
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Honors Theses Honors College

Spring 5-2015

Procedural Content Generation: Using A.I. to Generate Playable Procedural Content Generation: Using A.I. to Generate Playable

Content Content

Osler Kendall Moore Jr.
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/honors_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Moore, Osler Kendall Jr., "Procedural Content Generation: Using A.I. to Generate Playable Content" (2015).
Honors Theses. 298.
https://aquila.usm.edu/honors_theses/298

This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital
Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila
Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/honors_theses
https://aquila.usm.edu/honors_college
https://aquila.usm.edu/honors_theses?utm_source=aquila.usm.edu%2Fhonors_theses%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=aquila.usm.edu%2Fhonors_theses%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/honors_theses/298?utm_source=aquila.usm.edu%2Fhonors_theses%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu

The University of Southern Mississippi

Procedural Content Generation: Using A.I. to Generate Playable Content

by

Osler Kendall Moore, Jr.

A Thesis
Submitted to the Honors College of

The University of Southern Mississippi
in Partial Fulfillment

of the Requirements for the Degree of
Bachelor of Science

in the School of Computing

May 2015

ii

iii

Approved by

Bikramjit Banerjee, Ph.D., Thesis Advisor
Associate Professor of Computer Science

Andrew H. Sung, Ph.D., Director
School of Computing

Ellen Weinauer, Ph.D., Dean
Honors College

iv

Abstract

This thesis is about using Artificial Intelligence in regards to Procedural Content

Generation to help try and avoid a deadlock scenario in a hypothetical dungeon exploring

game. The deadlock scenario is essentially having a key being placed in a room that’s

inaccessible to the player. An example of such a scenario would be if the key to room A

being in Room B, the key to room B was in room A, and the player was in room C. The

program generates the dungeon world with a random number of rooms inside it, each

room also having a random number of generated sub-rooms or no sub-rooms at all, and

then will place the rooms’ respective keys somewhere in the world, so long as whatever

arrangement occurs in the end will allow the player to explore the entire dungeon world if

they desire or need to. The entire program was written in Java, and the dungeon world’s

rooms are arranged into a tree data structure to represent each room’s relationship to one

another.

Key Terms: Progressive Content Generation (PCG), Artificial Intelligence (AI),

Deadlocks, Dungeon Game, Generate Playable Content, Java, Search Tree, and

Procedural Generated Content (PGC)

v

Acknowledgements

I’d like to thank my Advisor Dr. Bikramjit Banerjee for all his efforts mentoring

me during this study. I’d also like to thank the entire staff of the School of Computing,

the Honors College, and the Office of Disabilities Accommodations for the many things

I’ve learned and the support I’ve received during my years here at USM.

vi

Table of Contents

List of Figures ... vii

List of Tables ... viii

Chapter 1: Problem Statement ...1

Chapter 2: Literature Review ...3

Chapter 3: Methods ..13

Chapter 4: Results, Discussion and Conclusion ..25

Literature Cited ..31

vii

List of Figures

Figure 1.1 - Model of Deadlocked Scenario between two rooms ..1

Figure 2.1 - Dang and Champagnat’s Interactive Scenario Metamodel7

Figure 2.2 - Dang and Champagnat’s Metamodel of Parameters ..8

Figure 2.3 - Graphical output of the discourses of the given example9

Figure 2.4 - New Graphical output of the discourses of the given example10

Figure 2.5 - Architecture Diagram explaining the interplay among ABL, Choco, and the

GUI of the designer ...11

Figure 3.1 - Examples of different tree structures that can be implemented at maxdepth=216

Figure 3.2 - A tree generated with 8 nodes and a max depth of 2 by the program18

Figure 3.3 - How the tree generated in figure 3.2 may look as a floor plan for a level20

Figure 3.4 - The figure 3.2 tree with goal node chosen ...21

Figure 3.5 - 3 different examples of possible deadlocks that can occur within the program22

Figure 4.1 - Tree diagram of a tree generated by the program ..25

Figure 4.2 - Tree generated by the program with keys properly placed, and potential floor

plan layout of solved tree ..29

viii

List of Tables

Table 2.1 - Requirements of the Authoring Tool ...6

Table 2.2 - List of states defined in the given example ...8

Table 2.3 - List of events and actions defined in the given example9

Table 2.4 - List of goals defined in the given example ..9

Table 2.5 - New Event/Action to add to the previous list of Events and Actions10

1

Chapter 1: Problem Statement

 This thesis is about Procedural Content Generation: Using Artificial Intelligence

to Generate Playable Content. What this means is that I will be creating a program that

uses Artificial Intelligence (A.I.) to check for deadlocks within a game.

For this project’s purpose, the game will be a simple dungeon exploration type of

game, where the goal of the game is to collect keys to open up different rooms of the

dungeon. Deadlock in the game will occur whenever two or more rooms are impossible

to enter and explore because each locked room will have the other room’s key, thereby

preventing the player from advancing (see Figure 1.1 below.) This deadlock scenario may

also occur with more than just 2 rooms (such as 3 or 4 or more rooms), or if the key

necessary to enter the next room is in the room itself.

Figure 1.1 – Model of Deadlocked Scenario between two rooms.

2

Locked rooms already generated whose keys have not been generated yet, or keys

already generated whose locked room has not been generated yet is completely fine, as

the missing keys or rooms will eventually be generated later in the game. Or the extra

keys and locked rooms may not be needed to reach the goal at the end of the dungeon.

There are two possible ways that the A.I. could check content and ensure a

deadlock does not occur. One method would be to have an interface or application that

checks for any deadlocks while the game or level is being assembled, and will prevent the

game from starting if a deadlock is found. Another method is to have the A.I. do

consistency tests while the game is actually running. As the player reaches certain points

in each level, more rooms will be generated and added onto the original dungeon map.

While the rooms are being generated, the A.I. would check each room and the inside of

each of these rooms and ensure that the key to the next room the player needs to go to

will be accessible to him or her.

3

Chapter 2: Literature Review

Procedural Content Generation can use a search-based method to generate

elements of a game’s level to help alleviate the programmer from the work of designing

each part of the level by himself or herself as well as allow players some more unique

gameplay each time the user runs the game. Artificial intelligence methods have been

more recently used in PCG’s. Interactive evolutionary computation (IEC), is one A.I.

method within PCG’s that takes user’s actions within the game to help guide the

evolution (or changes) of the content within the game, to also help increase the

uniqueness of each gameplay based on the user’s own actions. (Risi et. al. 2012.)

Togelius et al. (2010) give a few reasons as to why one would prefer PCG over

having to hand design each level. First is the concern of memory, and that any content

that’s procedurally generated can be represented by only a few numbers and will remain

undeveloped until it is accessed later in the game. Second is the convenience of not

having to manually design each level on one’s own. Third is the appearance of a new

type of game, not just in terms of being endless, but also the possibility of increasing the

replay value by having the game adapt and adjust to a player’s style. Their fourth

argument is that PCG’s could help increase a designer’s imagination in regards to what

kinds of levels can be developed (Togelius et. al. 2010.)

Procedurally Generated Content has a few distinctions that can be made about it

as well. PCG can be done either online, when the game is running, or offline, while the

game is still being designed. An example of the online case is when a player enters into a

4

room and the interior of the room and its content is generated as the player opens the door

to enter the room. The offline case would be when the A.I. or another algorithm produces

a level layout and then the designer would modify that level as he or she saw fit.

(Togelius et. al. 2010.)

Another distinction would be whether or not the content generated is necessary

(as in, the player must interact with this content in order to reach a goal) or optional (just

bonus content like extra items or alternate paths that are not needed to reach a goal.) PCG

algorithms could take in random seeds to determine how the game world is created, or it

can take in a “multidimensional vector of real-valued parameters that specify the

properties of the content it generates.” Whether or not the generation algorithms given the

same set of parameters generates the same content is another distinction to be made

regarding PCG’s. The final distinction is between constructive algorithms and generate-

and-test algorithms. The constructive case is that the content is generated one time only,

but as it is constructed it tests the content to make sure it is appropriate to put in the level.

In the generate-and-test case, the content is generated, then it is tested. If it passes, it

stays, but if it fails then a certain amount of the content (be it the entire content or only

part of it) is deleted and then generated again. The process of generate-and-test is

repeated until the content passes (Togelius et. al. 2010.)

Search-based procedural content generation (SBPCG) actually follows the

generate-and-test distinction of PCG’s. Rather than saying a content is good or bad in its

test though, it will give each content a numeric grade based on how well the content

passes its fitness function. Newer generated content is ideally supposed to have higher

fitness compared to the older content. Using an Evolutionary Algorithm (EA) for its

5

searching mechanism, it will evaluate each generation of content, throw out the lowest

scoring content, and then replace the thrown out content with randomly modified

versions of the higher scoring content.

Risi et al. (2012) also describe a “variation of artificial neural networks (ANNs)

that differ in their set of activation functions and how they are applied” called

compositional pattern producing networks (CPPNs) that’re used in helping to produce

different varieties of flowers in a Facebook game called Petalz. There are a few other

differences between CPPNs and ANNs. “CPPNs were used as pattern-generators rather

than controllers” (Risi et. al. 2012.) CPPNs include many types of activation functions

while ANNs are limited to only sigmoid or Guassian. CPPNs can also be viewed at

whatever resolution may be desired while ANNs cannot. CPPNs can be used in more

than just a simple 2D image, or 3D images. They can also be used to advance

compositions of music, or even be used to help advance or develop better weapons in

more action-based games (Risi et. al. 2012.)

The NEAT algorithm (Neuroevolution of Augmenting Topologies) can be used

on the CPPNs or even ANNs to help better evolve them and also “is fast enough to run in

real time, which is required for an interactive system” (Risi et. al. 2012.) The content can

basically become more complex each generation (Risi et. al. 2012.)

Dang and Champagnat (2013) go over a couple of authoring tools that are used

for debugging interactive scenarios and explain why some of these other methods aren’t

as good as the method they are trying to present in their paper that uses Linear Logic.

One of these methods happened to be from an earlier paper they worked on with another

person in 2011, and mentions the flaw with their previous work is that “this work only

6

enables users to create scenarios without deadlocks” and that it “is not enough for the

notion of “valid scenario” in our approach (where such a scenario has to satisfy many

more criteria: no deadlock, no unused modeling elements, not too simple/short,

structuralized, etc.).” The next method they bring up, using a KANAL program, is

designed to apparently test out military application plans or biology models, thereby not

being a good choice for interactive scenarios. “Thus, the current state of the art shows

that an authoring tool, designed for normal users, enabling a scenario analysis at the

structural level with much important information, is necessary.” Dang and Champagnat’s

authoring tool is to create valid interactive scenarios for users that apply the deduction

rules in linear logic. (2013)

 Dang and Champagnat (2013) give their authoring tool the following

requirements: (see Table 2.1 below)

1 To give users a graphical language to help model a story’s scenario even if the user

has no knowledge of Linear Logic.

2 Give users graphical language to help establish the scenario’s parameters that will

be used in analyzing the scenario

3 Automatically build the graph to show all the possible ways the scenario can turn

out and then after analyzing this graph return important information regarding the

scenario’s flaws.

Table 2.1 – Requirements of the Authoring Tool. Dang and Champagnat 2013.

7

Dang and Champagnat (2013) further clarify that to meet these requirements this

authoring tool will need four things: First is a metamodel to help users with no prior

knowledge of LL to model their scenarios, second is a metamodel to set up the

parameters of the scenario being modeled, third was to make a function that graphically

shows the results of the two metamodels, and fourth was to make a program that acts as

an analysis module that would execute the two tasks of the third requirement from the

table above. They then proceed to go into greater detail regarding the data models they

used as well as other examples regarding the tool they have created. Figures 2.1 and 2.2

give Dang and Champagnat’s metamodels they use in their authoring tool.

Figure 2.1-Dang and Champagnat’s Interactive Scenario Metamodel. Adapted from
“An Authoring Tool to Derive Valid Interactive Scenarios” by Dang and
Champagnat in 2013.

8

Figure 2.2- Dang and Champagnat’s Metamodel of Parameters. Adapted from “An

Authoring Tool to Derive Valid Interactive Scenarios” by Dang and
Champagnat in 2013.

Dang and Champagnat (2013) give an example as to how their authoring tool

works. Their example is an educational game that’s supposed to teach the players about

household electrical accidents, and give the goal of trying to shock the player. First they

define the states of the scenario (see Table 2.2 below), then the list of events and actions

(see Table 2.3 below), and then define the goals of the scenario (see Table 2.4 below.)

Name Is Available
State

Description

Pi True The player is at the initial position (this state is available)

Pk False The player is in the kitchen

Pb False The player is in the bathroom

Ik False The IS controller starts the strategy of causing the electric
shock for the player in the kitchen

Ib False The IS controller starts the strategy of causing the electric
shock for the player in the bathroom

Pe False The player has got the electric shock

Table 2.2 - List of states defined in the example. Adapted from “An Authoring Tool
to Derive Valid Interactive Scenarios” by Dang and Champagnat in 2013.

9

Name Description Precondition Effect

EA1 The player goes to the kitchen Pi Pk

EA2 The player goes to the bathroom Pi Pb

EA3 The IS controller starts the strategy of causing the
electric shock for the player in the kitchen

Pk Pk, Ik

EA4 The player gets the electric shock in the kitchen Pk, Ik Pe

EA5 The player gets the electric shock in the bathroom Pb, Ib Pe

Table 2.3 - List of events and actions defined in the example. Adapted from “An
Authoring Tool to Derive Valid Interactive Scenarios” by Dang and
Champagnat in 2013.

Goal Description State

G The player gets the electric

shock

Pe

Table 2.4 - List of goals defined in the example. Adapted from “An Authoring Tool
to Derive Valid Interactive Scenarios” by Dang and Champagnat in 2013.

Once this example is tested in the authoring tool, the following graph is produced

(see Figure 2.3.)

Figure 2.3 – Graphical output of the discourses of the example. Adapted from “An
Authoring Tool to Derive Valid Interactive Scenarios” by Dang and
Champagnat in 2013.

10

Because of this graphical representation we can see that a deadlock occurs in

Dang and Champagnat’s example if the player enters the bathroom (2013). So by adding

another Event/Action to the previous list of events and actions (table 2.5 below) and run

the tool again, we get a graph as shown by figure 2.4 below, thereby getting rid of the

previous deadlock.

Name Description Precondition Effect

EA6 The IS controller starts the strategy of causing the

electric shock for the player in the bathroom

Pb Pb, Ib

Table 2.5 – New Event/Action to add to the previous list of Events and Actions (refer
back to Table 2.3). Adapted from “An Authoring Tool to Derive Valid
Interactive Scenarios” by Dang and Champagnat in 2013.

Figure 2.4 – New Graphical output of the discourses of the example. Adapted from
“An Authoring Tool to Derive Valid Interactive Scenarios” by Dang and
Champagnat in 2013.

With this new version of the scenario of their example, they now have no

deadlocks occur (Dang and Champagnat 2013).

Smith et al. (2010) describe a 2D platformer level design aid that can help a level

designer reduce the time needed to design a level. By using a set of programmed

constraints and reactive planning, the A.I. aid can make appropriate changes to the

different components of a generated level every time the designer decides to modify

11

certain elements (Smith et. al. 2010.) Tanagra uses at least two different Java-based

languages. ABL (A Behavioral Language) is used for any sort of rapidly changing world

state in a level. Chobo is used more for satisfying constraints, more specifically in

Tanagra’s case constraints in the level generation. ABL would monitor any actions the

designer has done to manipulate the geometry of the different level elements or the beats.

In Tanagra, “beats” are the different player actions in a level and help to tie the patterns

between different objects or even give the patterns their different sizes. Choco itself takes

what constraints to the different level objects that ABL gives it, and then will spit back

out solutions for each object to allow it to be generated and allow the level to continue to

be generated (Smith et. al. 2010.)

Figure 2.5 – Architecture Diagram explaining the interplay among ABL, Choco, and
the GUI of the designer. Adapted from “Tanagra: An Intelligent Level
Design Assistant for 2D Platformers” by Smith et al. in 2010.

Van der Linden, et al., suggest a method of using the restraints in a user avatar’s

gameplay to help generate the content in a PCG game, which could help ensure that there

is some consistency in the levels or rooms generated in a game (2013).

12

Unity can allow components to be made and used using scripts in Java, C#, or

Boo and other .NET languages so long as those other .NET languages can compile a

compatible DLL (Unity Technologies, 2013.)

13

Chapter 3: Methods

Data are gathered mostly by trial and error of debugging the programs and personally

testing out to see if they behave properly, or within expected parameters. The Program

itself is written in Java. The program has at least 8 global variables in the main program,

which are listed as follows:

1) maxdepth – an integer value. This variable is set in the main function, and tells us

how many levels deep our tree can go. Right now it is hardcoded at a specific

value for now, and will most likely be changed later.

2) Nodes – an ArrayList made up of a type Node class. A Node is what constructs

most of the tree that makes up the “world” of the game. To be more specific, each

Node represents a room in the game.

3) Keys – an ArrayList made up of a type Key class. Keys are normally needed to

allow the user accessibility to another room.

4) NodeIDs – a LinkedList of Strings. It is basically a convenient List of Nodes (or

Rooms) that still require a key to unlock it.

5) KeyIDs – a LinkedList of Strings, like NodeIDs, which will list all the remaining

Keys we have that we still need to place within the world’s rooms.

6) NodesPerLevel – a basic ArrayList. It holds how many Nodes there are at each

depth of the tree.

7) pendingGoals[][] – A 2D array of Strings. Think of it as being similar to a table.

The first column holds different Node ID’s. The second column will have either

“True” or “False” written in there. I’ll go into more detail regarding

14

pendingGoals’ use and importance when I go over the checkAccess function

further on down.

8) GoalNode – Right now it is a simple String that tells you what ID the GoalNode

(or ending point) of the world will be.

I’ll go over the two important custom classes used in this program first before I

move onto the many functions the Main Program has, as the Main Program will use

these two custom classes for everything it does.

First there’s Node. Node is what makes up the individual rooms and sub-rooms of

this program, and often it is what makes up how the tree is assembled, representing

where the tree may branch or where its leaves (end points that do not branch out into

other endpoints) will be located. Each node has only 1 parent, but can have a random

number of children, right now the maximum amount allowed being 5. It also will hold

a String value that helps act as the node’s unique identifier simply called “ID”, and a

pair of convenient integer values labeled “level” and “nodenum” (short for “Node

Number”). It also has a value for how many children it should have. The parent and

children are public members, but the other variables are private. The private variables

can be set or obtained with the appropriate get and set functions already implemented

in the Node class. There is also a print function that acts recursively. The print

function simply displays output regarding the node and the tree. It first prints out

what level of the tree the node is located, and what node number it has on that level,

followed by the number of children it has, the Parent Node’s ID, and then it will

recursively call the print functions of its children nodes. It also has a pair of

constructors.

15

The Key class doesn’t have any fancy functions, mostly just simple set and get

functions along with its constructors. It holds 4 integer values and 2 string values,

which are connected to one another. The klvl and knum pair help make up the Key’s

ID, which tells you what room the Key is supposed to open. Location is made up

from locationLvl and locationNum, which tells you what room the key is currently

placed in.

The main program has a number of functions, 15 in total when you also include

the main function. The functions findNode() and findKey() are pretty simple, as

they’ll take in a string value (the ID of the node or key you wish to find), and after

they search through the Node or Key ArrayLists respectively, they will produce the

Node or Key you are looking for. The nodeExists() function prompts you to enter a

Node ID you may wish to find or look up, and it will check to see if that node Exists

or if it does not. If it doesn’t, it will continue to prompt you to type in a new response

until an already existing node can be found with whatever ID you typed in. Key has a

pair of functions almost identical to this but are slightly different. The keyExists()

function behaves like nodeExists(), except of course it is looking for a key. The

keyRestrictionExists() function behaves the exact opposite, prompting the user for an

ID of a key that does NOT already exist. The function titled functionKey() is a special

function that will take in a Node, and then it will give the room that the inputted

Node’s key is located. ResetKeys() will essentially reset all of the Key’s location

values back to their default value, the root node.

I’ll continue going over the remaining functions as I describe what the main

function does. After the main function starts and initializes a good deal of our

16

variables, the first important thing it will do is create the tree that will be used

throughout the rest of the program. It’ll do this by first creating a “root” Node, which

will be used as the starting point for the tree. Once the root is created, we then add it

to a temporary LinkedList called nodesNeedKids. So long as the LinkedList is not

empty, it loops through the list multiple times, taking the first Node in the list, and

checking to make sure that our currentNode is not at the maxdepth. If it is, it checks

to see how many children our current Node is supposed to have, and create those

children Nodes for our parent node before adding them to the nodesNeedKids List. At

the end of each iteration, whether new nodes were added or not, it then removes the

currentNode from the nodesNeedKids list before moving on to the next node in that

list. This will essentially help create the tree as well as automatically increment the

corresponding item in NodesPerLevel. Each “Object” in the NodesPerLevel

collection represents how many Nodes are at a certain depth. Figure 3.1 below

represents some of the different tree structures the algorithm can make at a maxdepth

= 2.

Figure 3.1 – Some examples of different tree structures that can be implemented at

maxdepth = 2.

17

Each Node is represented by a box or square, with the lines representing

connections between a parent node and its children. The parent will be the higher

node, and the child nodes will be the node or nodes that are immediately below it.

Tree A) is made up of 7 nodes, 1 at depth 0, 3 at depth 1 and 3 at depth 2. Tree B) is

made of 8 nodes, 1 at depth 0, 2 at depth 1, and 5 at depth 2. Tree C) is made of only

2 nodes, 1 at depth 0, 1 at depth 1, and none at depth 2. Tree D) has 4 nodes, 1 at

depth 0, 1 at depth 1, and 2 at depth 2. Tree E) has also occurred on a number of

occasions, with only 1 node at depth 0 and none at depth 1 and at depth 2.

Let’s go through a step by step example of how it will construct the tree. First it

creates the root node, which will always be given the ID “0-0”. Then it calls the

numkids() function to determine how many kids root will get, passing in what level or

“depth” the node is currently at. The numkids function will check the currentNode’s

depth against the maxdepth. If the currentNode’s depth is smaller than the maxdepth,

it will give back a random number for how many children the current node will have.

Otherwise it will return 0. Below is an example made from an 8 node tree, resulting in

it having 1 node at depth 0, 2 at depth 1, and 5 at depth 2. Figure 3.3 shows how this

might look as a potential level for the game.

18

Figure 3.2 – A tree generated with 8 nodes and a max depth of 2 by the program.

19

Figure 3.2 – A tree generated with 8 nodes and a max depth of 2 by the program.
(continued)

20

Figure 3.3 – How the tree generated in figure 3.2 may look as a floor plan for a level.

Next we use a function called randomGoal() to randomly determine what our goal

node should be. Since we want to go through every room generated, our goal node

will most likely be one of our nodes at the deepest level of our tree, so something

around depth 2 (aka, any node with an ID like “2-X”). Let’s say it randomly picks out

2-3. I’ll mark our goal node with a star with a “G” underneath it.

21

Figure 3.4 – The tree generated with our goal chosen.

Next thing to do is construct the keys to the rooms. As there are 8 rooms, it will

immediately construct 8 keys, one for each room, and they will each be initially

placed in a “default” position. I have chosen to make the default value the root node,

which will always be the room the user will start in whenever the game would be

running.

So just to clarify, we have 8 rooms [0-0, 1-0, 1-1, 2-0, 2-1, 2-2, 2-3, 2-4], and 8

Keys [0-0, 1-0, 1-1, 2-0, 2-1, 2-2, 2-3, 2-4] and all the keys will be initially located at

0-0. Our goal is to get to 2-3. But the AI is to randomly scatter the keys in the

different rooms and make sure every room and key is accessible to the player. We

want to avoid a deadlock, which may occur if a player cannot reach a certain key, and

thereby be unable to reach a certain room or the goal.

22

Below are three possible examples of a deadlock, first being a room with its own

key locked inside it, two rooms having each other’s keys, and three rooms having

each other’s keys. Key 0-0 being located inside Node 0-0 is the only allowable

exception, as the player will always start in room 0-0 and thus Key 0-0 will already

be accessible to him/her, as well as the room itself.

Figure 3.5 – 3 different examples of possible deadlocks that can occur within the
program.

23

So what happens if a deadlock occurs? How can it be avoided? As we are

inserting keys into the nodes, we will check to make sure that having the keys

inserted at such places will allow them to be accessible.

First we insert a key, say Key to room 1-0, into room 2-2. Next, we set every

pending Goal’s value for each node equal to False. After that, we run a checkAccess()

boolean function, passing in Node 2-2 as the parameter. checkAccess will first check

to see if the node passed in is the default value (0-0) and if so will return true. If that

doesn’t work, it will check the Node’s corresponding value in the potentialGoals 2D

array. If its value is already set to True, then we have the function return false.

However, if the potentialGoals value was instead marked false, we temporarily

change that value to true, then call up a path List for the node we are currently

checking. A path list essentially comprises of the node, its parent, its grandparent, its

great-grandparent, etc. and recursively runs the checkAccess function on the key

locations to each value in that list one at a time. In other words, checking the

Accessibility of the node’s own key, its parent’s key, its grandparent’s key, etc. If any

of the values return false, then the whole function will return false. If none in the path

return false, then the whole check function will return true.

Now it starts checkAccess(2-2). It will set 2-2 in potentialGoals to true, then

recursively cycle through the checkAccess for each key in Path(2-2). Key[2-2],

Key[1-1], and Key[0-0] all equal one node currently, 0-0. So each of the checkAccess

being recursively stepped through right now will all become checkAccess(0-0), which

returns true in all three situations, so checkAccess(2-2) returns true, and it can keep

Key[1-0] in its present place, Node 2-2.

24

If it tried adding Key(0-0) to node 2-2 however, it would get false returned from

the checkAccess function, and as it returns failure, it sets Key(0-0) back to its

previous value (default 0-0) and move on to another node.

While the program was generating Nodes and Keys, it also fills up both the

NodeIDs and KeyIDs lists. NodeIDs is just a convenient list of strings of all the

rooms the program currently has in the tree. KeyIDs help keep track of any keys that

have not yet been placed somewhere. It removes Key 0-0 from the list as the program

is to assume that the agent (the player) is to have already have Key 0-0 at the start of

the program. After each successful checkAccess, it removes a key from our KeyIDs

list. It checks to make sure that whatever node ID and key ID currently set are not

equal to each other. It will remove the GoalNode from the NodeIDs because the

GoalNode does not need a key placed in it. It will place the GoalNode’s key last to

make sure the Goal is the last place the user will visit in the tree. Any time some

condition isn’t met, it will randomly select a new Node or Key depending on the

situation.

25

Chapter 4 Results, Discussion, and Conclusion:

Running the code multiple times has led to a variety of different trees that could

be generated. In addition to this, it has also lead to a successful possible arrangement

of keys for each randomly generated tree.

Here is the output of a tree that was successfully generated and had all its keys

successfully placed. First it generates the following Tree:

Figure 4.1-Tree diagram of a tree generated by the program

Now that the tree is generated, it begins generating the following output as it

randomly picks different keys and different rooms to place them in, as well as

checking to make sure that placing a key at such a location is possible.

26

Testing check on Root Node true

Number of Keys needing to be Placed Left: 12

Testing check Key (2-4) in room 2-3 true

Number of Keys needing to be Placed Left: 11

Testing check Key (2-7) in room 2-1 true

Number of Keys needing to be Placed Left: 10

Testing check Key (1-1) in room 2-0 true

Number of Keys needing to be Placed Left: 9

Testing check Key (2-3) in room 2-0 true

Number of Keys needing to be Placed Left: 8

Testing check Key (2-2) in room 2-1 true

Number of Keys needing to be Placed Left: 7

Testing check Key (1-2) in room 0-0 true

Number of Keys needing to be Placed Left: 6

Testing check Key (2-0) in room 2-1 false

So now it has come across an error. In order to get to room 2-1, the player would

need to go to room 2-0 to get the key to 2-1’s parent node 1-1. But the player wouldn’t be

able to get into room 2-0 if its key was already in 2-1. A room is accessible mainly if both

its parent node and its key are accessible. It cannot go to room 2-1 without both the key

to room 2-1 and the ability to access the parent. The parent 1-1 can only be accessed after

27

visiting room 2-0 to get its key. 2-0 cannot be accessed however without its key. Thus

this makes a circular deadlock with rooms 1-1, 2-1, and 2-0. As 2-0’s key is being placed

in a room it cannot currently access, the test fails. So now the program attempts to test on

another node until it succeeds in placing a key in a room without causing a deadlock.

Testing check Key (2-0) in room 2-4 false

Testing check Key (2-0) in room 2-7 false

Testing check Key (2-0) in room 1-1 false

Testing check Key (2-0) in room 1-2 true

Testing Key 2-0 being placed in room 2-4 fails because the Key to room 2-4 is

located inside room 2-3, but the key to 2-3 is currently in room 2-0. This would cause a

circular deadlock involving rooms 2-0, 2-3, and 2-4. The only way the Key to room 2-7

can be accessed is by visiting room 2-1, but the only way to access 2-1’s parent 1-1 is by

visiting 2-0. Thus a deadlock occurs involving 2-0, 1-1, 2-1, and 2-7. Attempting to place

Key 2-0 into room 1-1 would simply cause a circular deadlock between the two nodes (2-

0 and 1-1) simply because room 2-0 already has the key to 1-1. When it places Key 2-0 in

room 1-2 however, no deadlock occurs mainly because not only is its parent 0-0 already

initially acceptable, room 1-2’s key is also already in 0-0, thus allowing for the key to

room 2-0 to be placed with no issue at all.

28

Number of Keys needing to be Placed Left: 5

Testing check Key (1-0) in room 1-0 false

Testing check Key (1-0) in room 0-0 true

Placing the key to room 1-0 inside itself fails as such a situation would be no

different than if a person locked their keys in their car by mistake. Placing any key in

room 0-0 will be fine, as room 0-0 will always be accessible to the player.

Number of Keys needing to be Placed Left: 4

Testing check Key (1-3) in room 2-3 true

Number of Keys needing to be Placed Left: 3

Testing check Key (2-1) in room 2-5 true

Number of Keys needing to be Placed Left: 2

Testing check Key (2-5) in room 1-3 true

Number of Keys needing to be Placed Left: 1

Testing check Key (2-6) in room 2-1 true

So now the program has given one possible solution in regards to randomly

placing keys in such a way that no deadlock occurs. In the figures below is the tree with

its keys labeled at each node, as well as a possible floor plan for such a tree.

29

Figure 4.2-Tree generated by the program with keys properly placed, and potential
floor plan layout of solved tree.

 With this it’s now easier to see how the world might look after the keys have been

sorted in the world. The player would start out in room 0-0 and instantly obtain keys to

allow access into rooms 0-0, 1-0, and 1-2. The player could then proceed to room 1-2 to

30

get the key to room 2-0, then proceed to 1-0. From 1-0, the player can now access 2-0

and get the keys to rooms 1-1 and 2-3. Going to rooms 1-1 and then 2-3 will give the

player the keys to rooms 1-3 and 2-4. Going into room 1-3 the player will obtain the key

for room 2-5, and then from 2-5 the player can get the key to room 2-1. From room 2-1

the player gets the keys for rooms 2-2, 2-6, and 2-7, thus allowing the player to now

reach the room with the Goal, 2-6.

 The limitations so far with this program besides its currently set max depth and

the leaf nodes having anywhere from 0 to 5 children is that this project has mostly been

focusing on the idea of a game. The logic with deadlock checking could definitely be

used in other projects or for other purposes such as multi-thread programs. This program

can be built upon and further modified to the point that it could one day be actually made

into a dungeon exploring video game with uniquely generated levels.

31

Literature Cited

“Creating and using Scripts.” Unity Technologies. 2013. Web. 27 Apr. 2014. <

http://docs.unity3d.com/Documentation/Manual/CreatingAndUsingScripts.html>

Dang, Kim Dung, and Ronan Champagnat. "An Authoring Tool to Derive Valid

Interactive Scenarios." Association for the Advancement of Artificial Intelligence.

2013. Web. 05 Feb. 2014.

<http://www.aaai.org/ocs/index.php/AIIDE/AIIDE13/paper/viewFile/7427/7645>

van der Linden, Roland, Ricardo Lopes, and Rafael Bidarra. "Designing Procedurally

Generated Levels." Association for the Advancement of Artificial Intelligence.

2013. Web. 05 Feb. 2014.

<http://www.aaai.org/ocs/index.php/AIIDE/AIIDE13/paper/viewFile/7450/7641>

Risi, Sebastian, Joel Lehman, David B. D'Ambrosio, Ryan Hall, Kenneth O. Stanley.

"Combining Search-Based Procedural Content Generation and Social Gaming in

the Petalz Video Game." Association for the Advancement of Artificial

Intelligence. 2012. Web. 10 Mar. 2014.

<http://www.aaai.org/ocs/index.php/AIIDE/AIIDE12/paper/download/5449/5698>

Smith, Gillian, Jim Whitehead, and Michael Mateas. “Tanagra: An Intelligent Level

Design Assistant for 2D Platformers.” Association for the Advancement of

Artificial Intelligence. 2010. Web. 8 Apr. 2014.

<http://www.aaai.org/ocs/index.php/AIIDE/AIIDE10/paper/viewFile/2126/2574>

http://www.aaai.org/ocs/index.php/AIIDE/AIIDE13/paper/viewFile/7427/7645
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE13/paper/viewFile/7450/7641
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE12/paper/download/5449/5698
http://www.aaai.org/ocs/index.php/AIIDE/AIIDE10/paper/viewFile/2126/2574

32

Togelius, Julian, Georgios N. Yannakakis, Kenneth O. Stanley, Cameron Browne.

“Search-Based Procedural Content Generation.” EvoWorkshops. 2010. 27 Apr.

2014. <http://eplex.cs.ucf.edu/papers/togelius_evogames10.pdf>

	Procedural Content Generation: Using A.I. to Generate Playable Content
	Recommended Citation

	Procedural Content Generation: Using A.I. to Generate Playable Content

