
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Honors Theses Honors College

Spring 5-2019

A Mobile Application for Crowdsourced Acquisition of Urban A Mobile Application for Crowdsourced Acquisition of Urban

Street-View Pedestrian Facility Data Street-View Pedestrian Facility Data

Andrew Fink
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/honors_theses

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Fink, Andrew, "A Mobile Application for Crowdsourced Acquisition of Urban Street-View Pedestrian Facility
Data" (2019). Honors Theses. 654.
https://aquila.usm.edu/honors_theses/654

This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital
Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila
Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/honors_theses
https://aquila.usm.edu/honors_college
https://aquila.usm.edu/honors_theses?utm_source=aquila.usm.edu%2Fhonors_theses%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=aquila.usm.edu%2Fhonors_theses%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/honors_theses/654?utm_source=aquila.usm.edu%2Fhonors_theses%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu

The University of Southern Mississippi

A Mobile Application for Crowdsourced Acquisition

of Urban Street-View Pedestrian Facility Data

by

Andrew Fink

A Thesis

Submitted to the Honors College of

The University of Southern Mississippi

in Partial Fulfillment

of Honors Requirements

April 2019

ii

iii

Approved by

Chaoyang Zhang, Ph.D.,

Thesis Adviser

Professor of Computer Science

Andrew Sung, Ph.D.,

Director

School of Computing

Ellen Weinauer, Ph.D.,

Dean

Honors College

iv

Abstract

In recent years, pedestrians have been dangerously overrepresented in traffic

crashes, and the pedestrian fatality rate has steadily increased during the last decade.

Additionally, studies have shown that the majority of pedestrian-involved traffic

accidents occur in urban non-intersections, which suggests that a more well-

connected pedestrian facility network in cities would lower the rate of pedestrian

involvement in traffic accidents. One way to improve the pedestrian facility network

coverage is to first have up-to-date, accurate, and thorough data regarding the

presence of existing pedestrian facilities. However, state departments of

transportation have stated that the current methods of acquiring this data are

expensive and time consuming. In this project, we developed a mobile application

prototype for crowdsourced acquisition of street-view images containing pedestrian

facilities, or more specifically, crosswalks. The resulting application used modern

full-stack development techniques and is a native Android application that allows the

user to take pictures using their mobile devices and automatically upload those

pictures, along with relevant metadata (such as location data), to a server where they

are classified using a machine learning model that was trained to recognize the

presence of crosswalks in images.

Keywords— crosswalk, crowdsourced, mobile application, pedestrian facility,

software development, street-view, transfer learning, transportation

v

Acknowledgements

I would like to recognize and thank my thesis advisor, Dr. Joe Zhang, for his

mentorship in this project during the last year. This project would not have been

possible without his efforts and direction. I would also like to thank Bailey Luttrell

for his guidance and his work on the machine learning portion of this project and Dr.

Yuanyuan Zhang for allowing me to join her team for the NCHRP-209 project and

for her insight on the constraints and goals of the software.

Additionally, I would like to thank the faculty of the School of Computing for

their instruction during the past four years and the Honors College for their hard

work in challenging me and in providing me the resources and guidance that I

needed to be successful.

Lastly, I would like to pay special thanks to my wife and my parents for their

love, encouragement, and support during my time at the University of Southern

Mississippi.

vi

Table of Contents

List of Figures ... viii

List of Definitions and Abbreviations ... ix

Chapter 1: Introduction ... 1

Chapter 2: Literature Review.. 3

2.1 Multi-Platform Development .. 3

2.2 Android Development ... 6

2.3 iOS Development .. 7

2.4 Machine Learning in Mobile Development .. 8

Chapter 3: Methodology ... 11

3.1 Development Approach .. 11

3.2 Development Environment ... 12

3.2.1 Android Application ... 12

3.2.2 Server .. 12

3.2.3 Database .. 12

3.3 Procedure .. 13

3.3.1 Apache2 Server ... 13

3.3.2 MySQL Database .. 13

3.3.3 API Development.. 14

3.3.4 Mobile App UI .. 16

3.3.5 Initial Client-side Image Preprocessing .. 17

vii

3.3.6 Location and Image Upload Logic ... 18

3.3.7 Prototype Image Classification Model .. 19

Chapter 4: Results ... 21

Chapter 5: Discussion ... 23

5.1 Problems and Considerations .. 23

5.2 Future Revisions ... 23

5.3 Potential Use Cases ... 24

Chapter 6: Conclusion ... Error! Bookmark not defined.

Chapter 7: Literature Cited ... 26

viii

List of Figures

Figure 3-1 MySQL image_data table schema ... 14

Figure 3-2 Images classified using the trained model ... 20

Figure 4-1 Screenshots of using the app to take a picture and upload it to the server 21

Figure 4-2 Record in the MySQL database for the uploaded image data 22

ix

List of Definitions and Abbreviations

Below are some terms, acronyms, and abbreviations that are commonly used in

computer science and that will be used in this paper.

• Software Development Kit (SDK): a collection of software and/or libraries used

for developing applications for a given system or device.

• Application Programming Interface (API): a set of tools and methods for

communication among different components of a system or between systems.

• User Interface (UI): a graphical interface.

• JavaScript Object Notation (JSON): a standard text notation for storing and

transporting data in a human-readable and universal format.

• Extensible Markup Language (XML): a general markup language that can be used

for storing and transporting data, as well as being a foundation for building

customized markup languages.

• Representational State Transfer (REST): a software architectural style that defines

a set of operations for developing and using web services.

• RESTful: describes a web service that conforms to the REST style.

• Hypertext Transfer Protocol (HTTP): the standard protocol for data

communication in the client-server computing model.

• PHP: Hypertext Preprocessor (PHP): a scripting language that is commonly used

for web development.

1

Chapter 1: Introduction

One growing concern of cities and state departments of transportation is

pedestrian safety. In a 2015 survey [1] by the National Highway Traffic Safety

Administration (NHTSA), it was shown that 4,735 of the 32,719 total fatalities from

traffic crashes in 2013 were pedestrian fatalities, which makes up 14 percent of the

total number of fatalities. This is the result of a steady increase from 11 percent in

2004. Additionally, 73 percent of these pedestrian fatalities occurred in urban areas,

and 69 percent occurred at non-intersections. This highlights the importance of a

well-connected pedestrian facility network in urban areas, as it would decrease

pedestrian-involved traffic accidents [2]. However, to build a well-connected

pedestrian facility network, there must first be accurate and thorough data of existing

pedestrian facilities [3]. The problem is that there is not currently an efficient method

of collecting these data [4]. Currently, state departments of transportation must

manually survey cities to map out these facilities, which is both expensive and time-

consuming; therefore, three out of fifty state DOTs have identified the collection of

these data as a primary goal [5], [6]. The IDEA project, NCHRP-209, that we are

working on aims to provide a more efficient and cost-effective solution that would

allow state DOTs to map existing pedestrian facilities, which would help their efforts

to build a more well-connected pedestrian facility network.

The system that was proposed is a system for automated acquisition of pedestrian

facility data from satellite and street-view images through the use of machine

learning algorithms. As a subset of that project, we are building an additional tool for

crowdsourced collection of street-view image data. This tool is a mobile application

2

that allows the user to take a picture of a pedestrian facility at street level. The

picture and its related metadata are then sent to a server and stored in a database so

that it can be queried and analyzed. Then, a model trained with machine learning

classifies the image as either containing or not containing a crosswalk.

3

Chapter 2: Literature Review

Mobile application development is a complex process from start to finish, and

machine learning is even more complex; therefore, building mobile applications that

utilize machine learning algorithms is a daunting task. In addition, there are many

factors to consider that would greatly affect the development process. This review of

literature will present and discuss existing research regarding mobile application

development and the integration of machine learning algorithms in mobile

application development, as well as some of the documentation available to mobile

application developers to aid them in the development process.

2.1 Multi-Platform Development

One of the more controversial topics in mobile application development is the

problem of multi-platform development. In a study done by the International Data

Corporation (IDC) in 2017 [7], it was determined that more than 99 percent of all

smartphones shipped to vendors worldwide in 2016 were either Android or iOS

phones, with 81.4 percent being Android devices and 18.2 percent being iOS devices

for the final quarter of 2016 (during which time 429.8 million units were sold). This

suggests the importance of developing mobile applications that can be used on both

Android and iOS devices, at the very least. However, because of the fundamental

differences in the native development libraries and supported languages of different

platforms, multi-platform development is quite complicated and can be very time-

intensive and expensive. There are several approaches to multi-platform

development, each with its own advantages and disadvantages.

4

In an article by Heitkötter, Hanschke, and Majchrzak [8], the authors explain the

problems of developing applications for multiple platforms and give the solution of

cross-platform development tools. They compare the following different approaches

to multiple-platform development: mobile Web applications, Titanium Mobile,

PhoneGap, and native application development. Developing separate native

applications generally allows the developer to make the most of the hardware and

features of the targeted device by using its platform’s SDK. However, developing

native applications for multiple platforms is very time-consuming. This is the reason

for the evolution of cross-platform development tools. These tools allow the

developer to write an application using a single platform or development

environment and then either run the application on multiple platforms or export the

application and generate different platform-specific applications from it. The authors

note that the latter type of cross-platform tools is still new and that there are no

commercial tools of that category available yet. In the article, the authors compare

the different approaches on seven criteria from the infrastructure perspective: license

and costs, supported platforms, access to platform-specific features, long-term

feasibility, look and feel, application speed, and distribution. They also compare

seven criteria from the development perspective: development environment,

Graphical User Interface (GUI) design, ease of development, maintainability,

scalability, opportunities for further development, and speed and cost of

development. The authors concluded that PhoneGap is the preferred alternative to

native development if the developer is willing to sacrifice the resemblance of the UI

to that of a native application.

5

Of course, not all authors are willing to name a conclusive “best option”. An

article by A.I. Wasserman [9] describes some of the issues regarding mobile

application development. The author conducted a survey of the opinions and

practices of most app developers and made the following four conclusions: 1) most

developers made smaller applications, with fewer than three developers responsible

for developing each application, 2) there was a strong difference of opinion and

practice between the development of native applications and the development of

cross-platform mobile web applications, 3) most developers did, in fact, adhere to the

established recommended practices, and 4) developers rarely gathered organized

metrics of their development process and efforts. The article gives an overview of

the popular development environments used for different platforms and why they are

so useful. Finally, the article identifies some of the new areas of research and

development in mobile application development, assesses the idea of recommended

programming practices, and explains the importance of finding good techniques for

effectively managing increasingly complex development projects. Wasserman does

not give a conclusive best approach from his own experience but instead presents

conclusions of other developers. Similarly, an article by M. Emiliano et al. [10]

examines the different development technologies available to mobile application

developers and compares them to determine which technologies are recommended to

use for given situations. The article studies three development approaches: native

development, web development, and hybrid development. Native development refers

to developing applications for a platform in its native SDK. Web development refers

to developing a pure web application that can be executed on multiple platforms.

6

Hybrid development refers to using a mix of the native and web development

approaches. The authors look at several case studies and interview many technical

experts in the field of application development to obtain the data, and they use this

data to write a guide for deciding which of these technologies to use (which they

present at the end of the article).

2.2 Android Development

While native development is very time-intensive and expensive, all the

aforementioned authors agree that it is a great option if the developer is insistent on

giving the application a native look and feel on all platforms. For native application

development, there are several tools available to the developer, especially in Android

and iOS development. The Android developer site [15] contains the documentation

for Android development and Android Studio, which is the official development

environment for Android development. Android Studio allows the developer to

develop Android applications easily with the use of a feature called the visual layout

editor, which enables the editing of the layout through a visual interface. This

speeds up the process of application design by allowing the developer to edit the

layout of the user interface through a simple drag-and-drop feature for inserting,

moving, and resizing new UI elements, which is an improvement on manually

writing the layout XML, a process that can be complicated and time-consuming.

Android Studio also features an Android Emulator tool, which allows the developer

to build and run apps on various emulated Android devices, including tablets,

phones, and even Android Wear OS devices. This is a welcome and easy alternative

to running the application on a real device over USB, which can be rather slow.

7

With the emulator’s ability to simulate almost all features available on a real device,

it has become a popular and useful tool. Most importantly, Android studio features a

powerful code editor. The code editor includes support for Java, Kotlin, and C/C++.

It has Lint tools for finding and fixing problems such as version incompatibility,

deprecated methods and libraries, unoptimized syntax, unused variables, and poor

performance. It also includes useful shortcuts for importing libraries automatically,

inline debugging, code completion, and code reformatting. The Android Studio IDE

is a powerful tool for Android development in many ways, and this source provides

information about using it.

2.3 iOS Development

For iOS development, there are similar tools available to the developer. Apple,

Inc.’s Xcode IDE web page [14] contains the documentation for the Xcode

integrated development environment, which is the official environment for iOS

application development. The documentation includes descriptions of all of the

features of Xcode 9, the newest release of Xcode. The author of the documentation

emphasized the speed and aesthetic of Xcode, especially that of its source code

editor, which boasts convenient gestures for quick selection and editing of code

segments and built-in powerful code refactoring. The IDE also features version

control with full Git integration, complete with a Git source control navigator. The

documentation specifies a new way of connecting iOS devices for running and

debugging applications: network connection. Xcode projects can be installed, run,

and debugged via a wireless network. For those without iOS devices for debugging,

Xcode provides a device simulator app, which allows the developer to run and debug

8

applications on a virtual iOS device on his or her computer. The documentation

includes other resources as well, such as an API reference guide, sample code, and

relevant articles related to Xcode application development. Apple’s Xcode is,

unfortunately, only available on MacOS; therefore, iOS development can only be

done on MacOS.

2.4 Machine Learning in Mobile Development

For a developer to integrate machine learning algorithms into a mobile

application, he or she would first need to understand the concept of machine

learning, or as in this case, deep learning. An article by J. Schmidhuber [11] gave an

introduction to deep learning in neural networks, addressed its various problems and

themes, and described the different categories of neural networks and their histories.

In this article, the author also explains the fundamental credit assignment problem,

which defines the general idea of deep learning. Specifically, it states that certain

components of a learning system are to be credited for its success, and changes to

specific components can improve or diminish the performance of the system. The

article also describes the different types of neural networks, such as feedforward

neural networks and recurrent neural networks. Another topic discussed is the

difference between supervised learning, unsupervised learning, and reinforcement

learning. The author concludes the article by giving an assessment of the future of

deep learning in neural networks and some problems that would need to be solved to

facilitate its advancement.

One of the most popular machine learning libraries and systems available to

developers is the TensorFlow machine learning system. A paper written by M. Abadi

9

and the rest of the Google Brain team at Google [12] describes the TensorFlow

system, its applications and performance, and the data model that it uses. The Google

Brain team developed TensorFlow based on what they learned in their experience

using TensorFlow’s predecessor, DistBelief. TensorFlow improves upon DistBelief

by making it more approachable and by broadening its applicability to a wider range

of ideas, making it an available tool for a broader variety of researchers and

developers. TensorFlow can be used to train models and run them on several

platforms, from mobile devices to large datacenters and HPC clusters. This article

describes the design principles of TensorFlow, its execution model, some case

studies, and the implementation of the TensorFlow library. The core library for

TensorFlow is written in C++, and it supports several client languages, with an

emphasis on C++ and Python. The authors also give an evaluation of the

performance of TensorFlow in various use cases.

When a developer can successfully integrate machine learning into mobile

application development, the resulting mobile application could have great potential.

For example, an article by A. Zainab [13] explains the work the author did to

develop an Android application that uses a TensorFlow machine learning model to

detect objects in a camera’s field of vision in real time. The model used in the

application is based on Scalable Object Detection to track twenty different

classifications in the camera preview. The application is also able to support both

multiple-object detection and moving-object detection. The author proposes that the

technology would be useful for traffic detection, surveillance, facial recognition,

robotics, and other areas.

10

There are clearly many factors to consider in mobile application development.

Which approach to multi-platform development the developer chooses is incredibly

important and affects all aspects of the development process. For native application

development, there are several useful tools available to the developer, and

knowledge of these tools is crucial to efficient development of powerful applications.

One powerful tool that can, and should, be used in mobile application development is

machine learning. Of the systems available, the arguably most popular system is

TensorFlow, which can be used to train and use models in applications (such as

applications for image processing). This technology can be used for many types of

applications, and its potential is nearly limitless. It is important for a developer to be

aware and knowledgeable of all these tools to efficiently develop powerful

applications.

11

Chapter 3: Methodology

3.1 Development Approach

After consideration of the available options for developing a mobile application,

we decided to develop a native Android application, with the intent to later develop a

native iOS application in the future. The primary reason for this decision was simply

that implementing a native custom camera preview that uses the device’s hardware,

as is required for this project, would be unnecessarily complex in a cross-platform

mobile development solution, whereas it is somewhat simple in native development

[8]. Android was chosen as the initial platform, rather than iOS, because of the

restrictions Apple has placed on the use of its development environment for iOS; i.e.,

the Xcode IDE can only be used on MacOS systems [14].

For classification of the images in this prototype, we focused only on crosswalks,

with the intention of later adding other pedestrian facilities. The implementation of

the classification logic could be done in one of two ways for this project. The first

was to perform classification in the client (i.e., in the Android application); the

second was to perform classification on the server. We chose to perform the

classification on the server for two reasons: 1) by moving classification to the server,

the logic is abstracted from the mobile application, and therefore, any updates to the

machine learning model would not require an update to the mobile application, and

2) the model may take up a lot of storage and memory on the device performing

classification if it were done client-side, which would not be ideal. By moving

12

classification to the server, it speeds up the processing time on the client and allows

classification to be performed without the server’s dependence on the client [13].

3.2 Development Environment

3.2.1 Android Application

The Android application is written in Java, which is the most popular and most

well-supported language for Android development. The primary reason that we

chose to use Java was because of its convenience for use with the Android SDK [15].

The application’s targeted SDK is API level 27 (Android Oreo, v8.1.0), and the

application’s minimum SDK is API level 21 (Android Lollipop, v5.0).

3.2.2 Server

The back-end of the system consists of an Apache2 HTTP server that is running

on Ubuntu 16.04. The server hosts the database and the REST API endpoints for

interfacing the database. The reason we chose Apache2 for our server was because

Apache2 is a powerful and flexible web server software, and it is very easily scalable

and configurable. The back-end was primarily written in vanilla PHP, and the scripts

for using the machine learning model are written in Python.

3.2.3 Database

The DBMS we chose for the database is MySQL, which was an obvious choice

for several reasons. A relational database was ideal for this project, as opposed to a

nonrelational database, because we knew that as the project grew in complexity, it

would be useful to be able to easily model relationships between tables. Also,

13

MySQL is a great option for small to medium scale projects, and this project, as a

whole, would not need to scale past medium-scale. Lastly, as we are using PHP and

Apache2 on a Linux machine, it made perfect sense to use MySQL because those

four technologies work exceptionally well together and are colloquially known as a

“LAMP” stack (for Linux-Apache-MySQL-PHP).

3.3 Procedure

3.3.1 Apache2 Server

To install and configure the Apache2 HTTP server, we simply installed Apache2

through Ubuntu’s default package manager and then opened port 80 in the firewall to

allow access to the server from within the USM network. At this point, the server

was configured to serve resources within the /var/www/html directory by default.

The basic authentication that is provided by default to Apache2 was then added to

the server to prevent access without authentication.

3.3.2 MySQL Database

To install the MySQL database, we installed mysql-server through Ubuntu’s

package manager then configured it through the use of the security script provided

by MySQL. At this point, MySQL was installed and ready for use. The next step was

to create the Transportation database and add the necessary table for storing the data

related to uploaded images. The necessary fields for the image_data table are: id

(which is the primary key), location_lat for storing the latitude, location_long for

storing the longitude, image_path for storing the filename of the uploaded image,

14

upload_time for storing the time at which the image was uploaded, and classification

for storing the result of classifying the image, as shown in Fig. 3-1.

Figure 3-1 MySQL image_data table schema

3.3.3 API Development

The API for the system is a set of REST API endpoints for uploading image data

to the server and for retrieving data from the database, and it uses JSON for client-

server data interchange, as it is universally supported and easily parsed by object-

oriented programming languages [16]. The API contains endpoints for receiving

POST requests for submitting resources to the server (e.g., image data from the

Android app) and for receiving GET requests for requesting resources from the

server (e.g., image data from the database). The API resides in the

/var/www/html/api directory, and it contains a folder called “geodata”, which is the

endpoint for the image data being used for this project. It is a good idea to use API

versioning when developing a REST API [17], so the first version of the geodata API

resides in /var/www/html/api/geodata/v1. There are other endpoints in the API for

other functions not related to the scope of this project. Furthermore, we wanted to be

15

able to update these different endpoints separately, so we moved the versioning

inside of each endpoint (…/api/geodata/v1) rather than having all the endpoints

contain each version (…/api/v1/geodata). Inside the v1 folder, there is an index.php

file that contains the logic for handling requests to the geodata endpoint. In this file,

we utilized PHP’s built-in functions for receiving HTTP requests and sending

responses.

The first step in developing the API endpoint is to implement the logic for

handling HTTP requests. Using PHP’s $_SERVER variable, which is an associative

array that contains information about the server and any requests sent to it, one can

get information like the request method (e.g., POST, GET, PUT) and the remote

address (the IP address of the request’s origin device). This variable was used to get

the relevant information and handle each request appropriately.

A function called handlePostRequest was defined in another file and is an

implementation for handling a multipart/form-data POST request from the client. It

takes the origin’s IP address (for generating unique filenames for the images), a

latitude coordinate value, a longitude coordinate value, and the file path of the

uploaded image. When the function is called, the image is renamed and saved to the

server, and the file path and coordinates are added to a record in the database. The

function then returns a response object, which is sent back to the client in an HTTP

response. After the image is added to the database, and the response is sent, the

image will be classified using the machine learning model to determine whether a

crosswalk is present in the image. Once this is determined, the record in the database

is updated with the classification label of the image.

16

3.3.4 Mobile App UI

For the Android application, the user interface was intentionally very simple, as

the actual requirements of the user interface were not yet clearly defined. The

primary features it needed are a main page for displaying a button for launching the

camera preview, the camera preview page itself, and a page for displaying the

results. To minimize the number of pages present in the application, the main page

and the results page were combined into one page. The typical way to display these

pages in Android is by using something called an activity. An activity is the primary

container for interfaces in an Android app, and it contains a view for containing UI

elements and a set of lifecycle methods for defining actions and events that are

connected to the UI elements [15]. An activity would be the simplest way to

implement a page in an app, and Android apps are required to have at least one

activity anyway. Therefore, since the Android app needs to have two pages (the main

page and the camera preview), the app has two activities (named MainActivity and

CameraPreviewActivity, respectively).

The MainActivity contains a button for launching the CameraPreviewActivity and

a set of toggle buttons for toggling between the image result view, which allows the

user to view the image that was taken, and the upload result view, which allows the

user to see the status of the upload and coordinates of the location at which the image

was taken.

The CameraPreviewActivity contains a view for displaying the live camera feed

and a button for taking a picture. There were two different ways to implement the

camera preview. The Android SDK provides a library for accessing the device’s

17

default camera preview by allowing the app to launch an intent to the camera app on

the device. Once a picture is taken from the camera app, the image is sent back to the

Android app and can be used. However, while this approach is very simple and

convenient for most uses, it certainly has its drawbacks. The primary drawback is its

inability to be customized. Because we have to be able to display camera overlays in

future stages of this project, the camera preview must be able to support this.

Additionally, a greater control of camera resolutions and aspect ratios is required.

Neither of these is possible through the use of the default camera preview, so we

decided to implement our own camera preview.

The way this was done was through the use of the Android SDK’s Camera2

hardware package, which allows the app to directly access the camera hardware, not

just the default camera app. Through this, the app is able to display the live feed

from the camera in a view within the activity. This makes it possible to add custom

buttons to the preview, add overlays, and programmatically change the camera’s

resolution and aspect ratio. The resulting CameraPreviewActivity allows for simple

changes and customizations in the future [15].

Once the picture is taken, the image is automatically processed and sent to the

server, and the user is directed back to the home page, where he or she can view the

picture and the image upload status or take another picture.

3.3.5 Initial Client-side Image Preprocessing

When the picture is first taken, it is in a rather raw and poorly formatted state, so

it must undergo some preprocessing on the client before being loaded into the home

page view and sent to the server. For example, there is an obscure bug in which

18

pictures taken on certain Android device models are saved to the device in landscape

orientation, regardless of the actual orientation of the device. Since this only occurs

on certain Android devices and not all, device orientation must be checked against

the image orientation to determine whether this error occurred, and if so, the image is

rotated accordingly.

3.3.6 Location and Image Upload Logic

The last step in the processing of the image is obtaining the device’s location and

sending the image and metadata to the server. For obtaining the device’s location, we

used the Android Location API provided by Google Play Services [15]. Through this

library, the device is able to request location updates from the device’s GPS or from

the network (whichever is more accurate at the time).

The next step was to send the image data to the server. This was done by building

a custom HttpPostRequest class through the use of the Apache HTTPClient library

[18]. By using the HTTPClient library, we implemented the HttpPosRequest that

builds a multipart/form-data POST request and allows for adding authentication and

other headers to the request and multiple types of data to the request body, and it

makes it simple to send the request and wait for the response. Next, we implemented

the logic for building the request through this class and sending the request to the

server. This was done in a class called UploadTaskHTTP that extends the Android

SDK AsyncTask class [15], which defines a task that is executed on a background

thread so as not to use the UI thread, which would consequently freeze the UI of the

application.

19

All these tasks are executed automatically in the background, so the user is free to

take more pictures during this time. Once the server’s response is received, the

upload status in the UI is updated with the success/failure message, and the

coordinates are also displayed.

3.3.7 Prototype Image Classification Model

After the image is uploaded and indexed by the server, it is passed into a

convolutional neural network that we trained to detect crosswalks in images captured

at street level. This crosswalk detection model was based on a pre-trained

MobileNetV2 [19] model that is available in the Keras API [20] and was originally

trained on the ImageNet Large Scale Visual Recognition Challenge dataset [21] (an

object detection dataset containing 1.2 million images belonging to 1000 classes).

We utilized transfer learning in order to produce a model applicable to our

classification task. The process of transfer learning involves taking a pre-trained

model designed to recognize features in a specific domain and using it as the

foundation to train a new model that can learn more specific features of another

dataset in a new domain [22]. To achieve this, we removed the last layer of the

network and replaced it with a new softmax output layer (with two nodes) for

performing binary prediction (presence or absence of a crosswalk). After defining

the model architecture, we trained the model on a subset of a publicly available

street-level image dataset which contains labelled crosswalks [23]. All images used

with the model were resized to 224x224 pixels using the resize function of python’s

cv2 module. In order to integrate our prototype classification model into the system

and demonstrate some of the future capabilities of the complete system, we manually

20

gathered and classified a small dataset of several street images using the application.

These images, as seen in Fig. 3-2, were captured in normal lighting conditions during

the day on the Hattiesburg campus of the University of Southern Mississippi.

Figure 3-2 Images classified using the trained model

21

Chapter 4: Results

On the Android client, the user is able to take a picture using the user interface,

and the resulting image automatically undergoes some simple preprocessing,

including rotating and cropping the image if necessary. Once the preprocessing is

complete, the image and the device’s location data are sent to the server via a

multipart/form-data POST request to one of the project’s API endpoints. When the

server receives the request, it saves the image data and creates a record in a MySQL

database with the file path of the image, the upload time, and the GPS coordinates

corresponding to the location where the image was taken. On the server, the image is

then classified using the trained model, and the label (“crosswalk” or

“no_crosswalk”) is stored in the image’s database record. These database records can

then be queried later, or perhaps undergo other data analysis. Screenshots of this

process are seen in Fig. 4-1 and 4-2.

Figure 4-1 Screenshots of using the app to take a picture and upload it to the server

22

Figure 4-2 Record in the MySQL database for the uploaded image data

23

Chapter 5: Discussion

5.1 Problems and Considerations

The mobile application developed in this project aims to provide a means of

crowdsourced acquisition of street-view images for mapping pedestrian facilities.

Within the time frame allotted to development, we were able to develop a crude

prototype for the primary features that should be present in the mobile client.

However, there were a number of problems that arose during the lifecycle of the

project. For example, we were originally developing two native mobile applications:

one for Android, and one for iOS. This approach was initially chosen primarily

because the features that the app is required to have, such as direct, raw access to the

device’s camera hardware, are easier to implement and more flexible in native

development [8], [9]. However, developing separate native applications was very

time-consuming. Therefore, because of the time constraints of the project, we chose

to continue only with the development of the Android application for the prototype

stage.

5.2 Future Revisions

Through the occurrence of these problems during the lifecycle of this project, we

were able to gain some insight for the future phases of this project. While we initially

thought that it would be better to develop two separate native mobile applications

(Android and iOS) because of the requisite features in the applications, the

development of this application led to the conclusion that it may be more efficient to

use a cross-platform development solution, such as one of the web development

24

solutions (e.g., React Native) [10], and just use its ability to inject native code for

Android and iOS into specific parts of the application while writing all other aspects

using cross-platform development. While this approach would be more complex, it

would more efficient in the long-term.

Another potential revision to consider for a later phase of the project is to migrate

the back end from vanilla PHP to a back-end framework like Laravel [24]. In the

development of the back end, the built-in features of PHP were used to handle

requests, routing, and database access. While this was sufficient for the first phase of

this project, it is not an easily scalable solution. Therefore, Laravel would be a more

appropriate solution for scaling the back end, as it handles requests, routing, and

database integration under the hood. This simplifies the project structure, as well as

database migrations and API development [24].

5.3 Potential Use Cases

There are several revisions that could be made to this prototype in the future to

simplify development or make the system more robust, but the basic goals of the

project were mostly reached. We think that this application could have two important

use cases for its parent project. Its primary use case would be to allow volunteers to

help with acquisition of street-view images of pedestrian facilities in urban areas.

This could be an additional source of data for mapping these facilities. Another

potential use case would be to allow users to voluntarily check the location where a

given pedestrian facility should be and validate the accuracy of this information by

taking a picture of the facility or lack thereof. Either of these use cases for the

25

application would be useful to increasing accuracy and coverage of mapped

pedestrian facility data in urban areas.

Chapter 6: Conclusion

In this project, we developed a mobile application for crowdsourced acquisition of

street-view pedestrian facility data, which could be used to validate the accuracy of

existing data or provide a source of supplemental data. In the implementation of the

application, we used full-stack software development techniques, including the

configuration of an HTTP server, the creation and administration of a database, the

development of a REST API for interfacing the database on the server, and the

design and implementation of a user interface in an Android application. This

application allows users to take pictures at street level, after which the image and

metadata are uploaded to a server, where it is added to a database and classified

using machine learning to determine the presence of crosswalks in the image. Some

future improvements and revisions would be to develop the application for iOS as

well as Android, and to rewrite the back end to be more robust and scalable. With

future development and enhancements, and paired with the automated system for the

collection of pedestrian facility data as described in Chapter 1, we hope that these

tools will give state departments of transportation a more efficient way of building

well-connected pedestrian facility networks, which would decrease the likelihood of

pedestrian-involved traffic accidents in urban areas by giving pedestrians safer, faster

routes throughout these areas.

26

Chapter 7: Literature Cited

[1] National Center for Statistics and Analysis, “Pedestrians: 2013 data. (Traffic

Safety Facts. Report No. DOT HS 812 124),” Traffic Safety Facts, Feb. 2015.

[2] Y. Zhang, J. Bigham, D. Ragland, and X. Chen, “Investigating the associations

between road network structure and non-motorist accidents,” Journal of Transport

Geography, vol. 42, pp. 34–47, 2015.

[3] T. A. Petritsch, C. B. Fellerhoff, J. P. Kubicki, and T. Scorsone, “Non-Motorized

Facility Data Collection for Large Networks: Methods, Accuracy, and

Application,” Transportation Research Board 94th Annual Meeting, 2015.

[4] F. R. Proulx, Y. Zhang, and O. Grembek, “Database for Active Transportation

Infrastructure and Volume,” Transportation Research Record: Journal of the

Transportation Research Board, vol. 2527, pp. 99–106, 2015.

[5] New Castle County, Delaware, and Cecil County, Maryland (WILMAPCO).

“Creating a pedestrian facility inventory”.

[6] Mid-Ohio Regional Planning Commission (MORPC). “Mapping sidewalks in the

Great Columbus Region”.

[7] International Data Corporation, "Worldwide Smartphone OS Market Share,"

2017.

27

[8] H. Heitkötter, S. Hanschke, and T. A. Majchrzak, "Evaluating Cross-Platform

Development Approaches for Mobile Applications," in International Conference

on Web Information Systems and Technologies, Springer, Berlin, Heidelberg,

2012.

[9] A. I. Wasserman, "Software engineering issues for mobile application

development," in FSE/SDP workshop on Future of software engineering research,

ACM, 2010.

[10] M. Emiliano, et al., "Mobile apps development: A framework for technology

decision making," in International Conference on Mobile Computing,

Applications, and Services, Springer, Berlin, Heidelberg, 2012.

[11] J. Schmidhuber, "Deep learning in neural networks: An overview," Neural

networks, vol. 61, pp. 85-117, 2015.

[12] M. Abadi, P. Barham, J. Chen, et al., "TensorFlow: A System for Large-Scale," in

12th USENIX Symposium on Operating Systems Design, Savanna, GA, USA,

2016.

[13] A. Zainab, "Realtime Object Detection on Android using Tensorflow," in Qatar

Foundation Annual Research Conference, Qatar, 2018.

[14] Apple, Inc., "Xcode IDE," 2018. [Online]. Available:

https://developer.apple.com/xcode/. [Accessed 25-May-2018].

28

[15] "Android Developer Site," [Online]. Available: https://developer.android.com/.

[Accessed 27 April 2018].

[16] “Introducing JSON,” JSON. [Online]. [Accessed: 06-Mar-2019].

[17] S. Jauker, “10 Best Practices for Better RESTful API,” Thinking Mobile, 06-

May-2014. [Online]. [Accessed: 02-Dec-2018].

[18] “HTTPClient Documentation,” HttpClient (Apache HttpClient 4.5.7 API), 24-

Jan-2019. [Online]. [Accessed: 18-Mar-2019].

[19] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2:

Inverted Residuals and Linear Bottlenecks,” ArXiv180104381 Cs, Jan. 2018.

[20] P. W. D. Charles, “Keras,” 2013. [Online]. Available:

https://github.com/charlespwd/project-title. [Accessed: 20-Mar-2019].

[21] O. Russakovsky et al., “Imagenet large scale visual recognition challenge,” Int. J.

Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[22] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data

Eng., vol. 22, no. 10, pp. 1345–1359, 2010.

[23] R. F. Berriel, F. S. Rossi, A. F. de Souza, and T. Oliveira-Santos, “Automatic

large-scale data acquisition via crowdsourcing for crosswalk classification: A

deep learning approach,” Comput. Graph., vol. 68, pp. 32–42, 2017.

29

[24] T. Otwell, “Laravel - The PHP Framework for Web Artisans,” Laravel. [Online].

Available: https://laravel.com/. [Accessed: 20-Mar-2019].

	A Mobile Application for Crowdsourced Acquisition of Urban Street-View Pedestrian Facility Data
	Recommended Citation

	tmp.1563466281.pdf.tFras

