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ABSTRACT

CHROMATIC THRESHOLDS OF REGULAR GRAPHS WITH SMALL CLIQUES

by Jonathan Lyons O’Rourke

May 2014

The chromatic threshold of a class of graphs is the value θ such that any graph in this
class with a minimum degree greater than θn has a bounded chromatic number. Several
important results related to the chromatic threshold of triangle-free graphs have been reached
in the last 13 years, culminating in a result by Brandt and Thomassé stating that any triangle-
free graph on n vertices with minimum degree exceeding 1

3n has chromatic number at
most 4. In this paper, the researcher examines the class of triangle-free graphs that are
additionally regular. The researcher finds that any triangle-free graph on n vertices that is
regular of degree (1

4 +α)n with α > 0 has chromatic number bounded by f (α), a function
of α independent of the order of the graph n. After obtaining this result, the researcher
generalizes this method to graphs that are free of larger cliques in order to limit the possible
values of the chromatic threshold for regular Kr-free graphs.
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this paper for basic graph theory concepts is generally taken from [5].
In particular,

• G refers to a graph

• V (G) and E(G) refer to the vertex set and edge set of G, respectively

• N(v) refers to the neighborhood of the vertex v, that is, {u ∈V (G) : (u,v) ∈ E(G)}.

• n generally refers to the order of a graph, that is |V (G)|

• δ refers to the minimum degree of the graph

• Kr refers to the complete graph on r vertices

• χ(G) refers to the chromatic number of G

• KG(n,k) refers to the Kneser graph related to k-subsets of a ground set of size n

• d refers to density

• e(A,B) refers to the number of edges with one end-vertex in each of A and B

Additionally, when working with the Szemerédi regularity lemma,

• G′ refers to the subgraph of G with an ε-regular partition

• G′′ refers to the pure graph obtained by deleting the exceptional set V0 from G′

• R refers to the reduced graph associated with the pure graph G′′

• Capital letters such as Vi refer to sets of vertices as in the pure graph

• Lower-case letters such as vi refer to a single vertex as in the reduced graph

• Vi is the cluster in the pure graph associated with vi in the reduced graph

vi
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Chapter 1

BACKGROUND

1.1 Introduction

Triangle-free graphs of order n with sufficiently large minimum degree satisfy some strong
structural properties. By restricting a triangle-free graph to be regular, the structure is limited
further. In this paper, the researcher finds a constant C, more restrictive than the constant C

obtained from Turán’s Theorem, such that for a triangle-free graph that is regular of degree
δ > (C+α)n, the chromatic number is bounded by f (α), a function of α independent of
the order of the graph.

1.2 Terminology and Notation

For notation and definitions, this paper will follow that of [5].
A graph G is a finite nonempty set of objects called vertices (or nodes) together with a

(possibly empty) set of unordered pairs of distinct vertices of G called edges. The vertex

set of G is denoted by V (G), while the edge set of G is denoted by E(G). The order of the
graph is |V (G)|, and the researcher often uses n to represent this order. The size of the graph
is |E(G)|. This paper is concerned only with simple graphs, i.e., graphs with undirected
edges, no loops, and no multiple edges.

The edge e = (u,v) is said to join the vertices u and v. If e = (u,v) is an edge of a graph
G, then u and v are said to be adjacent, while u and e are said to be incident, as are v and e.
u and v are said to be the end-vertices (singular: end-vertex) of e. The neighborhood of a
vertex v, denoted N(v), is the set of all vertices adjacent to v.

A complete graph is a graph wherein every pair of vertices is adjacent. A complete graph
on r vertices is denoted Kr. K3 is also called a triangle.

A cycle is a sequence of vertices v1,v2, . . . ,vk,v1 such that each vi ∈V (G), i = 1, . . . ,k
is distinct, and each pair of consecutive vertices is adjacent. A cycle containing k distinct
vertices is called a k-cycle and denoted Ck. An odd cycle is a k-cycle with k odd.

A subgraph of a graph G is a graph H such that V (H)⊆V (G) and E(H)⊆ E(G). An
H-free graph is a graph which does not contain H as a subgraph. If Kr is a subgraph of a
graph, G, Kr is called a clique. Because Kr is a subgraph of Ks for r < s, any Kr-free graph
is additionally Ks-free.
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The degree of a vertex v in a graph G, denoted dG(v), is the number of edges in G

incident to v. The minimum degree of a graph G is denoted δ (G). A graph G is said to be
regular if each vertex in V (G) has the same degree. If each vertex has degree δ , it is said to
be regular of degree δ .

A proper coloring of a graph G is an assignment of colors to the vertices of G, one color
to each vertex, so that adjacent vertices are assigned different colors (it is often convenient
to use numbers instead of colors as in Figure 1.2). A graph is said to be k-colorable if there
exists a coloring of the graph with k or fewer colors. The chromatic number of a graph G is
the minimum integer k for which G is k-colorable. The chromatic number is denoted χ(G).
If χ(G) = k, it is said that G is k-chromatic.

1

1

1

1

22

2

3

3

3

Figure 1.1: The Petersen graph, pictured here, is regular of degree 3, triangle-free, and
3-chromatic.

Two vertices that are not adjacent in a graph G are said to be independent. A set S⊆V (G)

is said to be independent if every two vertices of S are independent. Put another way, for all
v,w ∈ S, (v,w) /∈ E(G). An independent set of vertices, therefore, can all be assigned the
same color in a coloring, and so finding independent sets gives us a method of coloring a
graph. In fact, one can define χ(G) as the minimum number of parts needed to partition
V (G) into independent sets.

A bipartite graph is a graph that can be partitioned into two independent sets. That is,
any edges in a bipartite graph must have one end-vertex in one of the partitions and the other
end-vertex in the other. A graph is bipartite if and only if it contains no odd cycles. Because
a bipartite graph is made up of two independent sets, the chromatic number of a bipartite
graph is 2.

A complete bipartite graph is a bipartite graph with all possible edges. That is, G is a
complete bipartite graph if G has the property that V (G) can be partitioned into disjoint,
independent sets A and B with the property that for all a ∈ A,b ∈ B, (a,b) ∈ E(G). The
complete bipartite graph with partition sizes r and s is denoted Kr,s.

For a graph G, let A,B ⊂ V (G). Denote by e(A,B) the number of edges with an end-
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vertex in A and one end-vertex in B. When it is unclear, denote by eH(A,B) the number of
edges in E(H) with one end-vertex in A and one end-vertex in B.

Denote by G−H the graph G with the subgraph H removed, that is, V (G−H) =

V (G)−V (H) and the edge set E(G−H) consists of only the edges with both end-vertices
in V (G−H).

1.3 Background

1.3.1 Extremal Graph Theory

Finding the chromatic threshold of a class of graphs is a problem in the field of extremal
graph theory. Extremal graph theory is a branch of graph theory studying extremal (that is,
maximal or minimal) graphs with respect to some property. It is said to have started with a
1907 result from Mantel.

Theorem 1. [14] The maximum number of edges in a triangle-free (K3-free graph) of order

n is 1
4n2.

A complete bipartite graph is maximally triangle-free, that is, adding one edge to a
complete bipartite graph forces a triangle.

Figure 1.2: In the complete bipartite graph K6,6, there are 36 = 1
4(12)2 edges.

In 1941, Turán proved a significant result, generalizing Mantel’s theorem for any Kr-free
graph [18].

Definition 1. The Turán graph T (n,r) on n vertices is formed by partitioning the n vertices

into r sets as evenly as possible and then connecting two vertices by an edge only if the two

vertices belong to different sets. Note that by the pigeonhole principle, this graph contains

no copy of Kr+1.

Theorem 2. (Turán [18]) The Turán graph T (n,r) has the most edges among any Kr+1-free

graph on n vertices. Put another way, a graph G with |V (G)| = n vertices and |E(G)| >
|E(T (n,r))| must contain Kr+1 as a subgraph.
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Figure 1.3: T (9,3), the K4-free graph on 9 vertices with the most possible edges.

Theorem 2 gives a bound on the number of edges in a Kr+1-free graph of order n. If n is
divisible by r, each vertex of T (n,r) has degree r−1

r n, so T (n,r) has n2(r−1)
2r edges. Likewise,

any graph G of order n with |E(G)|> n2(r−1)
2r must contain at least one copy of Kr+1.

In 1946, Erdős and Stone [7] generalized Turán’s result to any subgraph H based on its
chromatic number. The result below is a more restrictive minimum-degree version of their
result.

Theorem 3. (Erdős and Stone [7]) Let H be a graph such that χ(H) = r ≥ 2 and α > 0.

There is an integer n0 = n0(r,α) such that if |V (G)|= n≥ n0 and

δ (G)≥ ( r−2
r−1 +α)n

then G contains H as a subgraph.

This theorem implies that, given a graph H, a graph G with sufficiently large minimum
degree and sufficiently large order cannot be H-free. (The above shows the case for
χ(H)≥ 2; if χ(H)< 2 then H contains no edges, and thus as long as |V (G)| ≥ |V (H)|, H

is a subgraph of G.)
The result from Erdős and Stone motivated others to find results on H-free graphs, as

well as to examine the structure of triangle-free graphs with a bound on the minimum degree.

1.3.2 The Chromatic Threshold Problem

In 1955, Mycielski [15] created a construction that preserves the property of being triangle-
free but increases the chromatic number.

Definition 2. The Mycielskian of a graph G, denoted µ(G), is constructed as follows:

• Let v1, . . . ,vn be vertices in V (G).

• Add a copy of G to µ(G).

• Add vertices u1, . . . ,un to V (µ(G)).
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• For each (vi,v j) ∈ E(G), add the edges (ui,v j),(vi,u j) ∈ E(µ(G)).

• Add a vertex w ∈ V (µ(G)), and for each ui ∈ V (µ(G)), add the edge (w,ui) ∈
E(µ(G)).

With n = |V (G)| and m = |E(G)|, the resulting graph µ(G) has 2n+ 1 vertices and
3m+n edges. The Mycielskian of a graph G preserves the property of being triangle-free
but increases the chromatic number by 1. By repeated application of the construction,
Mycielski showed that there exist triangle-free graphs with arbitrarily large chromatic
number.

1

2

12

3 23

1

23

12

12

1

4

Figure 1.4: On the left, the 3-chromatic, triangle-free graph C5.
On the right, the 4-chromatic, triangle-free graph µ(C5), also known as the Grötzsch graph.

Also in 1955, Martin Kneser [9] began investigating a class of graphs that today bear his
name.

Definition 3. A Kneser graph, denoted KG(n,k), is a graph whose vertices can be labeled

as the k-element subsets of the ground set {1, . . . ,n}, with vertices adjacent if and only if

their associated subsets are disjoint.

A Kneser graph KG(n,k) has
(n

k

)
vertices and 1

2

(n
k

)(n−k
k

)
edges.

By limiting n to be 2k+ j for some 0 < j < k, it is guaranteed that the Kneser graph is
itself triangle-free; for there to be three disjoint k-element subsets, the ground set needs to
contain at least 3k elements.

In 1978, Lovász proved a conjecture of Kneser regarding the chromatic number of the
Kneser graph KG(n,k).

Theorem 4. (Lovász [11]) The chromatic number of the Kneser graph KG(n,k) is χ(KG(n,k))=

n−2k+2.

As a corollary, for the Kneser graph KG(2k+ j,k), the chromatic number is
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χ(KG(2k+ j,k)) = j+2.

The Kneser graph is another construction that is triangle-free and that can have arbitrarily
large chromatic number.

{0,1}

{0,2}

{0,3}

{0,4}
{1,2}

{1,3}

{1,4}

{2,3}

{2,4}

{3,4}

Figure 1.5: The Petersen graph is also the Kneser graph KG(5,2).
Each vertex is assigned a 2-element subset of {1, . . . ,5}, with disjoint subsets adjacent.

1.3.3 Literature Review and Results

In 1973, Erdős and Simonovits [6] considered the problem of finding the minimum value
ψ = ψ(n,Kp,r) for which an r-chromatic graph G of order n and minimum degree ψ must
contain Kp as a subgraph. The authors showed that

ψ(n,K3,r)≥ (1
3 +o(1))n,

where o(1) refers to functions f (n) such that limn→∞
f (n)

1 = 0.
In the same paper, they conjectured that ψ(n,K3,r) ≈ 1

3n. That is, they conjectured
that a triangle-free graph on n vertices with minimum degree at least approximately 1

3n has
chromatic number no greater than 3. This conjecture was based on a construction by Hajnal
showing that 1

3 is best possible, but it was later disproved. Hajnal’s construction is described
in more detail in Chapter 3.

In 1974, Andrásfai, Erdős, and Sós [2] proved the following theorem.

Theorem 5. (Andrásfai et al. [2]) Let r≥ 3, and let G be a Kr-free graph on n vertices such

that

δ (G)> 3r−7
3r−4n.

Then χ(G)< r.
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Figure 1.6: Here, each oval is an independent set of q vertices, with the thick edge indicating
all possible edges between the two sets.

In a triangle-free graph, if the minimum degree exceeds 2
5n, the chromatic number of

G is strictly less than 3; that is, G is bipartite. This bound is best possible due to C5 (see
Figure 1.4).

An upper bound given in terms of the minimum degree δ (G) of a graph G is often
more restrictive than an upper bound given on the total number of edges in a graph G. For
instance, consider a graph G that consists of a complete bipartite graph Kq,q together with a
5-cycle C5, with one vertex in Kq,q adjacent to one vertex in C5.

The complete bipartite graph Kq,q has 1
4(2q)2 = q2 edges, and C5 contains 5 edges.

Therefore, |E(G)|= q2 +5+1 = q2 +6, and this graph has no triangle.
On the other hand, generalizing Theorem 5, no more than 2

5 of the (2q+5)2

2 are in |E(G)|,
that is, at most

2
5(

(2q+5)2

2 ) = 1
5(2q+5)2 < q2 +6.

for large enough q. As q grows very large, the upper bound given by the edge count
is close to q2, and the upper bound given by the minimum degree is close to 4

5q2, giving a
more restrictive upper bound on the number of edges.

To give an idea of how Theorem 5 works, consider r = 3. The theorem states that a
triangle-free graph with minimum degree δ > 2

5 is bipartite.

Proof. Let G be a non-bipartite, triangle-free graph with minimum degree δ . Because G is
non-bipartite, G contains an odd cycle, and because G is triangle-free, the smallest possible
such odd cycle is C5.

Let C2k+1 be the smallest odd cycle in G, with k≥ 2. A vertex v∈V (G−C2k+1) adjacent
to 2 vertices ui,u j ∈C2k+1 will create two cycles: an even cycle and an odd cycle. If ui and
u j share a neighbor, the cycles created are C4 and C2k+1; otherwise, a smaller odd cycle is
created, a contradiction to the statement that C2k+1 is the smallest odd cycle in G. Because
there are no three vertices in C2k+1 that are pairwise adjacent, each vertex in G−C2k+1 is
adjacent to at most 2 vertices in C2k+1. Thus,
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e(G−C2k+1,C2k+1)≤ (2)(n− (2k+1)).

Each vertex in C2k+1 is adjacent to exactly 2 vertices in C2k+1, and each has a minimum
degree of δ , so

e(C2k+1,G−C2k+1)≥ (2k+1)(δ −2).

These values must be equal, giving

(2k+1)(δ −2)≤ e(C2k+1,G−C2k+1)≤ (n− (2k+1))(2)
(2k+1)δ −2(2k+1)≤ 2n−2(2k+1)

(2k+1)δ ≤ 2n

δ ≤ 2
2k+1n.

The largest value of 2
2k+1 with k ≥ 2 is 2

5 . Consequently, for a non-bipartite triangle-free
graph, the minimum degree cannot exceed 2

5n.

In 1982, the conjecture from Erdős and Simonivits was disproved by Häggkvist [8].
Häggkvist modified the Grötzsch graph (see Figure 1.4) by replacing the degree-5 vertex
with a set of 4 vertices, replacing each degree-4 vertex with a set of 3 vertices, and replacing
each degree-3 vertex with a set of 2 vertices. Two vertices in the new graph are adjacent only
if the corresponding vertices are adjacent in the Grötzsch graph. The result is a 4-chromatic,
triangle-free graph with minimum degree 10

29n, providing a counterexample to the conjecture.
In 2001, Brandt [3] published the following theorem.

Theorem 6. (Brandt [3]) Let G be a regular maximal triangle-free graph (that is, a regular

triangle-free graph such that the addition of any edge produces a triangle) of order n with

degree δ > 1
3n. Then G is 4-colorable.

This result gives a very strict bound on the chromatic number of regular triangle-free
graphs of degree greater than 1

3n; this result is the motivation to examine the behavior of
regular triangle-free graphs of smaller degree. In particular, the researcher is interested in a
result on the chromatic threshold of such graphs.

The chromatic threshold θ of a family of graphs is the minimum value C such that for all
H-free graphs G in the family of graphs and all α ≥ 0, if the minimum degree δ ≥ (C+α)n,
then χ(G) is bounded by f (α), a function of α independent of the order of the graph.

In 2002, Thomassen [17] showed that, for every C > 1
3 , the chromatic number of a

triangle-free graph with minimum degree Cn is bounded. That is, the chromatic threshold of
triangle-free graphs is no greater than 1

3 .
In 2006, Łuczak used graph homomorphisms in order to strengthen this result.
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A graph homomorphism f from a graph G into a graph H is a map f : V (G)→V (H)

such that if (u,v) ∈ E(G), then ( f (u), f (v)) ∈ E(H). If there exists such a homomorphism,
G is said to be homomorphic to H. For each u ∈V (G), { f (v) : (u,v) ∈ E(G)} ⊂ N( f (u)),
that is, every adjacency in G has a corresponding adjacency in H, so

χ(G)≤ χ(H).

A B C

D

EFG

H I J

A,G,J

C,E,I

D,H

B,F

A,G,J C,E,I

B,F,D,H

Figure 1.7: A set of independent vertices can be mapped to a single vertex in a homomor-
phism. The first graph is homomorphic to each graph on its right.

Łuczak [12] proved that a triangle-free graph G on n vertices with minimum degree
exceeding (1

3 +α)n is homomorphic to one of at most M(α) triangle-free graphs, where
M is a function dependent only on α . Because the chromatic number of G is bounded by
the chromatic number of a graph to which it is homomorphic, the maximum chromatic
number among graphs to which a class of graphs is homomorphic serves as a bound, further
strengthening Thomassen’s result.

In 2010, Brandt and Thomassé [4] produced the strongest result on the chromatic
threshold of triangle-free graphs thus far. Any triangle-free graph on n vertices with
minimum degree exceeding 1

3n has chromatic number at most 4. This result by Brandt
and Thomassé gives us a strong motivation to examine triangle-free graphs with additional
restrictions.

In 2013, Allen et al. [1] produced an important result classifying the chromatic thresholds
of H-free graphs by χ(H), the chromatic number of H. However, the result does not extend
to additional restraints on a class of graphs, as in the case that the class of graphs is
additionally regular.

The chromatic number is an important concept in graph theory in that it allows us
to partition the vertices into independent sets, and it can be used to prevent conflicts in
scheduling and in transmission of radio signals, among many others. Determining the
chromatic threshold of a class of graphs can reduce the work considerably, and it can lead
to stronger results about the class’s chromatic number, as was the case with Brandt and
Thomassé’s result.

In this paper, the researcher that for triangle-free graphs that are additionally regular, the
chromatic threshold can be reduced to 1

4 .
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Chapter 2

TOOLS

2.1 Szemerédi Regularity Lemma

In 1975, Endre Szemerédi [16] proved a lemma that has had far-reaching consequences and
has been useful in solving extremal graph theory problems. The Szemerédi regularity lemma
allows us to construct a reduced graph from a large graph in such a way that it maintains
strong regularity properties. Before the lemma is stated, some definitions are needed.

For A,B⊂V (G), the density of the pair (A,B), denoted d(A,B), is given by

d(A,B) = e(A,B)
|A||B| ,

that is, the number of edges between A and B divided by the number of possible edges
between A and B. Because 0≤ e(A,B)≤ |A||B|, it follows that 0≤ d(A,B)≤ 1.

For ε > 0, (A,B) is said to be ε-regular if for all X ⊆ A,Y ⊆ B where |X | ≥ ε|A| and
|Y | ≥ ε|B|,

|d(A,B)−d(X ,Y )|< ε .

That is, any sufficiently large subsets of an ε-regular pair have approximately the same
density as the ε-regular pair.

A partition of V (G) into k+1 sets V0, . . . ,Vk is called an ε-regular partition if ||Vi|−
|Vj|| ≤ 1 for all i, j, and all except εk2 of the pairs (Vi,Vj), i < j are ε-regular.

A graph with an ε-regular partition behaves somewhat like a random graph, that is,
a graph on n vertices in which edges are placed randomly so that the probability of two
vertices being adjacent is constant. In particular, subsets of two parts of an ε-regular partition
have approximately the same density as the two parts themselves.

Lemma 1. (Szemerédi regularity lemma [16]) For every ε such that 0 < ε < 1, there exist

integers M = M(ε) and N = N(ε) such that if a graph G has n≥ N vertices, and d ∈ [0,1]
is a real number greater than ε , then there is an ε-regular partition of V (G) into k+ 1
clusters with ε−1 < k < M. Denote these clusters V0,V1, . . . ,Vk. There is a subgraph G′ ⊂G

with V (G′) =V (G) such that the subgraph and the clusters have these properties:

1. 1/ε < k < M,
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2. |V0|< εn,

3. All clusters Vi, i≥ 1, are of the same size, |Vi|= m≤ dεne,

4. dG′(v)> dG(v)− (d + ε)n for all v ∈V (G),

5. All pairs (Vi,Vj), i < j in G are ε-regular with d(Vi,Vj)> d or d(Vi,Vj) = 0.

G

V0

G'

V0

Figure 2.1: A small number of edges are deleted in order to obtain this ε-regular partition.

From this subgraph G′, one can produce G′′, called the pure graph, by deleting the
exceptional set V0. By the Szemerédi regularity lemma (2), |V0|< εn, so a vertex v ∈ G is
adjacent to at most εn vertices in V0, so

dG′′(v)≥ dG′(v)− εn.

G'

V0

G''

Figure 2.2: The pure graph G′′ is obtained by deleting the exceptional set from G′.

Lemma 2. Given G the original graph and an ε-regular partition that generates the pure

graph G′′,

dG′′(v)> dG(v)− (d +2ε)n.

Proof. This follows from dG′′(v) ≥ dG′(v)− εn together with the Szemerédi regularity
lemma (4).

dG′′(v)≥ dG′(v)− εn > dG(v)− ((d + ε)− ε)n.
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Finally, from this pure graph G′′, one can produce the reduced graph, denoted R. Each
cluster Vi ⊂ G′′ corresponds to a vertex vi ∈V (R). Two vertices vi,v j ∈V (R) are adjacent if
and only if d(Vi,Vj)> d. It is often convenient to associate vi ∈V (R) with the corresponding
cluster Vi ⊂V (G′′).

G'' R

Figure 2.3: Each cluster in the pure graph G′′ is associated with a vertex in R.

The Szemerédi regularity lemma is an important tool in theoretical graph theory, as it
allows us to construct this reduced graph from a given graph of sufficiently large order.
However, this order requirement is often incredibly large [16]. As a result, this lemma has
little practical use when applied to a specific graph; instead, it is used to prove general
results. Together with the following two lemmas, one is able to describe the structure of the
reduced graph in relation to the original graph.

Lemma 3. (Slicing [10]) Let ε,η such that 0 < ε < η < 1 and d such that 1− d ≥
max{2ε,ε/η}, and let (A,B) be an ε-regular pair with density d. Also let A′ ⊆ A, B′ ⊆ B

with |A′| ≥ η |A|, |B′| ≥ η |B|. Then (A′,B′) is ε ′-regular with ε ′ = max{2ε,ε/η} and

density in [d− ε,d + ε].

The slicing lemma states that if one considers a sufficiently large subset of each set in an
ε-regular pair, the subsets are themselves ε ′-regular, and they have approximately the same
density as the original pair as long as ε � d.

Recall that a graph with an ε-regular partition behaves somewhat like a random graph, in
which the probability of three vertices forming a triangle is the product of the probabilities
that each pair of vertices is adjacent. The counting lemma [10] describes the conditions on
the ε-regular graph that force a copy of Kr. It is described below for the triangle-free case.

Lemma 4. (Counting [10]) Let G be a graph and let Vi,Vj,Vk be disjoint subsets of the

vertices of G. Suppose that the partitions (Vi,Vj), (Vj,Vk), and (Vi,Vk) are ε-regular

with densities d1,d2,d3 respectively, and that d1,d2,d3 ≤ 2ε . Then the number of triples

(vi,v j,vk) ∈Vi×Vj×Vk that form triangles in G is at least

(1−2ε)(d1− ε)(d2− ε)(d3− ε)|Vi||Vj||Vk|.
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Note that if the reduced graph R, as constructed by the Szemerédi regularity lemma, has
a triangle, then there are disjoint subsets Vi,Vj,Vk ⊂V (G) such that d1 = d(Vi,Vj)> d,d2 =

d(Vj,Vk)> d,d3 = d(Vi,Vk)> d. The above counting lemma then tells us that the number
of triples of vertices that form triangles in G is at least

(1−2ε)(d1− ε)(d2− ε)(d3− ε)m3.

Each di > ε , so there are several triangles in the original graph.
As a corollary, if the reduced graph R has a triangle, then the original graph G necessarily

also has a triangle. Thus if G is triangle-free, R is also triangle-free.
Likewise, if the reduced graph R has a copy of Kr, then the original graph G necessarily

also has a copy of Kr. Thus if G is Kr-free, R is also Kr-free.

2.2 Cluster Neighborhoods

From here the researcher follows the methods and terminology in [12] and [13].
In the reduced graph, define the cluster neighborhood of v ∈ V (G), denoted Nd(v) ⊆

V (R), as

Nd(v) = {vi ∈V (R) : |NG(v)∩Vi|> d ·m},

where NG(v) is the set of vertices adjacent to v. That is, a vertex vi ∈V (R) is in Nd(v) if v is
adjacent to at least d ·m vertices in the corresponding cluster Vi in the partition formed from
the Szemerédi regularity lemma.

The notion of cluster neighborhoods associates every v ∈V (G) with a subset SR ⊂V (R).
Because there is a maximum of M vertices in V (R), there is a maximum of 2M subsets of
V (R) and therefore a maximum of 2M cluster neighborhoods.

For each cluster neighborhood SR⊂V (R), we define the inverse neighborhood N−1
d (SR)⊆

V (G) in the natural way:

N−1
d (SR) = {v ∈V (G) : Nd(v) = SR}.

By definition, because SR is a neighborhood of some vertex v ∈ G, N−1
d (SR) is nonempty.

As will be shown, if a triangle-free graph is regular of sufficiently high degree, the
inverse neighborhoods are independent sets of vertices of V (G), so identifying them will
give us a method to color G.
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Chapter 3

THE RESULT FOR REGULAR TRIANGLE-FREE GRAPHS

In order to find a chromatic threshold C for regular, triangle-free graphs, the researcher
considers an upper bound and a lower bound on the chromatic threshold. First, the researcher
considers a construction that is regular and triangle-free with unbounded chromatic number.
The degree of such a construction is necessarily below the chromatic threshold, so it provides
us with a lower bound for C. After that, the researcher uses the Szemerédi regularity lemma
in order to generalize regular, triangle-free graphs and to give a lower bound on the degree
that forces inverse neighborhoods to be independent and, consequently, a upper bound for
the chromatic threshold.

3.1 A Regular, Triangle-Free Construction

A triangle-free construction by András Hajnal is obtained by taking a Kneser graph together
with a complete bipartite graph. This construction was instrumental in work on the chromatic
threshold done by Erdős and Simonovits as described in Chapter 1.

The original construction by Hajnal is formed as follows [6]. Consider the Kneser graph
KG(2`+ k, `) together with the complete bipartite graph K2m,m. Name the partitions of the
complete bipartite graph A and B, with |A|= 2m and |B|= m. Partition the vertices of A into
2`+ k classes and label them A1,A2, . . . ,A2`+k. Recall that each vertex in the KG(2`+ k, `)

corresponds to an `-subset of a 2`+ k-element ground set. A vertex in the Kneser graph
is adjacent to all of the vertices in Ai if and only if its corresponding subset contains i as
an element. Because no two vertices in the Kneser graph with i as an element in their
corresponding subset are adjacent, adding these edges will not create a triangle. The Kneser
graph and B have no edges between them. One is able to choose values of k, `,m freely
without affecting this structure. By restricting k� `�m, the order of the resulting graph is
approximately 3m. By Theorem 4, the chromatic number of this construction is k+2.

Theorem 3.1.1. The chromatic threshold of a regular triangle-free graph is at least 1
4 .

Proof. In order to obtain a result on regular triangle-free graphs, the researcher modifies
Hajnal’s construction in the following way. The Kneser graph KG(2`+ k, `) remains
unchanged, but the sizes of the partitions |A|= m1, |B|= m2 are changed.
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KG(2l+k,l)

A

B

Figure 3.1: Hajnal’s construction consists of a Kneser graph together with a complete
bipartite graph, where the thick line implies all edges between these sets.

As described in the definition of the Kneser graph, KG(2`+ k, `) has
(2`+k

`

)
vertices

and 1
2

(2`+k
`

)(`+k
`

)
edges. That is, for v ∈ KG(2`+ k, `), e(v,KG(2`+ k, `) = 1

2

(`+k
`

)
. Let

pk,` =
1
2

(`+k
`

)
. For v, for each element i of its corresponding subset, it is adjacent to every

vertex in Ai. |Ai|= 1
2`+k m1, and there are ` elements in the corresponding subsets. Therefore

e(v,A) = `
2`+k m1, and, for v ∈ KG(2`+ k, `),

d(v) = pk,`+
`

2`+k m1.

A,B no longer form a complete bipartite graph, but the vertices are joined in a regular
way. In particular, label the vertices of A a1,a2, . . . ,am1 and B b1,b2, . . . ,bm2 , and join
each b j to the d vertices a j,a j+1, . . . ,a j+d−1, with each subscript evaluated in Zm1 (that is,
modulo m1). In this construction, for each b j ∈ B,

d(b j) = d.

Likewise, because e(A,B) = e(B,A), each e(a j,B) = d m2
m1

. Each a j is in a partition of
A. If a j ∈ Ai, then a j is adjacent to each vertex in the Kneser graph whose corresponding
subset contains i, a total of

(2`+k−1
`−1

)
vertices. Let qk,` =

(2`+k−1
`−1

)
. Thus, for each a j ∈ A,

d(a j) = d m2
m1

+qk,`.

Because this is to be a regular graph, these degrees should be equal. For d(b j) = d(a j),

d = d m2
m1

+qk,`

d =
qk,`

m1−m2
m1.

Because our conjecture for the chromatic threshold is 1
4 , the construction should give a

triangle-free graph of unbounded chromatic number that is regular of degree 1
2(1− ε) for

any ε > 0. Then,

qk,` =
1
2(1− ε)(m1−m2), and
d = 1

2(1− ε)m1.

For d(b j) = d(v) with v ∈ KG(2`+ k, `),
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d = pk,`+
`

2`+k m1
1
2(1− ε)m1 = pk,`+

`
2`+k m1 = pk,`+(1

2 −
k

2(2`+k))m1

pk,` = ( k
2(2`+k) − ε)m1.

Let γ = k
2(2`+k) − ε , so pk,` = γm1, and

m1 =
pk,`
γ

.

By choosing k, ` such that k
2(2`+k) → ε (i.e., γ → 0), m1� pk,`.

m2 =
1
γ

pk,`− 1
1
2 (1−ε)

qk,`,

d = 1
2(1− ε)m1.

By choosing

m2 =
1
2

pk,`
γ

,
m1 = m2 +

2
1−ε

qk,`,

and setting d = (1
2 − ε)m1, for b j ∈ B,

d(b j) = (1
2 − ε)m1 =

1
2(1− ε)

pk,`
γ

,

for a j ∈ A,

d(a j) = d m2
m1

+qk,`

d(a j) =
1
2(1− ε)(

pk,`
γ
− 2

1−ε
qk,`)+qk,`

d(a j) =
1
2(1− ε)

pk,`
γ

,

and for v ∈ KG(2`+ k, `),

d(v) = pk,`+
`

2`+k(
pk,`
γ
+ 2

1−ε
qk,`

d(v) = 1
2(1− ε)

pk,`
γ

,

giving a triangle-free regular graph of degree (1
2−ε)(

(`+k
` )

k
2`+k−2ε

). The sizes of A and B depend

on the choices of k and `, which can be chosen based on ε .
Hence, for regular triangle-free graphs, the chromatic threshold C ≥ 1

4 .
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3.2 Coloring via Inverse Neighborhoods

Let G be an arbitrary, regular triangle-free graph of large order n; if there is a bound on the
order, then the chromatic number is trivially bounded by n. Using the Szemerédi regularity
lemma, one can construct an ε-regular partition, and from that, a reduced graph R. By the
counting lemma, a triangle in the reduced graph forces a triangle in the original graph, so by
hypothesis, R is triangle-free. Łuczak gives us the following proposition, and the researcher
uses an approach similar to the one outlined in that paper.

Proposition 1. [12] For a triangle-free graph G, each neighborhood SR ⊂V (R) is indepen-

dent in R.

Proof. By way of contradiction, suppose there exists a neighborhood SR ⊂V (R) that is not
independent in R. By definition of independent, this means there exist vi,v j ∈ SR such that
an edge e = (vi,v j) ∈ E(R). This edge in the reduced graph implies that d(Vi,Vj)> d.

Let v∈N−1
d (SR). Define V ′i ⊂Vi to be N(v)∩Vi. By definition of a cluster neighborhood,

this means that

|V ′i |= |N(v)∩Vi|> d · |Vi|

and

|V ′j |= |N(v)∩Vj|> d · |Vj|.

By the slicing lemma, choosing α = d, d(V ′i ,V
′
j) is nonzero because ε < d, implying that

there exists at least one edge between the two sets. Because v is adjacent to all the vertices
in each of V ′i and V ′j , an edge between Vi and Vj implies a triangle in G. This triangle in G is
a contradiction to the premises (G is triangle-free). Therefore, for a triangle-free graph G,
each neighborhood is independent in R.

It follows that the bound on the size of an independent set in R is also a bound on the
size of a neighborhood.

In order to determine a bound on the size of an independent set in R, consider a related
graph, RW , with weighted edges. While the reduced graph of a regular graph may not be
regular, there is a strong restriction on the sum of the weights of the edges adjacent to a
vertex in RW , and this bounds the size of an independent set.

Definition 4. The weighted reduced graph RW is defined in the same way as the reduced

graph, but with each edge (vi,v j) assigned a weight equal to the number of edges in the

pure graph with one end-vertex in Vi and one end-vertex in Vj, that is, eG′′(Vi,Vj). Define
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the weighted degree of a vertex vi to be the sum of the weights of the edges incident to vi,

and denote it dW (vi).

Lemma 5. Let G be a graph that is regular of degree Cn, with an ε-regular partition that

produces a pure graph G′′ with clusters of size m. The weighted degree dW (v) of each vertex

in the reduced graph RW has the property

m(C− (d +2ε))n < dW (vi)≤ m(Cn).

Proof. Let G be a graph of order n and regular of degree Cn. The pure graph G′′ as described
in the Regularity Lemma is formed by constructing an ε-regular partition into k+1 clusters
and then deleting the exceptional set V0. By Lemma 2, each vertex v ∈ G′′ has the property

Cn− (d +2ε)n < dG(v)≤Cn.

Each cluster Vi ⊂V (G) has m vertices, and each cluster is an independent set in the pure
graph. Therefore, each cluster Vi has at least m(C− (d + 2ε))n and no more than m(Cn)

edges with (exactly) one end-vertex in Vi. Each edge with an end-vertex in Vi contributes to
the total weight of edges incident to vi in RW , so it follows that the weighted degree of a
vertex vi ∈ RW has the property

m(C− (d +2ε))n < dW (vi)≤ m(Cn).

For a regular, connected graph G, the size of the largest possible independent set of
vertices is known to be 1

2n, which is the case when G is bipartite with two equal partitions.
The researcher wants to show that if G is approximately regular in this way, the bound on
the size of an independent set is still approximately 1

2n.

Lemma 6. In a weighted graph G on n vertices, if, for every vi ∈ G, there is a fixed C ≤ 1
and β ≥ 0 such that

(C−β )n < dW (vi)≤Cn,

then the size of the largest independent set S is no larger than (1
2 +

β

2(2C−β ))n.

Proof. Let G be a weighted graph of order n with the property that, for every vertex v∈V (G),
(C−β )n < dW (v)≤Cn.

Let S⊂V (G) be an independent set. e(S,S) = 0, so it follows that

e(S,G) = e(S,S)+ e(S,G−S) = e(S,G−S).
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Because of the restriction on the degree of each vertex in S, it also follows that

|S|(C−β )n < e(S,G−S)≤Cn(n−|S|)
|S|(C−β )≤Cn−C|S|
|S|(2C−β )≤Cn

|S| ≤ C
2C−β

n = (1
2 +

β

2(2C−β ))n.

Note that for β �C, this is approximately

|S| ≤ 1
2n.

Lemma 7. Let G be a triangle-free graph that is regular of degree Cn, together with

a reduced graph R formed from an ε-regular partition of G in which (vi,v j) ∈ E(R) iff

dG′′(Vi,Vj)> d. If ui,u j form an edge in N−1
d (SR), then |SR| ≥ 2(Cn− (2d +2ε))n.

Proof. Let G be a regular, triangle-free graph such that ui,u j ∈ N−1
d (SR), with SR ⊂ R, and

suppose by way of contradiction there is an edge (ui,u j) ∈ E(G). In the pure graph G′′,

|N(ui)|= dG′′(ui)≥Cn− (d +2ε)n,

and

|N(ui)∩Nd(ui)| ≥Cn− (d +2ε)n−dm≥Cn− (2d +2ε)n.

Because the original graph is triangle-free, the total number of vertices in the clusters in
G′′ in the cluster neighborhood must be at least 2(Cn− (2d +2ε)n).

Lemma 6 and Lemma 7 give a bound on the size of an independent set in the reduced
graph which, in turn, gives a bound on the size of a cluster neighborhood and a bound on
the size of an inverse neighborhood.

Theorem 7. Let G be a triangle-free graph that is regular of degree Cn, together with the

reduced graph R formed by an ε-regular partition and (vi,v j) ∈ E(R) iff d(Vi,Vj)> d. Then

either each inverse neighborhood is independent, or

C ≤ (10d+12ε+1)+
√

36d2+48dε+16ε2+20d+24ε+1
8 .

Proof. By Proposition 1, Lemma 6, and Lemma 7, the researcher produces the inequality
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(1
2 +

d+2ε

2(2C−(d+2ε)))n≥ m · |SR| ≥ 2(C− (2d +2ε))n
1
2 +

d+2ε

2(2C−(d+2ε)) ≥ 2(C− (2d +2ε)

2C− (d +2ε)+(d +2ε)≥ 2(C− (2d +2ε))2(2C− (d +2ε))

2C ≥ 4(2C2−C(d +2ε)−2C(2d +2ε)+(d +2ε)(2d +2ε))

C ≥ 2(2C2−Cd−2Cε−4Cd−4Cε +2d2 +2dε +4dε +4ε2)

C ≥ 4C2−10Cd−12Cε +4d2 +12dε +8ε2

0≥ 4C2− (10d +12ε +1)C+(4d2 +12dε +8ε2)

For the right-hand side to equal 0, the solutions are given by the quadratic formula.

C =
(10d+12ε+1)±

√
(10d+12ε+1)2−16(4d2+12dε+8ε2)

8 .

In order for the right-hand side to be less than or equal to 0, either C must equal one of
those solutions, or it must be between the two solutions, that is,

(10d+12ε+1)−
√

36d2+48dε+16ε2+20d+24ε+1
8 ≤C

and

C ≤ (10d+12ε+1)+
√

36d2+48dε+16ε2+20d+24ε+1
8 .

Consequently, if C > (10d+12ε+1)+
√

36d2+48dε+16ε2+20d+24ε+1
8 , then the inverse neigh-

borhoods are independent sets, and these independent sets give us a method to color G.

3.3 Result and Example

Showing that the chromatic number is bounded for a triangle-free graph that is regular of
degree Cn where C > 1

4 can be achieved by choosing sufficiently small d and ε so that

C > (10d+12ε+1)+
√

36d2+48dε+16ε2+20d+24ε+1
8 ,

that is, by Theorem 7 the inverse neighborhoods are forcibly independent sets.
The researcher can use these sets as a partition of V (G), that is, a coloring with at most

2M colors, where M is the number of possible neighborhoods. For C = 1
4 +α , ε,d can be

chosen based on α , and then M depends only on the choice of ε .
For instance, consider the class of triangle-free graphs that is regular of degree δ =

0.27n = (1
4 +

1
50)n. By our result, this class of graphs has chromatic number bounded by

f (0.02), independent of n.
By choosing d = 0.001,ε = 0.0001, this bound becomes
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(10(0.001)+12(0.0001)+1)+
√

36(0.001)2+48(0.001)(0.0001)+16(0.0001)2+20(0.001)+24(0.0001)+1
8

1.0112+
√

0.000036+0.0000048+0.00000016+0.02+0.0024+1
8

1.0112+
√

1.02244096
8 ≈ 2.02236

8 ≈ 0.252795.

Because 0.27 > 0.252795, there exists a d,ε > 0 for which the inverse neighborhoods
will necessarily be independent sets, bounding the chromatic number of this class of graphs
by the number of possible neighborhoods in the reduced graph, that is, no more than 2M.
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Chapter 4
CONCLUSIONS AND REGULAR Kr-FREE GRAPHS

In order to determine the chromatic threshold of graphs that are regular and Kr-free for
r ≥ 4, the researcher takes a similar approach: Finding a regular Kr-free construction with
unbounded chromatic number in order to obtain a lower bound for the chromatic threshold,
and considering a bound on the size on an independent set in an arbitrary regular Kr-free
graph in order to find an upper bound.

Here, the researcher shows how to obtain a lower bound for the chromatic threshold for
regular K4-free graphs as well as a note on the upper bound, and then how to generalize this
method for Kr-free graphs.

4.1 Regular K4-free graphs

Every triangle-free graph is also K4-free because K3 is a subgraph of K4. As shown before,
the researcher used a modification of Hajnal’s construction in order to find a triangle-
free, regular graph of unbounded chromatic number. By adding additional parts to the
construction described in the previous chapter, the researcher can construct a regular Kr-free
graph of unbounded chromatic number for any r ≥ 3.

4.1.1 Further modifying Hajnal’s construction

Theorem 8. The chromatic threshold of the class of regular K4-free graphs is not less than
4
7 .

Proof. To the construction H described in Chapter 3, a new set of independent vertices
T is added such that each vertex v ∈ T is adjacent to each vertex in H. In order for this
new construction H ′ to be regular, for vT ∈ T , vH ∈ H, d(vT ) = |H| must equal d(vH) =
1
2(1− ε)

pk,`
γ
+ |T |, so

|T |= |H|− 1
2(1− ε)

pk,`
γ

.
By a similar method to that used in Chapter 3, the researcher is able to calculate the

minimum degree as a fraction of the total degree of H ′. In particular for any ε > 0, one can
produce a regular graph using this construction that is regular of degree 4

7(1− ε)|H ′|.

In order to find an upper bound, consider a bound on the size of a triangle-free set of
vertices in a regular K4-free graph.
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4.1.2 Coloring via inverse neighborhoods

The researcher again uses the Szemerédi regularity lemma in order to find an ε-regular
partition and to produce a reduced graph. By the counting lemma, the reduced graph will
contain a copy of K4 as a subgraph only if there is a copy of K4 in the original graph, so by
hypothesis, the reduced graph will be K4-free as well.

Proposition 2. In a K4-free graph G, each neighborhood SR ⊂V (R) is triangle-free in R.

Proof. By way of contradiction, suppose there exists a neighborhood SR ⊂V (R) that is not
triangle-free in R. Then there exist vi,v j,vk ∈ SR that form a triangle in R, which implies
that d(Vi,Vj)> d,d(Vi,Vk)> d,d(Vj,Vk)> d.

Let v∈N−1
d (SR). Define V ′i ⊂Vi to be N(v)∩Vi. By definition of a cluster neighborhood,

this means that

|V ′i |= |N(v)∩Vi|> d ·m = d · |Vi|,
|V ′j |= |N(v)∩Vj|> d ·m = d · |Vj|,
|V ′k |= |N(v)∩Vk|> d ·m = d · |Vk|.

By the slicing lemma, this set of inequalities implies the existence of a triangle with
one vertex in each of V ′i ,V

′
j ,V
′
k . However, because v is adjacent to each of these vertices,

this creates a copy of K4, a contradiction to the premise that G is K4-free. Hence, each
neighborhood is triangle-free in R.

It follows that the bound on the size of a triangle-free set S⊂ R is also a bound on the
size of a cluster neighborhood. Theorem 1 (Mantel’s theorem) gives that e(S,S)≤ 1

4 |S|
2.

Modifying Lemma 6, one can consider, for a triangle-free set S⊂ R,

e(S,G) = e(S,S)+ e(S,G−S)≤ 1
4 |S|

2 + e(S,G−S),

Also because of the restriction on the degree of each vertex in S given by Lemma 5, if
G is regular, then RW is approximately regular in terms of weighted degree as described
in Chapter 3. In particular, if G is regular of degree Cn, then the weighted degree of each
vertex vi ∈V (RW ) has the property

m(C− (d +2ε))n < dW (vi)≤ m(Cn).

As a result, it follows that

|S|(C−β )n−2(1
4 |S|

2)≤ e(S,G−S)≤ (n−|S|)(Cn)
1
2 |S|

2 +(β −C)n|S|−Cn|S|+Cn2 ≥ 0
1
2 |S|

2 +(β −2C)n|S|+Cn2 ≥ 0.
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The values of |S| for which the left-hand side equals 0 are given by the quadratic formula.

|S|= (2C−β )n±
√

(β−2C)2n2−2Cn2

1

|S|= (2C−β )n±
√
(β 2−2βC+4C2)n2−2Cn2

|S|=
(
(2C−β )±

√
β 2−2C(2β +1)+4C2

)
n.

For the inequality to hold, |S| must be smaller than both of these values or larger than
both these values; however, because the reseacher obtained from the previous section that
C ≥ 4

7n,

|S| ≥
(
(2C−β )+

√
β 2−2C(2β +1)+4C2

)
n

has no solutions because(
(2C−β )+

√
β 2−2C(2β +1)+4C2

)
n > (2C−β )n > n

and |S| ≤ n.
Hence,

|S| ≤ ((2C−β )−
√

β 2−2C(2β +1)+4C2)n.

This bound on the size of a triangle-free subgraph provides a somewhat weak upper
bound on the minimum degree for which the chromatic number is bounded; this result is
initial progress toward a more restrictive bound for K4-free graphs.

4.2 Regular Kr-free graphs

Extending this method to regular Kr-free graphs is done in much the same way: modifying
Hajnal’s construction in order to find a lower bound, and finding a bound on the size of an
independent set in order to find an upper bound.

4.2.1 Modifying Hajnal’s construction for regular Kr-free graphs

Theorem 9. The chromatic threshold of the class of regular Kr-free graphs is not less than
3r−8
3r−5 .

Proof. Again, Hajnal’s construction is modified as it was in the K4 case, now adding r−3
independent sets of order |T |, each adjacent to all vertices outside of its own set. In this case,
given the new construction has n vertices, each vertex is adjacent to 3r−8

3r−5(1− ε)n, where
ε > 0 can be chosen arbitrarily small. The result is a regular, Kr-free graph of unbounded
chromatic number.
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4.2.2 Coloring via inverse neighborhoods

In order to find an upper bound on the size of an independent set in the class of Kr-free
graphs that are regular of degree δ , the researcher uses the Szemerédi regularity lemma in
order to find an ε-regular partition and to produce a reduced graph. By the counting lemma,
the reduced graph will contain a copy of Kr as a subgraph only if there is a copy of Kr in the
original graph, so by hypothesis, the reduced graph will be Kr-free as well.

Proposition 3. In a Kr-free graph G, each neighborhood SR ⊂V (R) is Kr−1-free in R.

Proof. As before, if R is not Kr−1-free, there exists a copy of Kr−1 in N(v), and hence a
copy of Kr in G, a contradiction to the premises.

It follows that the bound on the size of a Kr−1-free set S⊂ R is also a bound on the size
of a neighborhood. Turán’s theorem gives us |e(S,S)| ≤ |S|

2(r−1)
2r .

In order to determine a bound on the size of a triangle-free set in R, the researcher
considers the weighted reduced graph RW . Considering the degree limitations of the reduced
graph imposed by Lemma 5, it is possible to limit the size of a Kr−1-free set S by considering
e(S,G−S).

Because, for all vi ∈ RW , (C−β )n≤ dW (vi)≤Cn, e(S,G−S) is given by

e(G,S)− e(S,S)≥ |S|(C−β )n−2( r−1
2r |S|

2).

Also, because G is regular, e(S,G−S)≤ (n−|S|)(Cn).

|S|(C−β )n− r−1
r |S|

2 ≤ e(S,G−S)≤ (n−|S|)(Cn)
r−1

r |S|
2 +(β −C)n|S|−Cn|S|+Cn2 ≥ 0

r−1
r |S|

2 +(β −2C)n|S|+Cn2 ≥ 0
(r−1)|S|2 +(β −2C)rn|S|+Crn2 ≥ 0

The values of |S| for which the left-hand side equals 0 are given by the quadratic formula.

|S|= (2C−β )rn±
√

(β−2C)2r2n2−4(r−1)(Crn2)
2(r−1)

|S|= (2C−β )rn±
√

(β 2−4βC+4C2)r2n2−4Cr2n2+4Crn2)
2(r−1)

|S|= r
r−1

(
(2C−β )±

√
(β 2−4C(β+1)+4C2)+ 4C

r

)
2 n

This bound on the size of a Kr−1-free subgraph provides a weak upper bound for the
minimum degree for which the chromatic number is bounded. More work is necessary to
obtain a more restrictive bound.
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4.3 Conclusion and Future Work

In conclusion, the method described in this paper gives a sharp bound for the chromatic
threshold of regular triangle-free graphs: 1

4 . It also provides a smaller set of possibilities for
the chromatic thresholds of regular Kr-free graphs for r ≥ 4.

The lower bound of the chromatic threshold of regular Kr-free graphs could potentially
be raised by examining the properties of the Kr−1-free set beyond the number of internal
edges it contains.
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