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Abstract 

 

 Protein residue-residue contact prediction is one of many areas of bioinformatics 

research that aims to assist researchers in the discovery of structural features of proteins. 

Predicting the existence of such structural features can provide a starting point for 

studying the tertiary structures of proteins. This has the potential to be useful in 

applications such as drug design where tertiary structure predictions may play an 

important role in approximating the interactions between drugs and their targets without 

expending the monetary resources necessary for preliminary experimentation. Here, four 

different methods involving deep learning, support vector machines (SVMs), and direct 

coupling analysis were trained on a dataset of proteins from the 9th Critical Assessment 

of Techniques for Protein Structure Prediction (CASP 9). The models that were the most 

successful after training on the CASP 9 data were selected to perform the contact 

predictions in each method. After performing a blind test on CASP 11 targets, we have 

determined that further optimizations to the training process may be necessary to improve 

performance. 

 

Key Words: protein residue-residue contact prediction, deep learning, ensemble learning, 

direct coupling analysis, stacked denoising autoencoders 
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Chapter 1: Introduction and Review of the Literature 

 As the advancement of high-throughput sequencing continues to inundate 

biologists with large amounts of uncharacterized amino acid sequences, residue-residue 

contact prediction is becoming a more viable way to gain valuable information about 

proteins before they even reach biological laboratories. For example, the ability to make 

predictions about which residues within a protein are in contact can give researchers an 

idea of how the native structure of that protein is formed before they expend considerable 

amounts of time, money, and other resources to experimentally determine it 1. This has a 

diverse set of applications and has long been sought after as an aid in drug development 

and the design of drugs and other novel molecules 2. Unfortunately, the incredibly 

complex nature of proteins creates many challenges that protein structure prediction 

methods must face if they hope to deliver their predictions in any reasonable amount of 

time. The ensuing race to accelerate these methods has spawned entirely new areas of 

computational research that aim to make supplementary predictions for use in the 

structure prediction process. 

 An important part of accomplishing these prediction speedups involves 

identifying any information that is available to help guide the structure prediction process 

without slowing it down. As it turns out, the sequence itself can be an invaluable source 

for finding such information. This is because Anfinsen's dogma asserts that, in many 

cases, the amino acid sequence for a protein encodes enough information to determine the 

native structure of that protein 3,4. However, from a computational standpoint, predicting 

the structure of a protein from its amino acid sequence can be shown to be an NP-hard 

problem 5. Therefore, it may be beneficial to place restraints on the prediction of protein 
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structures by providing more information beforehand. One possible set of restraints that 

would satisfy this condition can be provided by incorporating information from residue-

residue contact prediction methods.  

 These restraints make use of findings that suggest that the overall stability of 

native protein structures is influenced by intra-molecular interactions among amino acid 

residues 6. In this way, making predictions about which residues in a given protein may 

be in contact can provide information that is useful for eliminating structure predictions 

that would most likely not occur in nature. If a large enough subset of possible protein 

conformations is eliminated in this way before a protein structure prediction method is 

used, the underlying algorithms that generate the candidate structures will now be 

operating on a much smaller search space of conformation possibilities. Of course, 

residue-residue contact prediction carries its own unique set of challenges. As a result, 

many different methods for making these predictions have arisen over the years. In 

general, these methods share enough similarity to be categorized into a few broad groups. 

However, these groups are unique enough to merit further explanation.  

 In most residue-residue contact prediction scenarios, the desired end result is 

simply a prediction that labels a pair of residues as either in contact or not in contact. This 

means that the challenges of making these predictions can be readily framed as a 

classification problem 7. As a result, machine learning methods are among the most 

common solutions that are being explored and make use of a wide variety of techniques 

such as support vector machines (SVMs), hidden Markov models, and neural networks 8–

10. Cheng et al. utilized SVMs and focused on improving their training data by focusing 

on feature selection and its effects on performance 9. Zhang et al. also utilized SVMs but 
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did so in a hybrid setup with another method that assumes certain pairs of residues have a 

higher chance of interacting in an inter-helical contact 8. In this way, it is still possible to 

obtain a contact prediction if a situation that causes the knowledge-based SVM method to 

fail at producing a result occurs. Eickholt et al. took a different approach and developed a 

method based on deep networks with boosting applied 10. The classification of contacts in 

their method was performed by a combination of restricted Bolzmann machines (RBMs) 

trained to form deep networks (DNs). The boosting process involved using the classifiers 

to modify the weights of the training set based on their own performance.  

 In general, these methods approach residue-residue contact prediction as a 

statistical problem based on the principles of machine learning.  While this can deliver 

solid prediction performance, other methods aim to take more direct advantage of the 

abundance of protein information that is already available from experimental results. For 

example, template based methods make their contact predictions by utilizing threading or 

homology to identify similarities between a query protein and previously known 

structures (templates) before using the residue interaction data present in those templates 

to make informed predictions that may be more biologically relevant 11–14. An early 

example of a hybrid method that combined a template-based approach with hidden 

Markov models can be seen in HMMSTR-CM as described by Shao and Bystroff 14. 

HMMSTR-CM's initial output is a contact map calculated from the target sequence by 

the hidden Markov model. Then, the target contact map is aligned against a set of pre-

calculated contact maps derived from a collection of template structures before being 

modified according to a set of predefined rules composed of assumptions made with 

knowledge of folding pathways. Wu et al. combined SVMs and contact predictions from 
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multiple, locally installed threading methods into a method called SVM-LOMETS 11. The 

inclusion of SVMs was done to train the parameters for Euclidean distance cutoff 

between residue pairs and the alignment qualities on the contact map.  

 Another category of contact prediction methods employs the concept of correlated 

mutation analysis (CMA) to search for mutually related discrepancies in the amino acid 

sequence across multiple sequence alignments (MSAs) and then predict contacts based 

on this 15–18. In other words, these methods look for situations in which a residue in one 

column of an alignment frequently changes in a way that corresponds to changes seen in 

one other column of the alignment. These residue positions are seen as having a higher 

chance of sharing some sort of biological pairing and are predicted to be potential 

contacts. CCMpred was developed by Seemayer et al. and utilizes a statistical technique 

known as pseudo-likelihood maximization in order to better distinguish direct couplings 

between pairs of columns in the multiple sequence alignment from pairs that are simply 

correlated 16. Their goal to deliver fast and precise contact predictions was accomplished 

by using the parallelization abilities offered by modern GPUs to compute the gradient of 

the pseudo-likelihood. Jacob et al. were able to show that expanding upon the original 

premise of correlated mutation analysis to utilize both amino acid MSAs and codon 

MSAs results in a meaningful increase of contact prediction performance 17. They assert 

that direct contacts are more likely if the correlation of the MSA is high at the amino acid 

level but low at the codon level. To make use of this in filtering predictions, a scoring 

function was proposed that can be used with existing CMA methods. An earlier approach 

to CMA that also incorporated filtering predictions was described by Kundrotas and 

Alexov with their webserver named RECON (REsidue CONtacts) 18. They managed to 
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filter the results from their correlated mutation-based predictions with a set of rules in the 

form of biophysical constraints (hydrophobic pairing, ionic pairing, disulfide bridges, 

etc).  

 Here, we present our findings from benchmarking four distinct residue-residue 

contact prediction methods. The techniques used in these methods were based on deep 

learning ensembles, SVMs, direct coupling analysis (DCA) based on multiple sequence 

alignments, and an ensemble that incorporated both SVM and DCA. Our two baseline 

methods, referred to as the "SVM baseline" and DCA_cpp, used only SVM and DCA, 

respectively. Next, our deep learning approach, referred to as SDAplusDCA_Deep, 

combined stacked denoising autoencoders (SdAs), DCA, and SVM into a deep learning 

ensemble. Based on our survey of the literature, SdAplusDCA_Deep is novel in the field 

of residue-residue contact prediction. Our second ensemble method, referred to simply as 

SVMplusDCA, combined DCA_cpp with the SVM baseline. These four methods were 

then benchmarked in a blind test using data from CASP 11 (The 11th Community Wide 

Experiment on the Critical Assessment of Techniques for Protein Structure Prediction) 

and the results were presented according to a set of evaluation metrics 19. 
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Chapter 2: Methodology 

 The first step to performing predictions with our four methods was to generate the 

features that were used to train our models. To do this, a set of proteins was picked from 

the CASP 9 targets. Any protein that was over 1,000 residues in length was excluded 

from the set. In total, the data from 87 of these targets made it into the final training data. 

Each of the 64,172 lines in the training data is a single example that represents the 

interaction between a pair of residues that are separated by at least six residues in the 

sequence. This interaction information is encoded into each example with 1,612 features. 

To generate these features, the amino acid sequence from each of the proteins in this 

training set was used as the input for a software pipeline that we developed. The first step 

was using PSIPRED version 3.5 and ACCpro version 5.1 (a member of the SCRATCH 

1.0 package) to predict the secondary structure and solvent accessibility of each target 

protein20,21. PSIPRED's predictions are encoded in each example as three probability 

values (a decimal number between zero and one) representing the chance of each residue 

being within either a beta sheet, alpha helix, or a coil. These predictions are made using 

two feed-forward neural networks that incorporate data obtained from PSI-BLAST. 

ACCpro's predictions use bidirectional recurrent neural networks and are encoded in each 

example with a binary prediction value that represents whether or not the residue in 

question is solvent accessible 22.  

 With these predictions complete, the next part of the feature generation process is 

based entirely on aspects of the target protein's sequence itself and is accomplished 

through the use of a pair of sliding windows. Each example in the training data represents 

a pair of residues centered within two sliding windows that each contain 11 residues. 
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These windows are placed with their centers at a minimum separation of six residues 

apart in the sequence at all times. (Fig. 1) illustrates one example of a pairing between the 

first residue of a protein centered in the window labeled "A" and the 62nd residue 

centered in the window labeled "B". The first five residues on the left of the sequence (in 

the segment labeled "D") are "empty" residues that are generated when one of the two 

windows extends past the boundaries of the amino acid sequence and simply have all of 

their features set to zero. 

 

Figure 1.1 - An Example of the Two Window Configuration. Segment A represents the 
first window and is centered at residue 1. Segment D is part of the first window, but is 
composed of "empty" residues since the window extends beyond the residue range of the 
protein at this position. Segment B represents the second window and is centered at 
residue 62. Segment C represents the 50 residues between the first and second windows. 

 

 After the windows have been placed, the 1,612 features that make up each 

example are selected according to a standard procedure. The amino acid type of each 

residue is encoded by 20 features in an array made up of 20 bits. For each type of residue, 

only one unique bit is set to '1' (true) and the remaining 19 bits are set to '0' (false). The 

next additions are three features that encode PSIPRED's secondary structure prediction, 

one feature that encodes ACCpro's predictions, and two features that encode whether or 

not it is within the boundaries of the first or the second window. Therefore, each residue 

is represented by a set of 26 features. The largest set of features in each example is 
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composed of a selection of exactly 50 residues between the centers of the sliding 

windows as seen in the segment of (Fig. 1) labeled "C". Regardless of the current amount 

of residues that separate the two window centers, 50 residues are always selected. In 

other words, the features for each residue are repeated if there are not enough residues in 

this range or skipped if there are too many. This was implemented by first defining a 

scale value that is determined by dividing the total number of residues between the 

window centers by 50. Next, a set of 50 numbers described by the sequence (𝑎𝑎𝑛𝑛) 𝑛𝑛=1𝑛𝑛=50 =

𝑠𝑠 ∗ 𝑛𝑛 where s is the scale value was generated. This sequence is iterated over and the 

residue at the sequence position of the integer value at each point in the sequence is 

added to the example. In addition to the two window centers, this means that this internal 

section of example is 52 residues in length and comprises 1,352 features (52 residues 

multiplied by 26 features). The remaining 260 features are generated from the external 

edge of the two windows.  

 The target value for each training example is a binary value that denotes whether 

or not the pair of residues at the center of the first and second windows is in contact. The 

information used to determine this value was obtained from the three dimensional 

coordinates provided for each target protein in the CASP 9 data set. Here, we define a 

pair of residues to be in contact (a positive example) if their alpha carbons (Cα) are less 

than or equal to 8 Å apart as measured by the formula for Euclidean distance in three 

dimensions. If the Euclidean distance does not fit this requirement, the residue pair is 

marked as a negative example and is not considered to be in contact. Once all of the 

examples had been generated for the CASP 9 training data set, we noticed that there was 

an abundance of negative target values (examples in which the residue pairs were not in 
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contact). In order to potentially help alleviate bias during training, we balanced the 

training set by keeping every positive example and selecting a random sample of negative 

examples equal to the number of positive examples. After performing this balancing 

operation, the final training file consisted of 102,480 examples. Each method except for 

DCA_cpp used this file as the basis for training. 

 DCA_cpp is a C++ implementation of the direct coupling analysis methods 

introduced by Morcos et al 29. First, HHblits is used to generate an MSA (multiple 

sequence alignment) against the HMM (Hiden Markov Model) database 

"uniprot20_2015_06"30.  With this MSA, a sequence profile and contact map is obtained 

using the methods presented by Morcos et al 29. The end result is a contact map with 

predictions scored by confidence value for every possible contact. Since no training was 

needed to use this method, the input was only the amino acid sequence for each target 

protein that was used in generating the training data for the other three methods. The 

resulting predictions were simply sorted with the highest confidence values listed first.  

 The SVM models used in all of the methods were created with an implementation 

of SVM called SVM_light 28. First, the SVM baseline was trained by splitting the training 

set (without any additional predictions incorporated) into five equal pieces and 

performing a five-fold cross-validation. In each of these five folds, four of the pieces of 

data were used for training and only one piece was used for testing. One of the top 

performing models was chosen to execute the contact predictions.  

 SVMplusDCA incorporated these predictions into its training data by adding a set 

of 122 new features to each example. Half of these features represent the probability of 
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the left window center being in contact with any residue in the example to its right and 

the other half represents the probability of the right window center being in contact with 

any residue in the example to its left. This brings the total number of features in each 

example to 1,734. After the resulting predictions for each residue pair were added back 

into the training data, an SVM model was trained on this new dataset. The same process 

and parameters used to train the SVM baseline was used to train this new model. A five-

fold cross validation was performed and one of the top performing models was chosen to 

produce the final contact predictions in the blind test. During the blind test, DCA_cpp 

predictions are performed on each target and added to the examples in the same way as in 

training. 

 SdAplusDCA_Deep utilized stacked denoising autoencoders based on Theano to 

form a consensus of multiple deep networks as we have implemented before 23,24. An 

autoencoder (also known as an autoassociator) is a type of mathematical model that 

learns a representation (an encoding) of its input in a way that enables it to reconstruct the 

input 25. When an autoencoder is able to reconstruct the input from a corrupted version of 

that same input, it is known as a denoising autoencoder and can be stacked in series to 

create a Stacked Denoising Autoencoder (SdA) 26,27. Here, ten models were trained using 

four-fold cross-validations and varying different parameters such as the corruption level 

and the number of hidden units. The dataset used in these cross-validations already 

contained DCA_cpp predictions in each example and was first split into 11 pieces. Ten of 

these pieces each make up eight percent of the dataset. Next, each of these pieces was 

split so that three percent was used for pre-training, three percent was used for training, 

one percent was used for validation, and the remaining one percent was used for testing. 
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One of the models with the highest accuracy on the test set was chosen from each four-

fold cross validation to participate in the ensemble. All of the target proteins' potential 

contacts were simply classified by all ten of these models separately. Each of these 

models produced a positive and negative confidence value for each potential contact. 

This gives 20 features that are incorporated into each example of the remaining 20 

percent of the training data that was not used to train the SdA models. Finally, an SVM 

model is trained using this data and produces the final contact predictions. During 

classification in the blind test, these twenty features were added along with DCA_cpp 

predictions using the same procedure. 
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Chapter 3: Evaluation Criteria and Results 

 After the training phase was completed, 86 targets were selected from the full set 

of CASP 11 targets. Once the features were generated for the 86 targets, all four methods 

were used to produce predictions for each target. These predictions represent potential 

contacts between pairs of residues and are sorted with the predictions having the highest 

confidence values listed first. For the purpose of this evaluation, predictions that do not 

expect a pair of residues to be in contact were discarded (negative predictions). Then, all 

of the predictions that met these requirements were scored using two performance metrics 

known as accuracy (the number of true predicted contacts divided by the number of false 

predicted contacts plus the number of true predicted contacts) and coverage (the number 

of true predicted contacts divided by the number of actual true contacts). Furthermore 

each accuracy and coverage score was categorized into one of three different "sequence 

separation" tiers.  

 These tiers are organized so that tier 6 contains all contacts separated by six or 

more (but less than 12) residues, tier 12 contains all contacts separated by 12 or more (but 

less than 24) residues, and tier 24 contains all contacts separated by 24 or more residues. 

This organization scheme applied not only to the predicted contacts, but also to the true 

contacts (the contacts that were actually in contact in the structure). The resulting scores 

for each method are listed in Table 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6. Each table is 

differentiated by the number of top contacts that was used in the evaluation of accuracy 

and coverage. L represents the number of residues in the sequence of each target. For 

example, L/5 indicates that a number of contacts equal to only 1/5th of the length of each 

target's sequence were selected to be evaluated. Each row contains the name of the 
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method abbreviated as svm (the SVM baseline), svm+ (SVMplusDCA), sda 

(SdAplusDCA_Deep), and dca (DCA_cpp).  

 acc6 acc12 acc24 cov6 cov12 cov24 avgAcc avgCov 
svm 5.238% 3.611% 3.567% 2.195% 0.568% 0.113% 4.139% 0.959% 

svm+ 4.991% 1.292% 0.499% 0.130% 0.032% 0.031% 2.261% 0.065% 
sda 8.137% 6.170% 1.642% 0.291% 1.062% 0.180% 5.317% 0.511% 
dca 7.048% 18.288% 0.898% 0.235% 0.434% 0.115% 8.745% 0.261% 

Table 3.1: Blind test results at L/5. The averaged results of the blind test of the four 
methods evaluated with the top L/5 predicted contacts from 86 CASP 11 targets (where L 
is the length of the target). Accuracy (Acc), average accuracy (avgAcc), coverage (cov) 
and average coverage (avgCov) are listed at 3 different sequence separation levels (6, 12, 
24) as described in the main text. The columns for avgAcc and avgCov are averages of 
the three sequence separation columns for each metric.  

 

 acc6 acc12 acc24 cov6 cov12 cov24 avgAcc avgCov 
svm 7.892% 7.346% 3.263% 12.829% 6.453% 0.708% 6.167% 6.663% 

svm+ 4.991% 1.292% 0.499% 0.130% 0.032% 0.031% 2.261% 0.065% 
sda 12.140% 6.073% 2.169% 2.047% 4.299% 1.133% 6.794% 2.493% 
dca 24.659% 29.390% 1.751% 2.290% 2.056% 1.293% 18.600% 1.880% 

Table 3.2: Blind test results at L. The results of the blind test of the four methods 
evaluated with the top L predicted contacts from 86 CASP 11 targets (where L is the 
length of the target) listed in the same format as table 3.1. 

 

 acc6 acc12 acc24 cov6 cov12 cov24 avgAcc avgCov 
svm 8.755% 8.016% 5.926% 56.314% 37.443% 6.516% 7.566% 33.424% 

svm+ 4.991% 1.292% 0.499% 0.130% 0.032% 0.031% 2.261% 0.065% 
sda 8.190% 5.817% 2.260% 8.830% 15.399% 5.054% 5.422% 9.761% 
dca 9.313% 15.475% 3.254% 20.868% 16.059% 10.400% 9.347% 15.776% 

Table 3.3: Blind test results at 5L. The results of the blind test of the four methods 
evaluated with the top 5L predicted contacts from 86 CASP 11 targets (where L is the 
length of the target) listed in the same format as table 3.1. 
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 acc6 acc12 acc24 cov6 cov12 cov24 avgAcc avgCov 
svm 7.315% 6.555% 5.083% 81.862% 60.880% 13.292% 6.318% 52.011% 

svm+ 4.991% 1.292% 0.499% 0.130% 0.032% 0.031% 2.261% 0.065% 
sda 8.166% 5.469% 2.188% 13.979% 20.865% 7.728% 5.274% 14.191% 
dca 7.252% 8.113% 3.214% 37.237% 28.227% 18.788% 6.193% 28.084% 

Table 3.4: Blind test results at 10L. The results of the blind test of the four methods 
evaluated with the top 10L predicted contacts from 86 CASP 11 targets (where L is the 
length of the target) listed in the same format as table 3.1. 

 

 

 acc6 acc12 acc24 cov6 cov12 cov24 avgAcc avgCov 
svm 5.407% 4.291% 3.274% 97.420% 93.095% 41.018% 4.324% 77.178% 

svm+ 4.991% 1.292% 0.499% 0.130% 0.032% 0.031% 2.261% 0.065% 
sda 8.090% 5.333% 2.178% 16.813% 24.066% 9.620% 5.200% 16.833% 
dca 5.422% 4.157% 1.938% 82.014% 75.419% 60.576% 3.839% 72.670% 

Table 3.5: Blind test results at 50L. The results of the blind test of the four methods 
evaluated with the top 50L predicted contacts from 86 CASP 11 targets (where L is the 
length of the target) listed in the same format as table 3.1. 

 

 acc6 acc12 acc24 cov6 cov12 cov24 avgAcc avgCov 
svm 5.407% 4.291% 3.274% 97.420% 93.095% 41.018% 4.324% 77.178% 

svm+ 4.991% 1.292% 0.499% 0.130% 0.032% 0.031% 2.261% 0.065% 
sda 8.090% 5.333% 2.178% 16.813% 24.066% 9.620% 5.200% 16.833% 
dca 5.145% 3.736% 1.610% 94.793% 92.655% 85.717% 3.497% 91.055% 

Table 3.6: Blind test results at 150L. The results of the blind test of the four methods 
evaluated with the top 150L predicted contacts from 86 CASP 11 targets (where L is the 
length of the target) listed in the same format as table 3.1. 

 

  



15 
 

Chapter 4: Discussion and Future Work 

 Starting with table 3.1, only the top L/5 contacts were selected for evaluation. 

This proved to be too narrow of a margin for most of the targets that were scored. At this 

point, DCA_cpp was the best performing method in terms of accuracy. By increasing the 

number of contacts evaluated to be equal to the length of each target (L), there was a 

noticeable increase in both accuracy and coverage for all of the methods except for 

SVMplusDCA. The relatively unchanging results for SVMplusDCA were most likely a 

result of the low number of predictions that it provided. DCA_cpp showed its highest 

accuracy at L top contacts and began to decline as the value of L was multiplied. 

Interestingly, the scores for the SVM baseline and SdAplusDCA_Deep continued to 

fluctuate until roughly 50L top contacts were evaluated. This would seem to indicate that 

the sorting of the predictions or the assignment of confidence values in these two 

methods was not adequate. However, two important errors in the execution of the blind 

test were detected at the end of this study that most likely affected the appearance of 

these results. 

 First, the sorting procedure of the contact predictions of all four methods 

mistakenly imposed a limit of 1.0 on the confidence value of each prediction. If a 

prediction was ranked with a higher confidence, it was rounded back down to 1.0. This 

meant that many predictions that would have been sorted to the top remained further 

down in the list. Multiplying the value of L in an attempt to pick up more of these 

contacts didn't have much of an effect on accuracy because of the increasing number of 

false predictions that were being picked up at the same time. The next error prevented the 

features for DCA_cpp predictions and SdA predictions from being added into the 
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examples of the blind test targets. Essentially, this means that SVMplusDCA and 

SdAplusDCA_Deep were being used to classify examples of contacts that they were not 

trained to predict. It is very likely that the evaluation results will improve when these 

features are properly incorporated. Future work for this project will be to correct these 

errors and conduct the blind test again. Also, a more focused literature review can be 

conducted to search for other ways to improve the training procedure.  
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