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Abstract 

 

 

Histoplasma capsulatum is a dimorphic fungal pathogen that is endemic to the 

Ohio, Missouri, and Mississippi river valley regions. The fungus grows as a mold at 

environmental temperatures (25C) and transforms into a unicellular yeast upon 

inhalation by a mammalian host (37C). The mold to yeast shift is required for 

pathogenicity in host organisms, where the potentially fatal disease, histoplasmosis, can 

present. This study aims to characterize the DNA damage response protein DDR48 and 

the role that it plays in combating cellular stressors in H. capsulatum. We found that 

DDR48 is expressed strongly in the mold phase but expressed only at basal levels in the 

yeast phase. However, DDR48 expression is significantly upregulated in the yeast phase 

under stressful conditions, like antifungal stress. We found that wild-type H. capsulatum 

yeast exposed to the antifungal drugs ketoconazole or Amphotericin-B upregulated 

DDR48 expression (assayed via qRT-PCR) at least 4-fold. The mold growth form, 

however, showed no significant change in expression of DDR48 under these conditions. 

Additionally, the DDR48 knockout mutant previously created in our lab was significantly 

more sensitive to these antifungal drugs. The knockout cells also experienced 

dysregulation of their membrane sterol synthesis genes, indicating a potential role of 

DDR48 in conferring antifungal resistance to H. capsulatum by acting as a regulator of 

membrane maintenance and integrity. Research is ongoing to further elucidate the role of 

DDR48 in the stress response pathway of this common human pathogen. 

Key Words: Histoplasma capsulatum, DDR48, Amphotericin-B, ketoconazole, 

antifungal resistance, ergosterol
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Chapter I: Introduction 

The aim of this study is to investigate the role that the DNA response protein, DDR48, 

plays within the fungal pathogen, Histoplasma capsulatum, by quantifying its expression levels 

in response to antifungal drug exposure, as well as observing expression changes in other genes 

within the cell when DDR48 is deleted from the genome. Because of the ability of H. capsulatum 

to infect humans and cause the potentially fatal pulmonary disease, histoplasmosis, there is an 

interest in determining the function of DDR48 and the role that it may possibly play in conferring 

antifungal resistance to the organism. The findings may contribute to further developing 

antifungal treatments to combat the organism. This study examines how DDR48 expression 

levels change in response to antifungal drugs, the doses of antifungal drugs needed to inhibit 

growth of wild-type and DDR48 deletion mutant cells, and, lastly, expression changes in 

ergosterol synthesis genes in a non-DDR48 expressing strain of H. capsulatum.  
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Chapter II: Literature Review 

Kingdom Fungi is one of the most diverse kingdoms of life on earth, encompassing 

approximately 1.5 million species, each with its own morphology, life cycle, and metabolism 

(Lutzoni et al., 2004). Fungi are capable of both parasitic and symbiotic relationships with plants 

and insects, as demonstrated by the ability of Metarhizium, for example, to parasitically digest 

insects while also transferring nitrogen and other nutrients to the plant(s) with which it associates 

(Behie, Zelisko, & Bidochka, 2012). The four major groups that have been established in 

Kingdom Fungi are the Chytridiomycota, Zygomycota, Ascomycota, and Basidiomycota, though 

more recent proteome studies suggest that Chytridiomycota and Zygomycota may fall under the 

larger Monokarya clade (Choi & Kim, 2017). Chytridiomycota consists of unicellular or 

filamentous fungi that feature flagellated cells and normally reside in aquatic environments. 

Zygomycota comprises a wide array of filamentous species that include soil saprobes, and 

symbionts of arthropods and plants. Zygomycetes lack flagella, as do Ascomycetes and 

Basidiomycetes, while the latter two kingdoms also exhibit the unique morphology of both 

single-celled growth and multi-celled, mycelial growth (Lutzoni et al., 2004). Basidiomycota are 

characterized as fungi that produce fruiting bodies, such as the “pedestal” structure of a typical 

mushroom. Ascomycota fungi are very diverse in morphology and produce spores that reside 

inside sacs called “asci,” that are released during reproductive cycles (Lutzoni et al., 2004). 

Ascomycota is the largest phylum of fungi, consisting of over 64,000 species and nearly 

40% of all discovered fungi. They are found in a broad range of ecosystems across the globe, 

ranging from the inside of frozen rock in Antarctica to the depths of the sea in fallen wood 

fragments (Schoch et al., 2009). They are utilized in many industrial and agricultural settings, 

producing many foodstuff products on which humans have become reliant. Saccharomyces 
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cerevisiae has become widely used to make fermented food and beverage products including 

beers, wines, cheeses, and breads, due to its ability to ferment different carbohydrate sources 

(Bokulich & Bamforth, 2013). While Ascomycota pose many benefits to humans externally in 

the manufacturing industry, some species can also reside internally as part of a commensal 

relationship with the human host, possibly resulting in a parasitic relationship under certain 

conditions. 

The spores found within the asci of Ascomycetes are major contributors to the spread of 

the organism and permit inhalation by host organisms. Candida albicans is a well-known 

opportunistic fungal pathogen that exists as a member of the normal human flora and maintains a 

commensal relationship with its host. Environmental changes, however, can trigger the activity 

of virulence factors, thereby allowing the organism to invade and infect host tissue. Another 

pathogenic Ascomycete is Histoplasma capsulatum, whose pathogenicity is similarly activated 

when subjected to certain virulence factors (Maresca & Kobayashi, 1989).  

Histoplasma capsulatum is endemic to the Ohio, Mississippi, and Missouri River valley 

regions and is thermally dimorphic, meaning it exists in both mold and yeast forms depending on 

the temperature in which the organism is cultured. Studies have demonstrated that at 

environmental temperatures (~25°C), multicellular mold growth will occur, whereas at the 

average mammalian host temperature (37°C), the unicellular yeast form will instead occur. This 

mold-to-yeast shift, primarily triggered by the temperature increase, is essential for the 

pathogenicity of the organism (Maresca & Kobayashi, 1989). Once in the yeast form, H. 

capsulatum utilizes several mechanisms to evade the host immune response. One such 

mechanism is the concealment of its cell wall -glucans, which are easily recognized by the 

Dectin-1 receptor on host macrophages. The pathogen achieves this feat by producing a layer of 
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 1-3-glucan molecules to mask the -glucans (Domer, 1971). Utilizing this virulence factor, the 

pathogenic organism may then colonize within the host macrophage and replicate within the 

phagolysosome to eventually infect lung tissue. Invasion of the lungs spurs the onset of 

histoplasmosis, the most common pulmonary mycosis in the United States (Benedict & Mody, 

2016). 

Micro- and macroconidia of H. capsulatum are regularly inhaled by natives of the 

organism’s endemic regions due to environmental disruptions of the soil. In fact, it is believed 

that more than 40 million people in the United States have been infected with H. capsulatum 

(Zarnowski, Miyazaki, Dobrzyn, Ntambi, & Woods, 2007). This organism is a primary fungal 

pathogen, meaning it has the potential to infect any individual, regardless of their health status. 

Patients need not be immunosuppressed to experience symptoms of disease, as is the case with 

some other opportunistic fungi, such as Cryptococcus neoformans (Walsh & Dixon, 1996). 

However, infected individuals often remain asymptomatic, unaware of the self-limiting disease. 

The majority of those infected show mild symptoms such that an estimated 95% of 

histoplasmosis cases are not diagnosed (Zarnowski et al., 2007). For those experiencing mild 

symptoms of acute pulmonary histoplasmosis, fever, headaches, dry cough, and general lethargy 

may present, which the individual may mistakenly attribute to the common cold. This self-

limited disease has the ability to resolve itself, unlike the more severe, disseminated form of 

histoplasmosis. Specifically, patients who are immunocompromised, such as those infected with 

HIV, transplant recipients, those undergoing cancer treatments or receiving any other 

immunosuppressive treatments are at the highest risk for severe infections (Assi et al., 2013). 

Histoplasma capsulatum also possesses the ability to survive within macrophages, which then 

spread throughout the body via the lymphatic system, granting the organism access to every 
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organ system in the body (Kauffman, 2007). As modern medical advances produce new 

therapies to combat histoplasmosis, awareness of the disease is becoming more prevalent, 

thereby stressing the importance of understanding the mechanisms that H. capsulatum uses to 

survive in the harsh host environment.  

When under stress-inducing or exposed to DNA damaging agents, various stress response 

pathways in H. capsulatum may be activated. One such mechanism in fungi involves a family of 

proteins called the DNA damage response (DDR) protein group, which responds to damage 

caused by various stressors acting upon the cell. When there are breaks or other mutations in the 

DNA, DDR genes and proteins are recruited to initiate the signaling and repair process of the 

damage (Polo & Jackson, 2011). One specific protein in this family, DDR48p, has been shown to 

be upregulated during filamentation and biofilm formation in C. albicans, but its true function 

still remains unknown. DDR48 has also shown increased transcription in response to DNA 

lesion-producing agents, osmotic stress, and heat shock in S. cerevisiae (Cleary, MacGregor, 

Saville, & Thomas, 2012). A homologous gene has been isolated in H. capsulatum, DDR48, and 

has been shown to respond to stressors including DNA damage. This gene has not been 

extensively studied in H. capsulatum, so understanding more about the role it plays in the stress 

response pathway of the organism is of particular interest.  

Though much research has been conducted on H. capsulatum, there is still far more to 

learn regarding its gene and protein expression, virulence, and survival mechanisms. On the 

molecular level, there is considerable focus on the signaling mechanisms that the organism uses 

to combat stress and survive. As mentioned previously, DDR48 in H. capsulatum shares 

sequence homology with DDR48 in C. albicans and S. cerevisiae, where the protein has been 

shown to respond to stress-inducing agents. DDR48p has been found to be a stress response 
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protein in these organisms that is utilized when the cell faces oxidative stress, cell wall- 

disturbing agents, and antifungal drugs, but to be nonessential for survival (Dib, Hayek, Sadek, 

Beyrouthy, & Khalaf, 2008). In C. albicans, DDR48p has even been suggested to be involved in 

conferring resistance to antifungal drugs, which, along with assisting in biofilm formation, 

increases the pathogenicity of the fungus (Cleary et al., 2012). Furthermore, if DDR48p is able to 

sense changes in the environment, then it may function farther beyond the general stress 

response and contribute to the overall pathogenicity of the organism.  

The aim of this study is to investigate the role that DDR48 plays within H. capsulatum by 

quantifying its expression levels in response to antifungal drug exposure, as well as observing 

the effects on other genes within the cell when DDR48 is deleted from the genome. The drugs 

used in this study are two that are commonly used in the clinical setting to treat histoplasmosis: 

Amphotericin-B and ketoconazole (Assi et al., 2013; Hage et al., 2009). Amphotericin-B is an 

intravenously administered antifungal medication that binds irreversibly to the ergosterol found 

in the cell membranes of H. capsulatum, forming pores and disrupting membrane integrity by 

allowing the leakage of ions out of the cell. Its mechanism of action is illustrated in Figure 1. 

Ketoconazole is an imidazole-based antifungal agent that is administered orally as a tablet and 

interferes with the synthesis of ergosterol by inhibiting the enzyme, cytochrome P450 14-

demethylase. This enzyme is pivotal in converting lanosterol to another precursor of ergosterol in 

the ergosterol biosynthesis pathway, ultimately contributing to membrane maintenance and 

integrity for H. capsulatum.  



 

  7 

 
 

Figure 1. The mechanism of Amphotericin-B acting on a yeast cell. 

 
By subjecting yeast phase H. capsulatum cells to these antifungals and observing the 

subsequent transcriptional responses, more may be uncovered about the function of DDR48. 

Additionally, since the two chosen antifungals interfere with the synthesis of ergosterol, certain 

genes in the ergosterol synthesis pathway were selected so that their expression levels may be 

observed when DDR48 is and is not present in the cell. In doing so, the role of DDR48 as a 

possible regulator of the ergosterol synthesis pathway may be investigated.  

 

Chapter III: Methodology 

Cell Culturing 

 H. capsulatum cells were cultured in Histoplasma Macrophage Medium (HMM), a 

modified tissue culture medium designed to mimic growth in vivo (Worsham & Goldman, 1988). 

The components of this medium consist of the following, per liter: 10.7 g F12 Nutrient Mix 
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(Sigma-Aldrich Chemical Company, St. Louis, MO #N6760), 18.2 g D-glucose, 1.0 g L-

glutamic acid, 5.96 g HEPES buffer, and 84 mg L-cysteine. The pH was adjusted to 7.5, and the 

medium was filter sterilized and stored at 4C. The H. capsulatum clinical isolate G186A 

(ATCC 26027) was the wild-type background strain used in this study. WU27 was constructed 

from this strain, which features a spontaneous smooth phenotype and ura5-deletion (Klimpel & 

Goldman, 1987). Table 1 lists the strains constructed from WU27. Both mold and yeast cells 

were cultured in HMM that was supplemented with 50 g/mL ampicillin and 100 g/mL 

streptomycin to reduce bacterial contamination. Cultures for uracil auxotrophs were also 

supplemented with 100 g/mL uracil. All yeast cultures were grown at 37C in 5% CO2/95% 

room air with shaking at 200 rpm. Mold phase cultures were grown at 25C in room air with 

shaking at 200 rpm.  

Strain Genotype Other Designation 

G186A wild-type (ATTC# 26027)   

WU27 ura5-D32 WT, DDR48(+) 

USM10 ura5-D32 / ddr48-D1::hph ddr48∆ 

USM13 ura5-D32 / ddr48-D1::hph 

 + pLE4 [URA5, DDR48] 

ddr48∆ + DDR48 

        Table 1. Strains constructed from WU27.  

Nucleic Acid Extraction 

 Total RNA from mold phase cells was extracted as follows:  150 mL mycelial cultures 

were grown for 10 days at 25oC and harvested by vacuum filtration onto a Whatman, Grade No. 

1, 11 m filter paper. Cells were washed with cold 1X PBS (0.137 M NaCl, 0.0027 M KCl, 0.01 

M Na2HPO4, 0.0018 M KH2PO4) (pH 7.4) and removed with a sterile cell lifter. Yeast cells were 
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grown to exponential phase (OD600 1.2-1.8) and collected via centrifugation at 500 x g and 

resuspended in cold, sterile H2O. Cells were recovered again via centrifugation at 500 x g and 

resuspended in the RNA extraction cocktail described below. 

 To extract the RNA from mold and yeast phase cells, glass beads were used in acid 

phenol to gently lyse the cell and release its contents. Yeast or mold cells were resuspended in a 

2-ml screw-top microcentrifuge tube in 300 L of RNA extraction buffer (0.1 M Na acetate, 0.2 

M NaCl (pH 5.0), 0.2% SDS), 300 L phenol: chloroform (5:1, pH 4.5), and 200 L 0.5 mm 

acid-washed glass beads. RNase inhibitor and DNase I were also added to this mixture, in 

quantities of 0.25 L each. The tubes were then placed on a MP Fast Prep-24 vortexer (MP 

Biomedicals) to shake at 4.0 m/s in 20-second intervals with 1 minute of resting on ice between 

each interval. For yeast, 4 cycles were used, and 6-8 cycles were used for mold. The samples 

were then centrifuged at 10,000 x g for 10 minutes at 4C to pellet the cell debris and separate 

the aqueous phase that would contain the RNA from the organic phase. The aqueous phase was 

recovered and transferred into a new 1.5-mL microcentrifuge tube containing 1 mL of cold 100% 

ethanol. Samples were stored at -80C overnight to precipitate the RNA. 

RNA was purified for use in qPCR as follows:  RNA samples were removed from -80C 

storage and centrifuged at 12,000 x g for 10 minutes at 4C. The supernatants were removed, and 

the RNA was allowed to air dry before being resuspended in 50 L of Tris-EDTA (TE) buffer 

(10 mM Tris-HCl (pH 8.0) and 0.1 mM EDTA). The NanoDrop™ spectrophotometer 

(ThermoFisher Scientific) was used to quantify the concentration of RNA in each sample and 

assess quality via calculating the 260 nm/280 nm absorbance ratio. To remove harmful DNases, 

the following components were then added to a 0.6 ml centrifuge tube: 10 g of RNA, 5 L 10X 

TURBO DNase I Buffer (Ambion), 1 L TURBO DNase (Ambion), and sterile H2O to bring the 
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final volume to 50 L. The samples were incubated at 37C for 30 minutes. Then, 5 L of 

DNase Inactivation Reagent (Ambion) were added to each sample, and the samples incubated at 

25C for 2 minutes. They were then centrifuged at 10,000 x g for 1.5 minutes to pellet the 

inactivation reagent.  The resulting DNA-free RNA was used to synthesize cDNA with the 

Maxima First Strand cDNA Synthesis Kit (ThermoFisher Scientific) according to the 

manufacturer’s directions. 

 The purified RNA was quantitated with the NanoDrop™ spectrophotometer (A260 and 

A280 measurements) and 500 ng of purified RNA was added to a new 0.6 mL centrifuge tube 

with the following components: 1 L 10X dsDNase Buffer, 1 L dsDNase, and sterile H2O to 

bring the final volume to 10 L. The samples were incubated for 2 minutes at 37C. Then, to the 

same tubes, 4 L 5X Reaction Mix, 2 L Maxima Enzyme Mix, and 4 L H2O were added. The 

samples were incubated at 25C for 10 minutes and 50C for 30 minutes, then the reaction was 

terminated by heating at 85C for 5 minutes. Synthesized cDNA was then stored at 4C until 

needed.  

Quantitative Real Time-Polymerase Chain Reaction 

The cDNA was quantitated with the NanoDrop™ and sterile type 1 H2O was added to 

yield a final concentration of 250 ng/L.  One L (250 ng) was used as template for quantitative 

real-time PCR (qRT-PCR) analysis. Reactions were performed in triplicate for each gene of 

interest. A SYBR Green-based Master Mix (Maxima) was utilized, and a master mix was created 

containing the SYBR, cDNA, forward and reverse primers, and nuclease-free H2O for each gene. 

For four reactions per gene (three replicates and one additional reaction to account for error), the 

master mix contained 4 L cDNA (250 ng/reaction), 4 L forward primer, 4 L reverse primer, 

38 L nuclease free H2O, and 50 L SYBR. 25 L of this mix was then pipetted into 3 sterile 
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tubes on an 8-tube PCR strip for each gene being studied. The tubes were placed in a CFX96 

Touch Real-Time PCR Detection System (BioRad) to undergo the following steps: initial 

denaturation at 95C for 10 minutes; 30 repeats of denaturation at 95C for 10 seconds, 

annealing at 60C for 30 seconds, and extension at 72C for 30 seconds. The integrity of each 

cycle was measured by melt-curve analysis. Relative expression was determined using the Ct 

method after normalizing to levels of Histone H3 transcript. 

Validation of DDR48 Mutant Strains 

Previously, the laboratory created several supplemental variants of Histoplasma 

capsulatum to study DDR48. The first strain utilized for this project was a “knockout” strain 

(ddr48) featuring allelic replacement of DDR48 with the hygromycin resistance gene (hph), 

and the second was a “complement” strain (ddr48 + DDR48), in which DDR48 was returned to 

ddr48 cells on a plasmid to confirm that any changes seen in the deletion mutant were restored 

when DDR48 was returned and expressed in the cell.  

These strains were confirmed at the genomic and transcriptional level. RNA was 

extracted from WU27 (DDR48(+)), USM10 (ddr48), and USM13 (ddr48 + DDR48) H. 

capsulatum cells as described above. Purified RNA underwent reverse transcription, and the 

cDNA was used in qRT-PCR to determine if DDR48 was functionally transcribed in these strains 

(results depicted in Figure 2b).  

Antifungal Susceptibility 

 To further elucidate the function of DDR48 in H. capsulatum, WU27, USM10, and 

USM13 cells were stressed with two antifungal agents: Amphotericin-B (5 g/mL) and 

ketoconazole (50 g/mL). The purpose of these assays was to examine the potential role of 

DDR48 in the stress-response of the cell. That is, following the addition of antifungal drugs, 
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DDR48 was analyzed for upregulation, which would indicate a potential role in conferring 

antifungal resistance to the organism. RNA was extracted from mold and yeast cells at different 

timepoints following the addition of the drugs at 15, 30, 60, and 120 minutes utilizing the 

previously described methods. RNA purification and cDNA synthesis similarly followed as 

described. qRT-PCR yielded the results depicted in Figure 4.  Each concentration was tested 

with three biological replicates of wild-type H. capsulatum cells. 

To further investigate DDR48’s potential role in cell wall regulation, ergosterol synthesis 

genes were studied in cells with and without a functional copy of DDR48 once again using qRT-

PCR. WU27, USM10, and USM13 cells were grown to mid-log phase, Amphotericin-B (5 

g/mL) and ketoconazole (50 g/mL) were added, and RNA extraction, purification, and cDNA 

synthesis were performed as detailed above. For qRT-PCR, the primers listed in Table 2 were 

used to elucidate differential expression of genes in the ergosterol synthesis pathway. 

Susceptibility to Amphotericin-B and Ketoconazole 

 To examine how the growth of H. capsulatum cells was affected by the presence of 

Amphotericin-B, a microplate dose-response assay was performed, adapted from the methods of 

Goughenour, Balada-Llasat, & Rappleye (2015). Cells were grown to mid-log phase (OD600 1.4-

1.9), enumerated in a hemocytometer, and diluted to 4 x 106 cells/mL in 2X HMM. Cells were 

added to the wells of a 96-well, flat-bottomed microplate. Amphotericin-B concentrations were 

prepared at twice the desired concentrations (two-fold dilutions from 32 g/mL to 0.02 g/mL 

final concentrations). Then, 50 L of HMM medium with or without Amphotericin-B were 

added to each well, for a total volume of 100 L. A multi-channel micropipette was used to 

gently mix the volume in each well. The microplates were covered with their lids and sealed with 

Blenderm (3M) breathable tape to be placed in the 37C incubator for 4 days. Twice daily, the 
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plates were aerated by rocking on a benchtop rocker for 30 minutes. Growth was then quantified 

by the measurement of turbidity of each well at OD600 with a microplate reader. GraphPad Prism 

software was then utilized to calculate an IC50 curve from the dose-response data by nonlinear 

regression. This protocol was repeated using ketoconazole as the stressor. Final concentrations 

ranged from 32 g/mL to 0.02 g/mL, as well. 

Primer 

 

Sequence 

 

Erg2 
F – TTCAGCAACCACGGAAAC – (Tm = 57.5) 

R – CGCCATGCAGTATCGTAAA – (Tm =57.2) 

Erg3 
F – GGATTATGCCAAGCCCTTAC – (Tm = 57.8) 

R – CAGGACAGTCCAGATGTTAATG – (Tm = 57.8) 

Erg4 
F – GTACATCGTCTATCTGTTTGTTTAC – (Tm = 60.0) 

R – GCATATCCATACCACCCATC – (Tm = 59.9) 

Erg5 
F – CCACCATCTTCACCATCTTG – (Tm = 60.5) 

R – CGACGAACTTGTGGAAGAC – (Tm = 60.4) 

Erg6 
F – CTCTTACGCGACATTACTACAA – (Tm = 60.1) 

R – CCACAGCCTACATCAAGAAC – (Tm = 60.4) 

Erg7 
F – GGCACCTGTATGAACTACAC– (Tm = 60.1) 

R – GGAAGCAACCAGAGTTCAG – (Tm = 60.2) 

Erg11a 
F – TTCTTGGAACAAAAGGCAACG  (Tm = 59.2) 

R – CGAGGTTAGCCCGTATTTGAC  (Tm = 60.1) 

Erg11b 
F – CTATGGAACCGACCCGTATAAG  (Tm = 59.1) 

R – TCGTTGCCCTTTATGCCTAG  (Tm = 59.3) 

Erg24 
F – CCTTCTACTCTTGTGCTTGATAC – (Tm = 60.6) 

R – AGTGGTAAGAAAGGTGTTGAAT – (Tm = 60.4) 

Erg25 
F – GCAATAAAATCCCTAGCCTGAAG  (Tm = 58.8) 

R – TTTGATAAGTCATAGTCCACGGG  (Tm = 59.4) 

Erg26 
F – TATACAGAGACGAAGGCCCAA – (Tm = 62.7) 

R – GAGGACGAATGGAGAGGATTTG – (Tm = 62.4) 

Srb1 
F – GTAGCAGCCGAACAACATCTG – (Tm = 60.8) 

R – AATGAGACCTTGGGCGATACG – (Tm = 61.7) 

H3 
F – TGGTAAGGTCCCTCGTAAGC – (Tm = 60.6) 

R – GGAGTTTGCGGATGAGGAG – (Tm = 59.5) 

DDR48 
F – GACAATACTACCACCTATGGGTCTAA – (Tm = 60.8) 

R – CTTATCAGCGATGGTTTCCTTCTG – (Tm = 60.8) 
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Table 2. Primers used for qRT-PCR with melting temperatures (Tm) shown. All 

PCR products were approximately 200 bp in length. 
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Chapter IV: Results and Discussion 

 To analyze basal expression levels of DDR48 in H. capsulatum mold and yeast cells 

under optimal growth conditions, RNA was extracted from wild-type strains and analyzed via 

qRT-PCR, as described above. Northern blot analyses were performed on the RNA to visualize 

the abundance of DDR48 transcripts. The results are depicted in Figure 2a. It can be seen that 

expression of DDR48 in the mold morphotype is nearly 6-fold greater than that in the yeast 

morphotype under normal conditions.  

Allelic replacement of the DDR48 gene yielded the strain USM10, also referred to as the 

knockout strain or ddr48. Constructing a plasmid containing DDR48 and adding it to the 

knockout strain yielded USM13, also referred to as the complement strain or ddr48 + DDR48. 

The purpose of creating these strains was to ensure that changes in subsequent assays seen 

between the wild-type and knockout strains were truly due to the absence of DDR48 by ensuring 

that the phenotype in question was restored in the complement strain. These constructs were 

created previously in the lab, but qRT-PCR and Northern blotting techniques (Figure 2b) 

validated that the strains were created successfully. DDR48 is absent in ddr48, as seen by the 

lack of expression in the qRT-PCR assays and the lack of transcripts in the northern blot, while 

expression is restored in both instances in the complement strain. 
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Figure 2.  DDR48 expression in mold vs. yeast morphotypes.  a. qRT-PCR 

assays and Northern blot analysis were performed on mold and yeast from two 

wild-type, DDR48-expressing strains.  Histone H3 was used as a normalizer gene 

for Northern blot loading. b. qRT-PCR assays and Northern blot analysis were 

performed on wild-type, ddr48 allelic replacement mutant, and ddr48 + DDR48 

complement strains.  Histone H3 was used as a normalizer gene using the ct 

method to normalize to wild-type DDR48 (+) expression. All experiments were 

performed with at least three biological replicates.  Data from replicates are graphed 

as mean ± standard deviation.  

 

 

Since DDR48 gene expression is known to respond to antifungals in C. albicans, we 

exposed yeast phase H. capsulatum cells to Amphotericin-B and ketoconazole to determine if 

similar results would be achieved in this fungus. Dose-response analyses demonstrated 

susceptibility of yeast phase H. capsulatum cells to these antifungals (Figure 3). This data was 

then used to identify the minimum inhibitory concentration (MIC) of each drug for each strain, 

or the lowest concentration of drug that inhibited visible H. capsulatum growth. The half 

maximal inhibitory concentrations (IC50), doses required to inhibit the growth of H. capsulatum 

by 50%, were also calculated. It was clear that wild-type cells could tolerate the additional stress 
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imparted by higher drug concentrations better than could knockout cells, which were more 

sensitive. Specifically, knockout cells subjected to Amphotericin-B stress were inhibited by drug 

concentrations that were three times lower than those required to inhibit wild-type growth. For 

ketoconazole, the MIC for knockout cells was approximately 50% that for wild-type cells. 

Additionally, the IC50 value for knockout cells under Amphotericin-B stress was 0.06 g/mL 

compared to that for wild-type cells at 0.24 g/mL. Ketoconazole stress resulted in an IC50 value 

of 0.48 g/mL in knockout cells compared to 1.56 g/mL in wild-type cells.  For each 

experiment, resistance was restored in the complement strain; thus, knockout cells were more 

susceptible to antifungal drugs due to the loss of DDR48.  

Next, we chose to use the same antifungals to compare DDR48 expression levels between 

mold and yeast H. capsulatum cells. Recalling that basal transcriptional expression levels of 

DDR48 in mold phase cells were nearly 6-fold higher than in yeast cells (Figure 2a), the aim 

was to determine how DDR48 expression in each morphotype changed under antifungal 

stressors. RNA was extracted from mold and yeast cells at 0, 0.25, 0.5, 1, and 2 hour timepoints, 

respectively, and analyzed via qRT-PCR (Figure 4). Interestingly, we found that even under 

antifungal stress, DDR48 was constitutively expressed in the mold phase. The yeast morphotype, 

however, exhibited significant up-regulation of DDR48 expression in response to these stressors. 

Due to the expressional response observed, it appears that DDR48 may contribute to combating 

the stress inflicted on the yeast morphotype and may help confer antifungal resistance to the 

organism. 
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Figure 3. The DDR48 deletion mutant is more susceptible to antifungal drugs 

than the wild-type strain.  Dose-response curves for Amphotericin-B (a) and 

ketoconazole (b) for wild-type, knockout, and complement strains. Half maximal 

inhibitory concentrations (IC50) and minimum inhibitory concentrations (MIC) of 

Amphotericin-B (a) and ketoconazole (b) for wild-type, knockout, and complement 

strains of H. capsulatum. All data generated were performed with at least two 

biological replicates. Data from seven replicates are graphed as mean  standard 

error of the mean. All calculations were performed in GraphPad Prism. 

 

Since the chosen antifungals inhibit ergosterol synthesis as previously described, we 

chose to investigate any potential changes to the ergosterol synthesis pathway when DDR48 

expression was absent. Figure 5 illustrates the differential expression of several ergosterol 

synthesis genes in response to DDR48 knockout (all genes analyzed are presented in 

Supplemental Figures) under optimal conditions. Interestingly, even in basal HMM conditions, 

the absence of DDR48 resulted in dysregulation of some ergosterol synthesis genes, as seen with 

Erg11a, Erg11b, and Erg6 (Figure 5a-c). Other genes in the pathway, like Erg25, exhibited 

statistically insignificant changes in their transcriptional expression despite this gene knockout 

(Figure 5d). 
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Figure 4. DDR48 expression levels in the yeast morphotype are significantly 

upregulated in response to antifungal stress.  qRT-PCR assays were performed 

on mold and yeast phase wild-type (DDR48 (+)) cells under optimal conditions 

(control) and 0.25 hour, 0.5 hour, 1 hour, and 2 hours after the addition of 5 μg/ml 

Amphotericin-B (a) or 50 μg/ml ketoconazole (b) to observe the expression of 

DDR48. Histone H3 was used as a normalizer gene using the ΔΔct method to 

normalize to the no Amphotericin- b (dashed lines) control.  Data from triplicate 

samples are graphed as mean ± standard error of the mean. 

 

 

 This led us to determine if DDR48 is acting as a regulator of the ergosterol synthesis pathway 

and helping combat environmental stressors by helping maintain membrane integrity.  

 We treated wild-type, knockout, and complemented mutant cells with Amphotericin-B to 

observe the effect on expression levels of ergosterol synthesis genes. Figure 6 shows several 

genes in the ergosterol pathway that experienced dysregulation upon addition of the antifungal 

drug for different treatment times before extraction. It is evident that different patterns occurred; 

Erg11a experienced up-regulation upon deletion of DDR48, Erg2 experienced no significant 

change in expression in knockout cells, and Erg25 and Erg26 were down-regulated in the 

knockout. Additional qRT-PCR assays for other ergosterol genes analyzed can be found in the 

Supplemental Figures section. 
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Figure 5. Under optimal conditions, yeast phase H. capsulatum cells show 

dysregulation of ergosterol synthesis genes in response to DDR48 deletion. 

qRT-PCR assays were performed on yeast phase wild type, knockout, and 

complement cells under optimal conditions to observe the expression of several 

membrane sterol genes. Histone H3 was used as a normalizer gene using the ct 

method to normalize to the no Amphotericin-B control (dashed lines). Data from 

triplicate samples are graphed as mean  standard error of the mean. 

 

Under Amphotericin-B stress in knockout cells, it appears that the genes analyzed lost 

their ability to be transcribed, for the most part. This is evident by looking at Erg6, for example, 

and visualizing how knockout cells failed to “turn on” this gene; that is, expression resembled 

that of control wild-type cells throughout the stress assay. This was the case for most other genes 

in the pathway, with the exception of Erg11a, which experienced significant up-regulation when 

DDR48 was knocked out. 
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Figure 6. Under Amphotericin-B stress, the deletion of DDR48 from H. 

capsulatum alters expression of membrane sterol synthesis genes.  qRT-PCR 

assays were performed on yeast phase wild-type cells under optimal conditions 

(control) and 0.25 hour, 0.5 hour, 1 hour, and 2 hours after the addition of 5 ug/mL 

Amphotericin-B to observe the expression of several membrane sterol genes. 

Histone H3 was used as a normalizer gene using the ct method to normalize to 

the no Amphotericin-B control (dashed lines). Data from triplicate samples are 

graphed as mean  standard error of the mean. 

 

Figure 7 shows the ergosterol synthesis pathway with the results of our qRT-PCR 

analyses (under Amphotericin-B stress) depicted as color-coded genes for the patterns of 

expression changes observed. Genes shown in red font indicate those that experienced loss of 

function or significant down-regulation as a result of DDR48 deletion. Genes shown in green 

font indicate those that experienced up-regulation or gain of function. Genes shown in yellow 
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font indicate those that experienced no significant change in expression compared to wild-type 

expression.  

 

Figure 7. The ergosterol biosynthesis pathway showing the inhibitory mechanisms 

of azole and Amphotericin-B therapies. Color coded genes depict expression 

changes observed in ddr48  after treatment with Amphotericin-B. Genes that were 

up-regulated are coded green, those that experienced no significant change are 

shown in yellow, and down-regulated genes are indicated in red font. 
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Chapter V: Conclusion 

Through creation of a DDR48 deletion mutant strain, previous studies demonstrated that 

DDR48-deficient C. albicans was susceptible to antifungal drugs including ketoconazole (Dib et 

al., 2008). For this study, we chose to similarly investigate the impact of DDR48 on cell viability 

under antifungal stressors in H. capsulatum and found that cells were more susceptible to 

Amphotericin-B and ketoconazole when the gene was absent (Figure 3). Drug resistance was 

restored in the complemented strain as demonstrated when MIC and IC50 values returned to wild-

type levels.  

In addition to combating cell stress in C. albicans, DDR48 has shown increased 

transcription in S. cerevisiae in response to heat shock, osmotic stress, and DNA lesion-

producing agents (Treger & McEntee, 1990). Similarly, in H. capsulatum, the up-regulation of 

DDR48 after antifungal drug exposure confirmed our hypothesis that the gene plays some role in 

combating cell stress in the organism. The yeast morphotype, specifically, saw an increase in 

DDR48 expression in response to these stressors, which is of particular interest since this phase 

is predominant in pathogenesis. One hypothesis we propose to distinguish the basal expression 

patterns of DDR48 in the mold and yeast phases involves the natural environment of the mold 

phase; since this phase is found in nature where there are many stressors acting on the cells at all 

times, the increased basal-level transcription seen in Figure 1a may possibly be a result. The 

yeast phase, grown in vitro, is not exposed to the same level of stress and may therefore lack the 

number of DDR48 transcripts that the mold phase exhibits. However, when stressed with 

antifungals, DDR48 expression increased to combat the stress, while the gene is already “turned 

on” in the mold phase to combat natural, environmental stressors (Figure 4). 
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Our study of transcriptional changes in ergosterol synthesis genes in response to DDR48 

deletion resulted in novel discoveries regarding DDR48’s potential role in membrane 

maintenance in H. capsulatum. When knockout cells were stressed with Amphotericin-B, 

differential regulation of the sterol synthesis genes occurred (Figure 6). As noted previously, 

Amphotericin-B stress acts at the end of the ergosterol synthesis pathway (Figure 7) by binding 

to ergosterol to induce cell death (Figure 1). By depleting ergosterol, the cell might attempt to 

produce more of the sterol to maintain membrane integrity and promote viability. However, 

when DDR48 was deleted from the genome, it appeared that the majority of the genes in the 

pathway, with the exception of Erg11a, could not be transcribed to wild-type levels. Thus, it 

appears that DDR48 is acting somewhere upstream of the ergosterol synthesis pathway as a 

regulatory gene, thereby resulting in transcriptional issues downstream when it is deleted from 

the cell.  

A study by DuBois and Smulian in 2016 showed that the sterol regulatory element 

binding protein (SREBP), Srb1 is required for maximum transcription efficiency of several 

ergosterol synthesis genes including Erg2, Erg3, Erg11a, and Erg25. Our data showed that in 

DDR48-deficient cells under Amphotericin-B stress, Erg2 was expressed at nearly wild-type 

levels, indicating that DDR48 may act even upstream of Srb1 to affect ergosterol synthesis 

genes. This further indicates DDR48 as a gene potentially responsible for more global regulatory 

mechanisms of the stress response in H. capsulatum if it operates upstream of Srb1.  

The presented findings suggest that DDR48 may be responsible for viability of H. 

capsulatum cells under stress-inducing agents. This indicates the gene as a potential target for 

antifungal drug design in the future. By targeting DDR48, future antifungals may dampen the 

stress response of the cell enough to allow macrophages to engulf and successfully degrade H. 
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capsulatum cells. Thus, severe cases of histoplasmosis may be prevented, especially in 

immunocompromised patients. Additional studies may aim to elucidate further the identity and 

mechanism of action of the DDR48 protein or even visualize its location in the cell. However, 

this study successfully verified that the gene is involved in combating cellular stressors, in part 

by regulating membrane sterol genes by some mechanism upstream of the biosynthesis pathway. 
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Chapter VI: Supplemental Figures 

 
 

 
S1. (a-h) Additional ergosterol synthesis genes analyzed under optimal conditions in 

response to DDR48 deletion. 
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S2. (a-h) Additional ergosterol synthesis genes exhibiting dysregulation under 

Amphotericin-B stress.  
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