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Abstract

Calculations for proton-nucleus scattering often rely on transition amplitudes. We
implement new transition amplitudes [7] with the relativistic equations. We can find
the matrix elements of the operators between the usual Dirac spinor basis or the
helicity spinor basis. The operators can also be written as a linear combination of
non-relativistic spin operators. To transform from one basis to another, we need to
find a transformation matrix. We must establish what one of the factors that appears
in the transformed expression means in order to correctly complete our transformation
matrix. Once this is resolved, our transformation matrix will be complete.

Key Terms: Nuclear physics, nuclear scattering, transition amplitudes
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Chapter 1: Introduction

One of the most useful experiments in nuclear physics is proton-nucleus scattering.

Scattering observables such as the differential cross-section, polarization, and spin

rotation functions can be measured during these experiments. There are wide ranges

of experiments, with projectile energies ranging from a few MeV to a few GeV and

target nuclei ranging from light nuclei such as deuterons to heavy nuclei such as lead.

Together, all this makes for an extremely rich field of study, with many opportunities

to learn more about the structure and inner workings of nuclei.

Traditionally, the non-relativistic Schrödinger equation,

[
− ~2

2µ
∇2 + U

]
ψ(r, θ, φ) = Eψ(r, θ, φ), (1.1)

where µ is reduced mass, U is optical potential, E is energy, r, θ, φ, are in the center

of mass frame, was used to predict nucleon-nucleus scattering observables, such as the

differential cross-section and polarization. The optical potential (U) can be expressed

in an infinite series called the multiple scattering series, and the usual approximation

is to take the single-scattering term of the series. In this first order optical potential,

the main ingredients are the nucleon-nucleon (NN) scattering t-matrix and the target

nucleus density function. The NN scattering t-matrix is usually calculated by fitting

parameters to the experimental NN data or from some theory. The target density

usually comes from electron scattering experiments. Non-relativistic calculations were

sufficiently accurate for small to medium energies (less than about 200 MeV), but even

at the higher end of these medium energies, they left some to be desired. The natural

next step was to add relativity.

Paul Adrian Maurice Dirac wrote the first relativistic equation for a spin 1/2

particle, and it is now known as the Dirac equation. A momentum space representation
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of the equation is

(E − V −mc2β − cα · p)ψ(p) = −e
∫

d3k[ψ(−k)− α ·A(−k)]ψ(p + k) (1.2)

Spin and negative energy states (anti-particles) have a natural explanation through

the Dirac equation. Using Dirac equations for scattering then requires relativistic

input for the NN amplitudes. The typical literature has many relativistic proton-nucleus

scattering calculations, all of which use NN amplitudes.[2, 3, 4, 7, 6] Unfortunately,

none of them fit past more than a couple of GeV. There is a latest set of NN amplitudes

that were fit to experimental NN data using Regge theory, allowing an energy range

up to tens of GeV.[6, 7] Our research is the first time that anyone is going to attempt

to use the new amplitudes in a proton-nucleus calculation with energies going up to

tens of GeV. To use these amplitudes, we need to find a transformation matrix to the

amplitudes required for p-n scattering.
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Chapter 2: Literature Review

While there are many similar projects, as seen in the literature, we are the first to

integrate these new amplitudes [7] with the relativistic equation, taking into account

spin and other factors.

Scattering Analysis Interactive Dial-in (SAID) is a repository of experimental data

and an interactive analysis facility that allows one to compare and extract data and

partial wave solutions for elastic nucleon-nucleon, pion-nucleon, kaon-nucleon, and

pion-deuteron scatterings.[1]

Arndt et al. used the SAID information with partial wave analysis of nucleon-nucleon

scattering up to 3 GeV, which is far past the previous best of 1 GeV.[2] This method

and use of the data can be very useful to us.

Rather than fitting phase shifts, like [2], Ford and Van Orden used the fitting

of nucleon-nucleon (NN) amplitudes.[6, 7] The Regge model was used to fit these

amplitudes, and the energy goes up to around 20 GeV. They fit these NN amplitudes

for Mandelstam s > 6 GeV2, and up to s ≈ 4000 GeV2.

Arnold et al. found a phenomenological fit to the optical potential for proton-nucleus

scattering using the Dirac equation.[4] Arnold and Clark used a similar approach in

a previous paper, [3].

A different approach was taken by Tjon and Wallace. Instead of a phenomenological

fit to the potential, they proposed a form for the potential, which is the product of

the NN amplitude and the target density. The NN amplitudes are obtained from NN

scattering data and the density was obtained from electron scattering. They solved

the Dirac equation in position space using this.[10]

Hynes et al. solve the relativistic scattering problem by using the Dirac equation

in momentum space, and the potential again assumes the form of the NN amplitude

times the target density. A prescription for extending to negative energy states was
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given, and in this approach, the negative energy propagation of the projectile nucleon

was explicitly taken into account. They conclusively showed that most of the success

of relativistic calculation comes from a diagram called the Z-graph.[8]
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Chapter 3: Strategy

The Dirac equation is relativistic, and in momentum-space, it contains propagators

where the projectile nucleon propagates in a negative energy state. Since we are

interested in the scattering amplitude in which the incoming and outgoing states

of the projectile are positive energies, we are interested in finding T++. T is the

transition operator, and the plus signs refer to the initial and final energy states of

the projectile particle.

In operator form, the coupled equation complete with positive and negative energy

propagation of the projectile proton is

T++ = U++ + U++G+T++ + U+−G−T−+

T−+ = U−+ + U−+G+T++ + U−−G−T−+. (3.1)

However, these equations are actually coupled 3-dimensional integral equations. In

the above equations the plus signs and minus signs refer to the energy state of the

projectile. The inputs to the integral equations are the components U++, U−+ and

U−− of the potential. This differs from the non-relativistic, in that the non-relativistic

only has the U++ component. Here, G+ and G− refer to the intermediate states in

which the projectile propagates in a positive energy or negative energy state.

In order to solve the coupled equations, we do a partial wave decomposition to

separate out the angular dependence and then rearrange the problem into a system

of linear equations, using Gaussian quadrature for the necessary integrals. Gaussian

quadrature is given by
1∫

−1

f(x)dx ≈
N∑
i=1

f(xi)wi, (3.2)

where xi are the roots of the Legendre polynomial of order N , and wi are weights

5



calculated from the derivatives of the Legendre polynomial. To integrate over a

different interval, a simple change of variables is used.

Any matrix elements of an operator Q can be expanded into partial waves as

〈p|Q|p〉 =
∞∑
l=0

l∑
m=−l

Ql(p, p
′)Y m

l (p̂′)Y m
l (p̂), (3.3)

where Y m
l are the spherical harmonics and Ql are the lth partial wave component of

Q. After the partial wave expansion and separation of the angular parts, and a lot of

manipulation, the above coupled equations become

T++
l (p′, p) =U++

l (p′, p) +

∞∫
0

U++
l (p′, p′′)G+(p′′)T++

l (p′′, p)p′′2dp′′

+

∞∫
0

U+−
l (p′, p′′)G−(p′′)T−+

l (p′′, p)p′′2dp′′ (3.4)

T−+
l (p′, p) =U−+

l (p′, p) +

∞∫
0

U−+
l (p′, p′′)G+(p′′)T++

l (p′′, p)p′′2dp′′

+

∞∫
0

U−−l (p′, p′′)G−(p′′)T−+
l (p′′, p)p′′2dp′′ (3.5)

In this framework, the input potential for each component is given by

Uρ1ρ2
l =

1∫
−1

tρ1ρ2(q)ρ(q)Pl(x)dx (3.6)

Here ρ1ρ2 are ±± components as appropriate and ρ(q) is the target density.

t(ρ1ρ2)(q) represents the NN amplitudes. For this work we will be employing the

latest FVO model amplitudes. [6, 7]

Now, by using Gaussian quadrature, the coupled integral equation can be written

in a matrix equation. While more involved, and potentially cumbersome, it is worth

exploring solving it by directly solving the 3-D equation. It could be extremely useful
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for high energies, which is what we are trying to research. At these high energies, the

partial wave method would produce a prohibitively large number of partial waves.

After using Gaussian quadrature for the integral, the first equation will be

T++
p′p = U++

p′p +
∑
p′′

U++
p′p′′G

+(p′′)T++
p′′pwp′′ +

∑
p′′

U+−
p′p′′G

−(p′′)T−+
p′′pwp′′ (3.7)

The second equation is found in the same way. [8] These matrix equations will be

solved numerically, using LAPACK routines. LAPACK is a collection of linear algebra

routines for Fortran and other languages.

In order to see the structure of how it can be solved, we can rewrite, for example,

for the ++ component

∑
p′′

[
δp′′p′ − Up′p′′G+wp′′

]
Tp′′p = Up′p (3.8)

∑
p′′

Λp′p′′Tp′′p = Up′p (3.9)

To get the −+ and other components, we form a super-matrix with all the necessary

components grouped into sub-matrices

 Λ++ Λ+−

Λ−+ Λ−−


 T++

T−+

 =

 U++

U−+

 . (3.10)

This allows us to have one giant matrix equation we will solve directly.
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Chapter 4: Carrying out our mathematical

manipulations

4.1 Preliminaries

The FVO model amplitudes use F̂ , defined by,

F̂ = FSI · I +FV γ(1) · γ(2) +FTσ(1)µνσ(2)
µν +FPγ(1)5γ(2)5 +FAγ(1)5γ(1)µγ(2)5γ(2)

µ (4.1)

We wish to arrive at

M(Ecm, θ) = A+B~σ1 · n̂~σ2 · n̂+C(~σ1 + ~σ2) · n̂+E~σ1 · q̂~σ2 · q̂ + F~σ1 · Q̂~σ2 · Q̂, (4.2)

from Love and Franey [9], as this is the coordinate system used by the simulation

we wish to use. Therefore, we must find a transformation matrix between the FVO

invariant amplitudes and the amplitudes from Love and Franey. We know that

ū(1)(~p′)ū(2)(~p′)M̂u(1)(~p)u(2)(~p) = ū(1)(~p′)ū(2)(~p′)F̂ u(1)(~p)u(2)(~p), (4.3)

so we can find the matrix by comparing the result when we sandwich both sets of

amplitudes with the same spin states.

The spin states we are sandwiching F̂ with are defined by

u(p) =

√
Ep +m

2m

 1

~σ·p
Ep+m

 (4.4)

ū(p) =

√
Ep +m

2m

(
1 −~σ·p

Ep+m

)
, (4.5)
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where p is the momentum in the center of mass frame and Ep =
√

p2 +m2.

4.2 Finding our sandwiched operator

We wish to find ū(1)(p ′)ū(2)(p ′)F̂u(1)(p)u(2)(p), so we work it out term by term.

4.2.1 I · I term

tS = ū(1)(p′)ū(2)(p′)FSI(1) · I(2)u(2)(p)u(1)(p) (4.6)

= FS(ū(1)(p′)I(1)u(1)(p))(ū(2)(p′)I(2)u(2)(p))

It is then simpler to evaluate the expression for one particle and then multiply the

result with the appropriate spin operator in place.

Ep +m

2m

(
1 −~σ·p′

Ep+m

) 1 0

0 1


 1

~σ·p
Ep+m

 =
Ep +m

2m

[
1− (~σ · p′)(~σ · p)

(Ep +m)2

]
(4.7)

From there, we get

tS =

(
Ep +m

2m

)2 [
1− (σ(1) · p′)(σ(1) · p)

(Ep +m)2

] [
1− (σ(2) · p′)(σ(2) · p)

(Ep +m)2

]
(4.8)

4.2.2 γ(1) · γ(2) term

tV = FV (ū(1)(p′)γ(1)u(1)(p))(ū(2)(p′)γ(2)u(2)(p)) (4.9)

= ū(1)ū(2)FV (γ
(1)
0 · γ

(2)
0 − γ̄

(1)
0 · γ̄

(2)
0 )u(1)u(2)

= FV (ū(1)γ
(1)
0 u(1)ū(2)γ

(2)
0 u(2) − ū(1)γ̄(1)u(1) · ū(2)γ̄(2)u(2))

9



From there, we can find a general expression for the γ0 and the γ̄ parts and recombine

the terms with the appropriate spin operators at the end.

γ0 part

ūγ0u =
Ep +m

2m

(
1 −~σ·p′

Ep+m

) 1 0

0 −1


 1

~σ·p
Ep+m


=
Ep +m

2m

(
1 −~σ·p′

Ep+m

) 1

− ~σ·p
Ep+m


=
Ep +m

2m

(
1 +

~σ · p′

Ep +m

~σ · p
Ep +m

)
(4.10)

γ̄ part

ūγ̄u =
Ep +m

2m

(
1 −~σ·p

Ep+m

) 0 σ̄

−σ̄ 0


 1

~σ·p
Ep+m


=
Ep +m

2m

(
1 −~σ·p

Ep+m

) σ̄ σ̄·p
Ep+m

−σ̄


=
Ep +m

2m

(
σ̄

σ̄ · p
Ep +m

+
σ̄ · p′

Ep +m
~σ

)
(4.11)

We can then combine equations 4.10 and 4.11 for both particles, yielding

tV =FV
(
Ep +m

2m

)2 [(
1 +

~σ(1) · p′

Ep +m

)(
~σ(1) · p
Ep +m

)(
1 +

~σ(2) · p′

Ep +m

)(
~σ(2) · p
Ep +m

)
−
(
σ̄(1) σ̄

(1) · p
Ep +m

+
σ̄(1) · p′

Ep +m

)(
σ̄(2) σ̄

(2) · p
Ep +m

+
σ̄(2) · p′

Ep +m

)]
(4.12)
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4.2.3 σ(1)µνσ
(2)
µν term

From Appendix A of “Relativistic Quantum Fields, vol. 1”, [5]

σ(1)µνσ(2)
µν = 2ᾱ(1) · ᾱ(2) + 2Σ̄(1) · Σ̄(2), (4.13)

where we have

ᾱ =

 0 σ̄

σ̄ 0

 and Σ̄ =

 σ̄ 0

0 σ̄

 (4.14)

We will then use the same strategy from before of calculating the parts of the term and

then recombining everything for both particles, using the appropriate spin operators.

ᾱ term

ū(p′)ᾱu(p) =
Ep +m

2m

(
1 − σ̄·p′

Ep+m

) 0 σ̄

σ̄ 0


 1

σ̄·p
Ep+m


=
Ep +m

2m

(
1 − σ̄·p′

Ep+m

) σ̄ σ̄·p
Ep+m

σ̄


=
Ep +m

2m

(
σ̄

σ̄ · p
Ep +m

− σ̄ · p′

Ep +m
σ̄

)
(4.15)

Σ̄ term

ū(p′)Σ̄u(p) =
Ep +m

2m

(
1 − σ̄·p′

Ep+m

) σ̄ 0

0 σ̄


 1

σ̄·p
Ep+m


=
Ep +m

2m

(
1 − σ̄·p′

Ep+m

) σ̄

σ̄ σ̄·p
Ep+m


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=
Ep +m

2m

(
σ̄ − (σ̄ · p′)σ̄(σ̄ · p)

(Ep +m)2

)
(4.16)

Then, we recombine the terms given by equations 4.15 and 4.16 to obtain

tT =FT
(
Ep +m

2m

)2

2

[(
σ̄(1) σ̄

(1) · p
Ep +m

− σ̄(1) · p′

Ep +m
σ̄(1)

)
·
(
σ̄(2) σ̄

(2) · p
Ep +m

− σ̄(2) · p′

Ep +m
σ̄(2)

)
+

(
σ̄(1) − (σ̄(1) · p′)σ̄(1)(σ̄(1) · p)

(Ep +m)2

)(
σ̄(2) − (σ̄(2) · p′)σ̄(2)(σ̄(2) · p)

(Ep +m)2

)]
(4.17)

4.2.4 γ(1)5γ(2)5 term

We use the same strategy as before, and evaluate ū(p′)γ5u(p).

ū(p′)γ5u(p) =
Ep +m

2m

(
1 − σ̄·p′

Ep+m

) 0 1

1 0


 1

σ̄·p
Ep+m


=
Ep +m

2m

(
1 − σ̄·p′

Ep+m

) 1

σ̄·p
Ep+m


=

1

2m
(σ̄ · p− σ̄ · p′) (4.18)

From there, when we take both particles into account, we obtain

tP =
FP

(2m)2
(~σ(1) · p− ~σ(1) · p′)(~σ(2) · p− ~σ(2) · p′) (4.19)

4.2.5 γ(1)5γ(1)µγ(2)5γ
(2)
µ term

The term we wish to evaluate is expressed as

tA =ū(1)(p′)ū(2)(p′)γ(1)5γ(1)µγ(2)5γ(2)
µ u(2)(p)u(1)(p) (4.20)

=ū(1)(p′)γ(1)5γ(1)0u(1)(p)ū(2)(p′)γ(2)5γ(2)0u(2)(p)

− ū(1)(p′)γ(1)5γ(1)u(1)(p)ū(2)(p′)γ(2)5γ(2)u(2)(p) (4.21)
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For this term, we use the same strategy as before. We first evaluate ūγ5γ0u, then we

evaluate ūγ5γu, then we reassemble the results.

ūγ5γ0u =− 1

2m
(~σ · (p′ + p)) (4.22)

ūγ5γu =
Ep +m

2m

(
−~σ − (~σ · p′)~σ(~σ · p)

(Ep +m)2

)
(4.23)

tA =FA
1

(2m)2
(~σ(1) · (p′ + p))(~σ(2) · (p′ + p))

−
(
Ep +m

2m

)2(
−~σ(1) − (~σ(1) · p′)~σ(1)(~σ(1) · p)

(Ep +m)2

)
·
(
−~σ(2) − (~σ(2) · p′)~σ(2)(~σ(2) · p)

(Ep +m)2

)
(4.24)

4.2.6 Combining all the terms

We are then able to write the sandwiched operator by summing the terms we have

already found.

ū(1)(p ′)ū(2)(p ′)F̂u(1)(p)u(2)(p) = tS + tV + tT + tP + tA (4.25)

From before, tS is given by equation 4.8, tV is given by equation 4.12, tT is given by

equation 4.17, tP is given by equation 4.19, and tA is given by equation 4.24.

4.3 Changing Variables

We wish to change to coordinates defined by q = p−p′, Q = p+p′, and n̂ = q̂× Q̂.

From there, we see that p = q+Q
2

, p′ = Q−q
2

, and n̂ = 2p×p′

p2
. Additionally, we have

the helpful vector relationship that (~σ ·A)(~σ ·B) = A ·B + i~σ · (A×B)

13



Love and Franey [9] give a structure of the N-N amplitudes as previously described

in equation 4.2. Because the code we are using is in this coordinate system, we wish

to change tS, tV , etc. . . to this coordinate system and simplify and rearrange things

until it fits the form from the Love and Franey paper.

4.3.1 tS Term:

In equation 4.8, we obtained an expression for tS, if we apply vector relations to

equation 4.8 and multiply out the expression, we obtain

ts =FS
(
Ep +m

2m

)2 [
1− 1

(Ep +m)2
(2p′ · p + i~σ(1) · (p′ × p) + i~σ(2) · (p′ × p)

1

(Ep +m)4

(
(p′ · p)2 + i(p′ · p)((~σ(1) + ~σ(2)) · (p× p))− ~σ(1) · (p′ × p)~σ(2) · (p′ × p)

)]
(4.26)

At this point, we can convert to the other coordinate system, arriving, after some

simplification, at

tS =FS
(
Ep +m

2m

)2(
1− 1

(Ep +m)2
(Q2 − q2 + iqQ(~σ(1) + ~σ(2)) · n̂

+
1

(Ep +m)4

[
1

4
(Q2 − q2)2 +

1

2
(Q2 − q2)

{
Qq(~σ(1) + ~σ(2)) · n̂−Q2q2(~σ(1) · n̂)(~σ(2) · n̂)

}])
.

(4.27)

The terms that appear in this expression can all be easily matched to those in equation

4.2.

4.3.2 tV Term:

To convert the vector term, I broke it down into ūγ0u and ūγu, converted those, and

then recombined them into tV .

To obtain ūγ0u, we make use of a few vector identities, and then convert to q and

14



Q, arriving at

ūγ0u =
Ep +m

2m

(
1 +

1

(Ep +m)2

[
1

2
(Q2 − q2) + i~σ · n̂Qq

])
. (4.28)

To obtain ūγu, we do the same, breaking the expression down into component

notation and then reassembling it to something more useful as necessary. The result

we arrive at is given by

ūγu =
1

2m
(Q + iq× ~σ) (4.29)

Then, we reassemble tV in the same fashion as it was before, arriving, after some

simplification, at

tV =FV
1

(2m)2

[
(Ep +m)2

(
1 +

1

(Ep +m)2

(
1

4
(Q2 − q2)2

+

{
i

2
Qq(Q2 − q2)

}
(~σ(1) + ~σ(2)) · n̂− qQ(~σ(1) · n̂)(~σ(2) · n̂)

−(Q2 − qQ(~σ(1) + ~σ(2)) · n̂− q2(~σ(1) · ~σ(2) − ~σ(1) · q̂~σ(2) · q̂)
))]

(4.30)

It is then apparent that with the exception of the terms of the form ~σ(1) · ~σ(2),

everything fits the form of equation 4.2. Terms like ~σ(1) · ~σ(2) are handled elsewhere

in the paper by Love and Franey, using the usual tensor operator.

4.3.3 tT Term:

We use the same strategy as before, converting ūᾱu and ū~σu separately and then

combining the converted expressions back into tV .

ūᾱu =
1

2m
(q + iQ× q) (4.31)
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This was calculated by breaking the vectors down into component notation and

manipulating them until we found a more useful expression.

We also have a similar methodology to arrive at the conversion for the term with

Σ̄. For this one, we use the following identities

σiσj = δij + iεijkσk (4.32)

εijkεilm = δjlδkm − δjmδkl (4.33)

This gives us

ūΣ̄u =
Ep +m

2m

((
1 +

Q2 − q2

(Ep +m)2

)
~σ − 1

(Ep +m)2

(
1

2
Q~σ ·Q− 1

2
q~σ · q +

i

2
n̂

))
.

(4.34)

From there, when we reassemble tT in the same manner we derived it earlier, we get

tT =2FT
{

1

(2m)2

([
q2 + iQq(~σ(1) + ~σ(2)) · n̂−Q2(~σ(1) · ~σ(2)

−(~σ(1) · Q̂)(~σ(2) · Q̂))
]

+ (Ep +m)2

[
~σ(1) · ~σ(2)

(
1 +

Q2 − q2

(Ep +m)2

)2

−(~σ(1) + ~σ(2)) · n̂
[(

iqQ

(Ep +m)2

)(
1 +

Q2 − q2

(Ep +m)2

)
− 1

4

]
+ (~σ(1) · Q̂)(~σ(2) · Q̂)

[
Q2

(
1 +

Q2 − q2

(Ep +m)2

)
1

(Ep +m)2
− Q4

4(Ep +m)4

]
+(~σ(1) · q̂)(~σ(2) · q̂)

[(
q

Ep +m

)2(
1 +

Q2 − q2

(Ep +m)2

)
+

q4

4(Ep +m)4

]
− 1

4

]}
(4.35)

From there, everything will match to the terms in equation 4.2 except for terms of

the form ~σ(1) · ~σ(2). Those terms will have to be handled separately.
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4.3.4 tP Term:

In equation 4.19, we obtained an expression for tP . If we take part of that term and

put the changed coordinates in, we get

1

2m
(~σ · p− ~σ · p′) =

1

2m

(
~σ ·
(
q + Q

2

)
− ~σ ·

(
Q− q

2

))
=

1

2m
(~σ · q). (4.36)

From there, we reassemble the term, obtaining

tP = FP
(

1

2m

)2

(~σ(1) · q)(~σ(2) · q). (4.37)

Since q = qq̂, we arrive at

tP = FP
( q

2m

)2

(~σ(1) · q̂)(~σ(2) · q̂). (4.38)

This lines up with the term whose coefficient is E in equation 4.2.

4.3.5 tA Term:

This term is handled exactly like tT was, yielding

tA =FA
1

(2m)2

(
Q2(~σ(1) · Q̂)(~σ(2) · Q̂)

−(Ep +m)2

[
~σ(1) · ~σ(2)

(
1− Q2 − q2

(Ep +m)2

)2

− (~σ(1) + ~σ(2)) · n̂
(

iqQ

(Ep +m)2

(
1− Q2 − q2

(Ep +m)2

))
+ (~σ(1) · Q̂)(~σ(2) · Q̂)

((
Q

Ep +m

)2(
1− Q2 − q2

(Ep +m)2

)
− Q4

4(Ep +m)4

)

+(~σ(1) · q̂)(~σ(2) · q̂)

((
q

Ep +m

)2(
1− Q2 − q2

(Ep +m)2

)
− q4

4(Ep +m)4

)
− 1

4

])
(4.39)
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This term has the same problems as tT , so when those are solved, it will immediately

be applicable to this term.
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Chapter 5: Conclusions

We can take the transformed terms and construct a transformation matrix in order

to use an existing, proven numerical simulation. To do this, however, we must first

take care of the terms mentioned above as not fitting the equation (4.2) we are using

from Love and Franey’s 1981 paper.

Since we must have

ū(1)(~p′)ū(2)(~p′)M̂u(1)(~p)u(2)(~p) = ū(1)(~p′)ū(2)(~p′)F̂ u(1)(~p)u(2)(~p), (5.1)

where M̂ is given by equation 4.2 and F̂ is given by equation 4.1, we get the following

transformation matrix



A

B

C

E

F


=



AS AV AT AP AA

BS BV BT BP BA

CS CV CT CP CA

ES EV ET EP EA

FS FV FT FP FA





FS

FV

FT

FP

FA


. (5.2)

The ~σ(1) · ~σ(2) that are not accounted for from each of the previously calculated tV ,

tT , etc. . . must sort into one of the terms in the transformation matrix given above.

While it is tempting to use what we have in the calculation, it is not yet known

what contribution ~σ(1) · ~σ(2) will have to the entries in the transformation matrix.

Therefore, we cannot yet test these amplitudes in an actual calculation. This extra

term will be handled in the future so that we can perform the transformation and use

the FVO Regge amplitudes in an actual calculation.
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