization eventually causing 

pharmacological chaperoning and eventually loss of function (Christen et al., 2016; 

LaLone et al., 2017). The excess imidacloprid would then bind AChRs bearing subunits 

which it has a lower affinity imposing neurological defects and resulting in the slowing or 

dysregulation of other processes governed by the CNS. In honey bees, exposure to 

neionics like imidacloprid has been shown to greatly increase the expression of nAChRs 

in the brain (Christen et al., 2016; LaLone et al., 2017) which may further support the 

notion.   

Two stargates could be employed to reduce the impact of coumaphos on the 

honey bee. The first would be the use of other substances to control the infestation of 

mites. With the well documented toxicity of coumaphos to honey bees a new variety of 

treatment for V. destructor could be accomplished by the use of branched amphiphilic 

peptide capsules, BAPCs. BAPCs are nanoparticles that have been shown to be a new 

and successful method of RNAi delivery (Avilla et al., 2018). The use of these allows the 

passive introduction of lethal RNAi specifically tailored to target Varroa destructor and 

could be administered through food supplemented to the honey bee. Like the distribution 
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of coumaphos, these nanoparticles would be distributed among nest mates via 

Trophallaxis and could provide upon infestation be lethal to the mite thus eliminating the 

need for coumaphos.  

  The second strategy would involve the introduction or alteration of honey bees 

from a genomic standpoint to reduce the toxic effects imposed on the bee. Efforts have 

been made to selectively breed for a strain of honey bee that is less susceptible to Varroa 

infestation. Most of these have involved strategies have aimed to increase the grooming 

behavior and thickness of the cuticle as well as the bees ability to detect the mite (Spivak 

and Gilliam 2015; Rinderer et al., 2010). These strategies were successful but were 

accompanied by unanticipated social changes such as decreased brood care and agitation. 

The aforementioned findings accompanied by the limited reports of coumaphos 

resistance in the mite may justify further research aimed toward the development of a 

transgenic bee that focuses on the molecular processing of pesticides as opposed to or 

even in conjunction to altering social interactions.  This could be accomplished by using 

organisms that have naturally developed resistance to pesticides naturally as a model. 

Naturally acquired resistance to pesticides has been documented in numerous species. 

The mechanism attributed to this acquired resistance has an underlying theme emerging 

from the activity of cytochrome P450 as well as nAChR subunits and AChE duplications 

(Shang et al., 2012; Guerrero et al. 2012; Yang et al. 2013; Zhang et al. 2018). 
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CONCLUSIONS: 

 

Transcripts coding for uncharacterized genes in Apis mellifera that contain a high degree 

of sequence similarity to known selenium containing genes in other organisms are 

expressed and are differentially regulated through the developmental stages of the bee. 

When the honey bee is exposed to pesticides commonly used for pest control and to 

prevent infestation by the parasitic mite Varroa destructor these transcripts show similar 

expression patterns to well characterized antioxidants suggesting they play a role in 

managing oxidative stress within the bee. We also showed that coumaphos, a pesticide 

commonly added to the hive by beekeepers, when encountered alone is more lethal to 

bees than when exposed to it along with imidacloprid, the most common pesticide used in 

consumer pesticides and prevent insect pests in crops.  
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APPENDIX A – Mite infestation 

The effect of Varroa parasitism on honeybee antioxidant levels was evaluated by 

the subjecting bees to Varroa mite infestation for 9 days at a concentration of 40 mites 

per 15 bees. At least three biological replicates were collected for all samples. Upon 

collection samples were immediately submerged in RNA later. Each sample collected 

will be manually homogenized via pestle in lysis solution. The homogenized product will 

then quickly spun down and extracted using a 20g needle to remove cellular debris. All 

proceeding steps will done in accordance with the manufacturers provided protocol 

(inventogen RNA extraction).  RNA concentration and purity was assessed using 

nanodrop. Isolated mRNA was set to a concentration of 500 ng before being used to 

generate cDNA (iscript kit, BioRad). Technical triplicates from two biological replicates 

were used for each treatment group. 7.5 ng of cDNA was used to asses transcriptional 

Figure S1: The relative expression of antioxidant genes in Apis mellifera after 

infestation for 9 days. The black bars represent the Varroa infested bees and the grey 

bars represent the control bees.  
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expression by SYBR green using qRT-PCR. The results were then normalized against 

four reference genes, see table 1, to find the relative gene expression. 
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