
The University of Southern Mississippi The University of Southern Mississippi 

The Aquila Digital Community The Aquila Digital Community 

Honors Theses Honors College 

Spring 5-2015 

2-Domination and Annihilation Numbers 2-Domination and Annihilation Numbers 

Sean C. Patterson 
University of Southern Mississippi 

Follow this and additional works at: https://aquila.usm.edu/honors_theses 

 Part of the Other Mathematics Commons 

Recommended Citation Recommended Citation 
Patterson, Sean C., "2-Domination and Annihilation Numbers" (2015). Honors Theses. 279. 
https://aquila.usm.edu/honors_theses/279 

This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital 
Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila 
Digital Community. For more information, please contact Joshua.Cromwell@usm.edu. 

https://aquila.usm.edu/
https://aquila.usm.edu/honors_theses
https://aquila.usm.edu/honors_college
https://aquila.usm.edu/honors_theses?utm_source=aquila.usm.edu%2Fhonors_theses%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=aquila.usm.edu%2Fhonors_theses%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/honors_theses/279?utm_source=aquila.usm.edu%2Fhonors_theses%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu


The University of Southern Mississippi

2-DOMINATION AND ANNIHILATION NUMBERS

by

Sean Crist Patterson

A Thesis
Submitted to the Honors College of

The University of Southern Mississippi
in Partial Fulfillment

of the Requirements for the Degree of
Bachelor of Science

in the Department of Mathematics

May 2015



ii



Approved by

Samuel Lyle, Ph.D., Thesis Adviser
Associate Professor

Bernd Schroeder, Ph.D., Chair
Department of Mathematics

Ellen Weinauer, Ph.D., Dean,
Honors College

iii



ABSTRACT

Using information provided by Ryan Pepper and Ermelinda DeLaVina in their paper On

the 2-Domination number and Annihilation Number, I developed a new bound on the 2-

domination number of trees. An original bound, γ2(G)≤ n+n1
2 , had been shown by many

other authors. Our goal was to generate a tighter bound in some cases and work towards

generating a more general bound on the 2-domination number for all graphs. Throughout the

span of this project I generated and proved the bound γ2(T )≤ 1
3(n+2n1+n2). To prove this

bound I first proved that the 2-domination number of a tree was less than or equal to the sum

of two sub-trees formed by the deletion of an edge: γ2(T )≤ γ2(T1)+ γ2(T2). From there, I

proved our bound by showing that a minimum counter-example did not exist. A large portion

of the results involves cases where a graph T is considered the minimum counter-example

for the sake of contradiction. From there, I showed that if T was a counter-example, then a

sub-tree T1 was also a counter-example, meaning that T would no longer be the minimum

counter-example. The last portion of the results is a section comparing the two bounds

on the 2-domination number with respect to the number of edges and the degrees of those

edges.

Key Words: Annihilation number of a graph, 2-Domination number of a graph, trees
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Chapter 1

Introduction

Ermelinda DeLaVina and Ryan Pepper wrote an article [Delavina and Pepper, 2008] in
2008 entitled "2-Domination and Annihilation Number" which describes results from a
computer program named Graffiti.pc. The paper presents a conjecture which suggests
that the 2-domination number of a graph G, denoted by γ2(G), is less than or equal to the
annihilation number of a graph, denoted by a(G), plus one [Delavina and Pepper, 2008].
Precisely,

γ2(G)≤ a(G)+1.

A significant amount of progress has been made by such authors as Wyatt Desormeaux,
Michael Henning, Douglas Rall, and Anders Yeo when G is a tree [Desormeaux et al., 2014].
This research project attempts to expand upon their work and the work of many others by
analyzing a bound on the 2-domination number suggested by this conjecture and proving a
special case. In doing so, this project helped to expand the field of graph theory which has
varied practical applications in the areas of biosystematics, social networking analysis, and
topology.

According to DeLaVina, Graffiti.pc is a "conjecture-making computer program" that
has been used to help support, form, and discredit predictions made primarily in the fields
of graph theory and chemistry [DeLaVina, 2002]. It is used to search through many graphs
and make conjectures about the relationships between graph parameters. Graffiti.pc is the
second generation of this computer program. The original version, Graffiti, was created by
Siemion Fajtlowicz and later enhanced by DeLaVina to make a more user friendly version
[DeLaVina, 2005].

This project is in the field of mathematics called graph theory. A graph, in the context of
this project, is a set of vertices and a set of edges. A graph is often denoted by G = (V,E),
where E is the set of edges, and V is the set of vertices. The edge set is a subset of the
ordered pairs of V ×V . In this thesis, only simple, loopless graphs are considered; that is, no
vertex is in an edge with itself and there are no repeated edges. Two vertices are considered
adjacent if there is an edge between them. For a subset S of vertices in the graph to be
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considered a k-dominating set, there must be k or more adjacent (or neighboring) vertices in
S for each vertex not in the subset S. The value of k is set as k = 2 for this project. In order
for S to satisfy the definition of a 2-dominating set, each vertex that is not in set S must have
two neighbors that are in the set S. This is more easily understood with a few examples.
Take the graph in Figure 1.1:

Figure 1.1: Even Cycle, C8

It has 8 vertices and 8 edges. The degree of a vertex v is defined as the number of edges
incident to a vertex. The total number of edges in a graph is denoted by the letter m, and the
total number of vertices for a graph is denoted by n. The total number of vertices of degree
d is denoted by nd , where d is the degree of that vertex. When the graph under consideration
is not clear, I used n(G)and nd(G) to denote the number of vertices of G and the number of
vertices from G of degree d. For example, in Figure 1.1, n2 = n because all of the vertices
have exactly 2 edges incident with them. There are many sets of vertices that can be chosen
to form a 2-dominating set. For example, in Figure 1.1, suppose every vertex is chosen.
Then, by defintion, S is a 2-dominating set, because every vertex is in the set S. Every vertex
not in S has two neighbors by default because there are no vertices which are in this category.

Even though choosing every vertex is the simplest way of achieving a 2-dominating set,
it serves very little purpose and is not an interesting choice. Something more difficult to
determine is the minimum number of vertices in S such that S is still a 2-dominating set. This
is called the 2-domination number, and it is denoted by γ2(G). An analogous parameter for
k-dominating sets is called the k-domination number and is denoted by γk(G). An attempt
to minimize the amount of vertices in a 2-dominating set for the graph in Figure 1.1 would
result in the set of vertices indicated by Figure 1.2. Shaded vertices indicate vertices in the
2-dominating set. All of the vertices are either in the set or have two neighbors which are in
the set, so this set satisfies the definition of a 2-dominating set. Because four vertices are in
the set S, γ2(G) = 4. It is simple to figure out the 2-domination number of this graph, but
making a generalization is a little more difficult.
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Figure 1.2: A 2-Dominating Set of Minimum Order for the Graph in Figure 1.1

A cycle is defined to be a graph that "consists of a sequence of vertices starting and
ending at the same vertex, with each two consecutive vertices in the sequence adjacent
to each other in the graph" [Imrich et al., 2008]. In particular, an even cycle has an even
number of vertices. Cycles do not have any chords, which are edges that divide a cycle of
four or more edges into two smaller cycles. For such a specific set of graphs, an easy result
about γ2(G) can be made. Take, for example, the even cycle graphs in Figure 1.1. In these
two graphs, along with the graph from 1.2, we can choose S such that γ2(G)≤ n2

2 . In fact,
γ2(G) = n

2 when G is an even cycle [DeLaVina et al., 2011].

Another term that needs to be defined is the annihilation number of a graph. In order
to obtain the annihilation number, arrange all degrees of the vertices in non-decreasing
order. The annihilation number of a graph is the maximum number of degrees that can be
added together in ascending order to approach but not go over the total number of edges
of that graph. It is represented by a(G). Figure 1.3 provides an example of calculating the
annihilation number. The numbers inside each vertex in Figure 1.3 represent the degrees.
This graph has several edges not in the main 7-vertex cycle and chord. Notice that every
vertex with degree 1 must be chosen for the 2-dominating set. This is because these vertices,
referred to as leaves, cannot have two neighbors in the set S. Thus, leaves must be included
in any 2-dominating set.

Fact 1. Any 2-dominating set S of a graph must contain all leaves.

Fact 2. The annihilation number can also be described as: k : ∑i≤k di ≤ ∑i>k di where
d1, ...,dn are the vertex degrees in non descending order. [Delavina and Pepper, 2008]

For the graph in Figure 1.3, the degrees arranged in order are: 1, 1, 1, 2, 2, 2, 2, 3, 4, and
4. The number of edges is m = 11. After adding the first seven terms, the value is exactly
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Figure 1.3: Reference for Annihilation Number Discussion with Degrees Marked

11, so a(G) = 7. The 2-domination number for the graph in Figure 1.3 is γ2(G) = 7. As can
be seen here, there is already possible evidence for a correlation between the 2-domination
number and the annihilation number. For example, in even cycles, the annihilation number
will always be equal to the 2-domination number. This is because every vertex in a cycle
has degree two. In fact, the annihilation number is n

2 because every edge supplies a value of
2, which means that it will take half of the degrees to add up to the total number of edges.
The 2-domination number for an even cycle is also n

2 .

This correlation is interesting to note, but the next section focuses on the following
conjecture [Delavina and Pepper, 2008].

γ2(G)≤ a(G)+1

This project builds on the progress made by other mathematicians and work to explore
more conjectures related the 2-domination and annihilation numbers. Those include, but are
not limited to:

γ2(G)≤ 1
2
(m+n1)

γ2(G)≤ 1
3
(m+2n1 +n2).

And the more general:

γ2(G)≤ 1
k
(m+(k−1)n1 +(k−2)n2 + ...+(k− (k−1))nk−1).
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Chapter 2

Literature Review

As discussed in the introduction, Graffiti.pc was used to generate the potential correlation
between the annihilation number and the 2-domination number. Graffiti.pc has been used
for numerous research projects. Barbara Chervenka, a student of DeLaVina, described her
experiences with the program in a more anecdotal account entitled "Graffiti.pc Red Burton
Style: A Student’s Perspective." She describes a specific project that she was working on
and how the program helped develop and support her claims. Chervenka says Red Burton
Style describes a methodology developed by Fajtlowicz for using the Graffiti program. She
also tells how the program was utilized as a learning tool [Chervenka, 2002].

When describing how Graffiti.pc functions, DeLaVina explains the importance of "Dal-
matian Heuristics." There is a large collection of past conjectures which the program stores
and keeps track of. When a new conjecture is introduced, it is compared to the database of
previous conjectures to see if it is compatible and genuine. After this stage of processing
is finished, Graffiti.pc tests this conjecture against a large database of graphs of all forms
to see if it is still worthwhile. Every conjecture generated by Graffiti is expressed as an
inequality. [DeLaVina, 2002] All of the subsequent formulas that were derived for the sake
of this project are also represented as inequalities.

The annihilation number was first introduced in [Pepper, 2004] by Ryan Pepper. This
concept of the annihilation number was introduced in tandem with the Havel-Hakimi process,
and Pepper’s dissertation worked to explore those topics [Pepper, 2004]. The domination
number of graphs has also sparked many mathematicians’ interest, with its origins in the
1977 paper "Towards a Theory of Domination of Graphs" [Cockayne and Hedetniemi, 1977].
This article explains the concept of domination and works to relate it to graph coloring along
with other mathematical concepts. Graph coloring is a branch of graph theory in which
mathematicians attempt to find out the minimum number of colors necessary to color a
map or graph so that no adjacent countries or vertices have the same color. There are many
articles published on graph coloring. The chromatic number is denoted by χ(G) and is
defined as the minimum number of colors needed to color all of the vertices in a graph and
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have no vertices with the same colors adjacent to one another [Catlin, 1978].

Figure 2.1: Examples of the Chromatic Number of a Graph

For example, consider the first graph in Figure 2.1. A graph in which all vertices are
adjacent to another must have a different color on every vertex. Therefore, the chromatic
number of the first graph in Figure 2.1 is χ(G) = 8. As you start to remove edges from a
graph, the amount of colors needed for the graph may decrease. The chromatic number
for the second graph in Figure 2.1 is χ(G) = 3, and the chromatic number for third graph
in Figure 2.1 is χ(G) = 2. Catlin presents a simple inequality for the chromatic number
χ(G)≤ ∆(G)+1 as a starting block for his theories [Catlin, 1978], where ∆(G) represents
the maximum degree of any vertex in a graph G.

Wyatt Desormeaux, Michael Henning, Douglas Rall, and Anders Yeo work to explain
the conjecture from [Delavina and Pepper, 2008] when it is restricted to trees in an article
[Desormeaux et al., 2014] titled Relating the Annihilation Number and the 2-Domination

Number of a Tree. This paper proves the fact that the inequality: γ2(G)≤ a(G)+1 works
for degrees of 3 or greater and proves that the inequality works for degrees of 1 and 2
if the graph in question is a tree [Desormeaux et al., 2014]. A tree is a undirected graph
in which any two vertices are connected by exactly one simple path [Golumbic, 1980].
Alternatively, a tree can be defined as a connected graph without a cycle. An important
theorem that was shown in [Desormeaux et al., 2014] Relating the Annihilation Number and

the 2-Domination Number of a Tree is the following, which has been shown by many authors:

Theorem 1 (Fink et. al [Fink and Jacobson, 1985]). For any tree T ,

γ2(T )≤
1
2
(n+n1).

The term n1 refers to the number of vertices that are of degree 1. These vertices of degree
one are also called leaves. These particular vertices are set apart from the other vertices
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Figure 2.2: Example of a 2-Dominating Set

because they are required to be in any 2-dominating set S. This is because, as discussed
earlier, leaves are not capable of having two neighbors in any set S. This formula is a starting
point for the work done in this project. Figure 2.2 shows an example of a tree such that
the shaded vertices form a 2-dominating set. The numbers inside each vertex represent the
degree of each vertex. Notice that every vertex with a degree of one, a leaf, is shaded. A
tree can have vertices with any degree as long as no cycles are formed. The value for n1 of
this graph would be 9 because there are 9 vertices of degree one.

The formula listed above came from work done by DeLaVina, Pepper, and Vaughan in
their manuscript titled On the 2-Domination Number of a Graph [DeLaVina et al., 2010].
They presented the following theorem for a graph G with n≥ 3 vertices.

Theorem 2 (DeLaVina et. al [DeLaVina et al., 2011]). Let G be a graph and S2 be the set of
vertices with degree at most 2, then

γ2(T )≤
1
2
(n+α(G[S2])).

The variable α(G) in the above theorem represents the independence number, which
is the order of the largest independent set [DeLaVina et al., 2010]. This formula only con-
siders the vertices of degree 2 or less. This formula reappears in a subsequent paper titled
"Graffiti.pc on the 2-domination number of a graph" [DeLaVina et al., 2010] written by
DeLaVina, Larson, Pepper, and Waller. This paper is comprehensive and includes many
inequalities that relate the 2-domination number to other prominent values. At the end of
their discussion, there is a list of notable conjectures. The two listed are the most relevant to
this project.

Conjecture 1 (Delavina et. al [DeLaVina et al., 2010]). Let G be a connected n-vertex graph.
Then,

γ2(G)> n−m(G)+1.
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where m(G) represents is the upper or statistical median of the degree sequence of G.

Conjecture 2 (DeLaVina et. al [DeLaVina et al., 2010]). Let G be a connected graph. Then,

γ2(G)≤ a(G)+1

This project uses the information gained from the above resources as a starting block
for research and as a source of mathematical perspective when generating new proofs and
explanations.
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Chapter 3

Methods

In order to generate and begin analyzing any formulas pertaining to the original inequality
suggested by DeLavina and Pepper, there are many preliminary calculations and proofs that
must be done.

In Section 4.1, I provide an alternative proof for the bound γ2(T ) ≤ n+n1
2 which was

shown in [Desormeaux et al., 2014]. This proof relies on layering trees in such a way that I
can find a 2-domination set. I first choose a vertex from the tree as a "root". The distance
between two vertices, denoted by d(u,v) for vertices u and v, is the length of the shortest
path in G between u and v, where d(u,u) = 0. I use the distance from the root to layer the
vertices of a tree and choose 2-dominating sets based on this layering.

In Section 4.2, I conjecture a new family of bounds on the 2-domination number using
motivation from the conjecture regarding the annihilation number. I start by arranging the
degree values necessary to generate the annihilation number, with k being the largest term
needed. Then I multiply the number of terms for each degree by the degree value they
represent and set that greater than or equal to m or the total number of edges. After some
algebraic manipulations, I am left with the desired formula with respect to k and the total
number of edges of each degree (or nd). In order to consider a particular instance of this
formula for analysis, k is set equal to 3.

Before proving the main result, I first prove a lemma about the 2-domination number
of vertex-disjoint subgraphs of a graph. Section 4.3 provides a proof for the inequality
γ2(T ) ≤ γ2(T1)+ γ2(T2). This shows that when a particular tree is split at one edge, the
original 2-domination number for T is less than or equal to the sum of the 2-domination
numbers for each of the individual parts left after the edge was taken out. This section is
a direct proof, and this lemma is utilized in the following section where I show the main
result: γ2(T )≤ 1

3(n+2n1 +n2).
The proof of this bound relies on considering a minimum counter-example T and proof

by contradiction. I remove a segment of graph T to yield T1 and T2. The rest of the proof
relies on proving that T1 is also a counter-example. If T1 is also a counter-example, then T

is not the minimum counter-example. The goal of this type of proof is to show that there
is no minimum counter-example by using this technique over different cases with smaller
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and more specific graphs of T . The cases are considered to put more and more restrictions
on the specific graph being considered. For the first example, the graph of a tree with a
maximum path ending with four leaves was considered. This is the first example necessary
because a terminal degree of anything larger would not add any terms to the formula for
the boundary because it only considers terms of degree 2 or less. The amount of vertices
removed to generate T1 is based on the ease with which the proof of contradiction can be
generated. If a certain choice in removal does not generate a contradiction, then a different
set of vertices were chosen. With different sets of vertices being removed and steadily more
specific graphs being considered, more specific cases were considered in order to cover every
potential source of a minimum counter-example. Another similar proofing technique is used
in this section, and it also relies on a proof by contradiction in which T is a the minimum
counter-example. Because T is the minimum counter-example, T1 is not a counter-example,
as stated before. The approach to this proof is different though because it works to added
edges back to T1 in order to regenerate T . When T is regenerated, it was no longer be a
counter-example, which is a contradiction. Because of the contradiction, T would not be the
minimum counter-example. This very similar proof technique was utilized because some of
the more specific cases involving a tree with a maximum path ending with only one leaf did
not cooperate with the initial proof method.

After this formula has been proven, some time is devoted to comparing the family of
conjectured bounds for the 2-domination number. In particular, I consider the cases in which
k = 2 and k = 3. The two bounds are compared by setting them equal to one another and
solving for n. When n is greater than the suggested value, the bound for k = 3 provides
a more accurate boundary. When n is less than the suggested value, the bound for k = 2
provides a more accurate boundary. Several examples are provided which show when each
formula provides a better estimate.
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Chapter 4

Results

4.1 Alternate Proof of γ2(T )≤ n+n1
2

To begin with, I provide an alternate proof of the following theorem.

Theorem 3. Let T be a tree. Then,

γ2(T )≤
n+n1

2

where n1 is the total number of vertices with degree one and n is the total number of vertices.

Proof. For the sake of this proof, I considered a graph T which has one vertex selected
as the root. In order to begin generating a 2-domination set for T , the root is put in set S1

along with every leaf in the graph. Layer L1 is defined as all of the vertices adjacent to the
root. Each consecutive layer, Ll , is defined as every vertex adjacent to a vertex in Ll−1 not
including those in Ll−2 where l is the index of each layer. L0 is considered the root. The
number of layers varies depending on the size and structure of the tree. Alternatively, Ll is
described as the vertices at distance l from the root.

After selecting the root and every leaf to be in set S1, I chose all of the vertices in each
layer with an even index to also be in set S1. Each vertex that is not included in set S1,
meaning the index of the layer containing the vertex is odd, has a vertex in set S1 adjacent to
it in the layers Ll−1 and Ll+1. Because set S1 contains every leaf, the root, and every vertex
in an even numbered layer, it is a 2-domination set by definition.

For a visual of the layers of graph T along with the chosen layers to be included in set
S1, reference the first two graphs presented in Figure 4.1.

To find a different 2-domination set S2, a similar method is used. The root and the layers
are the same, but instead of choosing the even layers to be in the 2-domination set, I chose
the odd layers to be in the 2-domination set. That being said, the root may or may not be in
set S2. As before, all of the leaves need to be included in the 2-domination set, so S2 is a
2-domination set by definition. The graph on the right in Figure 4.1 represents the layers
chosen to complete the 2-domination set for S2. The rooted vertex for the graph on the right
in Figure 4.1 is shaded gray to signify that the rooted vertex may be a leaf and thus would
be included in set S2.
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Figure 4.1: Alternating set S

Because the 2-domination number is the minimum number of vertices needed for set S

to be a 2-domination set, γ2(T )≤ S1. Likewise, the number of vertices in S2 must be less
than or equal to S. So we have:

γ2(T )≤ |S1|

γ2(T )≤ |S2|

Because both of the values for S1 and S2 are separately greater than or equal to the
2-domination number of graph T , their sum should be at least twice the value of γ2(T ). So,

2γ2(T )≤ |S1|+ |S2|

γ2(T )≤
1
2
(|S1|+ |S2|)

Collectively, S1 and S2 contain every vertex in the graph at least once. Every leaf was
included in both set S1 and S2. Every vertex with a degree greater than 1 was either included
in S1 or S2, but they were not included in both due to the alteration between even and odd
layers being chosen to be in the 2-domination set. Therefore, if n is the total sum of vertices
in T and n1 is the number of leaves, then

| S1 |+ | S2 |= n+n1,

By substituting into the relationship between γ2(T ) and | S1 | and | S2 |, we get

γ2(T )≤
n+n1

2
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4.2 Generating a New Formula: 1
3(n+2n1 +n2)

By definition, the annihilation number is the minimum number of non-decreasing degrees
that are necessary to reach but not go over the total number of edges. That being said,
a(G)≤ m. The connection between the notation nk and a(G) is illustrated by Figure 4.2.

Figure 4.2: Annihilation Number

In Figure 4.2, k is the degree of the vertex with the largest degree considered for the
sum of degrees that generate annihilation number. There may be other vertices with degree
k that are not necessary to consider when attempting to reach the total number of edges.
Let nk is the number of terms with degree k, and let m denote the number of edges in
G. Now suppose we choose a minimum t and a c such that n1 +2n2 + ...+ t(nt − c)> m.
Then, from the definition of annihilation number and from the inequality γ2(G)≤ a(G)+1,
a(G)+1 = n1 +n2 + ...+(nt− c). From there we can say,

t(a(G)+1) = tn1 + tn2 + ...+ t(nt− c)

= [n1 +2n2 + ...+ t(nt− c)]+(t−1)n1 +(t−2)n2 + ...+(nt− c)

> m+(t−1)n1 +(t−2)n2 + ...+nt−1

Then, a(G)+1 >
1
t
(m+(t−1)n1 +(t−2)n2 + ...+nt−1)

In order to find a related boundary, I considered how values of t change the bound. The
following function defines such a bound with the variable k.

p(k,G) = (m+1)+(k−1)n1 +(k−2)n2 + ...+nk−1

If k = t and G is a graph such that c = 0, then,

1
t

p(t,G)≤ a(G)+1.
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From there, I generated the following conjecture using the function just defined, which I
subsequently proved.

Theorem 4. For any connected tree T with n vertices, n1 leaves and n2 vertices with degree
2,

γ2(T )≤
1
3

p(3,T ) =
1
3
(n+2n1 +n2).

4.3 Proving γ2(T )≤ γ2(T1)+ γ2(T2)

In this proof I am working to show that the inequality γ2(T )≤ γ2(T1)+ γ2(T2) is true for a
graph T which is a tree. Graph T1 and T2 are two sub-trees of the original tree T that are left
when one edge of the graph is deleted. If one edge of the graph is deleted, there must be
exactly two separate graphs because there are no cycles by definition of a tree. Both of the
new graphs are trees because deleting an edge does not form a cycle, and therefore both of
the new subgraphs also do not have cycles in them.

Conjecture 3. Let T be a tree, and let T1 and T2 be the two sub-trees formed by deleting an
edge. Then γ2(T )≤ γ2(T1)+ γ2(T2).

Proof. Let T be a tree, and let v1 and v2 be adjacent vertices. Deleting the edge between
these two vertices would result in two disconnected sub-trees, T1 and T2. Let S1 and S2

be minimum 2-domination sets for the corresponding sub-trees. Now let S = S1∪S2 and
choose a vertex v ∈ T . Either v ∈ S or v /∈ S. If v /∈ S, I assumed without loss of generality
that v ∈ T1. Then, the edge is reinserted between v1 and v2. Because S1 is a 2-domination
set of T1, v must have two neighbors in S1. This could also be said for any vertex in T2 that
is not in S. Therefore S is a 2-domination set for T . So the 2-domination number for T is
less than or equal to the number of vertices in S. Therefore,

γ2(T )≤ |S|= |S1|+ |S2|= γ2(T1)+ γ2(T2)

Note that one or more unnecessary vertices may be taken out of the 2-domination set of T

to create a 2-domination set with the minimum amount of vertices. So, the 2-domination set
for T could be less than S.

4.4 Minimizing the bounds on the counter-example for γ2(T )≤ 1
3(n+2n1 +n2)

This section is working to prove that the inequality γ2(T ) ≤ 1
3(n+ 2n1 + n2) is true by

proving that a counter-example does not exist. This was done by taking more and more
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Figure 4.3: Splitting a Tree Example

specific cases and proving that there must be a smaller counter-example than the potential
example provided if a counter-example exists. This method is called "Proof by Minimal
Counter-example." Each case is distinguished by the degree of vertex x, which is the
penultimate vertex in a maximum path P of the graph T .

To start, let T be a tree such that γ2(T ) >
n+2n1+n2

3 . This would be saying that the
suggested formula does not provide an upper bound as previously suggested. I looked at
some potential scenarios that would prove the above counter statement true. For the first
example, we have a graph T with four leaves on the terminal end of the path with the
maximum length in the graph. See Figure 4.4.

Figure 4.4: Graph T : Maximum Path with 4 Leaves

Figure 4.5: Graph: T1: Maximum Path with 4 Leaves Minus 2 Leaves

Claim 1. The degree of x is less than or equal to 5.

Theorem 5. Let T be a tree. Then, γ2(T )≤ n+2n1+n2
3 .

Proof. For sake of contradiction, let T be a tree which is the minimum counter-example of
the inequality γ2(T )≤ n+2n1+n2

3 . In this tree, let P be a path of maximum length, and let x

be the penultimate vertex on P. I showed that T does not exist through a series of claims.
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Vertices in P may have adjacent vertices not in the maximum path so long as they do not
generate a path exceeding the length of P. These potential extensions are denoted as small
diamonds in the following images.

First, I took away two of the four or more leaves on x, as displayed above in Figure 4.5
to form the graph which I called T1, and show that if the original tree was a counter-example,
the new tree with two less leaves must also be a counter-example. T2 is the removed portion
of the graph. Some values for the original graph T are provided:

1. n(T ) = total number of vertices

2. n1(T ) = total number of leaves

3. n2(T ) =total number of vertices with degree 2

If two leaves are removed from graph T , the values n, n1, and n2 of T1, are written with
respect to values for the graph of T .

1. n(T1) = n(T )−2 because two vertices were taken away from the graph of T to form
T1.

2. n1(T1) = n1(T )−2 because two leaves were taken away from the graph of T to form
T1.

3. n2(T1) = n2(T ) because no vertices of degree two were generated or removed.

The 2-domination number of the graph dropped by two when the two vertices were
removed because they were both leaves and all leaves must be included in set S. Because
of the rule proven in the previous section (γ2(T )≤ γ2(T1)+ γ2(T2)), I said that the original
2-domination number of T is less than or equal to the sum of the new parts.

γ2(T )≤ γ2(T1)+2

So

γ2(T1)≥ γ2(T )−2

And using the counter-example above, I said:
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γ2(T1)≥ γ2(T)−2 >
1
3
(n(T )+2n1(T )+n2(T ))−2,so

>
1
3
(n(T )+2n1(T )+n2(T )−6)

=
1
3
((n(T )−2)+2(n1(T )−2)+n2(T ))

>
1
3
(n(T1)+2n1(T1)+n2(T1))

The above statement says that the graph of T1 also provides a counter-example. If T1 is
a counter-example, then T is not be the minimum counter-example, and thus the original
claim is a contradiction.

Claim 2. Now the degree of x is less than 4.

Figure 4.6: Graph T : Maximum Path P, Vertex x with degree 3

Figure 4.7: Graph T1: Maximum Path with 3 Leaves Minus One Leaf

Proof. Suppose x has three leaves. See Figure 4.6. For the sake of contradiction, let us
say that graph T in Figure 4.6 provides a minimum counter-example for our inequality. In
order to show that it is not a minimum counter-example, I took off one of the three leaves
to generate T1, as displayed in Figure 4.6, and show that if T is a counter-example, then T1

must also be a counter-example. If one leaf is removed from the graph,

1. n(T1) = n(T )−1 because one vertex was removed.

2. n1(T1) = n1(T )−1 because one leaf was removed.
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3. n2(T1) = n2(T ) because no vertices with degree 2 were altered.

γ2(T )≤ γ2(T1)+ γ2(T2)⇒ γ2(T )≤ γ2(T1)+1

γ2(T )≤ γ2(T1)+1⇒ γ2(T1)> γ2(T )−1

Then,

γ2(T1)≥ γ2(T )−1 >
1
3
(n(T )+2n1(T )+n2(T ))−1

=
1
3
(n(T )+2n1(T )+n2(T )−3)

=
1
3
((n(T )−1)+2(n1(T )−1)+n2(T ))

I then substitute these values of T for the previously mentioned values of T ′.

γ2(T1)>
n(T1)+2n1(T1)+n2(T1)

3

The above statement states that the graph of T ′ also provides a counter-example. If T ′ is
a counter-examples, then T is not the minimum counter-example, and thus I have shown
that the claim is true.

Claim 3. The degree of x is less than 3.

Proof. For this claim, I consider several different cases. For these examples, I did not
remove leaves. For this proof I removed a larger segment including both of the leaves and
the vertex they are attached to and considered the vertex preceding x on P, which I called u.
Our cases are based on the degree of u.

1. Case 1: The degree of u is one.

Because only one tree satisfies this set of circumstances, I just substituted the values
into the formula and see if it is a counter-example. The 2-domination number of the
graph in Figure 4.8 is 3, as displayed in Figure 4.9.
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Figure 4.8: Maximum Path with 2 Leaves

Figure 4.9: Maximum Path with 2 Leaves in 2-Domination Set

So plugging into the formula γ2(T )≤ 1
3(n+2n1 +n2) gives 1

3((4)+2(3)+0) = 31
3 .

This number is greater than the 2-domination number of 3, so this graph in Figure 4.8
is not a counter-example.

2. Case 2: The degree of u is 2. Such a graph is displayed in Figure 4.10.

Figure 4.10: Graph T : Maximum Path with 2 Leaves where the degree of u is 2

Let T2 be x and its 2 neighbors that are leaves. T1 is the remaining sub-tree and is
displayed in Figure 4.11.

Then,

(a) n(T1) = n(T )−3 because 3 vertices were removed.

(b) n1(T1) = n1(T )−1 because two leaves were removed and one leaf was created.

(c) n2(T1) = n2(T )−1 because one vertex with degree 2 was removed (u no longer
has degree 2.)

Also,
γ2(T )≤ γ2(T1)+ γ2(T2) = γ2(T1)+2
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Figure 4.11: Graph T1: Maximum Path with 2 Leaves where the degree of u is 2

Therefore,

γ2(T1)≥ γ2(T )−2

>
1
3
(n(T )+2n1(T )+n2(T ))−2

=
1
3
((n(T )−3)+2(n1(T )−1)+(n2(T )−1))

=
1
3
(n(T1)+2n1(T1)+n2(T1))

Thus, if T is a counter-example, T1 is also a counter-example, thus making T not the
minimum counter-example.

3. Case 3: The third case to consider is when the degree of u equals 3. An example of
such a graph is displayed in Figure 4.12.

Figure 4.12: Graph T : Maximum Path with 2 Leaves where d(u) = 3

When the selected segment to the right of u in Figure 4.12 is removed, the image in
Figure 4.13 is generated.

Figure 4.13: Graph T1: Maximum Path with 2 Leaves where d(u) = 3 with Segment
Removed

(a) n(T1) = n(T )−3 because 3 vertices are removed.
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(b) n1(T1) = n1(T )−2 because two leaves are removed from T .

(c) n2(T1) = n2(T )+1 because one vertex of degree 2 was generated (the vertex u).

Then,

γ2(T )≤ γ2(T1)+ γ2(T2)

= γ2(T1)+2

Then, γ2(T1)≥ γ2(T )−2

>
1
3
(n(T )+2n1(T )+n2(T ))−2

=
1
3
((n(T )−3)+2(n1(T )−2)+(n2(T )+1))

=
1
3
(n(T1)+2n1(T1)+n2(T1))

Again, if T is a counter-example, T1 is a smaller counter-example. Thus, T is not a
minimum counter-example.

4. Case 4: The last case that needs to be shown is when u has a degree greater than 3. A
image depicting such a graph is presented in 4.14.

Figure 4.14: Graph T : Maximum Path with 2 Leaves where d(u)> 3

Once the segment to the right of u in Figure 4.14 is removed, I am left with the graph
in Figure 4.15.

Then,

(a) n(T1) = n(T )−3 because 3 vertices were removed.

(b) n1(T1) = n1(T )−2 because two leaves were removed from T .

(c) n2(T1) = n2(T ) because the number of vertices with degree two was unchanged
after the deletion.
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Figure 4.15: Graph T1: Maximum Path with 2 Leaves where the degree of d(u) > 3 and
segment removed

γ2(T )≤ γ2(T1)+ γ2(T2)

= γ2(T1)+2

Then, γ2(T1)≥ γ2(T )−2

>
1
3
(n(T )+2n1(T )+n2(T ))−2

=
1
3
((n(T )−3)+2(n1(T )−2)+n2(T )+1)

>
1
3
(n(T1)+2n1(T1)+n2(T1))+

1
3

If T is a counter-example, then T1 is also a counter-example, meaning that T is not
the minimum counter-example. Because all of the cases above showed that there is
a counter-example more simple than the provided case, I said that a maximum path
with two leaves on the terminal end does not represent a minimum counter-example.
Then I moved to the final consideration of a maximum length path with one leaf on
the terminal vertex.

Claim 4. The degree of x is less than 2.

Proof. There are also many cases that need to be considered when x has 1 leaf which I
called y. For each case, let us say for the sake of contradiction that T is a graph with one leaf
on the second to last vertex of the maximum path, and T is the minimum counter-example.
Vertices x and y are removed to generate the graph of T1 in the following cases. Because T

is the minimum counter-example, then T1 is not a counter-example.

1. Case 1: The degree of u is one.

There is only one tree which fits this condition, so it must merely be tested to see if
that specific example is a counter-example.
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Figure 4.16: Maximum Path with 1 Leaf where the degree of u is 1

The 2-domination number of the graph in Figure 4.16 is γ2(T ) = 2. However,

1
3
(n+2n1 +n2) =

1
3
(3+2(2)+1) = 2

2
3

2
2
3
≥ 2.

Therefore this is not a counte-example.

2. Case 2: The degree of u is 2.

The graph of T is displayed in Figure 4.17.

Figure 4.17: Maximum Path with 1 Leaf where the degree of u is 2

When x and y are removed, you get the the graph of T1 displayed in Figure 4.18.

Figure 4.18: Maximum Path with 1 Leaf where the degree of u is 2 and x and y have been
removed

(a) n(T1) = n(T )−2 because two vertices were removed.

(b) n1(T1) = n1(T ) because there was no net change in the number of leaves.

(c) n2(T1) = n2(T )− 2 because two vertices of degree 2 were removed (x was
removed, and u has degree 1 in T1.)
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Any 2-dominating set of T1 must include u, so I added the vertex y to any 2-dominating
set of T1 to get a 2-dominating set of T . Thus,

γ2(T )≤ γ2(T1)+1

γ2(T1)≥ γ2(T )−1

>
1
3
(n(T )+2n1(T )+n2(T ))−1

=
1
3
((n(T )−2)+2n1(T )+(n2(T )−2)+1)

=
1
3
(n(T1)+2n1(T1)+n2(T1))+

1
3

Thus, if T is a counter-example, T1 is also a counter-example, making T not the
minimal counter-example. This is contradiction, so T must not be the minimal
counter-example.

Because a graph with u having degree of 3 or greater does not lend itself to the proof
techniques previously utilized, and because there are several other possibilities for
u, I tried to add the edges x and y back to the graph of T1 in some examples instead
of removing them from T . If T is the minimum counter-example, then T1 is not a
counter-example. Under the assumption that T1 is not a counter-example, I worked
to show that when x and y are added to T1, T is no longer a counter-example. This
contradiction would prove that T was never the minimum counter-example after all.
This is the bases from which several of these proofs are generated.

3. Case 3: The degree of u is 3, and u is in some 2-domination set for the initial graph
of T1.

Such a graph is displayed in Figure 4.19.

Figure 4.19: Maximum Path with 1 Leaf where the degree of u is 3, x and y are removed,
and u is in set S

When x and y are added to the graph of T1, you get the graph in Figure 4.20. A graph
with more than one leaf neighboring a is not considered because previous cases of
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this type have already been done in Claims 1-3. Figure 4.10 in Claim 3 provides an
example of such a graph with the two leaves neighboring a. Figure 4.10 just takes the
perspective that sees a as being on the maximum path instead of on a dependent path.

Figure 4.20: Maximum Path with 1 Leaf where the degree of u is 3 and u is in set S for T1

Again, let T1 be the remaining tree with x,y removed.

(a) n(T ) = n(T1)+2 because two vertices were added.

(b) n1(T ) = n1(T1)+1 because there was a net gain of one leaf.

(c) n2(T ) = n2(T1) because the number of vertices of degree two was not altered.
Vertex x had degree 2 and was removed, but u changed from degree three to
degree two.

Only y must be added to set S in order to create a 2-domination set for T . So,

γ2(T1)+1 = γ2(T )

γ2(T1)+1≤ 1
3
(n(T1)+2n1(T1)+n2(T1))+1

=
1
3
((n(T1)+2)+2(n1(T1)+1)+n2(T1)−1)

γ(T )≤ 1
3
(n(T )+2n1(T )+n2(T ))

This is less than the value suggested as an upper bound for the 2-domination number
T . Therefore, T is not a counter-example. Because of this contradiction, T is not the
minimal counter-example.

4. Case 4: The degree of u is 3, and u is not in any minimum 2-dominating set S of T1.
The dependent path on u has a length of 2.

The dependent path coming from u is either of length one or two. For the first example,
I considered the case where the dependent path is of length 2. An image is provided
in Figure 4.21.
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Figure 4.21: Maximum Path with 1 Leaf where the degree of u is 3 and u is not in set S for
T1. T and T1 are both displayed. One of the dependent paths is of length 2.

For the graphs in Figure 4.21, when x and y are added back onto the graph of T1, the
vertex u is contained in the minimum 2-dominating set S1, and a is not contained
in the 2-dominating set S1, meaning that the difference in the 2-domination number
between the two is only 1.

(a) n(T ) = n(T1)+2 because 2 vertices were added.

(b) n1(T ) = n1(T1)+1 because the net total of leaves increased by one.

(c) n2(T ) = n2(T1) because the number of vertices with degree two was unchanged.

γ2(T1)+1 = γ2(T )

≤ 1
3
(n(T1)+2n1(T1)+n2(T1))+1

=
1
3
((n(T1)+2)+2(n1(T1)+1)+n2(T1)−1)

=
1
3
(n(T )+2n1(T )+n2(T ))−

1
3

So,γ2(T )<
1
3
(n(T )+2n1(T )+n2(T ))

This is less than the conjectured upper bound of the 2-domination number, and
therefore, this is a contradiction because T is no longer a counter-example. Thus, T is
not the minimum counter-example.

5. Case 5: The degree of u is 3, and u is not in the minimum 2-dominating set S of T .
The dependent path is a leaf.

This is depicted in Figure 4.22.
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Figure 4.22: Maximum Path with 1 Leaf where the degree of u is 3 and u is not in set S for
T1. T and T1 are both displayed. The dependent path is a leaf.

I solved this example using the initial form of proof in which edges are deleted from
T . I showed that if T is a counter-example, T1 is also a counter-example, making T

not the minimum counter-example.

(a) n(T ) = n(T1)+3 because three vertices were added.

(b) n1(T ) = n1(T1)+1 because there was a net gain of one leaf.

(c) n2(T ) = n2(T1)+1 because there was a net gain of one vertex of degree 2.

γ2(T )≤ γ2(T1)+2

γ2(T1)≥ γ2(T )−2

>
1
3
(n(T )+2n1(T )+n2(T ))−2

=
1
3
((n(T )−3)+2(n1(T )−1)+(n2(T )−1))

=
1
3
(n(T1)+2n1(T1)+n2(T1))

Because T1 is also a counter-example, T is not the minimum counter-example. This is
a contradiction to the original suggestion, therefore T is not the minimum counter-
example.

6. Case 6: The degree of u is greater than 3, and u is in some 2-domination set for T1.
T1 is the graph with x and y removed.

For u to be in the 2-domination set for T1, there is at most one leaf adjacent to the u.
Otherwise, u would not necessarily be in the 2-domination set. The other cases have a
dependent path of length 2. Example graphs are depicted in Figure 4.23.

If x and y were removed, the graph of T1 would look like the graph in Figure 4.24.
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Figure 4.23: Maximum Path with 1 Leaf where the degree of u is greater than 3 and u is in
set S for T1

Figure 4.24: Maximum Path with 1 Leaf where the degree of u is greater than 3 and u is in
set S for T1. x and y are removed.

As before, if T is the minimum counter-example, T1 is not a counter-example. So if I
add x and y, T should remain a counter-example.

(a) n(T ) = n(T1)+2 because 2 vertices were added.

(b) n1(T ) = n1(T1)+1 because the net amount of leaves increased by one.

(c) n2(T ) = n2(T1)+1 because the net amount of vertices with degree two increased
by one.

γ2(T1)+1 = γ2(T )

≤ 1
3
(n(T1)+2n1(T1)+n2(T1))+1

=
1
3
((n(T1)+2)+2(n1(T1)+1)+(n2(T1)+1)−2)

≤ 1
3
(n(T )+2n1(T )+n2(T ))−

2
3

So,γ2(T )<
1
3
(n(T1)+2n1(T1)+n2(T1))

Therefore, T is not a counter-example which is a contradiction. Because of this
contradiction, T is not be the minimum counter-example.
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7. Case 7: The degree of u is greater than 3, and all of the dependent paths are leaves.
The maximum path has a leaf on the terminal vertex.

For this example I assumed that T is the minimum counter-example and that T1 is
not a counter-example. I then recreated T by adding back in the vertex removed to
make T1 and show that T is no longer a counter-example. An image of such graphs is
displayed in Figure 4.25.

Figure 4.25: Maximum path with 1 Leaf where the degree of u is greater than 3 and u is not
in set S for T1. T and T1 are both displayed. The dependent paths are all leaves.

For this case I only removed the vertex y.

(a) n(T ) = n(T1)+1 because one vertex was added.

(b) n1(T ) = n1(T1)+1 because there was a net gain of one leaf.

(c) n2(T ) = n2(T1) because there was no net change to the number of vertices with
degree 2.

γ2(T1)+1≤ γ2(T1)

≤ 1
3
(n(T1)+2n1(T1)+n2(T1))+1

=
1
3
((n(T1)+1)+2(n1(T1)+1)+(n2(T1)))

=
1
3
(n(T )+2n1(T )+n2(T ))

This means that T is no longer a counter-example, which would make a contradiction.
Therefore, by contradiction, T is not the minimum counter-example.

8. Case 8: The degree of u is greater than 3, and u is not in any 2-domination set of T1.

For such a graph, you have at most one dependent path of length 2 adjacent to u (not
including the terminal path with x and y) because having 2 dependent paths would
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require that u be in the 2-domination set to get the minimum number of vertices in set
S. I addressed the specific example where there is one dependent path of length 2 and
one or more leaves adjacent to u. An image of such a graph is depicted in Figure 4.26.

Figure 4.26: Maximum Path with 1 Leaf where the degree of u is greater than 3 and u is not
in set S for T1. T and T1 are both displayed. One of the dependent paths is of length 2.

In this specific example with the dependent path on u having a length of 2, the vertex
marked as a is no longer in set S when x and y are added back on. This means that the
2-domination number of graphs T and T1 only differ by 1.

(a) n(T ) = n(T1)+2 because 2 vertices were added.

(b) n1(T ) = n1(T1)+1 because the net total of leaves increased by 1.

(c) n2(T ) = n2(T1)+1 because the net total of vertices with degree two increased
by 1.

γ2(T1)+1 = γ2(T )

≤ 1
3
(n(T1)+2n1(T1)+n2(T1))+1

=
1
3
((n(T1)+2)+2(n1(T1)+1)+(n2(T1)+1)−2)

=
1
3
(n(T )+2n1(T )+n2(T ))−

2
3

So,γ2(T )<
1
3
(n(T )+2n1(T )+n2(T ))

This value is less than the suggested estimate for the upper bound of the 2-domination
number, which presents a contradiction because T is no longer a counter-example.
Therefore, T is not the minimum counter-example.

Because the minimum counter-example must be a tree with a vertex of degree less than
one on the maximum path, the minimum counter-example does not exist. Therefore,
the suggested boundary on the 2-domination number of a tree is true for all trees.
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4.5 Comparing Formulas: γ2(T )≤ n+n1
2 and γ2(T )≤ n+2n1+n2

3

In an effort to derive a more exact bound on the 2-domination number of a graph, the second
formula in discussion was generated in Section 4.2. This section describes when each bound
provides a tighter bound for the 2-domination number. Suppose that,

n+n1

2
>

n+2n1 +n2

3

Then,

n
2
>

n1

2
+n2

Observation 1. The bound in Theorem 5 provides a tighter bound than the bound in Theorem
1 when n > n1 +2n2.

This means that when the total number of vertices is greater than the number of
leaves plus two times the number of vertices with degree two, the conjectured bound
γ2(T )≤ n+2n1+n2

3 gives the better estimate. Otherwise, γ2(T )≤ n+n1
2 gives a better estimate.

Some examples are provided.

Example 1: (See Figure 4.27)

Figure 4.27: Sample Tree T1 with n = 11, n1 = 6, n2 = 4, and γ2(T ) = 7
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When information from the graph in Figure 4.27 is considered, n < n12n2 (that is
11 < 6+2(3)). Because the total number of vertices is not greater than the number of leaves
plus two times the number of vertices with degree two, formula 1 should give the better
estimate.

Comparing Estimates:

γ2(T1) = 7≤ 11+6
2

= 8.5 < 9 =
11+6(2)+4

3

As you can see, the estimate for the first formula is closer to the actual 2-domination
number of the graph, which is what is expected from the preliminary calculations.

Example 2: (See Figure 4.28)

Figure 4.28: Sample Tree T2 with n = 17, n1 = 9, n2 = 1, and γ2(T ) = 12

Note that when considering information about the group in Figure 4.28, n > n1 +2n2

(that is 17 > 9+2(1)).
Because the total number of vertices in the graph is greater than or equal to the number

of leaves plus two times the number of vertices with degree one, formula two should provide
the better estimate.

Comparing Estimates:

γ2(T2) = 12≤ 17+9
2

= 13 > 12 =
17+9(2)+1

3

As expected, the second formula provided a better estimate for the minimum 2-domination
number for 4.28.
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Chapter 5

Discussion

Though the project strayed from the initial goal of analyzing the relationship between the 2-
domination number and the annihilation number, I made a lot of progress by generating new
bounds for the 2-domination number. The original relation, γ2(G)≤ a(G)+1, proposed by
DeLaVina and Pepper about information collected from Graffiti.pc provided the initial idea
and framework for this project even though it was not the main focus. After many cases were
considered and many different graphs were discussed, the upper bound for the 2-domination
number of trees, γ2(T ) ≤ 1

3(n+ 2n1 + n2), was proven. I utilized proof by contradiction
to prove the non-existence of the smallest counter-example to our claim. Though this
method was tedious it proved effective. A case was considered for all possibilities by
examining graphs with varying numbers of leaves on the maximum paths. From there, more
specifications were required based on other dependent paths. As can be seen from Section
4.5, there are examples of graphs who have a better upper bound from the original formula
n+n1

2 , but there are also many cases that could benefit from our new bound. Our bound
would be particularly useful with trees having many vertices with degrees greater than 2.
The inequality designating which formula will yield a better bound was calculated by setting
the two bounds equal to one another and solving for n. Any graph that satisfies n > n1+2n2

would receive a significantly better bound by the formula proved in this project. I also
proved that γ2(T )≤ γ2(T1)+ γ2(T2), which is a useful tool for working with 2-domination
sets. This relation was used to compare the potential counter-examples to their sub-graphs
in order to show that a minimum counter-example did not exist.

Much more research can be done in this area of graph theory. To begin with, the bound
γ2(T )≤ 1

3(n+2n1 +n2) could be generalized for any graph as opposed to just trees, or a
new bound for a larger class of graphs could be suggested. There could even be a formula
so specific as to yield the exact value for the 2-domination number of a particular class of
graphs. The initially proposed idea of a relation between the annihilation number and the
2-domination number has yet to be completely analyzed. Also, the formula p(k,G) used
to generate the bound could be tested for other values of k > 3 in order to potentially yield
new upper bounds. If, for example, k = 4 for the formula p(k,G), then a new bound would
be γ2(T )≤ 1

4(n+3n1 +2n2 +n3). The tightness of each bound could be compared to see
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which was better. There can also be more work done with the k-domination number for
values greater than 2. An example of such bounds can be found in a paper written by Y.
Caro and Y. Roditty titled A note on the k-domination number of a graph. They provide the
inequality γk(G) ≤ kp

k+1 when γ(G) > k and p = |G| [Caro and Roddity, 1990]. For k = 3,
this would translate to γ3 ≤ 3p

4 .
While working with variables for so long, it is easy to forget the practical applications

of progress. Many interesting examples of graph theory applications and the domination
number appear in advertising and computer programming. One example to consider is
advertising on social media. Let us say that you are advertising your product on Facebook,
and Facebook charges you for each post on someones time-line. You only want to post
on the time-lines of those who either already like your page or on the time-lines of those
who are friends with two people who like your page. The graph of such a scenario would
have the Facebook users as vertices connected by edges representing friendships. Bounding
the 2-domination number of your followers would give perspective on the costs of the
advertising endeavor. In another example, let us say that you are a new sandwich store
owner moving to a town and want to advertise your business by sending out free meal gift
certificates (good for two people) to a nearby college campus. In order to be as thrifty as
possible, you want to distribute these meals in such a way that everyone in each class leading
up to lunch either gets a free meal or has a class with two other people who got a free meal.
This way, those who did not get a free meal can hear about where these people are going to
eat or maybe even be the recipient of the second free meal on the card. Essentially, you are
finding the 2-domination number for the graph whose vertices are the college’s morning
class enrollment, such that two vertices are adjacent if they correspond to students in the
same class. A bound on such a number would provide you with the information necessary
to decide how many free gift certificates you want to give out. The broad spectrum of uses
for graph theory extends much further than these examples though, and every additional tool
added to the arsenal of formulas, bounds, and other analytical strategies is important.
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