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ABSTRACT

AUTOMATIC CONSTRUCTION OF SCALABLE TIME-STEPPING METHODS FOR

STIFF PDES

by Vivian Ashley Montiforte

May 2018

Krylov Subspace Spectral (KSS) Methods have been demonstrated to be highly scal-
able time-stepping methods for stiff nonlinear PDEs. However, ensuring this scalability
requires analytic computation of frequency-dependent quadrature nodes from the coeffi-
cients of the spatial differential operator. This thesis describes how this process can be
automated for various classes of differential operators to facilitate public-domain software
implementation.
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and computational
usage. In many cases these fields tend to use different preferred notation to indicate the same
concept, and these have been reconciled to the extent possible, given the interdisciplinary
nature of the material. In particular, the notation for partial derivatives varies extensively,
and the notation used is chosen for stylistic convenience based on the application. While it
would be convenient to utilize a standard nomenclature for this important symbol, the many
alternatives currently in the published literature will continue to be utilized.

The blackboard fonts are used to denote standard sets of numbers: R for the field of real
numbers, C for the complex field, Z for the integers, and Q for the rationals. The capital
letters, A,B, · · · are used to denote matrices, including capital Greek letters, e.g., Λ for a
diagonal matrix. Functions which are denoted in boldface type typically represent vector
valued functions, and real valued functions usually are set in lower case Roman or Greek
letters. Caligraphic letters, e.g., V, are used to denote spaces such as V denoting a vector
space, H denoting a Hilbert space, or F denoting a general function space. Lower case
letters such as i, j,k, l,m,n and sometimes p and d are used to denote indices.

Vectors are typeset in square brackets, e.g., [·], and matrices are typeset in parenthesese,
e.g., (·). In general the norms are typeset using double pairs of lines, e.g., || · ||, and the
absolute value of numbers is denoted using a single pairs of lines, e.g., | · |. Single pairs of
lines around matrices indicates the determinant of the matrix.

viii
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Chapter 1

INTRODUCTION

Advancements in computing power allow the solutions of mathematical models to be
approximated at a much higher spatial resolution. While there is positive progress in
approximating the solution, there are also downfalls. A greater stiffness occurs in some
models that have a system of ordinary differential equations (ODEs) stemming from the
spatial discretization of time-dependent partial differential equations (PDEs). This stiffness
presents a challenge when applying both implicit and explicit time-stepping methods. The
challenge when using an implicit method comes from solving increasingly ill-conditioned
systems of equations. These systems of equations increase the number of iterations needed.
When using an explicit method, the challenge arises from the necessary CFL condition. The
CFL condition forces this method to use a smaller time-step in order to have convergence.

Consider a spatially discretized parabolic PDE; the solution is approximated by finding
the exact solution of the system of ODEs. Computing the exact solution of this system of
ODEs requires computing a matrix function and vector product. The use of time stepping
methods is prevalent because they can approximate matrix function and vector products.
This product is approximated by a polynomial function, in the case of an explicit method, or
a rational function, in the case of an implicit method.

A previous approach, Krylov Projection [5] used Arnoldi or Lanczos iterations to
compute a polynomial that was then used to approximate the exponential function. However,
due to the character of time-stepping methods, this approach was not practical. The use of
this polynomial to approximate the exponential function on such a large interval required a
large number of terms. Also, due to the significantly varying eigenvalues, approximating
this matrix exponential function required a great deal of Lanczos vectors. The varying of
these eigenvalues occurs in the instance where A comes from a stiff system of equations,
such as the system of ODEs previously discussed. For these reasons, this approach is only
sensible when the eigenvalues are clustered and, therefore, not suitable for our methods.

An alternative approach uses a component-wise approximation. This approach approxi-
mates high frequency and low frequency components of the solution individually. Separating
the frequency components allows the approximating polynomials to be tailored to best suit
the individual components. From this alternative technique, block Krylov Subspace Spectral
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(KSS) methods emerged [10]. These block KSS methods are favorable due to explicit time
stepping with high-order accuracy. Explicit methods generally need a small time-step to
ensure stability but previous, simple KSS methods have been proven to be unconditionally
stable. These previous KSS methods generated results that were favorable in accuracy
and stability. Unfortunately, these results were obtained using a highly, computationally
expensive algorithm. This algorithm uses a different initial block in the block Lanczos
iteration for each Fourier component of the solution. Previous work has been completed
in [9] proving that due to the wave number ω being used to parameterize the initial blocks,
there is much redundant computation that can be eliminated. This resulted in an algorithm
that requires O(N logN) operations per time step.

The majority of the computational expense emerges from computing block Gaussian
quadrature with component-dependent nodes and weights. A previous KSS method saved
some computational expense by using estimates of the extremal nodes from block Gaussian
to acquire the quadrature nodes [7]. These extremal nodes are acquired from an asymptotic
analysis of the recursions coefficients created by block Lanczos. The advantage of this
method is that these nodes are computed quite rapidly since we are not actually carrying
out the block Lanczos iteration for any Fourier component. This method is much faster
compared to the previous approach that obtained the nodes by computing the eigenvalues
of each block tridiagonal matrix produced by the block Lanczos iteration. Although this
approach of using the extremal nodes improves the efficiency, it does not, however, preserve
the same accuracy as the previous block KSS methods. Accuracy is not preserved in
this method due to the extremal nodes for each Fourier component being the only precise
approximations of the block Gaussian quadrature nodes.

In a recent paper, a more thorough asymptotic analysis of the recursion coefficients was
performed to provide a new insight into the computation of the block Gaussian nodes [14].
This new insight provided a simple method that made block KSS methods a drastically more
efficient implementation. During the analysis of the recursion coefficients, it was discovered
that it could be used to show how eigenvalue problems for computing the quadrature nodes
approximately decoupled for high frequencies. Decoupling of the eigenvalue problem
was then exploited to rapidly estimate the nodes. Unlike the previous approach, this new
approach preserved the accuracy of the original KSS methods. The preservation of accuracy
comes from all nodes for each Fourier component being accurately estimated instead of
only the extremal nodes. This KSS approach was compared against traditional Krylov
subspace-based approaches and, when accelerated in this way, the KSS approach exhibited
highly favorable behavior. This behavior was not only advantageous in terms of accuracy
and stability, but was also scalable with respect to the amount of grid points used when
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spatially discretizing our underling PDE.
In prior work, it was shown that when using the block Lanczos algorithm to produce

the Gaussian quadrature rules, half of the nodes were frequency independent and the other
half were strongly frequency-dependent [11, 14]. Due to using a self-adjoint differential
operator, the frequency-independent nodes are acquired by performing the symmetric
Lanczos iteration with the initial vector being the solution from the previous time-step.
The output of this algorithm is a symmetric tridiagonal matrix which we then take the
eigenvalues of. These eigenvalues are our frequency-independent nodes. In this paper,
we introduce a simpler, yet still efficient, method for computing the frequency-dependent
Gaussian quadrature nodes. In this new approach, we choose only a few frequencies, three
to five frequencies per spatial dimension, that are roughly equally spaced and use them as
our interpolation points. True Gaussian quadrature nodes are computed from these few
selected frequencies, which then allows us to use polynomial interpolation to approximate
the remaining frequency-dependent nodes.

The outline of this thesis is as follows. Section 2 provides background information on
block KSS methods. In Section 3, the idea and implementation of this new approach will be
thoroughly described. Section 4 consists of numerical results that compare the accuracy and
efficiency to previous KSS methods. Lastly, Section 5 holds the conclusion and ideas for
future research.



4

Chapter 2

BACKGROUND

2.1 Krylov Subspace Spectral Methods

The parabolic PDE on the interval (0, 2π) is considered,

ut +Lu = 0, t > 0, (2.1)

with initial data, u(x,0) = u0(x). L is a self-adjoint, positive definite, second-order differen-
tial operator. Using the spatial discretization of the parabolic PDE (2.1), a system of ODEs
can be created. The resulting system of ODEs is as follows,

u′(t)+Au = 0,

with the initial condition, u(t0) = u0, coming from the initial data of the PDE. Both u(t) and
u0 are N-vectors, and A is an N×N matrix. The solution of the PDE can be approximated by
solving the previous system of ODEs, where u(t) = e−Atu0. After applying suitable initial
conditions and periodic boundary conditions, the solution is represented using a Fourier
series

u(x, t) =
1√
2π

∞

∑
ω=−∞

eiωxû(ω, t),

where the Fourier coefficients, û(ω, t), are given by

û(ω, t) =
〈

1√
2π

eiωx,u(x, t)
〉
=

1√
2π

∫ 2π

0
e−iωxu(x, t) dx

and the wave number of each Fourier component is represented by ω . Note that 〈., .〉
signifies the standard inner product of functions on (0,2π).

The general approach of KSS methods is to approximate each Fourier coefficient inde-
pendently of each other. This approach allows a different approximation of the solution
operator e−L∆t that is tailored to best suit each Fourier coefficient of the solution. The
computed solution u(x, tn) at time tn = n∆t is given. Using the previous time-step, the
Fourier coefficients of the solution can be computed at time tn+1. Each Fourier coefficient is
given by

û(ω, tn+1) =

〈
1√
2π

eiωx,exp[−L∆t]u(x, tn)
〉
.
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Spatial discretization of each Fourier coefficient at time tn+1 yields a bilinear form of the
form

uH f (A)v,

where u and v are N-vectors on a uniform N-point grid. The vector u consists of the values
of 1√

2π
eiωx and the vector v consists of the values of u(x, tn). Also, f (λ ) = exp(−λ∆t) and

the matrix A comes from discretizing the operator L, where A = LN is an N×N symmetric
positive definite matrix. This matrix A has real positive eigenvalues

b = µ1 ≥ µ2 ≥ ·· · ≥ µN = a > 0,

and associated orthonormal eigenvectors q j, where j = 1, . . . ,N. As a result, uH f (A)v can
be rewritten in terms of its spectral decomposition,

uH f (A)v =
N

∑
j=1

f (µ j)uHq jqH
j v.

Previous research from Golub and Meurant [2, 3] allow us to express the bilinear form as a
Reimann-Stieltjes integral

uH f (A)v = I[ f ] =
∫ b

a
f (λ )dα(λ ).

where

α(λ ) =


0, if λ < a
∑

N
j=i α jβ j, if µi ≤ λ < µi−1 , α j = uHq j, β j = qH

j v.
∑

N
j=i α jβ j, if b≤ λ

Gaussian quadrature is used to approximate I[ f ], resulting in the following form

I[ f ] =
K

∑
j=1

ω j f (λ j)+R[ f ].

The nodes λ j, j = 1, . . . ,K, and weights ω j, j = 1, . . . ,K, are obtained by using the Lanczos
algorithm. When u and v are real vectors, this Gaussian quadrature rule is exact for
polynomials up to degree 2K−1. It can then be generalized to the complex case with the
appropriate complex conjugation.

Now, the case where u 6= v is considered. In this case, the weights are typically not
positive real numbers. As a result, the quadrature rule can numerically destabilize [1]. As
another option, the block approach is considered [4] ,

[ u v ]H f (A)[ u v ].

The nodes and weights needed for the quadrature rule are acquired by applying the block
Lanczos algorithm:



6

X0 = 0, X1 = [ u v ] (QR factorization)
for j = 1,2, . . . ,K

V = AX j

M j = XH
j V

if j < K

R j =V −X j−1BH
j−1−X jM j

R j = X j+1B j (QR factorization)
end

end

The outcome of executing the block Lanczos algorithm is two 2×2 matrices, M j and B j,
where B j is upper triangular. Together these matrices form the block tridiagonal matrix, TK :

TK =


M1 BH

1
B1 M2 BH

2
. . . . . . . . .

BK−2 MK−1 BH
K−1

BK−1 MK

 , (2.2)

This matrix can be viewed as a matrix-valued Riemann Stieltjes integral∫ b

a
f (λ ) dµ(λ ) =

[
uH f (A)u uH f (A)v
vH f (A)u vH f (A)v

]
.

Let the following equations be defined as

E12 = [ e1 e2 ],

X1 = [ u v ].

Then, use the block approach,

[ u v ]H f (A)[ u v ]

= XH
1 f (A)X1

= EH
12XH f (A)XE12

= EH
12 f (XHAX)E12 + error (2.3)
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where

TK = XHAX

TK =UKΛKUH
K

TK =
2K

∑
j=1

λ ju juH
j

f (TK) =
2K

∑
j=1

f (λ j)u juH
j

It is important to note that λ j is a scalar and by using f (TK), (2.3) can be rewritten as

EH
12 f (TK)E12 + error =

2K

∑
j=1

f (λ j)EH
12u juH

j E12 + error

After setting v j =EH
12u j, where v j is a 2-vector, the following quadrature formula is obtained.

∫ b

a
f (λ ) dµ(λ ) =

2K

∑
j=1

f (λ j)v jvH
j + error . (2.4)

The block tridiagonal matrix, TK , produces the nodes and the weights required from (2.4).
The nodes are λ j and consist of the eigenvalues of TK . The "weights" are the 2 x 2 matrices
v jvH

j , where v j is a 2-vector containing the first two components of each eigenvector of TK .
The block KSS method for the parabolic PDE (2.1) starts by first, defining

R0 = [ êω un ] ,

where the first column in the matrix, êω , is a discretization of 1√
2π

eiωx and the second
column, un, is a discretization of the approximate solution u(x, t) at time tn = n∆t. The
second step is to compute the QR Factorization of R0,

R0 = X1(ω)B0(ω)

which then gives the output
X1(ω) = [ êω

un
ω

‖un
ω‖2

]

and
B0(ω) =

[
1 êH

ω un

0 ‖un
ω‖2

]
,

where
un

ω = un− êω êH
ω un = un− êω û(ω, tn). (2.5)



8

From this, the next step is to apply the block Lanczos algorithm to the matrix LN with initial
block X1(ω). The matrix LN comes from the discretization of L. This algorithm constructs
a block tridiagonal matrix TK (2.2). Every entry of TK is a function of ω . After that, at time
tn+1, each Fourier coefficient of the solution is

[ûn+1]ω = [B0(ω)HEH
12exp[−TK(ω)∆t]E12B0(ω)]12.

2.2 Asymptotic Analysis of Lanczos Iteration

The main idea behind KSS methods is computing each Fourier component of the solution
independently. This is done by using an approximation that is tailored to best suit the
Fourier component. From this, every component has a polynomial approximation that is
best suited for that specific component. These polynomials are approximations of S(LN ;∆t).
The function S is determined by the solution operator of the given PDE. In the case of the
previously discussed PDE (2.1), the function S(LN ;∆t) = e−LN∆t . LN comes from the spatial
discretization of the differential operator. The polynomial approximations are acquired from
interpolating the function S(λ ;∆t). This interpolation is executed at the nodes chosen for
each Fourier component. The form of the computed solution in Fourier space is as follows,

un+1 = S(LN ;∆t)un =
2K

∑
j=0

D j(∆t)A jun, (2.6)

where D j(∆t) is a diagonal matrix. Each row of this matrix corresponds to a specific compo-
nent and the diagonal entries represent the coefficients of the interpolating polynomials. This
section covers previous work demonstrating a much faster way of computing interpolation
points. This approach was discovered while studying the block Lanczos behavior when ω is
the wave number and the limit of |ω| → ∞.

2.2.1 The Block Case

In KSS Methods, R0 = [ êω un ] is used as the initial block for each ω = −N
2 +1, . . . , N

2 .
The vector un, defined in the previous section, is the discretization of the approximate
solution on a uniform N-point grid. The approximate solution is u(x, t) at time tn = n∆t.
The first block Lanczos iteration starts with the QR-factorization of R0:

R0 = X1B0, (2.7)

where
X1 = [ êω

un
ω

‖un
ω‖2

] and B0 =

[
1 û(ω, tn)
0 ‖un

ω‖2

]
(2.8)
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The vector un
ω is defined from (2.5). The statement is made that as |ω| → ∞ , |û(ω)|n→ 0,

if the solution u is continuous. From the previous statement, B0 converges to a diagonal
matrix.

The next step is to compute
M1 = XH

1 LNX1, (2.9)

The matrix LN is the spectral discretization of L, where L is the operator defined by Lu =

puxx +q(x)u. By substituting the value of X1 from (2.8) into (2.9), the following is obtained

M1 =

 ω2 p+ q̄ L̂Nun
ω (ω)

‖un
ω‖2

L̂Nun
ω (ω)

‖un
ω‖2

R(LN ,un
ω)

 .
Previous expressions are defined as: q̄ is the mean of q(x) on (0,2π). L̂Nun

ω(ω) = êH
ω LNun

ω

is the Fourier coefficient, of the gridfunction LNun
ω , associated to the wave number ω . Lastly,

R(LN ,un
ω) =

〈un
ω ,LNun

ω 〉
〈un

ω ,un
ω 〉

is the Rayleigh quotient of LN and un
ω .

It was previously discussed that if we have a continuous function, then the Fourier
coefficients go to zero as |ω| increases. With this, the non-diagonal entries of M1 become
negligible as long as our solution is sufficiently regular. Therefore,

M1 ≈
[

ω2 p+ q̄ 0
0 R(LN ,un)

]
.

Since it is known that the Fourier coefficients go to zero, they can be neglected. Terms
that are of lower order in ω can also be neglected. Proceeding with the iteration results in
the following,

R1 = LNX1−X1M1 ≈ [ q̃êω
LNun

ω

‖un
ω‖2
−R(LN ,un

ω

un
ω

‖un
ω‖2

],

where multiplication of vectors is component-wise. Also, q is a vector comprised of the
values of q(x) at the grid points (q̃ = q− q̄).

This process was continued in the paper from [14]. In this high-frequency limit, it was
discovered that the block tridiagonal matrix TK , produced by applying block Lanczos to R0

(2.7), converges to a simpler matrix. This simpler matrix is obtained from first, applying
the "non-block" Lanczos iteration to the columns of R0 separately and second, alternating
the columns and rows of the tridiagonal matrices produced from these iterations. Since
TK converges to this previously discussed simpler matrix, the columns and rows of TK can
be reordered. They are reordered to group together the even-numbered and odd-numbered
columns and rows. With this reordering, the eigenvalue problem for this matrix was found
to approximately decouple. The block Gaussian quadrature nodes can be obtained by
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computing the eigenvalues of these smaller, tridiagonal matrices. For an ω that is finite,
this non-block Lanczos algorithm can be used to, at the minimum, estimate the true block
Gaussian quadrature nodes.

2.2.2 The Non-Block Case

Previous discussion revealed that due to the matrix decoupling, approximations of half of
the block Gaussian quadrature nodes are acquired by executing the "non-block" Lanczos
iteration. This iteration is on the matrix LN with initial vector u, the computed solution.
This example of Krylov Subspace Spectral Methods is defined in [11, 14]. These frequency-
dependent nodes are estimated by performing an asymptotic analysis of the Lanczos iteration.
This iteration is on the matrix LN with initial vector êω . This Lanczos iteration algorithm is
given below:

B0 = 0, m0 = 0, m1 = u/‖u‖2

for j = 1,2, . . . ,K
v j = Am j

α j = mH
j v j

if j < K

v j = v j−β j−1m j−1−α jm j

β j = ‖v j‖2

m j+1 = v j/β j

end
end

The case being considered is when p is a constant. After carrying out three iterations and
neglecting lower-order terms, the following recursion coefficients are obtained. It is also
worth noting that by carrying out three iterations, it corresponds to a fifth-order accurate
KSS method for parabolic PDEs. α1 β1 0

β1 α2 β2
0 β2 α3

≈
 pω2 ‖q̃‖2 0
‖q̃‖2 pω2 2p|ω|‖qx‖2/‖q̃‖2

0 2p|ω|‖qx‖2/‖q̃‖2 pω2

 .
The frequency-dependent nodes can then be estimated easily and efficiently as

λ1,ω = pω
2, λ2,ω ,λ3,ω = pω

2±
√

(β 2
1 +β 2

2 ). (2.10)
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Chapter 3

FREQUENCY-DEPENDENT NODES BY INTERPOLATION

3.1 One-Dimensional Parabolic PDE

We are going to use polynomial interpolation to accurately approximate the frequency-
dependent nodes for PDEs. We will be interpolating from ω = −N

2 +1, . . . , N
2 . We choose

a few ω that are equally spaced in our interval of [−N
2 +1, N

2 ]. We used three ω values in
Figure 3.1 and five ω values in Figure 4.1. We want to make sure that we choose ω values
to cover all frequencies from low to medium to high. We know that ω spans −N

2 +1, . . . , N
2

and so we choose the smallest and largest ω and choose an ω that is between.
After our ω have been chosen, we carry out the non-block Lanczos algorithm for each

ω . This algorithm produces a tridiagonal matrix TK for each case of ω . We then compute
the eigenvalues of each tridiagonal matrix TK produced for each ω . To get the frequency
dependent nodes for all other ω in between the specifically chosen ω , we use polynomial
interpolation. Our frequency-dependent nodes are then stored in our matrix n f .

From (2.10), we determined that the eigenvalues, λ1,ω , would have the dominant term
of pω2. The dominant term was concluded from B1 not depending on ω and B2 having only
a linear term of ω . This leaves the highest degree of our eigenvalues similar to that of a
quadratic.

Using this information, our first attempt to approximate our curve was using a second
degree polynomial interpolation. For this case, we chose three values of ω , and then interpo-
lated to approximate the frequency dependent nodes for the rest of the ω in between. The
results from this first attempt are shown in Figure 3.1.
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Figure 3.1: First attempt using a second degree polynomial interpolation with three chosen
ω . The blue dashed curves represent all ω from [−N

2 +1, N
2 ] evaluated using the Lanczos

algorithm. The cyan curves represent our method of evaluating only the three chosen ω in
the Lanczos algorithm and using polynomial interpolation to approximate the curve.

Looking at the graph above, it is easily noticed that our quadratic interpolant did not fit
the curve as accurately as desired. Our second attempt starts with the fact that the matrix
LN is a finite-difference representation of the differential operator. When this is true and
formulas for the eigenvalues of symmetric Toeplitz tridiagonal matrices are used for the
leading-order terms in the nodes, the block Gaussian quadrature nodes can be represented in
a more accurate manner. Realizing the eigenvalues were behaving in this form, we used this
direction and replaced pω2 with 2p(N/π)2(1−cos(πω/N)) where N is the number of grid
points.

Now that we have a new representation for our eigenvalues, we try interpolating again.
This time, we need to use a higher degree polynomial interpolation. Using a higher degree
differs from the previous approach by choosing five ω values to approximate versus the
previous three ω values. Again we interpolate to approximate the frequency-dependent
nodes for the rest of the ω in between the five chosen ω . The results of this fourth degree
interpolation are shown in the next chapter in Figure 4.1.

Algorithm for One-Dimensional Parabolic PDEs with Periodic Boundary Conditions:

It is important to note that J is our Jacobian matrix, m is the number of interpolation
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points, K is the number of non-block Lanczos iterations, x contains the actual grid points, N

is the number of grid points, and our basis function is eiωx.

1. Given that our ω range from (−N/2+ 1, . . . ,N/2), we choose ω values that are
equally spaced, give or take, in the given interval.

2. We store the chosen ω values in the vector ~ω and let m represent the length of this
vector.

3. for i = 1,2, . . . ,m
Run Lanczos algorithm for each chosen ω(i).
Lanczos algorithm returns the tridiagonal matrix, TK .
Take the K eigenvalues for each TK .
The eigenvalues are then stored in the rows of the matrix mnodes in increasing

order, where each column is a different frequency.
end

4. for j = 1,2, . . . ,K
Use fourth degree polynomial interpolation with vector ~ω and rows of the

matrix mnodes. In this case, we use the MATLAB command polyfit.
Let Pj represent the polynomial from the previous step.
Evaluate Pj for all ω from (−N/2+1, . . . ,N/2) to approximate the remaining

frequency dependent nodes.
end

Each time we use polynomial interpolation, we use the polyfit command included
in MATLAB. polyfit computes the coefficients of the interpolant by solving a system of
linear equations involving a Vandermonde matrix. In the future, we will try to minimize our
computational expense by using Lagrange interpolation. Lagrange would be more efficient
if we needed to interpolate more than once using the same points. Newton interpolation
would have been more efficient during our first two attempts. If we had used Newton
interpolation, then we could add more ω values without having to rerun previous ω values,
saving time, computationally. Other cases to think about would be: 1. If the PDE is linear,
then we can compute the nodes once and use them over again. 2. If the coefficients of the
PDEs are not dependent on time, then we can compute the nodes once and reuse them for
frequency dependent nodes. 3. If the frequency independent nodes tend to look the same or
not changing much then we can reuse those to save on computational expense.
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Summary of algorithm for computing un+1 from un in One Space Dimension:

The vector un is a discretization of the approximate solution u(x, t) at time tn = n∆t and
un+1 is described in (4.1) .

1. Perform K iterations of the symmetric Lanczos algorithm on our matrix LN , discretized
from our spatial differential operator, and the initial vector un. The Lanczos algorithm
outputs the symmetric tridiagonal matrix, TK , which is then used to compute the K

eigenvalues λ̃1, . . . , λ̃K . These K eigenvalues are the frequency-independent nodes.

2. Compute polynomial interpolation with the few specifically chosen ω frequencies as
our interpolation points. A fourth degree polynomial interpolation is used to approxi-
mate our curve. We then evaluate all ω values in our polynomial to approximate the
remaining frequency-dependent nodes. These frequency-dependent nodes are stored
in λ j,ω where j = 1, . . . ,K.

3. Combine the frequency-independent nodes, λ̃1, . . . , λ̃K , with the frequency-dependent
nodes, λ1,ω , . . . ,λK,ω , for a total of 2K nodes that are used to compute the coefficients
of our interpolating polynomials, P2K−1,ω(λ ) of degree 2K−1. These polynomials
will interpolate e−λ∆t at the nodes λ0,ω , . . . ,λ2K−1,ω for ω1,ω2 = 1, . . . ,N.

For ω =−N/2+1, . . . ,N/2,we have the following:

p2K−1,ω(λ ) =
2K−1

∑
j=0

c j,ωλ
j, p2K−1,ω(λ j,ω) = e−λ j,ω ∆t

4. For j = 0,1, . . . ,2K−1 let C j = diag(c j,−N/2+1, . . . ,c j,N/2). Then compute un+1 as
follows

un+1 = F−1
N

2K−1

∑
j=0

C jFNL j
Nun,

where the matrix F performs an N-point Fast Fourier Transfer (FFT) in 1-D.

3.2 Two-Dimensional PDE

Using the previous approach, we expand the method to accurately approximate the frequency-
dependent nodes of a two-dimensional PDE with Dirichlet boundary conditions. Since
our boundary conditions are different, we will be interpolating from ω = 1, . . . ,N. We
choose ω values that are equally spaced over this interval and include low, medium, and
high frequencies. Generally, we choose the smallest and largest ω and then choose ω values
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that are equally spaced in between. These values are stored in the vector ~ω and m represents
the length of this vector.

Since this is a two-dimensional approach, we need all possible 2-D grid coordinates.
The meshgrid command in MATLAB produces all possible 2-D coordinate combinations
which are then stored in [~ω1, ~ω2]. Similar to the one-dimensional case, we run Lanczos
algorithm, but now for each two-dimensional coordinate. The Lanczos algorithm will return
the tridiagonal matrix, Tω that we then take the eigenvalues of. These eigenvalues are stored
in MATLAB as an m×m×K array. This is similar to our matrix mnodes from the 1-D case
but must be stored differently to account for both dimensions and to easily access the nodes
for a given frequency. These eigenvalues are stored in increasing order and are used as our
interpolation points.

The next step is to make all possible combinations of all ω values, not only the chosen
ones. The vector ~ωs contains all ω from (1, . . . ,N). The MATLAB command meshgrid

is called with the ~ωs and the 2-D coordinates are stored in [ ~ωs1, ~ωs2]. Our frequency-
dependent nodes corresponding to the frequencies in [ ~ωs1, ~ωs2] are stored in each m×m

layer of mnodes. We use the 2-D polynomial interpolation command in MATLAB, interp2,
with cubic spline interpolation. This outputs the values of the cubic spline at the interpolation
points. Similar to our frequency-dependent nodes being stored in n f in the 1-D case, their
values at [ωs1,ωs2] are stored in n f . The values at [ωs1,ωs2] are our frequency-dependent
nodes.

Algorithm for Two-Dimensional Parabolic PDEs with Dirichlet Boundary Conditions:

Similar to our one-dimensional algorithm, J is our Jacobian matrix, m is the number of
interpolation points, K is the number of non-block Lanczos iterations, and N is the number
of grid points per dimension. In addition, x and y contain the actual grid points and our
basis function is now sin(ω1x)sin(ω2y).

1. Given that our ω range from (1, . . . ,N), we choose ω values that are equally spaced,
give or take, in the given interval.

2. We store the chosen ω values in the vector ~ω and let m represent the length of this
vector.

3. Use the MATLAB command meshgrid with the vector ~ω to produce all possible
two-dimensional grid coordinates. These coordinates are stored in [~ω1, ~ω2].

4. for i = 1,2, . . . ,m
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for j = 1,2, . . . ,m
Run Lanczos algorithm for each two-dimensional coordinate [~ω1(i, j), ~ω2(i, j)].
Lanczos algorithm returns the tridiagonal matrix, TK .
Take the K eigenvalues for each TK .
The eigenvalues are then stored in the matrix mnodes in increasing order.

end
end

5. Again, use the MATLAB command meshgrid with the vector ~ωs containing all ω from
(0, . . . ,N) to produce all possible two-dimensional coordinates. These coordinates are
stored in [ ~ωs1, ~ωs2].

6. for j = 1, . . . ,K
Let NodesJ equal our matrix mnodes and reshape NodesJ so that it is a m×m

two-dimensional matrix.
Use a two-dimensional polynomial interpolation with ~ω, ~ω,NodesJ, ~ωs1,

and ~ωs2. In this case, we used the MATLAB command interp2 with
spline interpolation.

The values of each polynomial at all of the frequencies are reshaped as a vector and stored in the matrix n f .
end

Summary of algorithm for computing un+1 from un in Two Space Dimensions:

The vector un is a discretization of the approximate solution u(x, t) at time tn = n∆t and
un+1 is described in (4.1).

1. Perform K iterations of the symmetric Lanczos algorithm on our matrix LN , discretized
from our spatial differential operator, and the initial vector un. The Lanczos algorithm
outputs the symmetric tridiagonal matrix, TK , which is then used to compute the K

eigenvalues λ̃1, . . . , λ̃K . These K eigenvalues are the frequency-independent nodes.

2. Use polynomial interpolation with the few specifically chosen [~ω1, ~ω2] as our interpo-
lation points and the previously found eigenvalues of TK as our function values. A
two-dimensional cubic spline polynomial interpolation is used to approximate our
curve. We then evaluate all [ ~ωs1, ~ωs2] frequencies in our polynomial to approximate
the remaining frequency dependent nodes.

3. Combining the frequency-independent nodes, λ̃1, . . . , λ̃K , with the frequency-dependent
nodes, λ1,~ω , . . . ,λK,~ω , we have a total of 2K nodes that are used to compute the coeffi-
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cients of our interpolating polynomials, P2K−1,ω1,ω2(λ ) of degree 2K−1. These poly-
nomials will interpolate e−λ∆t at the nodes λ0,~ω , . . . ,λ2K−1,~ω for ω1,ω2 = 1, . . . ,N.

For ω1,ω2 = 1, . . . ,N,we have the following:

p2K−1,ω1,ω2(λ ) =
2K−1

∑
j=0

c j,ω1,ω2λ
j , p2K−1,ω1,ω2(λ j,~ω) = e−λ j,~ω ∆t

4. For j = 0,1, . . . ,2K−1 let C j = diag(c j,1,1, . . . ,c j,N,N). Then compute un+1.

un+1 = F−1
N

2K−1

∑
j=0

C jFNL j
Nun,

where the matrix F performs an N2-point Fast Fourier Transfer (FFT) in 2-D.
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Chapter 4

NUMERICAL RESULTS

4.1 One-Dimensional Parabolic PDE

Our first numerical result is demonstrating the effectiveness when solving the 1-D Parabolic
PDE,

ut = puxx +q(x)u, 0 < x < 2π (4.1)

with periodic boundary conditions,

u(0, t) = u(2π, t)

where
q(x) = 1+

1
2

sin(3x).

The number of grid points used in this case is 256, our ω values are between −N
2 +

1, . . . , N
2 , and our constant p is 1. Using this information, we create the Jacobian matrix

using a centered finite difference. The Jacobian matrix is then passed to our algorithm, along
with the values of x and the number of grid points. Our chosen five equally spaced ω values
are −N

4 ,−
N
2 ,1,

N
2 , and N

4 . We then run the Lanczos algorithm for each chosen ω which
outputs the symmetric tridiagonal matrix, TK . The eigenvalues of this matrix TK are the
nodes to our interpolation points, ω . We then use a fourth degree polynomial interpolation
to approximate the remaining frequency-dependent nodes to complete our curve. In Figure
4.1, we compared our method to this previous approach from [6]. However, this previous
approach is far more computationally expensive compared to our method. This alternative
approach must execute the Lanczos algorithm for all frequencies which then outputs the
symmetric tridiagonal matrix TK . It must then compute the eigenvalues for each TK . This
is computed for all ω between [−N

2 + 1, . . . , N
2 ]. Our method is far less computationally

expensive yet still holds accuracy.
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Figure 4.1: One-Dimensional result using the parabolic PDE with periodic boundary
conditions (4.1). The blue dashed curves represent all ω from [1, N

2 ] evaluated in the
Lanczos algorithm. The cyan curves represent our method of evaluating only five ω in the
Lanczos algorithm and using polynomial interpolation to approximate the curve.

4.2 Two-Dimensional PDE

Our second numerical result is with a 2-D PDE,

ut = ∆pu+q(x,y)u, 0 < x < π

with Dirichlet boundary conditions,

u(x,0) = u(x,2π) = u(0,y) = u(2π,y) = 0

where
q(x) = 1+

1
2

sin(3x)cosy.

Many of the steps are similar to the 1-D case but now we must account for the second
dimension and different boundary conditions. The number of grid points used was 32, our
ω values are between [1, . . . ,N], and our constant p is still 1. Since this is a 2-D case, we
need 2-D coordinates. Using our x-values, we must use the MATLAB command meshgrid

to produce all possible 2-D coordinate combinations. Our next step is to create our Jacobian
matrix using a centered finite difference. This Jacobian is then passed to our 2-D algorithm
described in the previous chapter, along with the x values, y values, and the number of grid
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points. Our chosen five ω in this case are 1, N
4 ,

N
2 ,

3N
4 , and N. Again, we use the MATLAB

command meshgrid to compute all possible 2-D coordinate combinations of our chosen ω .
The Lanczos algorithm is called with these coordinates and outputs a symmetric, tridiagonal
matrix TK for all combinations of the chosen ω . The eigenvalues of TK are our nodes for our
chosen ω . We then use the 2-D polynomial interpolation command in MATLAB, interp2,
with the chosen coordinate values, the nodes computed from the eigenvalues of TK , all
possible 2-D coordinate combinations of all ω from 1, . . . ,N, and specified cubic spline
interpolation to compute the remaining frequency dependent nodes. It is important to note
that all possible 2-D coordinate combinations of all ω were also produced by using the
MATLAB command meshgrid.

Looking at the figures that are to follow, Figure 4.2 uses the alternative approach of
computing the Lanczos algorithm for all possible 2-D coordinate combinations of all ω from
[1, . . . ,N] and then computing the eigenvalues for each TK produced from Lanczos. Figure
4.3 is our approach of computing the Lanczos algorithm for only the 2-D combinations
of our chosen ω and then computing the eigenvalues of the significantly less TK matrices.
Using the eigenvalues as nodes, we use polynomial interpolation to compute the remaining
frequency dependent nodes. Much like our 1-D case, this 2-D example also showcases how
far less computationally expensive our method is compared to the alternative method shown.
Even with our method being less expensive, it stills holds the order of accuracy needed to be
a competitive algorithm.
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Figure 4.2: Two-Dimensional PDE result using the Lanczos algorithm to evaluate all 2-D
coordinates consisting of the possible combinations of ω between [1,N].

Figure 4.3: Two-Dimensional PDE result using our method of choosing five ω values
to evaluate using the Lanczos algorithm and using a 2-D polynomial interpolation to
approximate the curve.
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4.3 Applying Our Method with KSS

After having success with a 1-D Parabolic PDE and a 2-D PDE, both having different
boundary conditions, we decided to test our new approach within KSS methods. Below are
the results from our first test case,

ut = α∆u+(1−3u2
0)u, 0 < t < 0.2 (4.2)

on the rectangle [0,1]2 with Neumann boundary conditions,

ux(0,y) = ux(1,y) = 0 and uy(x,0) = uy(x,1) = 0 (4.3)

where
u0(x,y) = 0.4+0.1cos(2πx)cos(5πy) (4.4)

The steps for this case are very close to the 2-D case previously discussed above with a
few differences. We use Neumann boundary conditions (4.3) and our basis function is now
cos(πω1x)cos(πω2y). This basis function also changes our interval of ω to [0,N−1].

Figures 4.5 and 4.7 show results from our method using three ω frequencies with 50
grid points and 150 grid points per spatial dimension, respectively. Comparing 4.5 to
Figure 4.4 and 4.7 to Figure 4.6, we can tell that our method captured the magnitude of
the exact frequency-dependent nodes. However, it did not accurately represent the trend of
the curves. From these results, we decided to change our chosen ω from three frequencies
to five frequencies. Figures 4.9 and 4.11 show the results from our method using five ω

with 50 grid points and 150 grid points per spatial dimension, respectively. Comparing
4.9 to Figure 4.8 and 4.11 to Figure 4.10, we can tell that our method again captured the
magnitude of the exact frequency-dependent nodes; but in addition, using five ω frequencies
also captured the trend of the curves. The slight discrepancy between these figures comes
from the oversimplification of the formulas in Figures 4.8 and 4.10. The error Figures 4.12
and 4.13 compare the two approaches using five ω frequencies with 50 grid points and
150 grid points per spatial dimension, respectively, These figures compare relative error
against execution time. These results show that our approach is slightly less efficient than
the previous KSS method [14]; however, our method still holds the same order of accuracy.
If the same error figures were computed using only three ω frequencies, as shown in 4.5
and 4.7, our method would be more efficient but less accurate.
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Figure 4.4: Results for the PDE (4.2) with Neumann boundary conditions (4.3) using the
equation (4.4). These results use the previous method for KSS [14] with three interpolation
points and 50 grid points per dimension.

Figure 4.5: Results for the PDE (4.2) with Neumann boundary conditions (4.3) using the
equation (4.4). These results use our new method with three interpolation points and 50
grid points per dimension.
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Figure 4.6: Results for the PDE (4.2) with Neumann boundary conditions (4.3) using the
equation (4.4). These results use the previous method for KSS [14] with three interpolation
points and 150 grid points per dimension.

Figure 4.7: Results for the PDE (4.2) with Neumann boundary conditions (4.3) using the
equation (4.4). These results use our new method with three interpolation points and 150
grid points per dimension.
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Figure 4.8: Results for the PDE (4.2) with Neumann boundary conditions (4.3) using the
equation (4.4). These results use the previous method for KSS [14] with five interpolation
points and 50 grid points per dimension.

Figure 4.9: Results for the PDE (4.2) with Neumann boundary conditions (4.3) using the
equation (4.4). These results use our new method with five interpolation points and 50 grid
points per dimension.
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Figure 4.10: Results for the PDE (4.2) with Neumann boundary conditions (4.3) using the
equation (4.4). These results use the previous method for KSS [14] with five interpolation
points and 150 grid points per dimension.

Figure 4.11: Results for the PDE (4.2) with Neumann boundary conditions (4.3) using the
equation (4.4). These results use our new method with five interpolation points and 150 grid
points per dimension.



27

Figure 4.12: Relative Error versus Execution Time with five interpolation points and 50 grid
points per dimension. The blue curve represents the previous method for KSS [14] and the
red dashed curve represents our new method.

Figure 4.13: Relative Error versus Execution Time with five interpolation points and 150
grid points per dimension. The blue curve represents the previous method for KSS [14] and
the red dashed curve represents our new method.
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Chapter 5

CONCLUSION

Our approach of computing the frequency-dependent nodes is slightly less efficient then
the most recent approach used in [11]. Even though our approach is slightly less efficient,
it is more readily applicable since it requires much less information from the user than
approach from [11]. The research of this method was intended to improve the overall user-
friendly aspect of KSS methods while also preserving the advantages KSS has over other
time-stepping methods, in terms of scalability to high resolution.. The previous approach of
computing the frequency dependent nodes needed to know information about the coefficients
of the PDE which, in turn, required the user to compute many tedious formulas by hand
before being able to use the KSS method. Our new approach has shown to hold up to the
accuracy of other approaches and requires minimal input from the user such as the type of
PDE, boundary conditions, and number of grid points.

In the future, we plan to broaden our scope to cover more types of PDEs and different
boundary conditions so that we can eventually create a complete, user-friendly, software
package of KSS methods for public use. In this thesis, we could use symmetric Lanczos
since we had a self-adjoint differential operator. If we use a differential operator that is not
self-adjoint, then we would need to use Arnold iterations. Future research will include stiff
PDEs with this type of differential operator that uses Arnold iterations. This work can be
expanded to easily apply to other PDEs, such as the wave equation that has been previously
applied with KSS methods [12, 13, 8].



29

BIBLIOGRAPHY

[1] Atkinson, K.: An Introduction to Numerical Analysis, 2nd Ed. Wiley (1989)

[2] Golub, G. H., Meurant, G.: Matrices, Moments and Quadrature. Proceedings of the 15th
Dundee Conference, June-July 1993, Griffiths, D. F., Watson, G. A. (eds.), Longman Scientific
& Technical (1994).

[3] Golub, G. H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton
University Press (2010).

[4] Golub, G. H., Underwood, R.: The block Lanczos method for computing eigenvalues. Mathe-
matical Software III, J. Rice Ed., (1977) 361-377.

[5] Hochbruck, M., Lubich, C.: On Krylov Subspace Approximations to the Matrix Exponential
Operator. SIAM J. Numer. Anal. 34 (1996) 1911-1925.

[6] Lambers, J. V.: Enhancement of Krylov Subspace Spectral Methods by Block Lanczos Iteration.
Electron. T. Numer. Ana. 31 (2008) 86-109.

[7] Lambers, J. V.: Explicit High-Order Time-Stepping Based on Componentwise Application of
Asymptotic Block Lanczos Iteration. Numerical Linear Algebra with Applications 19(6) (2012)
970-991.

[8] Lambers, J. V.: An Explicit, Stable, High-Order Spectral Method for the Wave Equation Based
on Block Gaussian Quadrature. IAENG Journal of Applied Mathematics 38 (2008) 333-348.

[9] Lambers, J. V.: Practical Implementation of Krylov Subspace Spectral Methods. Journal of
Scientific Computing 32 (2007) 449-476.

[10] Lambers, J. V.: A Multigrid Block Krylov Subspace Spectral Method for Variable-Coefficient
Elliptic PDE. IAENG Journal of Applied Mathematics 39(4) (2009) 236-246.

[11] Cibotarica, A., Lambers, J. V., Palchak, E. M.: Solution of Nonlinear Time-Depdendent
PDE Through Componentwise Approximation of Matrix Functions. Journal of Computational
Physics 321 (2016) 1120-1143.

[12] Lambers, J. V.: A Spectral Time-Domain Method for Computational Electrodynamics. Ad-
vances in Applied Mathematics and Mechanics 1(6) (2009) 781-798.

[13] Lambers, J. V. Krylov Subspace Spectral Methods for the Time-Dependent Schrödinger Equa-
tion with Non-Smooth Potentials. Numerical Algorithms 51 (2009) 239-280.

[14] Palchak, E. M., Cibotarica, A., Lambers, J. V.: Solution of Time-Dependent PDE Through
Rapid Estimation of Block Gaussian Quadrature Nodes. Lin. Alg. Appl. 468 (2015) 233-259.


	Automatic Construction of Scalable Time-Stepping Methods for Stiff PDES
	Recommended Citation

	tmp.1522243167.pdf.02peq

