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ABSTRACT 
 

 
Embryonic stem cells (ESCs), due to their ability to differentiate into different 

cell types while still maintaining a high proliferation capacity, have been considered as a 

potential cell source in regenerative medicine. However, current ESC differentiation 

methods are low yielding and create heterogeneous cell populations. If transplanted in the 

human body, differentiated ESCs could be rejected by the immune system, form tumors, 

or may not function normally within the human body. On the other hand, mesenchymal 

stem cells (MSCs), a type of adult stem cell typically derived from bone marrow, have 

proved to be excellent candidates in clinical applications due to their defined 

differentiation capacity and immunoregulatory properties. However, MSCs lack 

sufficient expansion capacity and can only be derived from limited tissues. This project 

entails characterizing ESCs differentiated through retinoic acid induction as MSCs. It is 

speculated that these cells are MSCs due to the extensive similarities in behavior and 

differentiation capacity. To complete the characterization, the morphology of our MSCs 

was compared to naturally differentiated MSCs, and a cell cycle analysis was performed. 

The tentative MSCs were spontaneously differentiated into osteocytes, adipocytes, and 

chondrocytes, the three distinct cell lineages that characterize MSCs differentiation 

capacity. Based on the results, our cells were determined to be MSCs, thereby identifying 

them as ESC-MSCs. This is significant, because it allows for the formation of cells that 

bypass many of the challenges mentioned above. ESC-MSCs express combined 

advantages from both ESCs and MSCs, making them even better cell sources for future 

therapeutic applications.  

Key Words: mESCs, transcription factors, MSCs, differentiation, regenerative medicine 
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INTRODUCTION 

Stem cells are characterized as cells that have the ability to continuously 

proliferate (self-renewal), while also maintaining the capacity to differentiate into 

different cell lineages (potency). The self-renewal capacity and potency properties of 

stem cells are what make them different from ordinary somatic cells and exciting tools 

for cell research. There are two main categories of stem cells including embryonic stem 

cells (ESC) and adult stem cells (ASC). 

Embryonic Stem Cells 

Background 

About twenty-five years ago, the discovery of ESCs sparked an impressive 

advancement in cellular biology and medicine (Keller, 2005). Research on ESCs began 

when the very first stem cells, the embryonic carcinoma (EC) cells, were established in 

the early 1970s. EC cells were first formed as cell lines from germ line tumors known as 

teratocarcinomas. Isolated EC cells displayed differentiation abilities and were able to 

transform into the derivatives of the three primary germ layers: endoderm, mesoderm, 

and ectoderm. Furthermore, EC cells were found to participate in embryonic 

development when the cells were transferred to the inner cell mass (ICM) of early 

chimeric mice embryos. However, after this process occurred, the EC cells lost their 

pluripotent capabilities and were no longer able to differentiate into specialized cells. 

Many of these cells also showed chromosomal abnormalities. This setback sparked the 

search for an alternate stem cell line. It was this investigation that led to the development 

of ESCs.  
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In hopes of avoiding the chromosomal alterations associated with teratocarcinoma 

growth, mouse ESCs (mESC) were isolated in 1981. Using different techniques, two 

scientists, Evan and Kaufman, were able to successfully cultivate cell lines from mouse 

blastocysts that preserved the cells differentiation abilities (Wobus & Boheler, 2005). In 

1998, Thompson, et al. were able to derive human ESC (hESC) cell lines from 

blastocysts that were generated from in vitro fertilized human eggs.  

A fertilized egg, the first entity of life, has totipotent capabilities, meaning it is 

able to produce an entire organism. Totipotency persists in the zygote until about the 

eight-cell stage, which is also known as the morula. About three to four days after 

fertilization takes place, a blastocyst is formed through cell differentiation. The blastocyst 

is composed of outer trophoblast cells, a trophectoderm layer that provides nutrients to 

the embryo, which further develops into the placenta, and inner undifferentiated cells, 

which composes the ICM. The cells of the ICM will form all other tissues and organs. 

They are pluripotent, which is defined as the capacity for a cell to develop into any type 

of cell given the proper conditions. It is at the stage of the ICM where ESCs are derived 

as shown in Figure 1 (Wobus & Boheler, 2005).  
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Figure 1: Isolation and Culture of ESCs. After fertilization, the blastocyst forms 
including both the trophectoderm layer and the ICM. The ICM is harvested five to seven 
days after fertilization and embryonic stem cells are cultured (Landry & Zucker, 2004). 
 

 

The pluripotency of ESCs were demonstrated when they were able to differentiate 

into all three primary germ layers after implantation into a host blastocyst (Keller, 2005). 

The primary germ layers include the endoderm, mesoderm, and ectoderm. The cells of 

the endoderm give rise to the epithelial lining of major body systems including 

respiratory, gastrointestinal, and urinary. The mesoderm forms connective tissue, 

cartilage, and bone, and also gives rise to important organs including the kidneys, 

ovaries, and spleen. Whereas the ectoderm forms the central and peripheral central 

nervous systems, epidermis, mammary glands, and sensory tissue of the eye, ear, and 

nose. Together, the three germ layers are able to form every organ in the body (Panski, 

1982). When a pluripotent cell becomes a tissue cell of one of the germ layers, it then 

becomes multipotent. This means it has limited differentiation potential and is restricted 

to differentiating into cells of specific tissue types. For example, the cells of the inner 
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germ layer or endoderm are only capable of becoming cells such as pancreas or liver 

cells. The middle or mesoderm layer cells can only differentiate into cell types such as 

muscle, bone, or cartilage. The outer germ layer or ectoderm cells are only capable of 

becoming cell types including epithelial and nerve cells (Wobus & Boheler, 2005). An 

example of ESC’s differentiation potential is shown in Figure 2.  

        ESC 

                           

Figure 2: The differentiation potential of ESCs. ESCs can differentiate into different cell 
types that can be used for different purposes including structural (cartilage and bone 
cells) and signaling (beta cells.) These cells then become specialized with their own 
specific functions. (Wu & Belmonte, 2014) 
 
 
Characteristics 

One of the hallmark features of ESCs in culture is their ability to remain in the 

pluripotent state while dividing indefinitely. In vitro, the cells can remain in this state for 

several years if cultured under the appropriate conditions, but at the molecular level, the 

maintenance of this undifferentiated state is more complex. It is maintained by several 

transcription factors working together to promote proliferation and prevent differentiation 
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(Niwa, 2007). The three main transcription factors involved in this process are Oct4, 

Nanog, and Sox2. They work by activating target genes that encode self-renewal and 

pluripotency and repressing the signaling pathways involved in promoting differentiation. 

There are more than three hundred genes that are simultaneously being either expressed 

or repressed by these three transcription factors alone (Chan, Yang and Ng, 2011). 

The unique cell cycle of ESCs is yet another factor contributing to their stem cell 

state. Somatic cell cycles involve four discrete stages that conclude in the formation of 

two daughter cells each with identical contents. During the synthesis phase or S phase of 

the cell cycle, the genetic information is replicated.  The actual physical division of the 

two cells occurs during the mitotic phase or M phase. Between these two phases exists 

the gap phases (G1 and G2), where cell growth and preparation for division occurs. The 

notable differences in ESC’s cell cycle include much shorter gap phases and a longer S 

phase. In all pluripotent cells, about 60% of the cells are in the S phase, but as ESCs 

begin to differentiate, their cell cycles become more like that of somatic cells (White & 

Dalton, 2005). 

In Vitro Maintenance of Pluripotency 

The cultivation of ESCs begins five to seven days after fertilization when the ICM is 

isolated from the blastocyst. The ICM is then cultured in a specific medium to maintain 

their pluripotent nature (Wobus & Boheler, 2005). Initially, cultivation required ESCs be 

grown in a culture medium containing both bovine serum and mouse embryonic 

fibroblasts, a type of feeder cell thought necessary for ESC undifferentiated state (Amit et 

al., 2006). However, recently it was found that the leukemia inhibitory factor (LIF), and 

not the feeder cell layer, was responsible for promoting mESC proliferation and 
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suppressing differentiation in vitro. A part of the interleukin-6 family of cytokines, LIF is 

a soluble glycoprotein that activates Stat3, promoting the undifferentiated state in 

mESCs, but not in hESCs (Wobus & Boheler, 2005). It has been noted that the activation 

of Stat3 is not sufficient to maintain the stem cell state of hESC. This suggests that there 

is a fundamental difference between the human and murine mechanisms for maintaining 

pluripotency (Humphrey et al., 2004). 

In Vitro Differentiation of ESCs 

 Various methods have been established to differentiate ESCs in vitro. 

Spontaneous differentiation of ESCs is among the most commonly used. When the 

factors maintaining their stem cell state, such as LIF, are removed, ESCs will 

spontaneously differentiate into various cell types. By allowing ESCs to spontaneously 

differentiate in culture, several cell types have been formed including cells from each of 

the three germ layers, endoderm, mesoderm, and ectoderm (Keller, 2005). Another 

common ESC differentiation method includes the use of growth factors or cytokines to 

induce differentiation into specific cell lineages. For example, in order for ESCs to 

differentiate into endothelial cells, vascular endothelial growth factor and basic fibroblast 

growth factor are typically used. Though these differentiation methods are capable of 

forming several different cell lineages, both lead to low-yielding and heterogeneous cell 

populations that cannot be used for medical application. Due to these deficiencies, other 

methods of differentiation are being researched. 

In 2006, Takahashi and Yamanaka discovered induced pluripotent stem cells 

(iPSCs). They were able to successfully reprogram mouse somatic cells into pluripotent 

cells using key transcription factors (Puri & Nagy, 2012). This was an extraordinary 
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breakthrough in stem cell research, and it is from this discovery that we now know that 

somatic cells have the potential to be reprogramed to pluripotency. This brought upon 

this new idea of cell reprogramming, and how specific transcription factors can be used 

to induce differentiation. This method is believed to be able to differentiate unlimited cell 

lineages from iPSCs generated from a patient (Daubman, 2011). 

 These transcription factors have already been identified for a number of cell 

lineages, including the factors directing differentiation into bone, fat, and cartilage. 

Transcription factor Runt-related transcription factor 2 (RUNX2) has been named the 

essential transcription factor for osteogenic differentiation, bone matrix gene expression, 

and bone mineralization (Nakahara et al., 2010). During adipogenesis, there are a few 

different transcription factors that play a major role while directing differentiation. 

Peroxisome Proliferator-activated receptor γ (PPARγ) has been identified as the master 

regulator for adipocyte formation. Without its expression, precursor cells cannot 

differentiate into an adipocyte phenotype. Also members of the CCAAT/enhancer-

binding protein (C/EBP) family of transcription factors have also been found to play a 

role in the late stages of adipogenic differentiation (Siersbaek et al., 2010). In 

chondrogenic differentiation, the Sex Determining Region Y-box 9 (SOX9) has been 

identified as the essential transcription factor for chondrogenic differentiation (Akiyama 

et al., 2004). By utilizing these key transcription factors that control cell fate, it is 

possible to direct ESCs to differentiate into desired cell lineages.  
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Biomedical Applications 

Cells in the human body can be dysfunctional for a variety of reasons including 

injury, genetics, disease, or aging. ESC’s pluripotency and ability to proliferate in vitro 

through an extraordinary, nearly unlimited, self-renewal process make them excellent 

candidates for cell sources in regenerative medicine. ESCs have the potential to treat 

several diseases including cancers, Parkinson’s disease, spinal cord injuries, muscular 

dystrophies, diabetes, and several others (Murnaghan, 2014). In cell culture, ESCs have 

the ability to be grown indefinitely and to be manipulated genetically. Several 

differentiation strategies for various cell lineages have already been established. Through 

the manipulation of cell culture conditions and genetics, ESCs could be differentiated 

into nearly any cell type to be used as treatments for various human diseases and 

disorders (Wobus & Boheler, 2005).  

Though hESCs have a lot of potential, differentiated hESCs exhibit several 

complications. Currently, the differentiation methods for hESCs are low yielding and 

create heterogeneous cell populations, meaning the cell populations are not uniform in 

nature. If transplanted into the human body, the differentiated hESCs could be rejected by 

the immune system, form tumors, or may not even function normally within the body. 

Due to different histocompatibility complexes between the patient and donor, 

immunorejection of ESCs could potentially occur (Drukker, 2004). Also as mentioned 

earlier, the attenuated immune response of ESCs and their derivatives could cause 

problems if exposed to pathogens during transplantation (Wang et al., 2013). It is vital 

that these problems be resolved before hESCs can be used for various cell therapies 

(Wobus & Boheler, 2005). 
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Similarities and Differences between mESCs and hESCs 

The majority of the current knowledge regarding the use of ESCs in cell-based 

therapies comes from the study of animal models such as mESCs. While these models 

can be helpful in determining the prospective use of ESCs in treatment of human 

diseases, the use of hESCs would be much more beneficial. Although very similar, 

differences do exist between mESCs and hESCs. One notable difference is that, unlike 

mESCs, LIF is not sufficient to inhibit differentiation of hESCs. Some studies show the 

application of extracellular matrix factors can be used to maintain the stem cell state of 

hESCs. It has also been found that hESCs possess a longer than average population 

doubling time in comparison to mESCs. Also, unlike mESCs, hESCs are able to 

differentiate into trophoblast-like cells. Subtle differences in morphology, expression of 

differentiation markers, cell cycle, cell-death regulating genes, and patterns of embryonic 

antigen immunostaining were also found between mESCs and hESCs (Ginis et al., 2003). 

Because of these differences, more research is necessary to fully understand the 

application potential of hESCs in cell therapy. 

  Both mESCs and hESCs have been tested and analyzed in various animal models 

for human diseases. The first therapeutic demonstration involved the transplantation of 

mESC-derived cardiomyocytes into the ventricular myocardium of adult mice with 

muscular dystrophy. Only 7 weeks after implantation, the cells showed several cell 

markers inferring their differentiation into mature cardiomyocytes. The injected mice 

were reported to have increased left ventricular function shortly after implantation. This 

study verified the potential use of ESCs for cardiac therapy. Also, endothelial cells 
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derived from hESCs were found to form microvessels after their implantation into mice 

with an immunodeficiency disorder (Wobus & Boheler, 2005). 

Although several studies suggest ESC-derived cells to be therapeutically useful, it is 

still unknown whether these cells could function normally or exhibit long-term 

functionality within the human body. Currently, there are no ESC therapies being tested 

with human models. In addition to the technical and biological barriers mentioned for 

mESCs, the social and ethical concerns as discussed below have delayed the medical 

application of hESCs. 

Ethical/Social Concerns and Alternatives for hESCs 

Because of their embryonic origin, research dealing with ESCs has many ethical and 

social concerns as well. It is true that blastocysts have the potential to develop a complete 

and functional organism. The debate lies on the fine line of whether or not a 5-day-old 

embryo is yet a human being. It is without doubt this debate is based on several 

misconceptions. It is commonly misconceived that ESCs alone can form an entire 

organism. A blastocyst is composed of about 100 cells with 30 to 34 of those cells being 

the ICM. The remaining cells make up an outer layer known as the trophectoderm. This 

layer is essential for the blastocyst to develop to maturity and for the production of the 

placenta. In ESC research, the trophectoderm is extracted, and therefore ESCs are only 

considered pluripotent. They are able to form nearly every tissue type of a human body, 

but without the ability to form the extraembryonic tissue, a fully, functional organism can 

never be created in vitro (Gilbert, 2004). 

Also, a common belief is that ESCs are derived from aborted fetuses, which is not 

true. In fact, there is no connection between ESCs and abortion. The current ESC lines 
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were derived from blastocysts that were voluntarily donated from people participating in 

In Vitro Fertilization. For In Vitro Fertilization, hundreds of eggs are fertilized in a petri 

dish with the hopes that one will form a child. Five days after fertilization, a few of these 

fertilized embryos are then transplanted into the uterus. If the transfer is successful, the 

remaining embryos are then discarded. These embryos, that would normally be discarded, 

are what we use today in ESC research if consent from the donor is provided (Gilbert, 

2004). 

Since the use of ESCs is sometimes referred to as “therapeutic cloning,” some people 

mistake this for “reproductive cloning,” which is an entirely different mechanism. Human 

cloning involves the transfer of DNA from the cells of one individual into an egg to form 

an embryo. Reproductive cloning occurs when this very same embryo is then 

transplanted into a mother’s uterus, and the developing baby, being genetically identical 

to the original donor, is brought to full term. On the other hand, therapeutic cloning uses 

only the blastocysts of these embryos, which then prevents the embryo from developing 

beyond the blastocyst stage (Gilbert, 2004).  

Due to the ethical and social concerns, countries have passed bioethical regulations 

regarding ESC research (Wobus & Boheler, 2005). The National Institute of Health 

provides support and funding for public stem cell research in the Unites States. The 

institute articulates a clear distinction between “using” ESC and “deriving” ESC. They 

will only fund research on ESCs already derived from discarded embryos formed through 

In Vitro Fertilization with uncompensated consent of the donor. NIH will not under any 

circumstances support research on new ESC lines.  
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It is because of these issues that adult stem cells (ASCs) are now more commonly 

used instead of hESCs for therapeutic use. For example, allogeneic ASCs in bone marrow 

are transplanted as a treatment for Leukemia patients (Wobus & Boheler, 2005). Another 

alternative to ESCs is the newly found induced pluripotent stem cell (iPSC). In 2006, 

Takahashi and Yamanaka were able to successfully reprogram mouse somatic cells into 

pluripotent cells using key transcription factors (Puri & Nagy, 2012) as previously 

mentioned. Although iPSCs and hESCs exhibit several similarities including 

morphology, proliferation, surface markers, gene expression, and in vitro differentiation, 

genetic differences have been detected as well as other concerns. Further study of iPSCs 

is critical before they can replace hESCs in clinical applications (Takahashi et al., 2007). 

Adult Stem Cells  

As development of the embryo in the womb continues, organ development becomes 

required to form a complete and functional organism. It is at this point in development 

when ASCs are first seen. These cells maintain their self-renewal properties, but are 

restricted in their potency. After birth, ASCs reside in specific “stem cell niches” 

throughout the body where their primary purpose is to maintain tissue homeostasis. They 

do this by consistently replacing damaged cells after natural cell death (apoptosis) or 

injury (Li & Xie, 2005). They can remain in a non-dividing state for several years, but 

can then become activated in response to an injury or disease. ASCs exhibit multipotent 

abilities, meaning they are only able to differentiate into a few specific cell types. They 

can be found in several mature tissues within the human body including brain, skeletal 

muscle, bone marrow, teeth, heart, and liver (NIH, 2014).  
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Mesenchymal Stem Cells 

Background 

Research on ASCs began in the 1950s, when it was discovered that two types of 

stem cells were present in bone marrow. The first type, hematopoietic stem cells, gives 

rise to all the blood cells in the body including red blood cells, white blood cells, and 

platelets. The second type of stem cell was found to be bone marrow stromal cells or 

mesenchymal stem cells (MSC) that are capable of differentiating into a few cell types, 

primarily bone cells (osteoblasts and osteocytes,) cartilage cells (chondrocytes,) and fat 

cells (adipocytes) (NIH, 2014). In 1976, Fridenstein et al. were the first to describe MSCs 

as clonal, plastic adherent cells that act as a source for fat, bone, and cartilage. Within the 

bone marrow, MSCs primary function is to secrete extracellular matrix proteins, growth 

factors, chemokines, and cytokines, thereby creating a tissue framework for the 

hematopoietic cell system (Bobis, Jarocha and Majka, 2007).  

Characteristics 

In terms of their morphology, physiology, and expression of surface antigens, 

MSCs create a heterogeneous cellular population. Their functionality largely differs 

depending on their environmental factors. When MSCs are given sufficient room to 

grow, they give rise to several fibroblastic colonies. Stem cells that are able to form these 

colonies are referred to as colony unit forming stem cells. Findings regarding MSC 

cultures are not entirely consistent. Past studies of MSCs derived from bone marrow have 

shown homologous colonies expressing only a single cell type, while more recent studies 

find heterogeneous colonies containing more than one cell type. The proliferation 

potential of MSCs have also been found to differ from small and rapidly renewing to 

large and slowly renewing. However, the most recent studies reveal MSC colonies 
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containing as many as three cell types: some being small and spindle shaped, some flat 

and cuboidal, and the third type having a large nucleus to cytoplasm ratio, rapid self-

renewal properties, and great potential for multilineage differentiation (Bobis et al., 

2007). 

A single specific cell marker that is mutually expressed throughout all MSCs has 

yet to be identified. On the other hand, they do express a wide variety of adhesion 

molecules, cytokines, growth factor receptors, and extracellular matrix proteins. MSCs 

isolated from bone marrow express several markers in common including: CD44, 

CD105, CD106, CD166, CD29, CD73, CD90, CD117, STRO-1, and Sca-1. These cells 

also do not express cell markers specific to hematopoietic and endothelial cell lineages 

such as CD11b, CD14, CD31, CD33, CD34, and CD45 (Bobis et al., 2007). It is more 

specifically the lack of antigens CD14, CD34, and CD45 that enable scientists to 

distinguish MSCs from hematopoietic precursor cells (Minguell, Erices and Conget, 

2001). 

MSCs have been found to greatly decrease with age. Newborns express the highest 

amount of MSC with their levels decreasing to about half by the age of eighty (Bobis et 

al., 2007). MSCs can be found in the previously described “stem cell niches” where they 

remain inactive until they are confronted with injury, disease, or aging. This is when their 

self-renewal capacity takes over, and they are able to efficiently replace damaged cells 

(Minguell et al., 2001). Research is still determining why exactly MSCs remain in this 

undifferentiated state within their niches. However, some studies indicate that a family of 

signaling proteins known as Wnt proteins for maintaining MSC’s stem cell state (Bobis et 

al., 2007). 
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Though MSCs reside primarily in bone marrow, recent studies suggest they can be 

found in several other tissues as well. These tissues include trabecular bone, adipose 

tissue, synovium, skeletal muscle, lung, deciduous teeth, and human umbilical cord 

perivascular cells (Baksh, Song and Tuan, 2004). It has yet to be established whether or 

not these MSCs act the same as bone marrow-derived MSCs. It has also been seen that 

the differentiation potentials of MSCs vary depending on the isolation origin of the cells 

(Barry and Murphy, 2004). 

In Vitro Growth and Tri-Lineage Differentiation Potential 

MSCs growth in-vitro is characterized by three distinct phases. The beginning 

phase, known as the lag phase, lasts about three to four days, followed by an extensive 

growth period called the log phase, and finally a stationary phase proceeds. In ideal 

conditions, bone marrow-derived MSCs can be maintained in vitro for about twenty to 

thirty population doublings, while still retaining the ability to differentiate (Bobis et al., 

2007). The cell cycle profile of MSCs include approximately 10% of the cells in the S, 

G2, and M phases of the cell cycle and 90% in the G0 and G1 phases (Minguell et al., 

2001). 

 In order for MSCs to differentiate in vitro, a variety of factors including specific 

differentiation factors, growth factors, basal nutrients, and cytokines are needed. Other 

factors such as the cell density, mechanical forces, and spatial organization of cells also 

control MSC’s differentiation potential. Studies suggest that the same factors can elicit 

different differentiation results on various species. For example, when both human 

derived MSCs (hMSC) and mouse derived MSCs (mMSC) are treated with 
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dexametasone, hMSCs form osteogenic cell lineages while mMSCs form adipogenic 

lineages (Bobis et al., 2007). 

 The exact mechanism through which MSCs differentiate has yet to be determined. 

It is not clear whether there is a single multipotent MSC that gives rise to each cell 

lineage or if MSCs make up a mixture of progenitor cells each committed to their own 

distinct lineage (Bobis et al., 2007). To characterize MSCs, the cells must be able to 

differentiate into three distinct tissue lineages: adipocytes, osteocytes, and chondrocytes, 

but MSCs have also been found to exhibit a high degree of plasticity (Kimbrell et al., 

2014, Minguell et al., 2001). They have been found to also produce some non-

mesenchymal cell types including neural cells, endothelial cells, and muscle cells. The 

specific factors that promote these types of differentiation in vitro have yet to be 

identified (Bobis et al., 2007). During tissue growth and repair in vivo, the body displays 

an elevated demand for cell progenitors. MSCs, being uncommitted progenitors, have 

been reported to travel to other tissues as a cell source. For example, this was exhibited 

when MSCs in the bone marrow traveled to muscles to aid in skeletal muscle repair 

(Minguell et al., 2001).  

Biomedical Applications 
 

MSCs make up only about .001% to .01% of the cells found in bone marrow. For 

research purposes, it has been found easy to collect a mixture of cells from the adult bone 

marrow that includes MSCs. However, being that MSCs make up such a small fraction of 

bone marrow, it is extremely complicated to isolate a pure culture of MSCs, and scientists 

have yet to find a successful way of doing this (Barry and Murphy, 2004). Though 

several gaps exist in the research of MSCs, their easy isolation and culture, high ex vivo 



 17 

expansion potential, and multi-lineage differentiation potential give MSCs a promising 

future in a wide range of clinical applications including regenerative medicine, gene 

therapies, and tissue engineering (Minguell et al., 2001). 

 Several studies have already been conducted to demonstrate MSCs potential in 

biomedical applications. It has been found that transplanted MSCs are stable when 

engrafted into various tissues of animal models. Engrafted MSCs were even observed to 

migrate to specific sites of injury including bone fractures, myocardial infarction, and 

cerebral ischemia. MSCs also have excellent potential for gene therapies. In one study, 

genetically modified MSCs were used successfully to transfer a therapeutic gene into a 

mouse model. The MSCs were genetically modified through transduction with a viral 

vector, and the transfer to the donor revealed 74% gene transfer efficiency. Genetically 

altered MSCs have also been tested clinically in humans to treat hemophilia. MSCs were 

modified to carry coagulation factors VII and IX and then transferred into hemophiliac 

patients (Bobis et al., 2007). 

 MSCs have been used successfully for the treatment of bone defects in animal 

models. Scaffolds containing recombinant bone morphogenetic proteins were used to 

gather local MSCs to induce bone formation in rats. Furthermore, MSCs are currently 

being used in several clinical trials to treat osteogenesis imperfecta, a genetic disorder 

involving over 150 mutations that together cause many abnormalities especially in 

collagen formation and bone structure. Some of the clinical trials involve engraftment of 

purified populations of MSCs, MSC gene therapies, and even transplantation of MSCs in 

utero in some severe cases of osteogenesis imperfecta (Bobis et al., 2007). 
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 MSCs have also been used for tissue engineering in the treatment of cartilage 

lesions. Wakitani et al., (1994) used collagen sponges filled with MSCs to fill 

mechanically induced cartilage lesions within white rabbits. Though active chondrocytes 

and a cartilaginous matrix did indeed form, the new tissue and host tissue were found to 

be discontinuous. Since then, MSCs stimulated with the growth factors BMP-2 and IGF-1 

have been used successfully to repair knee joints (Bobis et al., 2007). 

 In addition to these uses, MSCs have also been found successful in several in vivo 

tissue repairs including kidney, muscle, and lung repairs. Also, MSCs have been utilized 

to promote angiogenesis and to treat chronic skin wounds. The biomedical use of MSCs 

posses fewer limitations than ESCs. Unlike ESCs, MSCs have less ethical concerns and 

are less probable to trigger tumor formation (Bobis et al., 2007). 

ESC-derived MSCs 

Harvesting MSCs from the body can be a difficult process that requires both a 

perfect match donor and invasive procedures to extract the cells. Also, only a limited 

number of MSCs can be isolated from a single donor, and these cells do not have the 

capacity to proliferate for long periods of time. It is because of these reasons that 

researchers sought out for a new source of MSCs other than adult tissues. Being that 

ESCs have the capacity to produce unlimited specialized cells, several studies have 

reported the differentiation of hESCs into cells that have very similar characteristics to 

adult tissue-derived MSCs (Hematti, 2011). The potential of ESC-derived MSCs (ESC-

MSC) could provide an unlimited source of MSCs for various clinical applications. Due 

to the inconsistencies regarding the definition for MSCs, the International Society for 

Cellular Therapy recently put together a list of widely accepted criteria based on 
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phenotypic and functional characteristics as well as specific culture properties. The 

criteria include the tri-lineage differentiation into fat, cartilage, and bone tissues. MSCs 

must be plastic-adherent when grown in standard culture condition. It also includes that 

MSCs do not express the surface molecules CD34, CD45, CD14, CD11b, CD79α, CD19, 

or HLA-DR, but include the surface makers CD73, CD90, and CD105 (Dominici, et al., 

2006). In 2005, Barberi, Willis, Socci and Studer. were able to characterize ESC-MSCs 

using the above criteria after 40 days of coculture hESCs with murine bone marrow 

stromal cells known as OP9 cells. The gene expression analysis of their ESC-MSCs also 

showed 579 transcripts in common with human adult MSCs (Barberi et al., 2005). In 

2011, Olivier and Bouhassira were able to derive MSCs from ESCs through the 

“Raclure” method. This method produced ESC-MSCs without the coculture of OP9 cells 

or any feeder layer (Olivier et al., 2011). Other methods of creating ESC-MSCs include 

using embryoid body for formation, the plating of hESCs on MSC media, and inhibiting 

TGFβ and MAPK signaling pathways (Kimbrel et al., 2014). 

ESC-MSC’s potential in biomedical applications has been tested in a few studies 

using disease models. ESC-MSCs were found to bring therapeutic benefits to mice with 

trinitrobenzenesulfonic acid-induced colitis. Another study showed ESC-MSCs 

enhancement of hematopoietic stem cell engraftments. Kimbrell et al., 2014 tested their 

effects on mice with lupis nephritis and uveitis, two different autoimmune disorders. For 

lupis nephritis, the ESC-MSCs helped preserve kidney function, thus leading to an 

increased average lifespan of the mice. The cells were also found to decrease the severity 

of uveitis in the mice models. They concluded that ESC-MSCs are an excellent 

alternative to adult tissue-derived MSCs (Kimbrel et al., 2014). 
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RATIONALE, HYPOTHESIS, AND OBJECTIVES 

Due to their self-renewal properties and differentiation potential, ESCs are a 

promising cell source for regenerative medicine. Though ESCs have great potential, 

several challenges must be overcome before these cells can be used. Current methods of 

ESC differentiation produce low-yielding, heterogeneous cell populations that are not 

sufficient for biomedical applications. Differentiated ESCs have also been found to have 

an attenuated immune response (Wang et al., 2013), giving us doubt to whether or not 

they will function normally within the human body.  

On the other hand, MSCs, a type of multipotent ASC found within bone marrow, 

also have excellent characteristics for therapeutic applications. MSCs have already 

advanced far in clinical applications due to their defined differentiation abilities and 

immunoregulatory properties. However, these cells can only be derived from limited 

sources and lack sufficient expansion capacity needed for use in biomedical applications 

(Baksh, Song and Tuan, 2004). 

The research question investigated in this project is to determine if mESC-derived 

fibroblasts that were previously characterized (Wang et al., 2014) have characteristics in 

common with MSCs. By characterizing these cells with properties defined for adult tissue 

derived-MSCs, we will obtain novel information regarding their future use in therapeutic 

applications. This will allow us to generate cells that possess advantages of both ESCs 

and MSCs, thus creating a new and improved cell source for future biomedical 

applications. Two graduate students, William D’Angelo and Chandan Gurung led this 

research project under Dr. Guo’s direction. By participating in this research project, my 
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objective is to gain a greater understanding of stem cell biology and to learn basic 

research skills including laboratory techniques and procedures. 

EXPERIMENTAL DESIGN AND METHODS 

Experimental Design 

Through retinoic acid (RA) induction, a cell line has been differentiated from 

mESCs in Dr. Guo’s lab. Initially identified as fibroblasts (Wang et al., 2014), these cells 

are now believed to share several characteristics with MSCs. The goal of this research 

project is to characterize these cells as MSCs by examining cell morphology, 

proliferation rate, cell cycle profile, and tri-lineage differentiation capacity (osteocytes, 

adipocytes, and chondrocytes; NIH 2014). By characterizing these cells’ MSC properties, 

we aim to show that the ESC-MSCs that are generated will be able to bypass several 

complications that exist when using adult tissue-derived MSCs for biomedical 

applications. 

Cell Culture Techniques 

Background 

 By definition, a cell culture is when cells are isolated from tissues or organs of an 

organism during the cultivation process. The cells are then grown in an in vitro 

environment such as a culture dish, containing a medium that provides the essential 

nutrients for cell survival and growth such as glucose and amino acids. In 1907 Ross 

Harrison was the first to create an animal cell culture, but it was not until the late 1940s 

that the cell culture technique was developed enough to be readily used by scientists. 

Several advances took place before this technique was perfected. First, the discovery and 

use of antibiotics helped avoid contamination that plagued the early efforts of cell culture. 
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Then enzymes such as trypsin were discovered to disassociate the cells from their culture 

dish, enabling scientists to grow continuous cell lines. Lastly, culture media were 

optimized to allow for sufficient cell growth in vitro. Continuing into the 1960s and even 

today, commercialization of culture technology is expanding the use and efficiency of 

cell cultures (Ryan, 2008).  

 The first step of creating a cell culture is producing the primary culture by 

removing the cells from the desired tissue and placing them into the appropriate culture 

environment. This can be done by one of two methods: explant culture or enzymatic 

dissociation. In an explant culture, tissue pieces are isolated from the source and attached 

to a culture dish.  Culture medium is added to the dish. Cells are then able to move from 

the tissue explant to the surface of the dish where they begin to divide. The second 

method, enzymatic dissociation, is more commonly used. For this method, digestive 

enzymes, such as trypsin, are used to dissolve the extracellular material holding the cells 

together and form a suspension layer of cells that is then added to a culture dish with 

medium. The cells are then able to grow and divide (Ryan, 2008). 

 To allow for continued growth and continuous cell lines, the cells of the primary 

culture must be subcultured. When the cells from the primary culture have filled the 

available space of the culture dish, trypsin is used to detach the cells from the culture 

dish, and the cells are replated at a lower density. Extra cells that are not presently needed 

can be treated with cryoprotective agents such as glycerol or dimethylsulfoxide, frozen, 

and then usually stored in a liquid nitrogen tank below -130°C until they are needed. 

Rather than establishing a new cell line through primary cultures, cell cultures can also be 



 23 

purchased from organizations such as the American Type Culture Collection (ATCC) 

(Ryan. 2008). 

 Most cell lines derived from normal tissues contain cells that are anchorage-

dependent. This means they are only able to grow and divide when attached to an 

appropriate substrate, a glass or plastic surface of a cell culture dish. Cells such as these 

require specific attachment factors such as collagen or gelatin, which are used to coat cell 

culture dishes and allow for better attachment. The culture medium is also very important 

and must provide all necessary nutrients for cell growth, such as glucose and essential 

amino acids. The medium should regulate the environment by optimizing pH and 

osmolality through the use of buffer solutions. Growth factors and hormones are also 

used within the medium to control the cells’ growth rate. These factors are usually 

provided in the form of 5% to 20% animal sera, such as fetal bovine serum (FBS). Cells 

are typically stored near 37°C in mammals or the body temperature of the organism in 

which they were derived (Ryan, 2008). 

ESC Culture 

 A D3 mESC cell line from ATCC (Toumadje et al., 2003) was cultured in dishes 

coated with 0.1% gelatin and supplied with Dulbecco’s Modified Eagle Medium 

(DMEM), supplemented with 15% FBS, 1000 U/mL LIF, non-essential amino acids, and 

100 µg/mL streptomycin. The cells were then stored in a humidified incubator at 37°C in 

5% CO2. Once the cells reached 100% confluence, meaning that the surface of the 

culture dish was completely covered with a monolayer of cells, they were subcultured. 

Trypsin, phosphate-buffered saline (PBS), and DMEM containing 15% FBS was heated 

for 5 to 10 minutes at 37°C. The medium was removed from the culture dish by a suction 
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pipette. PBS was added to the culture dish to wash the cells, and then also removed by 

the suction pipette. Trypsin was added for 3-5 minutes to detach cells from the dish and 

then an equal volume of DMEM with 15% FBS was added to deactivate the trypsin. The 

cells were then placed in 1.5mL tubes and centrifuged at 1,100 rpm for 3.5 minutes. The 

supernatant was removed, and the remaining cell pellet was resuspended in 1 mL of fresh 

medium. The cells were replated on new dishes coated with gelatin at 50% to 60% 

confluence and maintained as described above.  

In Vitro Differentiation of mESCs  

Retinoic Acid Induction 

 Retinoic acid (RA), a vitamin A derivative that regulates many developmental 

processes during embryogenesis (Keller, 2005), was used to induce mESC 

differentiation. Cell differentiation was begun by adding 1µM RA to mESCs in a gelatin-

coated culture dish. The cells were differentiated over a 10-day period with the cell 

medium being refreshed three times over that period. Once the cells were differentiated, 

they were trypsinized and replated in a culture dish without gelatin. The differentiated 

cells were able to attach within 30 to 45 minutes. They express fibroblast markers and 

show extensive similarities to 10T1/2 cells (Wang et al., 2014), therefore they are 

tentatively defined as MSCs, and are referred to as D3-MSCs hereafter.  

MSC Culture 

D3-MSCs and C3H 10T1/2 cells (10T1/2, a line of mMSCs isolated from 14-17 

day mouse embryos, ATCC) were cultured in DMEM + 10% FBS, 100 U/mL penicillin, 

and 100 µg/mL of streptomycin. The cells were maintained at 37°C in a humidifying 

incubator in a 5% CO2 environment. The subculture procedure was identical to that of 
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ESCs, except the culture dishes were not coated with 0.1% gelatin, as the cells have no 

problem adhering to plastic. 10T1/2 cells have been used as a model for studying MSC 

differentiation (Haas & Tuan, 2000) and are used in this project as a positive control. . 

Toluidine Blue Staining 

Principle of TB Staining 

 Toluidine blue (TB) was first discovered in 1856 when a chemist, William Perkin, 

was attempting to synthesize quinine. Rather than his expected result, he produced a blue 

substance with considerable staining properties. TB, the first synthetic organic chemical 

dye, is a polychromatic dye that absorbs various colors depending on which tissues it 

binds. It can selectively bind to acidic cellular components, having a very high affinity 

for nucleic acids including both DNA and RNA. On the other hand, TB has less of an 

affinity for proteins, thus minimizing the background staining of cells (Sridharan and 

Shankar, 2012). Due to its relatively simple procedure, TB staining is commonly used as 

a method to determine the number of cells and visualize morphology (Perry, 2014). 

TB Staining Protocol 

  D3-ESCs, D3-MSCs, and 10T1/2 cells grown in a 48-well plate were fixed with 

methanol for 5 to 10 minutes at room temperature. The methanol was then aspirated and 

cell were air dried for 10 minutes. Cells were stained with 150 μl of TB for 30 minutes. A 

bulb pipette was used to aspirate the stain from each well, and the wells were washed 

with tap water 2-3 times. The stained cells were visualized using an Olympus CKX31 

microscope.  

 

 



 26 

Cell Cycle Analysis by Flow Cytometry 

Principle of Flow Cytometry 

Flow cytometry is a technique used to analyze both the physical and chemical 

properties of cells suspended in a thin stream of fluid and passed single file through a 

laser. This technology is particularly useful in biological laboratories to study cellular 

components as shown in Figure 3. Preferred components (i.e. DNA, specific proteins, 

etc.) are labeled with fluorescent dyes that are then excited by a laser to emit light at 

varying wavelengths, which is detected and digitized to enable software analysis. One of 

the first practical uses of flow cytometry was cell cycle analysis through the quantitative 

measurement of DNA content within cells (Ormerod, Tribukait and Giaretti, 1998). 

                

Figure 3:  The basic principle of flow cytometry. A phytoplankton cell flowing through 
Flow Cytometry lasers with an exemplary scan (retrieved from 
http://www.cytobuoy.com/faq/frequently-asked-questions/). 

 

The cell cycle is split into distinct phases known as interphase and mitosis. 

Interphase can be further broken down into three sub-phases: G1, S, and G2 as shown in 
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Figure 4A. As discussed earlier, S phase is when the DNA synthesis takes place to 

replicate the genome. The G1 and G2 phases, also known as the gap phases, involve cell 

growth and preparation before mitosis, or M phase, can take place. The DNA within the 

cell can be stained through a variety of DNA binding dyes including propidium iodide 

(PI), 7-aminoactinomycin-D, as well as several others.  These particular dyes are special 

in that they are stoichiometric, meaning they are able to bind proportionately to the 

amount of DNA in the cell. Cells in G2 or M phases (after DNA replication) will have 

double the amount of DNA of cells in G1, and therefore fluoresce twice as brightly, while 

cells in S phase will have an intermediate amount of amount of DNA and thus 

fluorescence. This principle can be seen in Figure 4B (Ormerod, 1998). 

          

Figure 4: The Phases of the Cell Cycle (A) and an example of a diploid DNA histogram 
measured through Flow Cytometry (B) (Tabll and Ismail, 2011). 
 

Cell Cycle Analysis Protocol 

D3-ESCs and D3-MSCs were harvested at 30% to 80% confluence in 6-well 

dishes. They were then washed in PBS, detached with 0.4 mL trypsin, and collected in a 

1.5 mL tube. The wells were each washed with 0.4 mL of medium, which was then 
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combined with the trypsinized cells. The cells were then centrifuged at 1200 rpm for 3 

minutes. The supernatant was removed, and the pellet was broken up and resuspended in 

200 μl of PBS+0.1% FBS. The cells were then fixed in 800 μl of 100% ethanol at 4°C for 

30 minutes. Fixation is necessary to prevent deterioration of the cells and allow 

permeabilization of the membrane to dyes or antibodies. After fixation, the cells were 

centrifuged again at 1500 rpm for 5 minutes, and resuspended in 0.5 mL of PBS+0.1% 

FBS to wash. After another centrifugation, cells were resuspended in 50 µL of PBS plus 

1 µL of RNAse and incubated at room temperature for 10 minutes. The RNAse breaks 

down all RNA within the cell, so only the DNA is measured allowing for fewer 

distortions in the results. 100 µL of FACS buffer, containing both PBS and 2% FBS, and 

10 µL of PI (1 mg/mL) were added to the cells. They were then incubated at 4°C for 30 

minutes. The results were analyzed using a flow cytometer. Both the forward and side 

scatter of the cells were measured to identify single cells.  

Tri-lineage Differentiation Techniques 

Principle of Spontaneous Differentiation 

 The principle of mESC differentiation is that, in the absence of LIF, mESCs begin 

to spontaneously differentiate into various cell types. For effective cell type-specific 

differentiation, specialized media that contain specific growth factors or cytokines are 

commonly used. Although not very effective, it has been demonstrated that MSCs can 

spontaneously differentiate in the absence of growth factors or specific environmental 

conditions. Naruse et al., 2004, allowed MSCs obtained from fetal rat circulation to 

differentiate in a normal medium without any additional factors. Both chondrocytes and 

osteocytes were formed through spontaneous differentiation of the MSCs (Naruse et al., 
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2004). As an initial assessment, D3-MSCs were spontaneously differentiated for 4 weeks 

to test their tri-lineage differentiation potential into osteocytes, adipocytes, and 

chondrocytes. 

Differentiation Protocol 

 D3-MSCs and 10T1/2 cells were plated in DMEM + 10% FBS and allowed to 

grow for 4 weeks without subculturing. During this time, the medium was changed 

regularly, approximately every 2 to 3 days. The cells were positively stained with 

respective dyes for detection of cellular products. To compare levels and intensity of 

staining, cells were stained after 3 days to use as an undifferentiated control and again 

after 4 weeks of growth. 

Osteocyte Staining 

 Osteocytes, or bone cells, have the capacity to undergo mineralization, which is 

when cells produce extracellular calcium deposits when grown in vitro. The formation of 

calcium deposits indicates successful osteogenic differentiation. Alizarin Red can be used 

to stain calcium deposits a bright orange-red color to test for successful bone formation 

(Gough, Jones and Hench, 2004). Prior to staining, the cells were fixed in methanol, and 

2% Alizarin Red S was filtered before use. The cells were washed twice in PBS, then 

stained with 2% Alizarin Red S for 5 minutes. They were then washed 3 times in distilled 

water and visualized with a microscope. 

Adipocyte Staining  

Oil Red O is a stain that can be used to detect the extent of adipocyte 

differentiation. It does so by staining the intracytoplasmic lipids within the cells 

(Ramirez-Zacarias, Castro-Munozledo and Kuri-Harcuch, 1992). Both D3-MSCs and 
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10T1/2 cells were stained to confirm adipocyte formation. Prior to staining, the cells were 

fixed in methanol, and 0.5% Oil Red O was diluted in a 3:2 ratio (stain: distilled water). 

The stain was mixed, left to stand for 10 minutes, and then filtered before use. The cells 

were washed twice in PBS stained with 0.5% Oil Red O for 5 minutes, washed 3 times in 

PBS, and visualized with a microscope. 

Chondrocyte Staining 

 Safranin O is a cationic dye that is used to quantify the amount of proteoglycans 

present in cartilage. When chondrogenic differentiation occurs, extracellular matrix 

proteins including type II collagen and the proteoglycan aggrecan begin to form. The 

higher the intensity of the safranin staining, the higher the proteoglycan content 

(Camplejohn and Allard, 1988). To test for successful chondrocyte formation, both D3-

MSCs and 10T1/2 cells were stained with Safranin O. Prior to staining, the cells were 

fixed with methanol and washed three times with PBS. The cells were stained with 0.1% 

Safranin O for 5 minutes, washed with distilled water, and visualized with a microscope. 

RNA Extraction and RT-qPCR 

Principle of PCR-based Gene Expression Analysis 

Real time quantitative polymerase chain reaction (RT-qPCR) is a procedure that 

measures amplified DNA through the use of fluorescent molecules. DNA binding 

chemicals such as SYBR green bind to double stranded DNA and become fluorescent. As 

DNA is amplified, double stranded DNA begins to increase, and in turn so does the 

fluorescence. This allows for the measure of DNA amplification. RT-qPCR can be split 

into four phases: the linear ground phase, early exponential phase, log-linear phase, and 

plateau phase as shown in Figure 5. During the linear ground phase, there is not enough 
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DNA for an increase in fluorescence to be detected, but the baseline fluorescence can be 

calculated. In the early exponential phase, the fluorescence has reached a threshold where 

an increase can be detected. The cycle in which this occurs is called Ct, indicated by the 

arrow in Figure 5. The Ct value is used as a measure of the original amount of 

complementary DNA (cDNA).  In the log-linear phase, DNA reaches optimal 

amplification and is approximately doubled during each cycle. Finally, the plateau phase 

is when the reaction components, such as nucleotides, become scarce, DNA amplification 

slows down, and the fluorescence intensity is no longer needed for calculations. The 

relative expression of genes of interest can be determined by comparing Ct values to 

housekeeping genes, or genes that are stably expressed across all samples and treatments 

being tested. Some common housekeeping genes are β-actin and GADPH (Wong & 

Medrano, 2005). For analysis, one of the most common methods to use is the 

comparative Ct method. This method uses a formula to compare the relative expressions 

of the gene of interest and housekeeping gene. The formula is as follows (Pfaffl, 2001): 

 

 Expression in experimental group = 2(Ct ref-Ct gene of interest)
 experimental 

        Expression in control group          2 (Ct ref-Ct gene of interest)
 control 
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Figure 5: Phases of RT-qPCR. The arrow indicates the Ct value (modified from Wong & 
Medrano, 2005). 
 

RNA Extraction 

 Sigma Tri-reagent was used to isolate RNA from the cells. 0.6mL was added to 

each well in the culture dish (6-well plate). The cells were then transferred to 1.5mL 

microfuge tubes. 0.2mL of chloroform per mL of Tri-reagent was then added to each 

microfuge tube. The cells were vortexed for 15 seconds and then incubated at room 

temperature for 10 minutes. After incubation, the cells were centrifuged at 10,000 rpm for 

10 minutes at 4°C, and three different phases were formed: aqueous phase, interphase, 

and organic phase. The aqueous phase containing the RNA was transferred to another 

tube. Due to the amphipathic characteristics of proteins, they were attracted to both the 

organic and aqueous phases and were found in the interphase or flocculent. Due to both 

the acidic conditions and the presence of phenol, DNA ended up in the organic phase and 

interphase. Furthermore, the phosphate groups of DNA are neutralized by H+, causing it 

to be nonpolar, thus making DNA be attracted to both the organic phase and interphase. 
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Next, 0.5 mL of 100% isopropanol per mL of Tri-reagent was added to the aqueous phase 

containing the RNA. The sample was then incubated at room temperature for 10 minutes 

before centrifugation at 12,000 rpm for 15 minutes at 4°C. After centrifugation, a white 

pellet of RNA had precipitated. The liquid was removed from the tube, leaving only the 

RNA pellet, and 700 μl of 75% ethanol were added to wash the pellet. The sample was 

vortexed and put in the freezer at -20°C for at least 1 hour to allow for the RNA to 

precipitate. The sample was then centrifuged at 10,000 rpm at 4°C for 10 minutes. The 

ethanol was removed, and the pellet was dried on ice for 5 minutes. The pellet was 

dissolved in 20µL of Diethylpyrocarbonate (DEPC) water. Using a spectrophotometer, 

both the concentration and integrity were determined. The sample was stored at -70°C for 

later use. 

Reverse Transcription Protocol 

 In order to generate cDNA for use in RT-PCR, reverse transcription was 

performed using M-MLV reverse transcriptase. For each sample, 1 μg RNA was diluted 

to a 11.5 µL total volume with sterile water. Then 1 µL of deoxyribonucleotide mix and 2 

µL of oligo(dT) primer was added. Samples were then vortexed, incubated at 70°C for 5 

minutes, and placed on ice.  Then 4µL of 5X buffer and 1 µL reverse transcriptase were 

added and samples were placed in a thermal cycler and incubated at 42°C for 1 hour, then 

95°C for 10 minutes to inactivate the enzyme. Finally 200µL of sterile water were added 

and samples were stored at -20°C until later use. 

Semi-quantitative PCR Protocol 

 A 20 µL solution was made for each sample by combining 10 µL of 2X SYBR 

mix, 3 µL of DEPC water, 5 µL of cDNA, and 2 µL of primers specific to the gene of 
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interest. Samples were run for 35 cycles (10 min at 95°C initial denaturation, then 35 

cycles of 95°C for 15s for denaturation, and 60°C for 1 min for annealing/elongation) on 

a Stratagene MX3000P real-time PCR thermal cycler using MxPro software, and data 

were analyzed through the use of the comparative Ct method (Pfaffl, 2001). The 

housekeeping gene used for comparison was β-actin.  Primer sequences were as follows: 

 

RESULTS 

Comparison of mESCs, D3-MSCs, and 10T1/2 Cell Morphology 

  To begin the characterization process, the morphology of D3-ESCs, 10T1/2 cells, 

and D3-MSCs was compared after the cells were stained with TB. As shown in Figure 6, 

D3-ESCs exhibit typical ESC morphology of undifferentiated cells growing together in 

clustered colonies. They also possess a large nucleus to cytoplasm ratio. According to 

Wobus and Boheler (2005), ESCs typically grow in tight, rounded, multilayered clusters. 

On the other hand, the D3-MSCs completely lost the morphology of ESCs. They instead 

expressed flattened, elongated spindle-shaped cells very similar to 10T1/2 cells. Both 

populations of cells were similar in morphology and grew in a uniform monolayer, very 

Gene Forward Primer Sequence Reverse Primer Sequence 

C/EBPα 5’- CAAGAACAGCAACGAGTACCG-3' 5'-GTCACTGGTCAACTCCAGCAC-3' 

PPARγ 5'-GGAAGACCACTCGCATTCCTT-3'  R: 5'-GTAATCAGCAACCATTGGGTCA-3' 

RUNX2  F: 5'-GCCCAGGCGTATTTCAGA-3'  R: 5'-TGCCTGGCTCTTCTTACTGAG-3' 

OCN 5'-CTGACCTCACAGATGCCAAG-3'  R: 5'-GTAGCGCCGGAGTCTGTT-3' 

SOX9  F: 5'-AGTACCCGCATCTGCACAAC-3'  R: 5'-ACGAAGGGTCTCTTCTCGCT-3' 

COL2A1  F: 5'-GGGTCACAGAGGTTACCCAG-3'  R: 5'-ACCAGGGGAACCACTCTCAC-3' 
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different from the colonies of D3-ESCs. According to Baksh, Song and Tuan (2004), the 

gold standard assay used to identify MSCs is to identify adherent, spindle-shaped cells. 

Based on the results in Figure 6, D3-MSCs were confirmed to possess MSC morphology. 

 

 

 

 

Figure 6: Morphological comparison of D3-ESCs at 400x (A), D3-MSCs at 400x (B), 
and 10T1/2 cells at 200x (C). The images were taken with a digital camera under a phase 
contrast microscope. 
 

Cell Proliferation and Cell Cycle Profile 

The cell cycle profiles of D3-ESCs and D3-MSCs were analyzed by flow 

cytometry. This profile measures both the number of cells at each phase of the cell cycle 

(Y-axis) and the amount of DNA at that particular phase (determined by fluorescence 

intensity, X-axis). The first peak in the profile represents cells found in the G1 phase, 

while the second peak corresponds to cells found in the G2 and M phases of the cell 

cycle, and cells in between these peaks are in S phase, as labeled in Figure 7. For D3-

ESCs, the cell cycle profile included a high percentage of cells in the S, M, and G2 

phases of the cell cycle, meaning that a lot of cells were actively dividing and rapid cell 

division was occurring. mESCs are characterized by their high proliferation rate (Wobus 

and Boheler, 2005), and their cell profiles typically show about 60% of cells in the S 

       A          B         C   
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phase. On the other hand, the cell cycle profile of D3-MSCs show a reduced cell 

population at the S, G2, and M phases of the cell cycle, indicating MSC’s slower 

proliferation rate when compared with D3-ESCs. MSCs are characterized by having only 

10% of the cells in the S, G2, and M phases of the cell cycle and 90% in the G0 and G1 

phases, indicating that only a small fraction of MSCs are actively engaged in proliferation 

(Minguell et al., 2001). Based on this information, the cell cycle profile of D3-MSCs was 

more similar to the cell cycle of MSCs than ESCs. 

 

 

Figure 7: Cell Cycle Profiles of D3-ESCs (A) and D3-MSCs (B) determined by flow 

cytometry. 

 

Osteogenic Differentiation 

 To confirm that osteogenic differentiation had occurred after 10T1/2 cells and 

D3-MSCs were given 4 weeks to spontaneously differentiate, the cells were stained with 

Alizarin Red as previously described. They were stained both 3 days into differentiation 

and again after 4 weeks of differentiation. The results in Figure 8 show strong staining at 
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the 4 week timepoint compared with undifferentiated controls in both cell types, thus 

indicating that mineralization had occurred and osteocytes had been formed (Gough et 

al., 2004). 

 

Figure 8: Osteogenic Staining. 10T1/2 cells (A) and D3-MSCs (B) 3 days into 
spontaneous differentiation after staining with Alizarin Red and 10T1/2 cells (C) and D3-
MSCs (D) four weeks into spontaneous differentiation after staining with Alizarin Red. 
All images are taken at 400x magnification under a phase contrast microscope. 
 

To further confirm that osteogenic differentiation had occurred, the expression of 

specific transcription factors and structural proteins in D3-MSCs was measured using 

RT-qPCR. The genes that were measured included the transcription factor, RUNX2, and 

the structural protein osteocalcin (OCN). RUNX2 has been identified as a primary 

transcription factor needed for osteocyte differentiation, bone matrix gene expression, 

and bone mineralization (Nakahara et al., 2010). OCN is used as a marker to identify late 

stages of osteogenic differentiation (Granéli et al., 2014). As shown in Figure 9, OCN 

expression increased over the 4 week differentiation period, suggesting that osteogenic 

differentiation had occurred. 



 38 

 
 
 

 

 

 

 

 
 
 
Figure 9: Expression of Runx2 and OCN in undifferentiated D3-MSCs (con) and 2 
weeks and 4 weeks into spontaneous differentiation determined by RT-qPCR. 
 

Adipogenic Differentiation 

After 10T1/2 cells and D3-MSCs were spontaneously differentiated, lipid droplets 

became visible in the cytoplasm. Adipocytes in both populations of cells can be seen in 

Figure 10 (A and B) after spontaneously differentiating for 4 weeks. To confirm that 

adipogenic differentiation had occurred, D3-MSCs were positively stained with Oil Red 

O (Figure 10 C). This stain is used for the detection of intracytoplasmic lipids present 

within cells (Ramirez-Zacarias et al., 1992).                             

Figure 10: Adipogenic differentiation. 10T1/2 cells (A) at 400x magnification and D3-
MSCs (B) at 560x magnification observed 4 weeks into spontaneous differentiation, but 
prior to staining. D3-MSCs (C) positively stained with Oil Red 4 weeks into spontaneous 
differentiation (400x). All images are taken under a phase contrast microscope. 
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To further confirm adipogenic differentiation, RT-qPCR was used to measure the 

expression of transcription factors essential to adipogenic differentiation, including 

PPARγ and C/EBPα. Both families of transcription factors have been found to play 

important roles during adipocyte differentiation. Several studies have confirmed PPARγ 

to be the key transcription factor in adipocyte differentiation in both in vitro and in vivo 

environments. C/EBPα is expressed during late stages of differentiation and is also one 

of the key regulators in adipocyte differentiation (Siersbaek et al., 2010). Expression of 

both transcription factors was somewhat increased in D3-MSCs at both 2 weeks and 4 

weeks after spontaneously differentiating as shown in Figure 11, indicating adipogenic 

differentiation.  

 
 
 
 
 
 
 
 
 
 
 
Figure 11: Expression of PPARγ and C/EBPα in undifferentiated D3-MSCs (con) and 
after 2 weeks and 4 weeks of spontaneous differentiation determined by RT-qPCR. 
   
 
 
Chondrogenic Differentiation 
 
 As previously described, D3-MSCs and 10T1/2 cells were stained with Safranin 

O during their spontaneous differentiation to detect whether or not chondrogenic 

differentiation had occurred. The cells that were stained after only 3 days had not yet 

differentiated and were not able to retain the Safranin when stained. On the other hand, 
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the cells that had been given 4 weeks to spontaneously differentiate stained an intense red 

color indicating that the cells contained high proteoglycan content and chondrocytes were 

formed (Camplejohn and Allard, 1988).  

          

Figure 12: Chondrogenic differentiation. Undifferentiated 10T1/2 cells (A) and D3-
MSCs (B) and cells after 4 weeks of differentiation (C and D) stained with Safranin O. 
All images are shown at 400x magnification under a phase contrast microscope. 
 

The expression of chondrogenic differentiation markers in differentiated D3-

MSCs was measured using RT-qPCR as previously described. These markers included 

the transcription factor SOX9 and COL2A1, the protein-coding gene that produces type 

II collagen. SOX9 is a transcription factor that is present in all differentiated 

chondrocytes and plays an essential role in the early stages of chondrogenic 

differentiation. This transcription factor is also needed to activate the COL2A1 gene to 

begin type II collagen formation. All mature chondrocytes have been found to express 

type II collagen (Akiyama et al., 2004). As shown in Figure 13, the expression of SOX9 
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was expressed highly in D3-MSCs both 2 and 4 weeks into spontaneous differentiation, 

indicating that beginning stages of chondrocyte formation had occurred. COL2A1, on the 

other hand, was not expressed in D3-MSCs indicating a lack of mature chondrocytes in 

the sample.  

 

 

 

 

 

 

Figure 13: Expression of SOX9 and COL2A1 in undifferentiated D3-MSCs (con) and 
the same cells after 2 4 weeks of spontaneous differentiation determined by RT-qPCR. 
 

DISCUSSION 

 This goal of this study was to determine whether mESC-derived fibroblasts, that 

we have previously characterized, have properties of MSCs. By participating in this 

research project, my objective was to gain a greater understanding of stem cell biology 

and to become familiar with basic research skills and laboratory procedures.  

Based on the morphology comparison in Figure 6, D3-MSCs are clearly more 

similar in shape to 10T1/2 cells than to D3-ESCs. Both D3-MSCs and 10T1/2 cells 

possessed a flattened, elongated, spindle-shaped morphology, therefore displaying typical 

MSC morphology (Baksh, Song and Tuan, 2004.) The results in Figure 7 demonstrated 

that the cell cycle profile of D3-MSCs was more similar to that of MSCs than ESCs. This 

was due to the reduced cell population found in the S, G2, and M phases of the cell cycle, 
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indicating a lower proliferation rate than that of D3-ESCs. When D3-MSCs were 

spontaneously differentiated for 4 weeks, they were able to form osteocytes, adipocytes, 

and chondrocytes although these cells are not yet fully matured as indicated by the lack 

of COL2A1 in chondrogenic differentiation, therefore confirming the tri-lineage 

differentiation potential characteristic to MSCs. By staining the cells with Alizarin Red, 

Oil Red, and Safranin and also measuring the expression of differentiation markers 

through RT-qPCR, we were able to further confirm the identity of the differentiated cells, 

and thus the tri-lineage differentiation potential. In conclusion, based on the results from 

morphology, cell cycle profile, and tri-lineage differentiation potential, this research 

provide strong evidence that D3-MSCs do possess several characteristics in common 

with MSCs.  

Though this study was able to provide several similarities between D3-MSCs and 

MSCs, it only focuses on some basic aspects of MSC characterization, thus more 

research is needed to further confirm their true identity, such as tri-lineage differentiation 

under defined conditions with specific inducers for each of the three cell types.  Some 

other aspects of these cells that should be analyzed include surface antigens and 

immunomodulatory properties. There is a specific set of surface antigens that are 

expressed in MSCs. Moreover, MSCs are characterized by having both the presence and 

absence of specific cell markers. Analysis of marker expression could be performed in 

D3-MSCs through either flow cytometry or immunocytochemistry. MSCs have been 

found to exhibit modulatory effects on the immune system. This characteristic brings a 

lot of interest to their use in future biomedical applications. The innate immunity of D3-
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MSCs should be researched to see if they have similar responses to MSCs (Bio-Techne, 

2014).  

This study is significant, because the ability to generate MSCs from ESCs 

bypasses many of the complications experienced when using adult tissue derived-MSCs. 

Adult tissue-derived MSCs, such as bone-marrow-derived MSCs, have a lot of potential 

for biomedical applications, but the major problem interfering with their use is their 

limited numbers due to limited tissues of derivation (Baksh, Song and Tuan, 2004). The 

ability to create MSCs from ESCs could be able to bypass this difficulty, providing an 

almost unlimited source of MSCs for biomedical applications. In conclusion, the 

characterization of D3-MSCs and the ability to generate MSCs from ESCs is a significant 

stride forward towards the use of ESCs in regenerative medicine.  
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