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Abstract 

  The Honors thesis research focused on the roles of extramacrochaetae and midline in 

regulating eye development and the vision of Drosophila melanogaster.  It is known from 

previous studies that extramacrochaetae (emc) and midline (mid) independently regulate the 

formation of ommatidial units in the Drosophila compound eye.  However, the thesis focuses 

on the interaction of these two genes and their co-dependent roles in regulating eye 

development.  This study also attempts to explain the recovered formation of ommatidial 

units and interommatidial bristles when the expression of both of these genes is reduced and 

whether flies doubly mutant for these genes have recovered phototactic ability.  Specific 

genotypes of flies were subjected to larval and adult phototaxis assays to assay their 

phototactic ability.  A Western analysis was performed on extramacrochaetae mutants, 

midline mutants, and wild-type flies to determine whether the Emc and Mid proteins 

interacted in a co-regulatory fashion within developing larval tissues.  

  The larval phototaxis assays revealed a slight decrease in photoreception in the mid-

RNAi larvae when compared to the wild-type larvae.  However the data was not conclusive to 

definitively determine if the mid-RNAi mutants displayed a significant decrease in 

photoreceptive ability.  The adult phototaxis assays were more definitive than the larval 

assays.  The emc
1
 flies displayed a slight decrease in photoreceptive ability. Both the mid-

RNAi and the flies doubly mutant for mid
GA174

 and emc
1
 displayed a significant decrease in 

photoreceptive ability.  The Western blot and immunofluorescence studies revealed an 

interaction between mid and emc, and the future nature of this interaction will be resolved in 

greater detail 

Key Terms: Fruit fly, compound eye, gene regulation, gene expression, Honors College.
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Chapter 1: Introduction 

  The eye of Drosophila melanogaster is an assembly of 800 subunits referred to 

ommatidia.  A single ommatidium is composed of specialized cells that are sequentially 

generated during third-instar larval stages of development. Each ommatidium is composed of 

eight photoreceptor neurons where two inner receptors are surrounded by six outer receptors.  

Once this core of photoreceptor neurons is assembled, it is surrounded by accessory cells, 

including pigment cells, and covered by four cone cells. The formation of each ommatidium 

is a highly regulated process and when completed, the compound eye of Drosophila is 

composed of roughly 800 ommatidial subunits. 

  Two transcription factor genes have been found to play a role in the development of 

the Drosophila eye: midline (mid) and extramacrochaetae (emc).  There are several aims of 

the research proposal.  Firstly, Das et al. (2013) indicated that mid mutants exhibited severe 

eye defects including ommatidial fusion, loss of pigmentation, and decreased bristle complex 

development. Figure 1, Panel B, illustrates the mid mutant phenotype.  Panel A illustrates the 

wild-type adult compound eye (Das et al., 2013). 

 

 

 

 

 

 

 

 

Figure 1 
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  I hypothesized that these mid mutants were blind.  In order to test this hypothesis, I 

subjected both larval and adult Drosophila mutants and wild-type flies to appropriate 

phototactic assays.  Interestingly, flies doubly homozygous mutant for mid
GA174

 and emc
1
 

recovered many of the defects observed in the homozygous mid mutant flies (Figure 2C) 

(Das et al., 2013).  Thus, I hypothesized that UAS-mid-RNAi/+; emc
1
/GMR-Gal4 flies would 

regain phototactic activity due to their recovered ommatidia and bristle formation (Fig. 2C). 

  There is a significant co-expression of the mid paralog H15 and emc during early eye 

imaginal disc developmental stages (Figure 3).  It appears that the expression of emc is 

changed when mid expression is reduced (Fig. 3) (Das et al., 2013). The Emc protein appears 

to shift to the anterior region of the eye imaginal disc.  Therefore, I hypothesized that these 

proteins interacted with each other.  To test this hypothesis, I performed a Western analysis 

of homogenates prepared from WT and mid-RNAi tissues of third-instar larvae to detect 

levels of Emc expression.  Figure 2A illustrates a wild-type eye.  Figure 2B illustrates the 

mid mutant phenotype.  Figure 2C illustrates that the UAS-mid-RNAi/+; emc
1
/GMR-Gal4 

compound eye exhibits a recovery of bristles. 

Figure 2 
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  In summary, I am seeking to determine if the mid-RNAi mutant flies are blind.  If they 

are blind, I will determine whether reducing emc expression in mid-RNAi flies recovers their 

vision.  Since mid and emc seem to be collaborating to regulate eye development and vision, 

I will also assay for this interaction biochemically by performing Western analyses.  

 

 

 

 

Figure 3 
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Chapter 2: Literature Review 

Drosophila melanogaster 

  Drosophila is an important model organism in studying heritability and human 

diseases.  Many of the genes within the Drosophila genome are homologous to the human 

genome.   Understanding the Drosophila genome can give a better understanding of the 

developing central nervous system (CNS) and eye development in humans. 

  Drosophila melanogaster emerged as a model organism about 100 years ago and has 

since made strides in the field of genetics (Roberts, 2006).  Reproducing and growing these 

organisms is very simple because of their ability to live on a simple diet of spoiled fruit, and 

they can easily survive in small vials.  Their life cycle from embryo to adult is ten days, and 

the adults live for an average of four weeks.  This total life span of three and half weeks 

allows for several genetic crosses to be completed in a short amount of time.  The fruit fly 

genome has been sequenced and contains approximately 13,600 genes. The genome is 

contained in only four chromosomes (Adams MD et al. 2000).  The small number of 

chromosomes allows for easy genetic manipulation and production of mutants for study.  

Humans have significantly more genetic information than fruit flies, but nearly all genes in 

the human genome have a homolog located within in the Drosophila genome (Twyman, 

2002).  According to Daniel St. Johnson, “197 of 287 known human disease genes have 

Drosophila homologs” (St. Johnson, 2002).  This means that the function of mutant fly genes 

can be translated to the human genome to give us a better understanding of the mechanisms 

by which homologous genetic mutations work in humans. 
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extramacrochaetae and midline Genes 

  The midline (mid) gene is a transcription factor gene that is essential for the proper 

formation and development of the central nervous system (CNS).  The mid gene regulates 

axonal projections that form synapses in the CNS.  From previous studies done in the Leal 

lab at The University of Southern Mississippi, the reduction of mid expression in the fruit fly 

resulted in the loss of interommatidial bristles (Das et al 2013).  However, when a reduction 

of expression of both mid and emc were combined, the formation of ommatidia was 

recovered and the eyes appeared almost normal.  The phototactic ability of both the larvae 

and the adult mutant flies has yet to be determined. 

  The extramacrochaetae (emc) gene is currently being utilized in studies conducted 

on understanding CNS and wing development.  However, only a few studies have been 

conducted to determine its role in Drosophila eye development.  According to Bhattacharya 

and Baker of the Albert Einstein College of Medicine, emc mutants show that emc “is 

required for multiple aspects of eye development…including morphogenetic furrow 

progression, differentiation of R4, R7 and cone cell types, and rotation of ommatidial 

clusters” (Bhattacharya and Baker, 2009).  The vertebrate homolog for emc is represented by 

Id, which encodes the Inhibitor of differentiation (Id) proteins while the vertebrate homolog 

for mid is Tbx 20.  

Ommatidia and Eye Formation 

  The construction of the compound eye in Drosophila melanogaster is a very 

complex and precise process.  Eye development begins in the second-instar larval stage when 

the eye disc is no more than an undifferentiated sac of epithelial cells. During the third-instar 

larval stage, the morphogenetic furrow (MF), a wave of differentiation, advances from the 



 

 6 

posterior of the disc to the anterior of the disc, and as the wave advances it transforms the eye 

disc into a highly organized field of ommatidia precursors (Ready et al., 1986).  As the wave 

passes, photoreceptor neuronal cells are recruited to begin formation of the eye subunits 

called ommatidia.   Eight types of photoreceptors make up one ommatidium.   

  The first photoreceptor to differentiate from the other epithelial cells in the eye-

antennal disc is R8, which is followed by the other seven types of photoreceptors (R1-R7).  

According to Richard Carthew: “Each R8 neuron recruits one cell of each type, such that 

seven photoreceptors cluster around each R8 neuron.”  Each cluster of photoreceptors then 

recruits four non-neuronal cells to differentiate into cone cells, which are responsible for 

secreting the lens of each ommatidium (Carthew, 2007).  Finally, primary (1˚), secondary 

(2˚), and tertiary (3˚) pigment cells surround the photoreceptor neurons. 

  The eye also contains many interommatidial bristles that aid in relaying sensory 

information to the brain.  They are derived from a single sensory organ precursor cell (SOP).  

Eye epithelial disc SOPs are formed through a series of asymmetric divisions.  The first 

division of the SOP produces the IIa and IIb daughter cells.  The IIa cell divides to give rise 

to the socket and shaft cell, while the IIb cell gives rise to the IIIb daughter cell and terminal 

glial cell.  The IIIb cell divides asymmetrically to produce the sheath and sensory neuron.  

Figure 3 illustrates the different aspects and components of a single ommatidium of the 

compound eye (Ready et al., 1986). 
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Chapter 3:  Methodology 

Larval Phototaxis 

  A Petri dish divided into four quadrants was used to create the surface for the larval 

phototaxis assay.  Two opposite quadrants were lined with black construction paper and two 

quadrants were left blank.  All four quadrants were filled with 1% clear agarose, enough to 

cover the walls of the quadrants to create a smooth surface. The Petri dishes were placed on a 

light box to create lighted and dark quadrants. 10 larvae were placed on the plate per each 

trial of the assay and given 5 minutes to migrate between light and dark quadrants (Connolly 

http://scotimages.me.uk/2011/11/03/seeing-inside-the-

ommatidia-of-a-flys-eye/ 

Figure 4 
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and Tully, 1998).  The larvae were cultivated from a population cage of specific genetic 

lines.  The eggs were aged up to 4 days, when the third-instar larvae are developed.  Third-

instar larvae were subjected to the phototaxis assay with an appropriate response index 

calculated by subtracting the number of larvae in the light quadrants from the number of 

larvae in the dark quadrant and dividing that number by the total number of organisms on the 

plate.   

 

 

 

 

 

 

 

 

 

Adult Phototaxis Assay 

  Adult flies doubly mutant for mid
GA174

 and emc
1
 exhibited a partial recovery of 

normal cell morphology in the compound eye. As such, I was interested in determining 

whether their sight was recovered. The ability of Drosophila larva to detect light was 

determined by a simple phototaxis assay. A petri dish was divided into four quadrants that 

were colored black and white.   It is known that if the larvae have a sense of photoreception, 

the fly larvae will avoid light.  Different strains of Drosophila adults were also subjected to a 

simple phototaxis assay. The flies were introduced to a T-tube apparatus where one branch 

Figure 5 
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was lighted and the other branch was darkened.  Wild-type Drosophila adults that are 

equipped with adequate photoreception are attracted to the lighted branch or exhibit positive 

phototaxis. 

  The adult phototaxis assay was completed using a slow phototaxis technique.  An 

original apparatus, shown in Figure 6, was developed to determine the photoreceptive ability 

of multiple genetic strains.  The apparatus consisted of a light and dark branch with the flies 

being introduced conjoined area of the two branches.  The apparatus was placed next to a 

light to regulate thermal and photo levels.  Adult Drosophila were given 3 minutes to migrate 

to their preferred area.  A collection vial was placed at the end of each branch to collect 

individuals in the apparatus.  Flies were introduced to the apparatus individually to eliminate 

behavioral overlap. 

Figure 6 

1.  

Immunofluorescence 

Larval Dissection 

  The dissection of Drosophila larvae was performed in Tri-PBS (137 mM NaCl, 2.7 

mM KCl, 10.1 mM Na2HPO4, 1.8 mM KH2PO4, 0.2% Triton X-100, pH 7.5) on ice.  I placed 

a small puddle of PBS onto the center of the dissection plate.  I then placed the larvae on the 

droplet of PBS and under the microscope; I used thicker-tipped forceps to grab the base of 
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the mouthparts.  I grabbed about one-quarter of the way down the body from the head with 

the forceps.  I gently pulled the forceps longitudinally in opposite directions.  Ideally, the 

cuticle will break at the base of the mouthparts or neck and the internal organs will spill out.  

I located the central nervous system (CNS) and using fine-tipped forceps, I removed the 

tissues around the CNS. The brain and attached eye discs were then removed carefully.  

Since the brain is an accessory part of this experiment, it was detached from the eye discs but 

its removal is not necessary. 

  Antibody staining was completed after the removal of the PBS from the dissecting 

plate.  To fix the eye imaginal discs, 270μL of PAXD and 30μL of formaldehyde were 

placed in each well of the dissecting plate.  The discs were rinsed for 30 minutes in this 

solution on a shaker.  The PAXD/formaldehyde mixture was drained from the wells and 

replaced with PAXD.  The discs were rinsed 3 times with PAXD for 10 minutes each.  After 

the PAXD rinses, the discs were rinsed with PTX 3 times for 10 minutes each.  The discs 

were given a final rinse with PTX 3 times for 5 minutes each.  The PTX was drained and a 

solution of 100μL of 1% goat serum and 300μL of PBT was added to each well.  The plate 

was incubated in 4˚C overnight. 

  After overnight incubation, the eye discs were incubated with a cocktail of primary 

antibodies containing H15, Emc, CI, all with a concentration of 1:2000, for 4 hours at 25˚C.  

The discs were rinsed with PTX 3 times for 10 minutes each.  They were then rinsed with 3 

washes of PBT for 10 minutes each.  The discs were incubated with secondary antibodies for 

1 hour each at 25˚C.  The secondary antibodies used were anti-rabbit Emc 488, anti-guinea 

pig 594, and anti-mouse 405 all with a concentration of 1:4000.  After secondary antibody 

incubation, the discs were rinsed 3 times with PTX for 10 minutes each and then rinsed with 
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PBT 3 times for 10 minutes each.  The discs were mounted to microscope slides using 

DAPCO and pictures were taken with a confocal microscope. 

Adult Eye Dissection 

  To collect the eyes from the adult Drosophila, the flies must be frozen.  The flies 

were collected in a container and placed on dry ice.  Ethanol was poured into the dry ice 

container to flash-freeze the flies.  The sieve that was used to separate the heads from the 

bodies was placed on dry ice.  Once the flies were frozen, they were placed on a 0.0278-inch 

metal sieve and sifted through the mesh screen with a frozen paintbrush.  The fly heads were 

collected on a 0.01 inch sieve that was also sitting on dry ice.  The heads were collected, 

labeled and placed in the -70˚C freezer for storage. 

 

Western Blot for Protein Interaction 

Western Blot Technique 

  There were two gels involved in making the cassette for electrophoresis in the 

Western blot.  The cassette was composed of two pieces of glass that were taped at the 

bottom. The first gel was the separating gel and Table 1 shows the different gel solutions that 

were prepared. 

Table 1: Separating Gel (7 mL) 

Stock Solution 8% 10% 12% 15% 

40% Acrylamide 1.4 mL 1.75 mL 2.1 mL 2.625 mL 

1.5 M Tris-HCl, pH 

8.8 
1.75 mL 1.75 mL 1.75 mL 1.75 mL 

Water 3.7 mL 3.4 mL 3.0 mL 2.5 mL 

10% SDS 70 μL 70 μL 70 μL 70 μL 

10% APS 70 μL 70 μL 70 μL 70 μL 

TEMED 4.7 μL 4.7 μL 4.7 μL 4.7 μL 
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The separating gel was added to the cassettes and a layer of isopropanol was added to the gel.  

The cassette was then allowed to polymerize for 30 minutes.  The second gel, the stacking 

gel, was prepared with the proportions in Table 2. 

Table 2: Stacking Gel 

Stock Solution 4% 

40% Acrylamide 0.20 mL 

1.5 M Tris-HCl, pH 8.8 0.25 mL 

Water 1.5 mL 

10% SDS 20 μL 

10% APS 20 μL 

TEMED 2 μL 

 

The isopropanol layer was poured off and the excess was removed with a piece of Whatman 

paper.  1mL of the stacking gel solution was added to each cassette and the comb was 

inserted, avoiding any air bubbles.  The gels were then allowed to polymerize for 20 minutes.  

The tape was removed from the bottom of the gels and the comb was removed from the top.  

The gels were then inserted into the running box.  The running buffer was made by 

combining 15.1g of Tris, 72.0 g Glycine, 5.0 g SDS and filled up to 1L with water.  The 5X 

running buffer was then diluted to 1X and poured into the gel box.  

  The samples were then placed in the heat block at 100˚C for 5 minutes and spun at 

top speed for 5 minutes.  The wells in the gel were loaded with the sample and allowed to 

settle.  The gels were electrophoresed at 100 volts through the stacking gel and 150 volts 

through the separating gel. 

  A transfer buffer was prepared by mixing 2.4g of Tris, 11.3g of glycine, 200mL of 

10% methanol and filled up to 1L with water.  Ice-cold transfer buffer is used if doing a 

same-day transfer.  The PVDF membrane was soaked in 100% methanol for 30 seconds and 

the membrane was transferred to the transfer buffer.  The membrane was allowed to soak for 
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a few minutes before it became part of the “sandwich.”  Whatman paper and fiber pads were 

also soaked in the transfer buffer.  In the larger side of the transfer holder, all materials were 

placed in this order: 2 fiber pads, Whatman paper, inverted gel, a nitrocellulose membrane, 

Whatman paper, and 2-3 more fiber pads.  After adding the second Whatman paper, air 

bubbles were removed by rolling them out with a 5mL pipette. The “sandwich” was then 

inserted into the gel box and the transfer buffer was added to the chamber.  It was transferred 

at 30 volts for 2 hours on the bench.   

  It was necessary to create a block so that the antibodies tagged only specific 

proteins.  To create the block, TBST was made by diluting 10X TBS (100mL 1M Tris-Cl 

with a pH of 7.5, 88g NaCl, and filled to 1L with water) to 1X and adding Tween to 0.1% 

(1mL Tween in 1L of 1X TBS).  5% w/v Nonfat Dry Milk (NFDM) in TBST was made.  

20mL of this solution was sufficient for one gel.  The transfer apparatus was disassembled 

and the nitrocellulose membrane was moved to a pipette tip box that contains TBST.  It was 

important to keep the membrane from drying out.  The membrane was rinsed briefly and the 

TBST was discarded. 

  For the primary antibody incubation, 1% w/v NFDM in TBST was made.  The 

antibody was diluted to the proper level in 10mL of 1% NFDM in TBST.  This solution was 

incubated on a shaker at 50RPM for 1 hour. 

  A wash was performed, and the antibody solution was recycled.  Sodium azide was 

added to the solution until it made up 0.05% of the solution and was stored in a cold room.  

The membranes were rinsed twice and then rinsed 3 times for 5 minutes each with TBST. 

  For the secondary antibody incubation, the antibody was diluted to the proper level 

in 10mL of TBST.  This membrane was incubated on a shaker at 50RPM for 1 hour.  The 
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secondary antibody solution was discarded, and the membrane was rinsed twice followed by 

3 washes of 5 minutes each using TBST. 

  Finally the reagents from an Amersham ECL kit (1mL of Solution A and 25μL of 

Solution B) were mixed. 2mL of solution was sufficient for 1 gel/membrane.  The membrane 

was drained (without letting it dry) and placed (protein side up) on a flat piece of cling film. 

ECL solution was pipetted directly onto the membrane.  The membrane was incubated for 5 

minutes and the solution was drained.  The membrane was wrapped in cling film and taped 

into the exposure cassette.  The membrane was then exposed to the film for the appropriate 

amount of time and was developed. 

 

Chapter 4: Results 

 Larval Phototaxis Assay 

  Wild-type and mid-RNAi larvae were reared on an apple juice/agar solution that was 

plated in a 60mm Petri dish.  Larvae were allowed to develop to the third-instar stage when 

eye discs are fully developed.  

 

 

 

 

 

 

 

 
Figure 7:  The bar graph depicts negative phototaxis.  Approximately 74 +/- 10 of WT larvae migrated 

to the black quadrants (purple bar) while only 66 +/- of mid-RNAi larvae migrated to no black quadrants.  
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Figure 7: Wild-type and mid-RNAi larvae are negatively phototaxic.  Ten third-instar 

larvae were placed in the center of an 87mm Petri dish containing 1% agarose and were 

allowed to migrate for 5 minutes.  The Petri dish with two dark quadrants and two light 

quadrants was placed over an illuminated transparent box.  The response index was obtained 

from 10 independent trials of each condition.  Response indexes were calculated using the 

following formula: (organisms in dark - organisms in light) / (total number of organisms in 

the trial). 

  Wild-type larvae were used a control to compare the phototaxic response of mid 

mutant larvae.  Wild-type larvae exhibited a greater negative phototaxic response when 

compared to the mid larvae.  The mid larvae exhibited a decreased negative phototaxic 

response.  The phototaxic response difference between wild-type and mid larvae was not 

significant enough to determine if phototaxic response differed in the third-instar stage.   

Adult Phototaxis Assay 

 

 

 

 

 

 

 

 

 

Figure 8:  The bar graph depicts adult 4-day old female phototaxic responses.  While 

WT flies exhibited normal phototaxis, all mutant flies were defective in navigating toward 

the light. 
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Figure 8: Wild-type adults are positively phototaxic.  Flies were introduced to the 

phototaxis apparatus individually, allowed 3 minutes to respond, and their response recorded. 

The data were obtained from 25 independent trials for each genotype.  The response index 

was created using the following formula: (number of organisms in light) /  (total number of 

organisms per genotype in the study).  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Wild-type flies are positively phototaxic.  The data were obtained from 25 

individual trials for each genotype.  Phototaxis assay was not completed male flies doubly 

mutant for mid
GA174

 and emc
1
. 

 Wild-type, emc
1
, mid-RNAi and emc

1
; mid

GA174
 adult flies were collected shortly after 

hatching and allowed to age for four days.  They were aged to four days to allow a sufficient 

amount of time for receptors and ommatidial formation to be complete.  Wild-type adult flies 

Figure 9:  The bar graph depicts adult 4-day old male phototaxic responses.  While 

WT flies exhibited normal phototaxis, all mutant flies were defective in navigating toward 

the light.  
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were used as a control for the phototaxis assay to compare photoreceptive responses of other 

genotypes.  The emc
1
 adult flies exhibited a 50% decrease of expression of emc in the eye.  

Therefore they were used as a control for the function of emc within the eye. 

 Male and female adult flies were subjected to the phototaxis assay separately to 

determine the difference of photoreception ability between sexes.  Female emc
1
 adult flies 

exhibited decreased photoreceptive ability when compared to male emc
1
 adult flies. The mid-

RNAi flies showed the greatest decrease in photoreceptive ability between all trials and both 

sexes.  Both male and female mid adult flies showed a significant increase in phototaxic 

ability, creating a more random data assortment for that genotype. 

 Only female adult flies that are doubly mutant for mid
GA174

 and emc
1
 were subjected 

to the adult phototaxis assay. The emc
1
 and mid

GA174
 doubly mutant flies exhibited a decrease 

in photoreceptive ability.  Their photoreceptive response paralleled that of emc
1
 adult flies, 

suggesting that the emc gene plays a significant role in photoreceptive ability.  These results 

also suggest that the mid
GA174

 and emc
1
 doubly mutant adult flies cannot see as well as the 

wild-type adult flies. 
 

Western Blot 
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Figure 10: Protein levels of H15.  The H15 protein is expressed in the tissues of developing larvae.  

Wild-type OR served as the control for H15 expression levels.  mid-RNAi larvae expressed a greater 

amount of H15 protein than wild-type larvae and emc1 mutants expressed a decreased amount of H15 

protein compared to wild-type larvae.  
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 The H15 protein was used as a paralog to stain for Mid proteins, meaning H15 was 

used to stain for the level of proteins produced by the midline gene in wild-type OR, mid 

mutant, and emc
1
 mutant larvae.  Wild-type OR larvae were used as a control to stain for 

normal levels of H15 in developing larval tissues as seen in Figure 9.  The mid mutant larvae 

were determined to have a higher concentration of H15 proteins in developing tissues.  The 

emc
1
 mutants expressed the least amount of H15 protein in their developing tissues.  

 The Emc protein was used to stain for proteins produced by the emc gene in 

developing tissues of third-instar wild-type OR, mid mutant, and emc
1
 mutant larvae.  The 

wild-type larvae served as a control for the levels of Emc protein expressed in developing 

tissues.  The mid mutant larvae expressed a similar concentration of Emc protein while the 

emc
1
 mutants expressed no level of Emc protein in the developing tissues.   
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30kDa 
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Figure 11: Protein levels of Emc.  The Emc protein is expressed in the tissues of developing larvae.  

Wild-type OR served as the control for Emc expression levels.  mid-RNAi larvae expressed a similar 

amount of Emc protein compared to wild-type larvae.  The emc1 larvae expressed no Emc proteins.  
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Immunofluorescence 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  The immunofluorescence assay shows the interaction of mid and emc in the eye 

imaginal disc of OR third-instar larvae.  The interaction of mid and emc is apparent and 

localized to the posterior of the morphogenetic furrow.   

 

Chapter 5: Discussion 

  The larval phototaxis assay revealed a decreased phototaxic response in the mid 

mutant larvae.  It is understood that Drosophila larvae are negatively phototaxic.  However, 

the larval phototaxis assay is not conclusive because the eyes are still developing.  In third-

Figure 12:  Photoreceptor cells in the eye imaginal disc were stained with H15 and Emc antibodies.  
Photoreceptor cells that contain mid are designated by the color red.  Cells that contain emc are 

designated by the color green.  The color yellow designates photoreceptor cells that contain mid and 

emc.   
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instar larvae, the photoreceptors have not yet fully developed.  Therefore, using larval 

phototaxis is meant to be qualitative rather than qualitative. 

   In the adult phototaxis assays, there was a more significant difference between 

genotypes according to the response index.  Adult Drosophila are positively phototaxic.  OR 

adult flies served as a control for the adult phototaxis assay. The emc
1
 mutant adult flies 

exhibited a similar response to the OR flies. The mid adult flies showed a significant decrease 

in phototaxic ability.  The adult flies doubly mutant for mid
GA174

 and emc
1
 exhibited a 

phototaxic response similar to the mid
GA174

 single homozygous mutants. This difference in 

phototaxic response can be the result of a number of factors.   

  As seen in Figure 2, ommatidial and bristle formation was recovered in the flies 

doubly mutant for mid
GA174

 and emc
1
.  Therefore, it was assumed that photoreceptive ability 

would also be recovered.  However, photoreceptive ability was only partially recovered.  

This suggests that receptor formation inside the ommatidia was incomplete or misconstrued.  

Transmission electron microscopy (TEM) will be used to inspect the interior of the 

compound eyes from flies doubly mutant for emc
1 

and mid
GA174

 to determine if photoreceptor 

structure is damaged resulting in reduced phototaxic function. A retinogram can also be used 

to measure the action potentials within the neurons of the eye (Zhu, 2013). 

  There was also an observed difference in photoreceptive ability between males and 

females of w*emc
1
P{neoFRT}80B/TM6B, Tb

1
 genotype.  It is suspected that emc is a sex-

linked gene, meaning it will have different effects in males and females. In a study performed 

at Brandeis University, researchers examined the circuitry of male and female Drosophila 

brains and their response to light in terms of sleep and arousal (Shang et al., 2008).  It could 
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also be true that emc plays a role in the formation of brain circuitry and that circuitry 

formation differs between males and females. 

  This study also suggests that emc is regulated by mid.  When the expression of emc 

and mid were both reduced, ommatidial formation, pigmentation, and bristle complexes were 

recovered. This result would suggest that mid is necessary for the regulation of emc 

expression.  The mid gene may even repress the expression of emc in wild-type flies, keeping 

ommatidial formation, pigmentation, and bristle complex formation normal. 

  Wild-type OR third-instar larvae were used as a control for the Western blot 

analysis.  The Western blot revealed a decreased concentration of H15 protein in 

emc
1
mutants when compared to the concentration of H15 protein in mid mutants.  The mid 

mutants expressed a higher concentration of H15 protein when compared to the wild-type 

larvae.  The lower concentration of H15 in emc
1
 mutants suggests that midline expression is 

being regulated by emc, or rather, emc and mid regulate each other through unknown 

pathways. 

  In the Western analysis of the Emc protein, the wild-type OR larvae also served as a 

control.  The mid mutant flies expressed a similar concentration of Emc protein compared to 

the OR larvae suggesting that emc is present in the developing tissues of the third-instar 

larvae.  The emc
1
 mutants expressed little to no Emc protein in the developing tissues.  This 

observation is appropriate because the expression of emc in the emc
1
 mutants has been 

reduced.   

  The immunofluorescence assay revealed an interaction of mid and emc in a localized 

area of the posterior eye imaginal disc.  It is known that emc is an important regulator for the 

differentiation of photoreceptors 8, 7, 4 and 3 (Baker and Bhattacharya, 2009).  However, the 
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function of mid in the posterior of the eye disc is unknown but may play a role in the 

recovery of sight.  The interaction of emc and mid is unknown but this lab does hypothesize 

that mid regulates photoreceptor formation.  However, it is still not understood why emc is 

present in photoreceptors that have developed because it has only previously been known in 

be found in front of the MF.  Why and how emc is interacting with mid after the MF is still in 

question.   

  

Chapter 6: Conclusion 

  The aim of this study was to determine if the genes emc and mid were interacting 

with each other in the developing eyes of Drosophila melanogaster and if photoreception of 

the doubly mutant flies for emc
1
 and mid

GA174
 was recovered.  The larval phototaxis revealed 

only a slight difference in photoreceptive ability between wild-type OR and mid mutants 

which suggests that photoreception may not have been lost in the third-instar stage, but may 

have been lost during the pupal or developing adult stages.   

  The adult phototaxis assay revealed a dramatic decrease in photoreceptive ability in 

the mid mutants. Photoreceptive ability was slightly recovered in the doubly mutant mid
GA174 

and emc
1
 adult flies suggesting there is non-superficial damage to the photoreceptor 

formation that cannot be seen with a light microscope. Statistical analysis of the data from 

the phototaxis study showed no significant increase in photoreceptive ability of the doubly 

mutant mid
GA174

 and emc
1
 flies.  However, this lack of significance could be due to a small 

sample size and therefore, a greater sample size is required to determine true significance.  

Further testing is also required to understand the structural defects caused by the interaction 

of emc and mid in developing eye tissues.  
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  The Western blot and immunofluorescence assays supported the interaction of emc 

and mid in developing eye imaginal discs.  It was curious that emc expression was 

diminished in the tissue homogenates from tissue homogenates prepared from mid mutant 

flies.  This observation suggests mid is required for Emc expression. The extent and purpose 

of a Mid and Emc interaction has yet to be determined and the lab is excited to continue 

working toward finding explanations for these interactions. In addition, the lab will also 

perform transmission electron microscopy to determine why photoreceptive ability was not 

recovered in the emc
1
 and mid

GA174
 doubly mutant flies although on the outside surface, they 

appeared quite normal. It is that either the photoreceptors have failed to differentiate or the 

axons that reach the optic lobe of the brain are damaged. 
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