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Abstract 

 

The nitrogen heterocycles are shared amongst 59% of Food and Drug Administration 

(FDA) approved small molecule pharmaceuticals with the six-membered piperidine 

representing the most common moiety. Given the versatility and potential to yield 

derivatives with broad biological activities, the discovery of new chemical methods to 

generate these heterocycles in a more time and cost-efficient manner is desired. While there 

are existing racemic methods to access this class of molecule, the objective of this research 

is to pioneer a new novel six-step method to generate 2,4,6-trisubstituted piperidines with 

stereoselective control. 

The first step is a condensation between a nonenolizable aldehyde and (R)-2-

methylpropane-2-sulfinamide to create the Ellman N-sulfinyl imine. Carbons C3-C5 of the 

nascent ring can be installed at the si face of the imine via stereoselective allylation that is 

coordinated by transition metals such as magnesium, indium, or zinc to generate a 

homoallylic amine. The sulfinyl group is then removed via acidic conditions to afford the 

primary amine that is subsequently acylated with succinic anhydride to access an N-

succinimide via a thermal condensation. A reduction of the cyclic imide via DIBAL-H 

accesses the N-acyl aminal. The ring closure is initiated by acidic activation of the enamine 

to the N-sulfinyl iminium ion.  This positions the substrate into a kinetically favorable six-

membered chair conformation that places the nucleophilic alkene to intercept the iminium 

carbon stereoselectively affording the tri-substituted piperidine. We are investigating this 

strategy as a tunable method to prepare a variety of stereochemically diverse piperidines. 

Keywords: piperidine, heterocycles, organic synthesis, diastereoselective, medicinal 

chemistry, N-acyliminium ion 
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1. Introduction 
 

Nitrogen heterocycles account for 59% of all FDA approved small molecules, with the 

six-membered piperidine scaffold representing the largest subpopulation of those 

nitrogenous ring systems.1 The synthesis of piperidines is an active field of research given 

this heterocycle is an important building block for several therapeutic indications, such as 

antihistamines and analgesics.2 While there are known procedures to produce multi-

substituted piperidines, the objective of this research is to employ a new enantio- and 

diastereoselective six-step method to generate 2,4,6-trisubstituted piperidines.3,4,5 The 

synthesis of enantiopure molecules is particularly relevant because nature creates large 

biomolecules, such as enzymes, with specific chirality that ultimately produce small 

molecules of specific handedness. In the body, pharmaceuticals often have increased 

benefit in the therapeutic indication if they complement nature’s chiral complexes, thereby 

deeming a need for research to discover advanced synthetic methodologies to access 

molecules of one chirality.6 

The synthesis of small molecules is an inescapable endeavor as many of today’s 

products have roots in small molecules. Molecules that contain heterocycles are of 

significant interest today given their importance in a wide variety of economically 

important industries including agriculture, petroleum, and pharmaceuticals.7 In particular, 

the non-aromatic piperidine heterocycle has emerged as a privileged scaffold in the 

pharmaceutical industry as shown in Figure 1.1. The piperidine bears one nitrogen and 

often occupies small molecule pharmaceuticals as a centralized scaffold to which different 

substituents can be arranged around. There is remarkable diversity in the structure and 
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substitution pattern of the piperidine scaffold in pharmaceuticals classifying it as a 

privileged moiety in small molecule drugs.1 

Figure 1.1 Piperidine and Pharmaceutical Relevance 

 

 

New estimates suggest that the research and development costs of bringing a new drug 

to market is well over 2.5 billion dollars.7 On average, three years and 1.3 billion of those 

dollars are attributed to the production and screening of new small molecules, which poses 

a need for cost effective, time efficient methods to access new pharmaceuticals.7 New 

methodologies in synthesis that expedite the production of molecules benefits all healthcare 

stakeholders as new pharmaceuticals can be more readily accessed and developed more 

economically.  

The rate of new pharmaceutical drugs entering the market has slowed over recent years 

because of soaring production costs and more stringent federal regulations.6 It takes over 

ten years of research and development to bring a new pharmaceutical to market.7 This 

overwhelming obstacle is made worse by a low 11.8% success rate during clinical trials 

meaning many experimental drugs fail after several years in development.7 The billions of 

dollars spent on unsuccessful molecules must be recovered through the marketing of other 

successful drugs that make it to market. The research presented here aims to combat high 
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costs and minimize production times of drug discovery by illuminating a new, robust 

synthesis route to generate the common piperidine moiety with enantioselectivity. 

2. Literature Review 
 

The generation of 2,4,6-trisubstituted piperidines poses a synthetic challenge as there 

are three non-contiguous chiral centers that must be set via transfer of chirality in a logical 

sequence. Chirality describes a geometric feature of molecules that are non-superimposable 

on their mirror image. This phenomena is observed with the carbon atom as it can have 

four unique substituents oriented in two ways generating R, right handed, and S, left 

handed, enantiomers as shown in Figure 2.1. Enantiomers have the same connectivity but 

differ in their spatial arrangement, meaning each molecule rotates plane-polarized light in 

a specific direction. Much like one’s hands, there is a distinct left and right hand imposed 

by the arrangement of fingers. Chiral carbons exhibit this handedness and ensuring the 

correct chirality has been synthesized is critical for the access of natural products and drug 

synthesis. Complicating this issue are molecules that have more than one chirality center 

as multiple stereoisomers are possible. This introduces diastereomers, which are molecules 

with multiple configurations that differ in their stereocenters, but not at all positions, as 

this would describe enantiotopic behavior.  

 Chirality is a significant chemical property to pharmaceuticals because the body 

synthesizes proteins and enzymes with specific chirality, meaning chemists are challenged 

to emulate nature’s processes to generating molecules of complementary chirality. This 

often enhances the therapeutic indication and grants access to the enantiopure molecules, 

which often improves the drug’s success in clinical trials. 
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Figure 2.1 Importance of Chirality and Thalidomide Crisis 

 

 

A specific example of the importance of chirality took place in the 1960s when 

thalidomide was prescribed to pregnant mothers to attenuate morning sickness. While R-

thalidomide was therapeutic, the S-thalidomide was determined to be a teratogen that had 

deleterious effects on fetal development and resulted in many limb deformities called 

phocomelia as shown in Figure 2.1.7 Following that crisis, the FDA has since mandated 

drugs be more rigorously characterized and studied before entering the market to minimize 

the risk of detrimental drugs reaching the public.7 This means that racemic – mixtures of R 

and S enantiomers – and diastereotopic pharmaceuticals take longer to evaluate because 

each stereoisomer must be thoroughly examined as each exhibits unique chemical 

behaviors in vivo. While this decision benefits public health, the synthesis of drugs has 

been made more challenging, and demands the discovery of stereoselective reaction 

procedures to generate enantiopure molecules. 

Although there are established strategies to produce substituted piperidines, the 

reported methodologies have limitations in accessing enantiopure trisubstituted piperidines 

in high yield. The synthetic approaches often utilize N-acyliminium ions in which an 

intramolecular cyclization is initiated under acidic conditions with an alkene nucleophile 

as shown in Figure 2.2. 
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Figure 2.2 Lewis Acid Cyclization Strategies 

 

 

Reported in 2009, the synthesis of an enantiopure disubstituted piperidine was 

established using a N-acyl aminal and vinylsilane nucleophile under Lewis acid conditions 

as shown in (A) in Figure 2.2.9 While this methodology was stereoselective, the yields were 

dismal at 25% as the vinylsilane often produced undesired allylsilanes and other 

byproducts. This methodology was improved later through the use of a intramolecular 

cyclization coupled with nitrile and arene trapping agents in which Ritter or Friedel-Crafts 

sequences were employed as shown in Figure 2.2 (B).3 This generated trisubstituted 

piperidines with high diastereoselective control and good yields, and similarly, another 

group exercised a para-toluenesulfonic acid route with similar success as shown in Figure 

2.2 (C).10 Although these methods are successful in accessing desired chirality, these 
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synthetic routes generated racemic mixtures of products. This limitation is a result of the 

racemic starting materials, and therefore, this research would benefit from the identification 

of methodologies to readily synthesize enantiopure starting materials. The objective of this 

research is to discover a methodology to yield enantiopure starting materials for the 

aforementioned diastereoselective conditions to generate enantiopure trisubstituted 

piperidines. 

3. Methodology 
 

3.1 Retrosynthesis 

 

To pioneer a new synthetic route to access 2,4,6-trisubstituted piperidines with 

stereoselective control, a retrosynthetic approach was used to plan the synthesis of the 

Scheme 3.1 Retrosynthetic Analysis of 2,4,6-Trisubstituted Piperidines 
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desired product from readily available, low-cost starting materials as shown in Scheme 3.1. 

It was hypothesized that the presented six-step synthetic route could be employed to access 

structurally diverse enantiopure 2,4,6-trisubstituted piperidines in a new way. 

Analyzing the trisubstituted piperidine (1), the bond between C-6 and C-5 was cleaved 

to open the heterocycle. Use of the N-acyl aminal (2) synthon, shown in Scheme 3.2, 

provided the ideal precursor given its previous use and that it provides all required carbons 

and reactive species for an intramolecular cyclization. 

Scheme 3.2 Mechanistic Proposal of aza-Prins Cyclization 

 

 

Placing a hydroxyl group on the carbon directly adjacent to the nitrogen allows for a 

Lewis acid to coordinate with the N-acyl aminal to form a Lewis acid complex (3) to 

enhance the hydroxyl for elimination. The nitrogen at N-1 can then donate its electrons to 
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the bond between the flanking carbon to cleave the hydroxyl group (4). The placement of 

a terminal alkene at C-5 provides the intramolecular nucleophile and is hypothesized to 

intercept the N-acyliminium ion (5) with stereoselective control during the cyclization 

because of strong allylic strain and steric hindrance.3 The more thermodynamically 

favorable chair-like transition state places the R substituent in the axial position (9) during 

intermolecular cyclization because the substrate exhibits lower (1,3) allylic strain between 

the alkene and R and less steric hindrance between the oxygen and R. R in the equatorial 

position is unfavored (8) because of greater allylic strain and steric hindrance meaning the 

energy barrier is higher and favors the R in the axial position. The nascent carbocation (6) 

will then be trapped at the equatorial position to generate the trisubstituted piperidine (7).  

The generation of the N-acyl aminal (2) synthon will be afforded from a reduction of 

one of the carbonyls in succinimide (10) using sodium borohydride as shown in Scheme 

3.1. Although this reduction should generate a diastereotopic mixture of substrates, the 

proposed formation of the N-acyliminium ion eliminates the hydroxyl group prior to the 

ring closure and yields an enantiopure substrate for the cyclization. The succinimide (10) 

synthon will be accessed via a double condensation reaction with succinic anhydride and 

the primary amine (11). The primary amine nitrogen serves as the nucleophile and attacks 

the succinic anhydride twice with an acid intermediate.11 This sets the last carbon required 

for the forming piperidine, C-6, while simultaneously placing the carbonyl needed for the 

reduction step. 

The homoallylic amine (12) synthon will be synthesized by a sulfinyl deprotection 

in which the chiral sulfinyl group will be cleaved from the molecule using acidic and basic 

conditions. Then, a metal coordinated allylation reaction with allyl bromide will install C-
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3, C-4, and C-5 of the desired piperidine and the terminal alkene nucleophile required for 

the cyclization. The allylation must be stereoselective as the chirality at this carbon will be 

relayed to the other stereocenters during the cyclization. Literature denotes a variety of 

metals have coordinated with N-sulfinyl imines (13) to organize a diastereoselective attack 

via a bicyclic chairlike transition state (14) that positions the metal in coordination with the 

oxygen and nitrogen of the sulfinyl group as shown is Scheme 3.3.12 The metal 

simultaneously supports the chair-like transition state directing the bulky tertbutyl group 

down and activates the imine to nucleophilic attack. The positioning of the tertbutyl group 

down blocks the re imine face, meaning that the allyl bromide nucleophile can intercept 

only the top, si face of the imine. This step sets the first carbon stereocenter at C-2 of the 

forming piperidine and generates the enantiopure homoallylic amine (12).  

Scheme 3.3 Transition Metal Coordinated Allylation of N-Sulfinyl Imines12 

 

 

The N-sulfinyl imine (13) synthon will be accessed via a thermal condensation reaction 

between (R)-2-methyl-2-propanesulfinamide (15) and a nonenolizable aldehyde (16). 

These reagents in the presence of a Lewis acid solvent and moderate heat should generate 

imines with great yields. This reaction serves to provide the carbon and substituent at 

position C-2 of the forming piperidine and installs the chiral auxiliary, 2-methyl-2-

propanesulfinamide, required for the stereoselective allylation. Fortunately, the 2-methyl-

2-propanesulfinamide is commercially available in either R and S enantiomers meaning 
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both can be readily employed to synthesize either enantiomer of the trisubstituted 

piperidine proposed by this route. Additionally, there are numerous structurally diverse 

nonenolizable aldehydes commercially available at low cost, meaning a broad substrate 

scope can be explored and structurally diverse trisubstituted piperidines may be accessed 

via this methodology if successful. 

3.2 General Laboratory Techniques  

 

While the reactions are proceeding, thin layer chromatography (TLC), high 

performance liquid chromatography (HPLC), and proton nuclear magnetic resonance (1H 

NMR) were employed to monitor the reaction progress. TLC is chromatography technique 

commonly employed to monitor reaction progress as it is cost effective, highly sensitive, 

and time efficient. It works by spotting the base line of a silica gel plate with a desired 

sample. The plate is then placed in a solvent chamber where solvent travels up the plate to 

separate the components of a reaction solution based on polarity. The separated 

components can then be visualized under ultraviolet light or stained to visualize spots on 

the plate. Measuring the fraction of the distance traveled by the component in relation to 

the solvent front yields an Rf value in which spots can be quantitatively compared. Running 

reaction starting materials in parallel to ongoing reactions allowed for convenient reaction 

progress monitoring in which consumption of starting material spots and formation of new 

spots in the reaction’s lane signified reaction completion.  

HPLC is another chromatography technique in which components are separated based 

on polarity similar to TLC, but this technique offers more resolution and computer 

integration to quantitatively measure the reaction progress. The HPLC in the Donahue 

Research Group is an Agilent reverse phase system equipped with an UV/VIS detector for 
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detecting chromophores: light absorbing molecules. Samples are automatedly loaded and 

travel to a column that separates the components of a sample by polarity. Each component 

has a unique retention time and generated unique peaks that was used to quantitively 

compare components of a sample. Running the chromophore reactants before beginning 

the reaction allowed for the identification of new compounds as new peaks materializing 

during the reaction signified reaction progress. It is important to note that both TLC and 

HPLC are important techniques, but they could become convoluted and hard to interpret if 

many reagents, undesired byproducts, or reaction intermediates formed. This made 

reaction monitoring difficult at times as these methods only provided clues to what is 

occurring in the reaction vessel. 

The last technique commonly used to monitor reaction progress was proton nuclear 

magnetic resonance (1H NMR). The instrument works by placing the hydrogen nuclei of a 

sample into a magnetic field to measure their Larmor frequency. Each unique hydrogen 

nuclei in a compound exhibits a predictable precession in a magnetic field and generates 

calculable peak(s) on a computerized spectrum. These peaks were then used to elucidate 

the structure of compounds present in a sample. In reaction monitoring, the peaks of the 

starting materials were followed for their disappearance while new product peaks 

materialized. 

Once the reaction was complete and the desired product was isolated, an extensive 

spectral analysis was initiated to verify the formation of the desired products. Proton 

nuclear magnetic resonance (1H NMR) and carbon nuclear magnetic resonance (13C NMR) 

are one dimensional NMR techniques used to identify the unique hydrogen and carbon 

nuclei in the sample. This technique generates a two-dimensional plot with peaks resulting 
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from nuclei Larmor frequencies. Following those experiments, two distortionless 

enhancement by polarization transfer (DEPT) carbon experiments were then run to 

determine the multiplicity of the carbon nuclei. The DEPT135 spectrum orients the CH 

and CH3 peaks up while the CH2 peaks point down. This allows for easy determination of 

CH2 peaks, but CH and CH3 require a second experiment. The DEPT90 spectrum isolates 

the CH peaks and exclusively presents them in the up orientation, which allowed for quick 

identification of CH3 carbon signals by process of elimination.  

Two-dimensional NMR techniques such as homonuclear correlation spectroscopy 

(COSY), heteronuclear single quantum correlation (HSQC), and heteronuclear multiple 

bond correlation (HMBC) were also employed. A COSY spectrum places the 1H NMR 

spectrum on both the vertical and horizontal axes with an internal plot of proton cross-

peaks. This plot is useful as neighboring protons will produce correlations between protons 

three and four-bond distances away, which allowed for elucidation of specific spin systems 

within the molecules. HSQC is similar to COSY except the vertical axis is replaced with 

the 13C NMR, and the cross-peaks generated on the internal plot represented correlations 

between protons and their directly attached aliphatic carbons. This allowed for convenient 

assignment of protons to respective carbons. HMBC’s spectrum is similar to HSQC in that 

the horizontal axis bears the 1H NMR and the vertical axis bears the 13C NMR, but the 

cross-peaks generated by this spectrum are correlations between carbons and protons 

separated by two, three, and four-bond distances away. This allows for chains of atoms to 

be elucidated from one proton signal. By identifying chains and their overlapping partners, 

the connectivity of the generated molecules could be elucidated to identify chemical 

structures. 
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The last 2D NMR technique to be employed was nuclear Overhauser effect 

spectroscopy (NOESY). A NOESY spectrum places a 1H NMR spectrum on both the 

vertical and horizontal axes similar to COSY, but instead of through bond correlations 

resulting, cross-peaks of through-space correlations are observed when nuclei are close to 

each other. 

Following the NMR suite of experiments, a drop of the NMR sample was loaded onto 

a Fourier-transform infrared spectrometer (FTIR) equipped with an attenuated total 

reflectance (ATR) attachment to measure the absorption of electromagnetic radiation. This 

instrument fires infrared radiation into a sample inducing atoms and groups of atoms within 

organic compounds to vibrate. Each covalent bond in a compound will absorb and vibrate 

predictably at a specific frequency that can then be quantized and displayed in a two-

dimensional spectrum to determine potential functional groups. While NMR detects unique 

nuclei, FTIR reveals specific groups of atoms which is valuable in identifying fragments 

of the generated molecules and aided in identification of chemical structures. 

High resolution mass spectrometry (HRMS) determined the sample’s exact mass to 

four decimal points which was useful to differentiating molecular formulas that have the 

same nominal mass. Optical rotation determines the extent to which a molecule rotates 

plane-polarized light. This phenomenon is a characteristic of chiral molecules as they are 

optically active and provided a data set to characterize chirality. The most comprehensive 

analysis to identifying molecular structure though is X-ray crystallography in which X-

rays of the molecule are obtained to generate an electron density map. This image can then 

be processed to reveal the absolute positions of all atoms which grants the ability to 

determine the absolute configuration of the chemical structure. 
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4. Results 
 

4.1 Ellman Condensation of Aldehydes to form N-Sulfinyl Imines 

To initiate the synthetic route, (R)-2-methyl-2-propanesulfinamide (17) and a broad 

scope of nonenolizable aldehydes (18) were chosen. A nonenolizable aldehyde is one in 

which there are no alpha hydrogens that could potentially form the imine tautomer called 

an enamine. A variety of aldehydes were selected containing common synthetic functional 

groups of differing inductive effects to investigate this route’s versatility to chemically 

unique substrates.  

 

The para-fluorobenzaldehyde (19) will generally serve as the substrate described 

throughout this synthesis as it was the first substrate committed to this synthetic route. The 

fluorine of the para-fluorobenzaldehyde is 19F NMR active which aided in the elucidation 

of reaction progress and identification of generated molecules. All substrates chosen are 

shown in Figure 4.1 and range in electron withdrawing and donating activity. 

The first step is a condensation reaction in which one equivalent of aldehyde (18) was 

reacted with 1.2–1.25 equivalents sulfinamide (17) at 80˚C in triisopropyl borate solvent. 

Triisopropyl borate is not only the solvent but a Lewis acid that activates the aldehyde for 

attack by the weakly nucleophilic amine group. The excess sulfinamide is employed to 

Scheme 4.1 Ellman Condensation 
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ensure that all aldehyde is converted to the desired N-sulfinyl imine by Le Chatelier’s 

principle.  

Figure 4.1 N-Sulfinyl Imines Synthesized 

 

 

All condensation reactions were completed within 48 hours as monitored via HPLC 

by comparing starting material retention times with new peak retention times. In every 

instance, the starting aldehydes had shorter retention times than the desired N-sulfinyl 

imines. The HPLC data for the reaction of para-fluorophenyl N-sulfinyl imine (20a) is 

shown in Figure 4.2. The top spectrum was recorded at the reaction start with para-

fluorobenzaldehyde giving a retention time of 4.2 minutes. After 22 hours, the bottom 

spectrum shows the para-fluorobenzaldehyde peak was consumed, and a new peak at 6.4 

minutes had materialized signifying the end of the reaction. 
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Figure 4.2 Reaction Monitoring of Ellman Condensation Reactions via HPLC at 254 nm 

 

 

Upon completion, the reactions were cooled to room temperature, diluted with water 

and ethyl acetate, and stirred vigorously for one hour. The organic layer was then extracted 

once, dried with magnesium sulfate, and gravity filtered before concentration via rotary 

evaporator. The identification of desired product was carried out using 1H NMR since the 

characteristic imine peak was found at 8 ppm. Further, the absence of the aldehyde CH 

peak at 10 ppm confirmed the consumption of the starting aldehyde. For example, the para-

fluorophenyl N-sulfinyl imine 1H NMR is shown in Figure 4.3.  

All N-sulfinyl imines featured this general spectral characteristic that aided in the quick 

identification of the desired products at this step. Fortunately, these reactions proceeded 

smoothly with all substrates producing high yields (>95%). The crude product was 

immediately subjected to the next step without purification. All substrates following 

workup had a minor impurity probably resulting from the use of the triisopropyl borate as 

1H NMRs of crude products had some small peaks in the 1.5 ppm region. This reaction was 

favorable as there were no complicated preparation of glassware or anhydrous conditions 
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required. Further, these reactions may be left to age for several hours after completion 

without worry of any major hydrolysis by-products forming, making this a robust, 

straightforward strategy to afford many structurally diverse N-sulfinyl imines. 

Figure 4.3 1H NMR of para-Fluorophenyl N-Sulfinyl Imine from Ellman Condensation 

 

 

4.2 Metal Coordinated Allylation 
 

Several publications have reported stereoselective allylations of N-sulfinyl imines in 

which transitions metals magnesium, zinc, and indium had been employed to generate 

homoallylic amines with high stereoselective control.12,13,14,15,16 The use of magnesium to 

form the Grignard reagent was first employed in this research given its commonality in 

organic synthesis. However, this reaction was successful in generating the homoallylic 

amine in 61% yield, the production of diastereomers was observed in a ratio of 6:1 as 

determined by 1H NMR with major and minor allyl peaks at 5.7 ppm as shown Figure 4.4. 

Given the subpar diastereoselection coupled with the high cost of the Grignard reagent and 

labor-intensive reaction vessel setup, other transition metals were investigated. 
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Figure 4.4 Diastereomers of N-Sulfinyl Imine from Grignard Reaction 

 

 

 Zinc has been employed successfully in allylations with N-sulfinyl imines via aza-

Barbier conditions.14,15 The cost of zinc was considerably lower than the organomagnesium 

reagent and eliminated the need for anhydrous conditions, providing this as an exciting 

alternative. Zinc flakes were activated by washing in 1.0 N aqueous HCl to remove the 

oxidation layer on its surface. The activated zinc, N-sulfinyl imine, and allyl bromide were 

then reacted to net a mixture of diastereomers and unreacted imine starting material as 

shown in Figure 4.5. It was interesting to observe that the zinc metal favored the opposite 

diastereomer from the Grignard reaction in approximately 3:1 ratio. 

Figure 4.5 Diastereomers of N-Sulfinyl Imines from Zinc Reaction 
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It was then hypothesized that increasing the surface area of the zinc by employing zinc 

powder would enhance the reaction’s yields and stereoselectivity because the zinc would 

have more exposed surface area to coordinate the stereoselective attack. Unfortunately, 

similar low conversion rate and lackluster stereoselectivity was observed again: even when 

using several excess equivalents of activated zinc. A major shortcoming observed from the 

literature was the omission of procedures used for the activation of zinc. Given these 

disappointing results employing zinc and the arduous activation protocols, the use of zinc 

metal was abandoned altogether. 

 

More recently, approaches include indium metal under similar conditions to the 

aforementioned zinc methodologies.16 The indium approach generated the para-fluoro 

homoallylic amine (22a) in 82% yield. 1H NMR of the para-fluoro homoallylic amine, 

Figure 4.6, revealed the consumption of starting material with a small N-sulfinyl imine 

residue peak at 8.6 ppm. 

The stereoselectivity was far improved from preceding metal trials with only one set of 

allyl peaks observed at 5.7 ppm and means a diastereotopic ratio greater than 20:1 was 

achieved. The formation of diastereotopic peaks at 2.5 ppm further validates the formation 

of desired product with the only minor impurity carried from the previous condensation 

reaction. Indium was the most efficient allylating reagent as it could be used without 

Scheme 4.2 Indium Coordinated Allylation 
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activation and was not water sensitive. These features eliminate costs of activation, 

increases ease and maximizes reproducibility, making indium the ideal candidate for the 

synthesis of homoallylic amines.  

 

4.3 Deprotection of Homoallylic Amine to form Free Base 

 

The deprotection of homoallylic amines (22) proceeded within minutes with high 

yield.12,17 The homoallylic amines were dissolved in diethyl ether and immediately chilled 

to 0˚C. Three equivalents of 4M HCl in dioxane were then added, and within seconds, the 

reaction completed with a thick white precipitate forming in the flask. The white precipitate 

was found to be the desired ammonium salt (23) and offered a convenient step in which 

the ammonium salt solid was vacuum filtered using a Buchner funnel. This filtration 

purified the desired material from the eliminated tert-sulfinyl group and the residual 

impurities from the preceding steps. 1H NMR of the white precipitate verified the removal 

of the sulfinyl group as the large tert-butyl peak at 1.2 ppm was no longer present, and the 

Figure 4.6 Enantiopure Allylation of para-Fluoro Homoallylic Amine 1H NMR 
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formation of a new, broad peak at 8.6 ppm confirmed the synthesis of the desired 

ammonium salt. The sulfinyl deprotection generated a white precipitate for all substrates 

and provided yields greater than 80%. 

Scheme 4.3 Sulfinyl Deprotection of Homoallylic Amines 

 

 

Since the sulfinyl deprotection proved reliable in many trials, the ammonium salts were 

immediately subjected to basic conditions to afford the free base (24). To a solution of 10:1 

dichloromethane (DCM)/water, ammonium salt was reacted with two equivalents of 

sodium hydroxide pellets. The reaction was allowed to stir for fifteen minutes before the 

free base was collected via extraction with dichloromethane. Careful attention was needed 

at this step as minimizing the amount of water utilized prevented the loss of desired product 

to the aqueous phase. 1H NMR confirmed the generation of desired free base as a new 

broad peak at 1.7 ppm was found as shown in Figure 4.7.  

 

Figure 4.7 Deprotected para-Fluorophenyl Homoallylic Amine 1H NMR 
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4.4 Condensation of Succinic Anhydride to form Succinimide 

 

Several publications have detailed condensation reactions to access succinimides using 

a mild organic base at reflux in toluene.18,19 Utilizing the published conditions, equal 

equivalents of free base (24) and succinic anhydride (25) were dissolved in toluene. Then 

two equivalents of triethylamine were added, and the reaction was allowed to age for two 

hours at 115˚C. TLC revealed the consumption of free base with the spot at Rf 0.35 being 

consumed, and a new spot at Rf 0.21 materialized. The reaction was then analyzed by 1H 

NMR and revealed the intermediate acid amide (26) had formed with no desired 

succinimide (27). A peak at 6.9 ppm was characteristic of the amide functional group along 

with additional peaks at 2.5 ppm resulting from the protons on the uncyclized product. 

Scheme 4.4 Thermal Condensation to Generate Acid Amide 

 

 

In an effort to drive the reaction to completion, the crude acid amide was then 

resubmitted to toluene and triethylamine and microwaved for thirty minutes. 

Unfortunately, the higher temps and electromagnetic radiation had no effect, and the acid 

amide persisted without any succinimide formation. It was hypothesized that the water 

generated by the first condensation reaction hindered the reactivity of the substrate and 

prevented the acid amide from cyclizing. Other works denoted use of a Dean Stark 

apparatus to collect and remove water from the reaction to access the succinimide, but 
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those methodologies generally took greater than 24 hours and generated succinimides in 

modest yields.20  

Another method using zinc chloride (ZnCl2) and hexamethyldisilazane (HMDS) 

offered succinimides in high yields within hours; given these time advantages over the  

previous procedures, this methodology was used.21 Equal equivalents of free base and 

succinic anhydride were dissolved in toluene, and then 1.5 equivalents of HMDS and 1 

equivalent of ZnCl2 were added. The reaction was heated to 85˚C and monitored via TLC. 

After two hours, new spots formed indicating the desired products were forming as shown 

in Figure 4.8. 

Figure 4.8 TLC Reaction Monitoring of Succinimide Formation 

 

 

In lane one was the free base starting material with Rf 0.35. Lane three contained the 

reaction mixture in which some free base and acid amide was observed as spots at Rf 0.35 

and Rf 0.21 after two hours. However, the new spot at Rf 0.81 hinted at the formation of 

the succinimide, and therefore the reaction was allowed to proceed for an additional 20 

hours to allow for the complete consumption of free base and acid amide. After 22 hours, 

TLC revealed the consumption of both the free base and acid amide as only the spot at Rf 

0.81 was observed. The reaction was then allowed to cool to room temperature and worked 
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up. 1H NMR revealed a characteristic singlet at 2.6 ppm with integration of 4 indicating 

that the desired succinimide was generated as shown in Figure 4.9.  

Figure 4.9 1H NMR of para-Fluoro Succinimide 

 

 

The complete consumption of the free base and acid amide was observed as no peaks 

from those substrates remained. Further, this reaction generated no major impurities and 

therefore the succinimide crude products obtained from this method were submitted to the 

next step without purification. 

4.5 Reduction of Succinimide and Cyclization to Trisubstituted Piperidine 

 

The reduction of the succinimide to the N-acyl aminal is well documented using sodium 

borohydride.9,10,22 Succinimides (27) were dissolved in methanol, cooled to 0˚C, and 1 

equivalent of NaBH4 was added as shown in Scheme 4.5. Monitoring the reaction progress 

via TLC revealed the succinimide starting material persisted even after several hours 

without the formation of no new material. The reaction was then allowed warm to room 

temperature as it was hypothesized the additional heat would drive the advancement of the 

reaction. After allowing to stir for three hours at room temperature, the reaction was 

worked up, and 1H NMR revealed the reaction failed to produce any N-acyl aminal (28). 
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Scheme 4.5 Reduction of Succinimide with NaBH4 

 

 

It was then theorized that the succinimide would require additional equivalents of 

NaBH4 to access the N-acyl aminal and so the collected succinimide was resubmitted to 

the reduction conditions with an additional equivalent of NaBH4. Reaction monitoring via 

TLC revealed that the succinimide spot continued to persist with no new material forming. 

An additional six equivalents of NaBH4 were added in an effort to consume the 

succinimide, and the reaction was allowed to stir overnight. The next day, TLC revealed 

succinimide was consumed, and a new spot had materialized near the bottom of the TLC 

plate. This was inspiring as the N-acyl aminal was hypothesized to be more polar and 

materialize lower on the plate. The 1H NMR showed several new peaks at 7.3, 6.2, and 2.5 

ppm that were indicative of N-acyl aminal formation as shown in Figure 4.10. 

It was anticipated that the reduction would not be stereoselective and the generation of 

diastereomers would be observed, meaning a remarkably complex 1H NMR was 

Figure 4.10 1H NMR of Sodium Borohydride Reduction 

 



26 

 

anticipated. Since a complicated spectrum was generated, it was assumed that the N-acyl 

aminal was accessed even though 1H NMR was too convoluted to confirm. A purification 

was considered at this point to isolate the diastereomers; however, the separation would 

have posed very challenging as the N-acyl aminal is rather reactive. Purification conditions 

may have destroyed the N-acyl aminal, and so to validate if the N-acyl aminal was accessed, 

the crude reaction material was submitted to the cyclization conditions under the 

assumption it would convert to the trisubstituted piperidine.3 Monitoring the reaction via 

1H NMR, peaks at 7.3, 6.2, and 2.5 ppm should have disappeared if the desired N-acyl 

aminal was generated; however, these peaks persisted, and no new product peaks were 

observed. Ultimately, it was determined that the reduction was unsuccessful, and that an 

undesired, unidentified over-reduced byproduct was obtained. This material was 

abandoned, and a new reduction agent was employed to access the N-acyl aminal. 

Scheme 4.6 Reduction of Succinimide with DIBAL-H 

 

 

DIBAL-H is a common stochiometric reducing reagent and was chosen given soluble 

nature in inert organic solvents such as DCM, hexanes, or toluene. The succinimide (27) 

was dissolved in an anhydrous solution of DCM, and then the vessel was cooled to -78˚C 

as shown in Scheme 4.6. Slowly, one equivalent of DIBAL-H was added dropwise with 

care not to warm the reaction. The cooled reaction was monitored via TLC for two hours 

revealing that reaction progress stalled 15 minutes after the addition of DIBAL-H as 

succinimide was still present. Additional equivalents of DIBAL-H were avoided as it was 
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assumed the formation of over reduced byproducts would occur. 1H NMR showed new 

minor alkene peaks at 5.7 ppm buried under the alkene peak of the succinimide, and new 

diastereomer peaks found at 2.5 ppm indicated that the desired N-acyl aminal (28) had been 

produced as shown in Figure 4.11. It was then inferred that the succinimide would have no 

reactivity under the cyclization conditions meaning the best method to proceed was to 

submit the crude reaction material to the next step to access the trisubstituted piperidine. 

The reaction could then be purified without worry of eliminating the N-acyl aminal. 

Figure 4.11 1H NMR of Successful Reduction with DIBAL-H 

 

 

The crude reaction mixture was then submitted to the cyclization conditions by 

dissolving into deuterated acetonitrile and adding one equivalent of boron trifluoride 

diethyl etherate (BF3•OEt2). The reaction was monitored via 1H NMR, and it revealed 

partial conversion of the proposed N-acyl aminal peaks as the intensity of the minor peaks 

in the alkene region, 5.7 ppm, were consumed and new peaks in the 4.0 ppm range 

materialized. These were indicative signals of a successful cyclization, although resolving 

the 1H NMR with majority succinimde and N-acyl aminal remaining made absolute 

identification impossible. A purification was needed to remove the succinimide. The 
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purification proceeded smoothly using 5% methanol in DCM to afford 10 mg of white 

solid. 1H NMR confirmed the desired trisubstituted piperidine (29) had been synthesized 

as the alkene peaks had been completely consumed, and the formation of characteristic 

peaks at 5.4, 4.0, and 2.6 ppm were observed as shown in Figure 4.12. Generation of the 

piperidine also validated that the reduction was successful in generating the N-acyl aminal 

as the cyclization would not have occurred without that substrate. 

Figure 4.12 1H NMR of para-Fluoro 2,4,6-Trisubstitued Piperidine 

 

 

Examining the 1H NMR closer, the peak at 5.4 ppm was determined to be the N-H 

amide proton, Ha, of the trisubstituted piperidine as shown in Figure 4.13. The number of 

peaks a proton signal can produce is calculated using Pascal’s triangle and the equation    

2n = X in which “n” equals the number of unique neighboring nuclei and X equals the 

number of peaks. Since the amide proton has one neighbor proton, Hb, the equation results 

to 21 = 2 meaning the signal is split into two peaks generating a doublet (d). Each split of 

a peak is the result of nuclei coupling and is measured in hertz between the signal’s crests 

to quantify the intensity of interaction between the nuclei. The 7.1 Hz coupling observed 

here is characteristic of vicinal, three-bond distances, coupling between protons Ha and Hb.  
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 This proton peak was also much broader than other peaks in the spectra indicative 

of the distinctive N-H coupling as nitrogen’s unique spin quantum number affects the 

quadrupole relaxation during the examination. HSQC validated this proton belonged to the 

amide as it was the only proton signal that had no correlation to any carbon nuclei within 

the molecule. Compiling this information, this was the most straightforward proton to 

identify as all others found in this molecule exhibited more complex splitting patterns. 

One such example is the proton observed at 2.6 ppm in the 1H NMR. As shown in 

Figure 4.14, the chair conformation (30) proton Ha has four coupling neighbors resulting 

in the equation 2n = X to be 24 = 16 theorizing the signal was to be split four times into 16 

peaks. This was observed in the height intensities of the proton signal in which a ratio of 

1:2:2:2:1:1:2:2:2:1 was generated. Each of the four neighbors had a unique coupling 

constant that split each other and ultimately formed a doublet of doublet of doublet of 

doublet (dddd) peak. Hb was two-bond distances away and resulted in the largest, 13.6 Hz 

germinal coupling. Hd and Hc were three-bond distances away and produced 3.5 Hz and 

1.7 Hz vicinal couplings respectively. Their lower hertz value was a result of their greater 

distance and dihedral angle in relation to Ha. The Karplus equation defines the coupling of 

Figure 4.13 Amide Proton Splitting Tree 
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protons with a 90˚ relationship to exhibit smaller coupling constants, while anti or eclipsed 

protons exhibit larger coupling constants.23 The Newman projections in Figure 4.14 display 

the dihedral angle of Hc, (A) and Hd (B) in relation to Ha as close to 90˚ and serves to 

explain their small coupling constants. 

Figure 4.14 Splitting Tree of 1H at 2.63 ppm 

 

 

He was the farthest coupled proton in which W-coupling resulted. This coupling is four-

bond distances away from Ha and resulted from the geometrically favorable chair 

conformation that six-membered heterocycles exhibit. The W-coupling gets its name from 

the w shape of the four bonds that make up the connectivity of the equatorial protons that 

exhibit this unique coupling. W coupling is characteristically between 1 and 3 hertz 

because of the far distance between nuclei. Axial protons do not exhibit W-coupling and 

explains why Hax exhibited no coupling with Ha as the geometric relationship prevents 

coupling. Lastly, the He proton signal at 2.15 ppm confirms w coupling with Ha as its 

splitting tree contains a complimentary 1.7 Hz coupling constant meaning that both nuclei 
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are splitting each other. All these relationships serve as important observations in 

confirming the structure of the generated trisubstituted piperidine.  

It is important to note that the 1H NMR of the trisubstituted piperidine indicated no 

apparent minor diastereomer as no minor peaks were observed. This indicates that the 

cyclization was stereoselective and offers promise of a stereoselective procedure. To 

validate whether this methodology generated an enantiopure trisubstituted piperidine, 

crystals of the substrate will have to be grown and sent for X-ray crystallography. This 

means that a subsequent trial needs to be run on a larger scale in the future to obtain more 

material as only enough was employed in this initial experiment to suffice as proof of 

concept. 

4.6 Cyclization via Alternative Michael Addition Pathway 

 

An alternative four step method to access enantiopure trisubstituted piperidines was 

envisioned in which a vinylogous amide was hypothesized to form the N-iminium ion 

under acidic conditions and induce the cyclization via trapping of a carbocation as shown 

in Figure 4.15. This method diverges from the aforementioned strategy after step two in 

which the homoallylic amine (31) is subjected to a Michael addition reaction with ethyl 

propiolate (32) to place a double bond adjacent to the nitrogen. This was proposed to 

generate a vinylogous amide (33) that could subsequently be subjected to acidic conditions, 

such as trifluoroacetic acid (34), to induce formation of the N-iminium ion (35) thus 

allowing the pendant alkene to attack via an aza-Prins cyclization. This forms the 

carbocation intermediate (36) to which a conjugate base can trap and yield the trisubstituted 

piperidine (37). 
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Figure 4.15 Michael Addition and aza-Prins Cyclization 

 

 

The Michael addition was first attempted without the removal of the sulfinyl group 

using basic sodium bis(trimethylsilyl)amide and equal equivalents of homoallylic amine 

and ethyl propriolate. The sodium bis(trimethylsilyl) amide was hypothesized to act as a 

strong base and deprotonate the homoallylic amine, making it a better Michael donor to 

react with the ethyl propiolate Michael acceptor to form the vinylogous amide. 

Unfortunately, after allowing the reaction to proceed for three hours, there was no 

consumption of starting material as monitored by HPLC. 

It was then postulated that the sulfinyl group was too bulky and prevented the reaction 

from proceeding. The sulfinyl group was then deprotected to access the ammonium salt. 

The Michael reaction was then run in deuterated water (D2O) with ethyl propiolate and 

homoallylic amine via published methods.24 Monitoring the reaction progress via 1H NMR 

found that no desired vinylogous amide formed via this method. It would be expected that 
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the product has new vinyl enamine protons located in the approximate 5 to 7 ppm region. 

Unfortunately, no new alkene protons were observed. 

It was then theorized that the reaction was solvent dependent, and so a solvent screen 

was initialized. To that end, equal equivalents of ethyl propiolate and ammonium salt were 

reacted in basic conditions with Et3N in a variety of solvents ranging in dielectric constants. 

These included water, toluene, tetrahydrofuran (THF), and DCM, but even after allowing 

the reactions to proceed for several days, 1H NMR revealed no desired vinylogous amide 

formation. We therefore concluded that the N-sulfinyl amine was not sufficiently acidic to 

be deprotonated by triethylamine.  

We now turned attention to more basic amines to deprotonate the homoallylic amine. 

Using equal equivalents of ethyl propiolate and ammonium salt, a trial was run with the 

organic base 4-dimethylaminopyridine (DMAP) and the aqueous base potassium 

carbonate. The reactions were allowed to stir overnight; however, after workup, the 1H 

NMR revealed only recovered starting material with no desired vinylogous amide 

observed. At this point in time we decided to abandon these efforts at alkylating the N-

sulfinyl amine. 

4.7 Future Directions 

 

In the immediate future, work will be invested in optimizing the reduction of 

succinimides as this is the most challenging aspect of this methodology. The reduction with 

DIBAL-H approximately afforded a 20% yield of N-acyl aminal as determined by 1H 

NMR. We are interested in investigating the success of DIBAL-H when using excess 

equivalents as more may offer higher yields. Higher conversions here would benefit the 

identification of the N-acyl aminal as a spectral analysis would be viable. We plan to bring 
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the para-fluoro derivative through to the reduction step on larger scale to try alternative 

reduction conditions. Further, trialing a larger scale would afford the required amount of 

material for X-ray crystallography to confirm the chirality of the trisubstituted piperidine.  

 From our initial impressions of the cyclization reaction, this reaction should 

proceed smoothly in the future with N-acyl aminals. Once the reduction step is optimized, 

we envision that this work will allow for a straightforward methodology to access 

enantiopure trisubstituted piperidines. The remaining N-sulfinyl imines will then be 

submitted to this synthetic route to investigate this methodology’s substrate versatility and 

create a library of structurally diverse trisubstituted piperidines for a manuscript.  
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6. Supporting Information 
 

(R,E)-N-(4-fluorobenzylidene)-2-methylpropane-2-sulfinamide (20a): To a 100 mL 

single neck round bottom flask was added para-fluorobenzaldehyde (1.073 

mL, 10 mmol), triisopropyl borate (6.97 mL, 30.0 mmol), and (R)-2-

methylpropane-2-sulfinamide (1.454 g, 12.00 mmol) to yield a light brown 

colored suspension that was aged at 70˚C. After twenty-three hours, HPLC 

and TLC revealed consumption of para-fluorobenzaldehyde. The light-

yellow reaction solution was then allowed to cool to room temperature and 

was diluted with water (25 mL) and ethyl acetate (25 mL). The reaction 

mixture was then stirred vigorously for one hour. The reaction mixture was 

then extracted with ethyl acetate (two 25 mL portions). The combined organic 

layers were then washed with brine (25 mL), dried over magnesium sulfate, filtered, and 

concentrated via rotary evaporator to yield a yellow oil. The resultant oil was then placed 

under vacuum overnight to yield (R,E)-N-(4-fluorobenzylidene)-2-methylpropane-2-

sulfinamide (2.2043 g, 97%) as yellow oil. IR (thin film) 1600 cm-1; 1H NMR (CDCl3, 400 

MHz) δ: 8.55 (s, 1H), 7.86 (dd, J = 8.8, 5.4 Hz, 2H)* magnetically inequivalence, 7.16 (dd, 

J = 8.6, 8.6 Hz, 2H)* magnetically inequivalence, 1.26 (s, 9H); 13C NMR (CDCl3, 

100MHz) δ: 165.3 (s, J = 254.9 Hz), 161.4 (d), 131.5 (d, J = 9.3 Hz), 130.6 (s, J = 3.0 Hz), 

116.2 (d, J = 22.1 Hz), 57.8 (s), 22.6 (q); 

 

(R,E)-N-(3-fluoro-4-hydroxybenzylidene)-2-methylpropane-2-sulfinamide (20b): To 

a 50 mL single neck round bottom flask was added 3-fluoro-4-

hydroxybenzaldehyde (2.000 g, 14.27 mmol), triisopropyl borate (11.60 

mL, 50.0 mmol), and (R)-2-methylpropane-2-sulfinamide (2.162 g, 17.84 

mmol) to give a light brown colored suspension that was aged at 70˚C. 

HPLC and TLC revealed consumption of 3-fluoro-4-

hydroxybenzaldehyde after five hours. The solution was then allowed to 

cool to room temperature before diluting with water (25 mL) and ethyl 

acetate (25 mL). The resultant solution was stirred vigorously for one hour 

before extracting with ethyl acetate (two 25 mL portions). The combine 

organic phase was then dried over magnesium sulfate, filtered, and concentrated via rotary 

evaporator to afford (R,E)-N-(3-fluoro-4-hydroxybenzylidene)-2-methylpropane-2-

sulfinamide (3.700 g, 107%) as white solid. mp 187-191˚C; IR (thin film) 3176, 1606 cm-

1; 1H NMR (DMSO-d6, 400 MHz) δ: 8.41 (s, 1H), 7.72 (dd, J = 11.8, 1.9 Hz, 1H), 7.63 

(dd, 8.4, 1.6 Hz, 1H), 7.08 (dd, J = 8.6, 8.6 Hz, 1H), 6.53 (s, 1H), 1.16 (s, 9H); 13C NMR 

(DMSO-d6, 100MHz) δ: 161.7 (d, J = 3.0 Hz), 151.5 (s, J = 242.3 Hz), 149.9 (s, J = 12.0 

Hz), 127.6 (d, J = 2.0 Hz), 126.3 (s, J = 6.1 Hz), 118.4 (d, J = 3.0 Hz), 116.8 (d, J = 18.8 

Hz), 57.6 (s), 22.5 (q); 
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(R,E)-N-(4-hydroxy-3-methoxybenzylidene)-2-methylpropane-2-sulfinamide (20c): 

To a 50 mL single neck round bottom flask was added 4-hydroxy-3-

methoxybenzaldehyde (2.000 g, 13.15 mmol), triisopropyl borate (10.68 

mL, 46.0 mmol), and (R)-2-methylpropane-2-sulfinamide (16.43 mmol, 

1.991 g) to give a light brown colored suspension that was aged at 70˚C. 

After nineteen hours, HPLC and TLC revealed consumption of the 4-

hydroxy-3-methoxybenzaldehyde. The solution was then allowed to 

cool to room temperature and was diluted with water (25 mL) and ethyl 

acetate (25 mL). The reaction mixture was then stirred vigorously for 

one hour. The reaction solution was then extracted ethyl acetate (one 50 

mL portion). The combined organic layers were then dried over magnesium sulfate, 

filtered, and concentrated via rotary evaporator to afford (R,E)-N-(4-hydroxy-3-

methoxybenzylidene)-2-methylpropane-2-sulfinamide (3.700 g, 110%) as a light yellow 

oil. IR (thin film) 3216, 1591 cm-1; 1H NMR (CDCl3, 400 MHz) δ: 8.47 (s, 1H), 7.42 (d, J 

= 1.8 Hz, 1H), 7.35 (dd, 8.2, 1.8 Hz, 1H), 7.00 (d, J = 8.1 Hz, 1H), 6.17 (s, 1H), 3.97 (s, 

3H), 1.26 (s, 9H); 13C NMR (CDCl3, 100MHz) δ: 161.7 (d), 153.1 (s), 131.2 (d), 122.5 

(s), 111.4 (d), 57.3 (s), 40.1 (q), 22.5 (q); 

 

(R,E)-N-(4-(dimethyamino)benzylidene)-2-methylpropane-2-sulfinamide (20d): To a 

100 mL single neck round bottom flask was added 4-

(dimethylamino)benzaldehyde (1.492 g, 10 mmol), triisopropyl borate (20.97 

mL, 90 mmol), and (R)-2-methylpropane-2-sulfinamide (1.454 g, 12.00 

mmol) to yield a light brown colored suspension that was aged at 70˚C. After 

30 hours, HPLC and TLC revealed 4-(dimethylamino)benzaldehyde 

remained in the vessel. Another 0.1 equivalent (0.121g) of (R)-2-

methylpropane-2-sulfinamide was added. After forty-eight hours, HPLC 

revealed 4% 4-(dimethylamino)benzaldehyde, 90% (R,E)-N-(4-

(dimethykamino)benzylidene)-2-methylpropane-2-sulfinamide, and 6% 

unknown. The dark brown reaction mixture was allowed to cool to room temperature and 

was transferred to a 250-mL single neck round bottom flask. The solution was then diluted 

with water (50 mL) and ethyl acetate (50 mL) and allowed to stir for one hour. The reaction 

mixture was then extracted with ethyl acetate (three 25 mL portions). The combined 

organic layers were washed once with brine (25 mL), dried over magnesium sulfate, 

filtered, and concentrated via rotary evaporator. The brown oil was then placed on high 

vacuum overnight to yield (R,E)-N-(4-(dimethykamino)benzylidene)-2-methylpropane-2-

sulfinamide (3.700g, 147%) as a brown solid. 65-68 mp ˚C; IR (thin film) 1606 cm-1; 1H 

NMR (CDCl3, 400 MHz) δ: 8.43 (s, 1H), 7.72 (d, J = 8.9 Hz, 2H), 6.70 (d, 8.9 Hz, 2H), 

3.06 (s, 6H), 1.23 (s, 9H); 13C NMR (CDCl3, 100MHz) δ: 161.7 (d), 153.1 (s), 131.2 (d), 

122.5 (s), 111.4 (d), 57.3 (s), 40.1 (q), 22.5 (q); 
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(R,E)-2-methyl-N-(pyridin-3-ylmethylene)propane-2-sulfinamide (20e): To a 100 mL 

single neck round bottom flask was added nicotinaldehyde (0.939 mL, 10 

mmol),  triisopropyl borate (6.97 mL, 30.0 mmol) , and (R)-2-methylpropane-

2-sulfinamide (1.454 g, 12.00 mmol) to give a light brown colored suspension 

that was aged at 70˚C. After seven and a half hours, HPLC and TLC revealed 

consumption of nicotinaldehyde. The solution was then allowed to cool to 

room temperature and was diluted with water (25 mL) and ethyl acetate (25 

mL). The light-yellow reaction mixture was then stirred vigorously for one 

hour. The reaction mixture was then extracted with ethyl acetate (two 25 mL 

portions). The combined organic layers were then washed with brine (25 mL), dried over 

magnesium sulfate, filtered, and concentrated via rotary evaporator to yield (R,E)-2-

methyl-N-(pyridin-3-ylmethylene)propane-2-sulfinamide (2.000 g, 95%) as yellow oil. IR 

(thin film) 1608 cm-1; 1H NMR (CDCl3, 400 MHz) δ: 9.03 (d, J = 1.4 Hz, 1H), 8.74 (dd, 

J = 4.7, 1.4 Hz, 1H), 8.64 (s, 1H), 8.17 (ddd, J = 7.9, 1.7, 1.7 Hz, 1H), 7.42 (dd, J = 4.7, 1.4 

Hz, 1H), 1.28 (q, 9H); 13C NMR (CDCl3, 100MHz) δ: 160.4 (d), 152.9 (d), 151.0 (d), 

135.7 (d), 129.7 (s), 123.9 (d), 58.1 (s), 22.6 (q); 

(R,E)-N-(3,4-dimethyloxybenzylidene)-2-methylpropane-2-sulfinamide (20f): To a 

100 mL single neck round bottom flask was added 3,4-

dimethoxybenzaldehyde (1.662 g, 10 mmol), triisopropyl borate (20.97 

mL, 90 mmol), and (R)-2-methylpropane-2-sulfinamide (1.454 g, 12.00 

mmol) to yield a light brown colored suspension that was aged at 70˚C. 

After twenty-six hours, HPLC and TLC revealed consumption of 3,4-

dimethoxybenzaldehyde. The deep orange solution was then allowed to 

cool to room temperature. The reaction solution was then transferred to a 

250-mL single neck round bottom flask and diluted with water (75 mL) 

and ethyl acetate (25 mL). The reaction mixture was stirred vigorously for 

one hour and extracted with ethyl acetate (two 25 mL portions). The 

combined organic layers were then washed with brine (25 mL), dried over magnesium 

sulfate, filtered, and concentrated by rotary evaporation to yield yellow oil. The resultant 

oil was then placed under vacuum overnight to yield (R,E)-N-(3,4-

dimethyloxybenzylidene)-2-methylpropane-2-sulfinamide (2.9097 g, 108%) as yellow 

solid. mp 53-60 ˚C; IR (thin film) 1596 cm-1; 1H NMR (CDCl3, 400 MHz) δ: 8.49 (s, 1H), 

7.44 (d, J = 8.3 Hz, 1H), 7.73 (dd, 8.3, 1.3 Hz, 1H), 6.93 (d, J = 1.7 Hz, 1H), 3.94 (s, 3H), 

3.94 (s, 3H), 1.26 (s, 9H); 13C NMR (CDCl3, 100MHz) δ: 162.0 (d), 152.9 (s), 149.5 (s), 

127.5 (s), 125.0 (d), 110.7 (d), 109.9 (d), 57.6 (s), 56.0 (q), 55.9 (q), 22.6 (q); 
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(R)-N-((S)-1-(4-fluorophenyl)but-3-en-1-yl)-2-methylpropane (22a): To a 250 mL 

single neck round bottom flask was added (R,E)-N-(4-

fluorobenzylidene)-2-methylpropane-2-sulfinamide (4.945 g, 

21.76 mmol), DMF (108.7 mL, 21.76 mmol), and allyl bromide 

(3.76 mL, 43.51 mmol) to yield a light yellow solution. Indium 

(3.247 g, 28.28 mmol) was then added in one portion generating a 

yellow-grey solution. The vessel was then heated to 70˚C. After 23 

hours, 1H NMR revealed 6% of imine starting material remaining 

and so the reaction was allowed to age longer. After 44, 1H NMR 

revealed complete consumption of the starting material. The reaction was then allowed to 

cool, and water (100 mL) was added. The reaction was allowed to stir overnight. After 68 

hours, the reaction was transferred to a 500 mL single neck flask. Ethyl acetate (100 mL) 

was then added and the reaction was allowed to stir for 6 hours. The reaction cocktail was 

then extracted twice with ethyl acetate (100 mL). The organic layer was then dried with 

MgSO4, gravity filtered, and concentrated under house. Approximately, 75 mL of DMF 

remained in the flask after several hours. Ethyl acetate (100 mL) was then added and the 

solution was washed five times with distilled water (100 mL) to remove excess water. The 

last wash resulted in a very cloudy emulsion that was resolved by adding brine (100 mL). 

The organic phase was then dried with MgSO4 and gravity filtered producing a yellow 

solution. (R)-N-((S)-1-(4-fluorophenyl)but-3-en-1-yl)-2-methylpropane-2-sulfinamide 

(4.777g, 82%) was collected as yellow solid. mp 92-96˚C; IR (thin film) 3203, 3073 cm-1; 

1H NMR (CDCl3, 400 MHz) δ: 7.29 (dd, 8.6, 5.4 Hz, 2H), 7.02 (dd, 8.8, 8.8 Hz, 2 H), 5.71 

(dddd, 17.9, 9.4, 8.4, 5.9 Hz, 1H), 5.17 (d, 15.5 Hz, 1H), 5.17 (d, 11.9 Hz, 1H), 4.46 (ddd, 

7.8, 5.5, 1.8 Hz, 1H), 3.69 (br s, 1H),  2.52-2.60 (m, 1H), 2.40-2.50 (m, 1H), 1.19 (s, 9H); 

13C NMR (CDCl3, 100MHz) δ: 162.2 (s, J = 245.2 Hz), 137.3 (s, J = 3.3 Hz), 133.9 (d), 

129.1 (d, J = 8.5 Hz), 119.4 (t), 115.6 (d, J = 21.2 Hz), 56.3 (d), 55.6 (s), 43.4 (t), 22.6 (q); 

(S)-1-(4benzyloxy)phenyl)but-3-en-1-aminium (23a): To a 50 mL single round bottom 

flask,(S)-N-(1-(4-(benzyloxy)phenyl)but-3-en-1-yl)-2-methylpropane 

-2-sulfinamide (0.996 g, 2.786 mmol) was dissolved in diethyl ether 

(9.29 mL, 2.79 mmol) at room temperature. After 30 minutes 

particulates still remained in solution and diethyl ether was added (10 

mL). 4 M HCl in dioxane (2.089 mL, 8.359 mmol) was then added in 

one portion, and the reaction immediately turned yellow upon 

addition. The reaction was then allowed to stir for 5 minutes at room 

temperature while a thick white precipitate formed. HPLC and TLC 

revealed the consumption of starting material. (Starting material had 

retention time of 7.744 and product had retention time of 5.241.) The 

(S)-1-(4benzyloxy)phenyl)but-3-en-1-aminium (0.6821 g, 84%) was collected via vacuum 

filtration as a white precipitate using chilled diethyl ether. mp 179-181˚C; IR (thin film) 

3419, 3035 cm-1; 1H NMR (CDCl3, 400 MHz) δ: 8.62 (br s, 3H), 7.27-7.41 (m, 7H), 6.94 

(d, 8.6 Hz, 2H), 5.55 (dddd, 17.0, 9.8, 7.0, 7.0 Hz), 5.08 (br d, 16.6 Hz, 1H), 5.03 (br d, 

10.2 Hz, 1H), 4.99 (s, 2H), 4.16 (br s, 1H), 2.77-2.88 (m, 1H), 2.63-2.75 (m, 1H); 13C 

NMR (CDCl3, 100MHz) δ: 159.2 (s), 136.6 (s), 131.8 (d), 129.0 (d), 128.6 (d), 128.1 (d), 

128.0 (t), 127.6 (d), 120.0 (t), 115.2 (d), 70.0 (t), 55.4 (d), 38.7 (t) 
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(S)-1-(4-fluorophenyl)but-3-en-1-amine (24a): (S)-chloro(1-(4-fluorophenyl)but-3-en-

1-yl)-l5-azane (293 mg, 1.45 mmol) was dissolved in DCM (15 

mL, 0.23 mol) at room temperature. Sodium hydroxide pellet (116 

mg, 2.91 mmol) was then added followed by water (1.5 mL, 83 

mmol). The reaction was allowed to stir for 19 hours before 

extracting twice with DCM (two 15 mL portions). The resultant 

organic layers were combined, dried with MgSO4, and concentrated over house air to yield 

(S)-1-(4-fluorophenyl)but-3-en-1-amino (200.5 mg, 84%) as yellow oil. IR (thin film) 

3078, 1595 cm-1; 1H NMR (CDCl3, 400 MHz) δ: 7.29 (dd, 8.3, 5.8 Hz, 2H), 6.99 (dd, 8.6, 

8.6 Hz, 2H), 5.71 (dddd, 16.8, 10.2, 8.0, 6.5 Hz, 1H), 5.09 (d, 14.4 Hz, 1H), 5.09 (d, 8.3 

Hz, 1H), 3.97 (dd, 7.6, 6.0 Hz, 1H), 2.36-2.45 (m, 1H), 2.25-2.36 (m, 1H), 1.72 (s, 2H); 

13C NMR (CDCl3, 100MHz) δ: 161.8 (s, J = 243.1 Hz), 141.4 (s, J = 3.0 Hz), 135.2 (d), 

127.8 (d, J = 8.0 Hz), 117.8 (t), 115.1 (d, J = 21.0 Hz), 54.7 (d), 44.3 (t), 43.4 (t); 

(S)-1-(1-(4fluorophenyl)but-3-en-1-yl)pyrrolidine-2,5-dione (27a): To a 50 mL round 

bottom vial was added (S)-1-(4-fluorophenyl)but-3-en-1-amine 

(110.8 mg, 670.7 μmol) and succinic anhydride (67.11 mg, 670.7 

μmol) in toluene (8.38 mL, 670.7 μmol). Zinc chloride (91.40 mg, 

670.7 μmol) was then added in one portion. The reaction vessel was 

then heated to 85˚C and aged for ten minutes. 

Bis(trimethylsilyl)amine (HMDS) (212 μL, 1.006 mmol) was then 

added in one portion. After 27 hours, TLC revealed the 

consumption of starting material.  The reaction was then allowed to cool to room 

temperature. 0.5 N HCl (25 mL) was then added in one portion and the reaction mixture 

was allowed to stir for five minutes. The resultant solution was then extracted twice with 

ethyl acetate (two 20 mL portions). The combined organic layers were then washed once 

with saturated sodium bicarbonate (20 mL) and once with brine (20 mL). The organic layer 

was then separated, dried over MgSO4, gravity filtered, and concentrated to yield (S)-1-(1-

(4fluorophenyl)but-3-en-1-yl)pyrrolidine-2,5-dione (146.1 mg, 88%) as a yellow oil. IR 

(thin film) 3065, 1704 cm-1; 1H NMR (CDCl3, 400 MHz) δ: 7.48 (dd, 8.6, 5.4 Hz, 2H), 

7.00 (dd, 8.0, 8.0 Hz, 2H), 5.69 (dddd, 17.1, 10.2, 8.5, 5.5 Hz, 1H), 5.27 (dd, 10.5, 6.1 Hz, 

1H), 5.12 (dddd, 17.0, 1.6, 1.6, 1.6 Hz, 1H), 5.06 (br d, 10.0 Hz, 1H), 3.28 (ddddd, 14.2, 

10.2, 8.4, 0.7, 0.7 Hz, 1H), 2.84 (ddddd, 14.4, 6.0, 6.0, 1.5, 1.5 Hz, 1H), 2.63 (s, 4H); 13C 

NMR (CDCl3, 100MHz) δ: 177.1 (s), 162.4 (s), 134.2 (s), 134.1 (d), 130.1 (d, J = 8.2 Hz), 

118.3 (t), 115.3 (d, J = 21.5 Hz), 54.1 (d), 34.4 (t), 27.9 (t); 
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N-(5-(4-fluorophenyl)-3-oxooctahydroindolizin-7-yl)acetamide-2,2,2-d3 (29): To a 

flame dried 25 mL round bottom was added (S)-1-(1-(4-

fluorophenyl)but-3-en-1-yl)pyrrolidine-2,5-dione (100 mg, 404 

μmol)and DCM (4.04 mL, 404 μmol) under a nitrogen atmosphere 

to generate a light yellow solution. The flask was then placed in a 

dry ice/acetone bath for ten minutes. Diisobutylaluminum hydride 

(404 μL, 404 μmol) (1M in DCM) was then added slowly over 

fifteen minutes (one drop every 10 sec with a 12 gauge needle). 

TLC in 9:1 DCM:methanol revealed imide spot at 0.80 and new 

spot at 0.50 after fifteen minutes. After 15 minutes, TLC revealed 

reaction progress had stalled. The reaction was allowed to stir for an hour before it was 

removed from the dry ice/acetone bath. Immediately, the reaction was quenched with 

ammonium chloride (5 mL) added dropwise by pipette. The ammonium chloride froze and 

the reaction was allowed to stir until it warmed to room temperature. The reaction was then 

extracted twice with DCM (10 mL). The combined organic layers were washed with brine 

(10 mL) and separated. The organic layers were then dried over MgSO4 and gravity 

filtered. The material was concentrated over house air to afford 112 mg of yellow oil. 1H 

NMR revealed about a 20% conversion of the imide to potential N-acyl aminal. In an NMR 

tube was added 1-((S)-1-(4-fluorophenyl)but-3-en-1-yl)-5-hydroxypyrrolidin-2-one (26 

mg, 0.10 mmol) (crude reaction material from the reduction) in acetonitrile-d3 (1.0 mL, 

0.10 mmol) to generate a yellow solution. Then BF3•OEt2 (26 μL, 0.21 mmol) was then 

added in one portion. The reaction was vortexed for five minutes. After four hours, the 

reaction stalled and another equivalent of BF3•OEt2 (26 μL, 0.21 mmol) was added. The 

reaction was allowed to stir for 72 hours with no more progession observed. The NMR 

tube contents were transferred to a 125 mL sep funnel and 2 mL of saturated sodium 

bicarbonate was added slowly. The mixture was shaken for one minute before extracting 

twice with DCM (10 mL). The combined organic layers were then washed once with brine 

(10 mL), dried over MgSO4, and concentrated to 41 mg of yellow oil. The yellow oil was 

loaded onto a 4g silica gel column with DCM. The column was eluted with 5% methanol 

in DCM (25 mL) into fifteen fractions (1.5 mL). The N-(5-(4-fluorophenyl)-3-

oxooctahydroindolizin-7-yl)acetamide-2,2,2-d3 was collected (10.0 mg, 10%) as a white 

solid. IR (thin film) 3287, 1657 cm-1; 1H NMR (CDCl3, 400 MHz) δ: 7.28 (dd, 8.4, 5.4 Hz, 

2H), 7.03 (dd, 8.7, 8.7 Hz, 2H), 5.52 (d, 5.4 Hz, 1H), 5.42 (d, 7.1 Hz, 1H), 4.08 (ddddd, 

11.9, 11.9, 7.5, 3.7, 3.7 Hz, 1H), 3.64 (dddd, 11.4, 7.9, 6.0, 3.6 Hz, 1H), 2.63 (dddd, 13.3, 

3.5, 1.7, 1.7 Hz, 1H), 2.48-2.55 (m, 2H), 2.27 (dddd, 13.8, 9.1, 7.9, 6.1 Hz, 1H), 2.15 (dddd, 

12.0, 3.7, 3.7, 1.7 Hz, 1H), 1.66 (dddd, 13.2, 9.0, 9.0, 6.0 Hz, 1H), 1.60 (ddd, 13.2, 12.6, 

5.9 Hz, 1H), 1.13 (ddd, 11.8, 11.8, 11.8 Hz, 1H); 13C NMR (CDCl3, 100MHz) δ: 174.1 

(s), 163.2 (s), 162.0 (s, J  = 246.0 Hz), 133.9 (s, J =  3.3 Hz), 128.3 (d, J = 8.1 Hz), 115.7 

(d, J = 21.5 Hz), 52.6 (d), 49.1 (d), 43.1 (d), 40.0 (t), 33.6 (t), 30.0 (t), 30.0 (s), 24.5 (t); 

 

 

  


	Diastereoselective Synthesis of 2,4,6-Trisubstituted Piperidines via aza-Prins Cyclization
	Recommended Citation

	tmp.1529434611.pdf.KeK62

