
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Honors Theses Honors College

Spring 5-2016

Applications of the Sierpiński Triangle to Musical Composition Applications of the Sierpi ski Triangle to Musical Composition

Samuel C. Dent
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/honors_theses

 Part of the Composition Commons, and the Dynamical Systems Commons

Recommended Citation Recommended Citation
Dent, Samuel C., "Applications of the Sierpiński Triangle to Musical Composition" (2016). Honors Theses.
415.
https://aquila.usm.edu/honors_theses/415

This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital
Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila
Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/honors_theses
https://aquila.usm.edu/honors_college
https://aquila.usm.edu/honors_theses?utm_source=aquila.usm.edu%2Fhonors_theses%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/519?utm_source=aquila.usm.edu%2Fhonors_theses%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/179?utm_source=aquila.usm.edu%2Fhonors_theses%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/honors_theses/415?utm_source=aquila.usm.edu%2Fhonors_theses%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu

1

The University of Southern Mississippi

Applications of the Sierpiński Triangle to Musical Composition

by

Samuel Dent

A Thesis
 Submitted to the Honors College of

 The University of Southern Mississippi
in Partial Fulfillment

of the Requirements for the Degree of
Bachelor of Science

 in the Department of Mathematics

May 2016

ii

iv

Abstract
 The present paper builds on the idea of composing music via fractals, specifically the
Sierpiński Triangle and the Sierpiński Pedal Triangle. The resulting methods are intended
to produce not just a series of random notes, but a series that we think pleases the ear.
One method utilizes the iterative process of generating the Sierpiński Triangle and
Sierpiński Pedal Triangle via matrix operations by applying this process to a geometric
configuration of note names. This technique designs the largest components of the
musical work first, then creates subsequent layers where each layer adds more detail.

Key Words: Sierpiński Triangle, Sierpiński Gasket, pedal triangle, music composition,
matrix

v

Acknowledgements
 I thank my adviser, Dr. Jiu Ding, for his patience and guidance while helping me
prepare this thesis. I would like to thank Dr. Danny Beard for my music theory education
and for his helpful critique. I would also like to thank Dr. John Perry for his aid in
devising the implementation of the computer code in SAGE. Finally, I thank Dr. Richard
Perry for his support and critique of the compositions.

vi

Table of Contents
Figures and Algorithm Pseudocode……………………...…vii
Definitions and Abbreviations……....………….……….....viii
Chapter 1: Introduction…………………………….……....1
 Description of the problem…………………..…...…..…...1
 Relevant background………………………………..…….2
Chapter 2: Matrix IFS…………………...…...…………......9
 Methods…………………..…..………………….………...9
 Results………………………………....…..........................9
 Discussion………………………………………….….....14
Chapter 3: Music Composition..………………….….……16
 Methods…………………..…..……………………..…....16
 Results………………………………....…........................16
 Discussion……………………………………………..…18
Bibliography…..………………………………..……............28
Appendices…..…..………………………………….….........29
 Appendix A: SAGE Codes……………………………....29
 Appendix B: Example Graphs....………………………...36
 Appendix C: Sierpiński Pedal Quartet…...……………..39

vii

Figures
1.1 Process of feedback……………….....…...………..……2
1.2 Sierpiński Process………………………………………2
1.3 First iteration of the Sierpiński Triangle IFS….....…......5
1.4 Sierpiński Pedal Process……………………..……...….6
1.5 An L-System…………………………………..…..…....7
1.6 String of notes from Figure 1.5….……………….…..…7
1.7 An L-System for a chord progression ……….....…........8

3.1 Sierpiński L-System on a C maj tonic chord……….….16
3.2 Sierpiński Pedal L-System on E-G-F.…...………….....17

Algorithm Pseudocode
Algorithm 1……………………………………………....…9
Algorithm 2………………………………………………..10
Algorithm 3……………………………………………..…13
Algorithm 4……………………………………………..…13

viii

Definitions
Dynamical System………..………………....……………...3
Feedback……………………………………………………2
Fractal………………………………………………………1
Fractal Music……………………………………………….6
Independent………..……………………………….……….3
Iterated Function System…….. …………………..…..........4
L-System……………………………………………………6
Limiting Set………………………………………………....4
Pedal Triangle………………………………………………6
Sierpiński Pedal Triangle………………..………………….6
Sierpiński Triangle………………………………………….2

Abbreviations

Control Unit - CU
Iterated Function System – IFS
Input Unit - IU
Major Key – maj.
Minor Key – min.
Output Unit - OU
Sierpiński Pedal Triangle – SPT

ix

1

Chapter 1: Introduction
Description of the Problem

 This project intends to explore one of the relationships between mathematics and
music, specifically through the fractals known as the Sierpiński Triangle and the
Sierpiński Pedal Triangle. A fractal is a geometric construct that is self-similar
throughout its structure. Fractals can appear complex, but they are often generated by the
simple process of iterating a pattern, where each iteration reduces the size of the pattern.
Music, in essence, is an organized collection of sounds and silences. Composers
frequently write music based on a pattern or motif of some kind, resulting in a self-
similarity where a musical work can be broken down into sections, then into phrases, and
so on. Each level of the music often reflects the nature of the work in its entirety. The
self-similarity and patterns are evident in both fractals and music composition, indicating
that there is a possible relationship between them. It is this relationship that this project
means to explore. The music produced should be more than a series of random notes, but
a series that pleases the ear. Additionally, this project seeks to generalize methods of
producing the Sierpiński Triangle to the Sierpiński Pedal Triangle.

2

Relevant Background

 Fractals largely depend on the principle of
feedback: an operation that is repeated many
times with the output of one iteration becoming
the input for the next iteration. This process is
shown in Figure 1.1, where the control unit is a
set of parameters to produce a desired result.
The Sierpiński Triangle is a particular fractal produced through the feedback process
shown in Figure 1.2. For the classic Sierpiński Triangle, the process begins with an
equilateral triangle. Form an interior triangle by connecting the midpoints of the sides of
the original triangle, and remove this interior triangle to leave three congruent equilateral
triangles similar to the original. Take the output as the input and repeat this process
indefinitely to produce the Sierpiński Triangle. Beginning with a different type of
triangle also generates a Sierpiński Triangle where the nth iteration produces 3n congruent
triangles that are similar to the initial triangle. As a result of the process removing a

Figure 1.2

 Sierpiński Process
Devaney, R. L., 1995 [2]

Figure 1.1

 Process of feedback
IU = input unit CU = control unit OU = output unit

Peitgen, H. et al., 2004 [6]

3

triangle equal to a fourth the area of the previous triangle, the area of the construct on the
nth iteration is (0.75)n. So, the Sierpiński Triangle itself has an area of 0 because

lim→ 0.75 = 0
yet the Sierpiński Triangle can be seen by the human eye [5].
 One way to produce fractals such as the Sierpiński Triangle is with an iterated
function system, abbreviated IFS. Before discussing the IFS, further background
information must be made clear. Lasota and colleagues define a sequence of random
variables , , … , to be independent if, for a sequence of Borel sets , , … , ,
the events ∈ are independent for all i. That is,

prob ∈ , ∈ , … , ∈
= prob ∈ × prob ∈ × ⋯ × prob ∈

A family of transformations : → , for ∈ ℝ on a set is a dynamical system
∈ℝ if it satisfies the following properties [5]:

1. () = , ∀ ∈ .
2. () = (), ∀ ∈ with , ∈ ℝ.
3. The mapping (,) → () from ℝ × into is continuous.

Now let be a closed, non-empty subset of ℝ . Consider continuous transformations

: → for = 1, … , ,

the probabilistic vector

(, … ,), where ≥ 0 and = 1,

4

and the sequence of independent random variables , , … such that

prob = = , for = 1, … , .

The dynamical system defined by the formula

= () for = 0,1, …

is called an iterated function system [5]. For ⊂ , we define

() = () and = ()

where = . We also define the limiting set ∗ = lim→ () [5].

 The following is an IFS given by Lasota and colleagues that generates the Sierpiński
Triangle: let = ℝ and

() = 1 2 0
0 1 2

+ , for = 1,2,3 where

= = 0; = 1
2 , = 0; = 1

4 , = 1
2

5

We choose to be the isosceles triangle with vertices (0,0), (1,0), , 1 . Because this
is a triangle and the transformations produce a similar triangle, each transformation can
be calculated on the vertices to find the transformed triangle’s vertices, rather than
performing the transformations on every point in the triangle. Then () is a triangle
with vertices (0,0), , 0 , , . () and () are congruent to () but
translated to the right, and up and to the right, respectively. Then the output is

= () = () ∪ () ∪ ().
This first iteration is shown in Figure 1.3. The limiting set ∗ = lim→ () is the
Sierpiński Triangle.

Figure 1.3

First iteration of the Sierpiński Triangle IFS

Lasota, A. & Mackey, M. C., 1994 [5]

6

 Related to the Sierpiński Triangle is the Sierpiński Pedal Triangle (SPT), which
utilizes the pedal triangle rather than the triangle connecting the midpoints. For an initial
triangle T0, the pedal triangle is the triangle formed by connecting the three feet of the
altitudes of T0. If T0 is a right triangle, then the pedal triangle is a straight line, and if T0
is an obtuse triangle, the pedal triangle reaches outside T0. For an acute T0, the pedal
triangle remains inside T0 and can, therefore, be removed in the Sierpiński process as
shown in Figure 1.4. Indefinite iteration results in the SPT. The SPT also produces a
total of 3n triangles similar to the original on the nth iteration, but they are scaled, rotated,
and reflected individually [3]. This key difference leads us to believe that the SPT may
allow more flexibility concerning applications to music.
 Fractal music is the application of methods used to generate fractals in the field of
music [4]. An example of this crossover from fractals to music is the L-System defined
by Hazard and colleagues. An L-System is a repetitive process that transforms a short
string or axiom into a longer, more complicated string through a set of production rules.
Each symbol in the string has a respective production rule, and with each iteration, the
symbols are replaced by their production rule. Figure 1.5 exhibits an example of an L-

Figure 1.4

 (80o-40o-60o) - triangle 1st iteration 2nd iteration 3rd iteration
Sierpiński Pedal Process

Ding, J. et al. [3]

7

System. The resulting string is intended to mimic the self-similarity of fractals. The
string can then be interpreted musically as a string of notes, chords, or other objects [4].
 A direct approach is to assign each symbol of the string to its corresponding note
name, i.e. “A” A, “B” B, and so on, and a symbol such as “R” for a rest. The
second iteration string from Figure 1.5 would then become the note string in Figure 1.6.
The axiom and production rules must be chosen carefully to produce the desired music
and effect [4].

 With respect to chords, the production rules can replace each symbol (a Roman
numeral representing a triad based on that number’s location in a scale) with a short
chord progression to create a larger progression. Hazard and colleagues provide the
example in Figure 1.7. For maximum effect, the axiom and production rules should be
strongly influenced by the guidelines delineated by music theory. Hazard and colleagues
do note that this L-System is not particularly effective on its own and should be
combined with other methods. For instance, the resulting chordal string can be used as

Figure 1.5
An L-System

 Axiom: AB

 Production Rules:

 A ABC B CAD C DC D BDB
Hazard, C. et al., 1999 [4]

Axiom: AB
 A B
1st iteration: (ABC)(CAD)
 A B C C A D
2nd iteration: (ABC)(CAD)(DC)(DC)(ABC)(BDB)

Etc.

Figure 1.6

 String of notes from Figure 1.5
Hazard, C. et al., 1999 [4]

8

background chords for a melody or to constrain the melody to sound more like traditional
Western music [4].

Figure 1.7
An L-System for a chord progression

 Axiom: I

 Production Rules:

 I I IV V I ii ii V I V IV IV V I ii V V I ii V
Hazard, C. et al., 1999 [4]

Axiom: I
 I
1st iteration: (I IV V I)
 I IV V I
2nd iteration: (I IV V I)(IV V I ii)(V I ii V)(I IV V I)

Etc.

9

Chapter 2: Matrix IFS
Method

 First, analyze the matrix IFS for the Sierpiński Triangle and generalize it to the SPT.
Then, create an algorithm or algorithms to carry out the matrix IFS on an arbitrary acute
triangle to generate a given number of iterations in the SPT process. Graph several
examples for various choices in initial vertices and iteration levels.

Results
 In order to generate the SPT for an arbitrary acute triangle, I broke the task into four
algorithms: the first reorganizes the vertices’ coordinates, the second performs the first
iteration of the Sierpiński Pedal Process, the third performs the Sierpiński Pedal Process a
given number of times, and the fourth graphs the appropriate triangles. A description of
each is given below.

Algorithm 1
algorithm redo_points
 inputs
 , , , , , , the respective x- and y-components of the vertices of an
 acute triangle
 outputs
 , , , the vertices in the desired order
 do
 let be the vertex with the lowest y-value.
 if more than one vertex shares this y-value,
 then let be the vertex that also has the lowest x-value
 of the remaining points, let be the vertex with the highest x-value
 if both vertices have this x-value,
 then let be the vertex that also has the lowest y-value
 let be the remaining vertex
 return , ,

10

 Algorithm 1 reorganizes the points so that the other algorithms can work with the
vertices of the triangle regardless of their input order. The particular choice of order of
output from Algorithm 1 is explained under Algorithm 2. For the purpose of using
matrix operations, the implementation of the algorithm in computer code formats each
vertex in the output as a 2 × 1 matrix.

 Algorithm 2 uses Algorithm 1 to reorder the points, then subtracts the coordinates of
the new from all of the vertices and rotates the triangle so that side is horizontal.

Algorithm 2
algorithm Pedal_Triangle_Matrix_3
 inputs
 , , , , , , the respective x- and y-components of the vertices , , of
 an acute triangle
 outputs
 , , , , , , , , , the vertices of the triangles produced in one
 iteration of the Sierpiński Pedal Process
 do use Algorithm 1 to reorganize the points
 for ∈ , , ,
 let = cos − sinsin cos − with θ such that side will be
 horizontal
 for ∈ , , ,
 for ∈ 1,2,3 ,
 Dilate: let = 0

0
 Reflect: let = 1 − 22 − 1 ′
 Rotate: let = cos − sin

sin cos , where is the angle to rotate
 the triangle to the correct position
 Translate: let = + , where , translate the triangle to the
 proper vertex on the initial triangle
 let = cos(−) − sin(−)

sin(−) cos(−) +
 return , , , , , , , ,

11

Due to the order of the order of the vertices in the output form Algorithm 1, the triangle
should now be in the first quadrant and an acute angle is relatively easy to find by

= tan − −
− .

With horizontal, the vertices of the “bottom left” triangle in the Sierpiński Pedal
Process do not need to be rotated, and the rotations for the other vertices are easier to
visualize and to determine. The remaining steps are repeated three times to make the
three dilated triangles from the Sierpiński Pedal Process. The algorithm dilates the
triangle by multiplying each vertex by a dilation matrix with a dilation factor . is
the ratio of a side of the resulting to the side of an initial triangle which, according to
Ding and colleagues can be found by

= cos()
where angle is the measure of the angle on the initial triangle (, ,) to which the
dilated triangle will eventually be translated. The algorithm reflects the points about the
bisector of angle where the slope of the bisector is . To find , use the fact that
tan is the slope of a line that is degrees/radians counterclockwise from the positive x-
axis. By the tangent difference identity

tan(−) = tan − tan
1 + tan tan

the tangent of an angle between two lines with slopes and , respectively, is equal
to

−
1 + .

Thus, the bisector will have a slope that satisfies

12

−
1 + = −

1 +

where , are the slopes of the intersecting lines or, in this case, the sides of the
triangle. Because the algorithm makes horizontal, = 0, and the equation becomes

= −
1 + .

According to Andrilli and Hecker, the vertices can then be reflected by the matrix
operation shown in Algorithm 2 because the sides of the triangle are part of lines that
pass through the origin. Essentially, this operation makes the two sides of the triangle
swap locations. The algorithm then rotates the triangle to match the angle to which it will
be translated. The “bottom left” triangle does not need to be rotated as stated earlier.
The “top” triangle must be rotated − radians and the “bottom right” triangle must be
rotated − radians. The algorithm then subtracts the coordinates of the vertex (of the
dilated triangle) which will be matched to a vertex on the original triangle and adds the
coordinates of the proper vertex on the initial triangle. In the algorithm, this is shown as
a net matrix addition of . At this point, the angle associated with the vertex of the
dilated triangle that was just translated should equal the angle associated with the vertex
to which the triangle was moved. The sides of the dilated triangle should also line up
with the sides of the initial triangle. At the very end, the list of coordinates is returned as
the nine vertices of the dilated triangles in matrix form.

13

 Algorithm 3 enforces iterations of the Sierpiński Pedal Process. It uses Algorithm 2
to produce one iteration, then calls upon itself to perform the Sierpiński Pedal Process on
the generated triangles while decrementing the number of iterations. The decrementation
ensures that the process will terminate and not perform an infinite loop. The algorithm
returns a list of lists of points and iteration levels.

Algorithm 3
algorithm SPT_Matrix
 inputs
 , , , , , , the respective x- and y-components of the vertices , , of
 an acute triangle
 , the number of iterations
 outputs coordinates for the triangles in the next iteration of the Sierpiński Pedal Process
 do
 use Algorithm 2 to find , , , , , , , ,
 let be the list of these vertices and assign them level .
 if − 1 > 0,
 use Algorithm 3 on , , with iteration number − 1 and
 concatenate the list to
 use Algorithm 3 on , , with iteration number − 1 and
 concatenate the list to
 use Algorithm 3 on , , with iteration number − 1 and
 concatenate the list to
 return

Algorithm 4
algorithm SPT_Graph
 inputs
 , , , , , , the respective x- and y-components of the vertices , , of
 an acute triangle
 , the number of iterations
 outputs
 a graph of the Sierpiński Pedal Triangle with iterations
 do
 use Algorithm 3 to produce a list of lists
 let be an empty graph
 for every list of coordinates ∈ ,
 if the level of iteration (the last entry in) is 1,
 then add the triangle with those vertices to the graph
 return

14

 Algorithm 4 sifts through the list of lists produced from Algorithm 3 and produces a
graph that only includes the triangles with iteration level 1. These triangles should be the
smallest triangles produced from the Sierpiński Pedal Process so no triangles should
overlap or cover each other on the graph.

Discussion
 Algorithm 2 is named Pedal_Triangle_Matrix_3 because I created two previous
versions. The first version required the computer to compute exact values for the
vertices. With multiple instances of trigonometric functions and the introduction of ,
the computer attempted to keep track of all of the values exactly and the program was
very slow. In combination with Algorithm 3, the slow speed compounded over many
uses of Algorithm 2, and the graphs took many hours, especially for more than three
iterations. The second version rounded results to several decimal places, losing a small
amount of accuracy but exponentially increasing the speed of the program. However,
this version retained some redundancies in calculation, and so this third version replaced
some of the calculations using simpler equations from Ding and colleagues’ work. The
entire program is relatively quick and is reasonably accurate for small numbers of
iterations. The order of input for the vertices does not affect the process, as desired.
 If the given triangle is acute, no operations involve division by zero or other
inconsistencies, and the algorithms correctly execute and produce an appropriate graph.
However, there are no safeguards to ensure that the triangle is acute. So, if the entered
vertices form a right triangle or an obtuse triangle, the program does not properly
execute. A graph may be produced, but the triangles do not form a picture with any
significance or meaning. Additionally, it is recommended that the vertices’ coordinates

15

are entered with decimal points, even if the numbers do not require them, to safeguard
against the program trying to use exact numbers. Although the program is relatively
quick, the IFS is generally more complicated than simply calculating the vertices of the
pedal triangle and removing the pedal triangle.
 The computer code used in SAGE for these algorithms can be found in the Appendix.

16

Chapter 3: Music Composition
Methods

 Analyze the matrix IFS of the Sierpiński Triangle and SPT for applications to music
composition. Also analyze the properties, such as the relevant isometries, of the
Sierpiński Triangle and SPT themselves.

Results
 Initially, I created a process of composition that combined the L-System with the
Sierpiński Triangle, shown in Figure 3.1. The idea was to arrange three notes into the
configuration of a triangle, then create an inner triangle like in the original Sierpiński
Process. However, I had difficulty creating rules for choosing notes in this method. The
most promising version started with the three notes of a tonic chord in a given key. Then

the inner notes were chosen as notes that could “appropriately” connect the vertices on
that side. A random vertex was chosen and the process was performed again on that

Figure 3.1

 Sierpiński L-System on a C maj. tonic chord

17

triangle. However, this did not prove very effective. So I turned to the Sierpiński Pedal
Triangle. Although the matrix IFS is more complicated than other methods, it did
emphasize how the initial triangle is related to the dilated triangles through reflections
and rotations. To incorporate this idea and mimic the SPT itself, I modified the new
Sierpiński L-System by beginning with three chosen notes, then making an interior pedal
triangle. This meant the foot of altitude from each vertex would create the same vertex
note name, as shown in Figure 3.2. Iterating the process on the three dilated triangles
produces more reflections and rotations. I decided to use the three starting notes as a
three note pattern, read left-to right as E-G-F. Then, after performing the Sierpiński
Pedal Process, any other permutation of the three note pattern present in the L-System

could also be used. In fact, after two iterations, all possible permutations of notes are
available. Additionally, sharps or flats can be added to the pattern, depending on the key
of the music and the intended effect. For the actual composition of music, the idea is to
spread the permutations of the three-note pattern throughout a piece at various levels.
“Various levels” refers to having the pattern occur in different parts at different times,
across multiple parts at the same time, as part of the chord structure, and other
techniques. The intent is to mimic the self-similarity of the SPT. Then between these
patterns, compose the rest of the music using musicality and the rules of music theory.

Figure 3.2

 Sierpiński Pedal L-System on E-G-F

18

The musicality gives the composer freedom to produce music with desired effects,
feelings, and sounds, while the music theory gives some constraints on this freedom.
However, for my purposes, I allowed for some instances of musicality to supersede music
theory if there was a discrepancy. The impetus behind this decision is that at least one
work produced from this project is to be performed by my tuba quartet Sort of Voce. As
such, the music needed to be interesting to play and hear in addition to interesting to
compose and analyze. Furthermore, this situation dictated that at least one work be in
four parts, for two tubas and two euphoniums, all of which are in bass clef. The musical
work located in the Appendix, titled Sierpiński Pedal Quartet is the result of this method
under these conditions.

Discussion
 The Sierpiński Pedal Quartet is divided into three movements and is based on the E-
G-F pattern. The first movement, titled Energy, is in the key of Eb maj. It utilizes the
permutations of the three-note pattern to create quick, moving lines that are full of vigor.
The focus on the movement conveys an energetic feel, rather than a focus on chord
structure to produce harmonious progressions. As a result, many of the phrases primarily
use only three chords, such as I (Eb maj.), IV (Ab maj.), and V (Bb maj.). However, the
vast majority of the music is euphonious, rather than many clashing lines of notes.
 Energy begins with a Euphonium 2 solo explicitly using the original E-G-F pattern,
and in measures 5-16, the other instrument parts are added in layers. Measures 17-28
introduce the main theme of the piece in the Euphonium 1 part. Euphonium 2 and Tuba 1
utilize straight eighth notes to produce the feeling of movement throughout the phrase
with a short break from eighth notes in measure 24 so that the players can breathe. Tuba

19

2 uses a slightly syncopated rhythm that is popular in pop music to generate an even
greater feeling of motion. The phrase is essentially repeated in measures 29-40 but with a
countermelody in Tuba 1. At measure 41, the movement enters into a bridge-like section
which augments the instrument parts from measures 1-16 and adds a more rhythmic
aspect in Euphonium 1. Beginning at measure 49, Euphonium 1, Euphonium 2, and Tuba
2 essentially perform the same overall division of eighth notes (dotted quarter note +
dotted quarter note + quarter note) every other measure, but in each division, Euphonium
1 or Euphonium 2 (or both) play a grouping of eighth notes, creating a cascade effect.
Tuba 1 plays straight eighth notes similar to measures 17-28 while the other parts use the
division described previously. Then when the other parts have a whole note, Tuba 1
interjects with the E-G-F pattern or a similar pattern, continuing the motion. Measure 57
reverts back to the last four measures of the theme (e.g. measures 25-28) but with a
Euphonium 1 harmony line. All parts are essentially in unison rhythm in measures 61-
65, accenting the E-G-F pattern with harmonies. Measures 66-77 are a restatement of the
theme from measure 17-28. Measures 78-89 also use the theme. However, the tuba parts
wait a measure to come in with an arpeggio-like figure and also introduce different
chords than the other theme phrases. Then the tubas, in unison rhythm, accompany the
Euphonium 1 part beginning in measure 82. During all of this, Euphonium 2 performs
the E-G-F pattern and rhythm from the beginning as straight eighth notes, again keeping
the momentum of the piece going. At measure 86, Tuba 1 takes over this line while
Euphonium 2 plays a harmony line in unison rhythm. Tuba 2 plays a harmony line to the
theme in Euphonium 1. Then measure 90 begins the closing section. The euphoniums
trade sixteenth note runs, maintaining the energy of the piece. The tuba parts begin with

20

four quarter notes, then Tuba 1 switches to a three-eighth-note-pattern in the next
measure, and Tuba 2 changes to a two-eighth-note-pattern, intended to make the ending
feel like it is speeding up without actually changing tempo. All parts play an eighth note
run in octaves in measure 93. In the next measure, Euphonium 1 and Tuba 1 progress to
the next note in the run (Bb) while Euphonium 2 and Tuba 2 delay this note with one E-
G-F pattern from the introduction. Then all parts end on a tonic Eb major chord on beat
four of the last measure.
 The second movement is titled Grief and exhibits vignettes of some stages of grief a
person might experience after a traumatic event. It is broken into three sections,
mimicking the overall structure of the whole work. The first section represents the
melancholy stage of grief, and so it is in the key of E min. It contains gloomy, flowing
lines, reflecting the person’s dejected spirit while still maintaining an appearance of
control. The middle section, still in E min, features much more dissonant harmonies,
polyrhythm, and meter changes to convey a growing anger and intensity. This section
represents anger building in the victim as they fight the reality of the traumatic
experience until he/she finally loses control and explodes. The final section represents
the person finally facing their internal struggle with the traumatic experience, eventually
coming to an acceptance of reality and triumphing over grief. The section begins with
quiet solo melodic lines that harken back to the melancholy attitude of the first section.
Then it transitions into the key of G maj. and builds back intensity, not of anger, but of
hope. After reaching the climax of this accumulation of intensity, the piece gradually
softens and ends in a sweet whisper.

21

 In measures 1-8 of Grief, the instrument parts have staggered entrances that result in
dissonance between the three notes E, F#, and G. The staggered entrances convey the
feeling of loneliness of the victim while the dissonance represents the pain of grief. At
the end of each short phrase, the dissonance partially resolves, representing the
juxtaposition of the victim’s collected appearance with his/her interior aching. Beginning
in measure 9, the tuba parts form the accompaniment for the forthcoming euphonium
melodic material. They maintain the pattern of Tuba 2 downbeat with Tuba 1 eighth
notes on beats two and three until measure 30 to keep a moving, flowing feeling that is
slower and more lyrical than in Energy. Euphonium 2 begins the melodic material in
measure 11, and Euphonium 1 takes the mantle in measure 17 while Euphonium 2
provides a harmony. Between each phrase of melody is a measure of rest in the
euphonium parts intended to maintain the isolated feeling introduced in the first
measures. Permutations of the E-G-F# pattern can be readily identified in the melodic
material. Tuba 1 picks up the melody in measure 30 while the other parts provide
accompaniment. The lugubrious feel is carried all the way to measure 45, where a more
intense dissonance emerges, representing the first streak of anger in the victim.
 The middle section begins with the euphonium parts continuing the previous
dissonance in measures 46-47 while Tuba 1 plays an E-G-F# pattern in measure 47.
Beginning in measure 48, the euphonium parts clash with tritone dissonance and
polyrhythm where Euphonium 1 focuses on the dissonant notes and Euphonium 2 plays a
pattern on E-G-F#. The tuba parts play a sinister melody in octaves (and briefly in fifths
in measure 53) allowing the lower voicing to dominate this section and giving it a darker,
angrier tone. In measure 56-57, the tuba parts create a sense of unease by playing the

22

first note of groupings of three sixteenth notes, rather than on the downbeats of the meter.
Meanwhile, the euphonium parts trade sixteenth note runs that are mostly based on thirds
and that somewhat matches the rhythm of the tubas. That is, whenever a euphonium
starts a sixteenth note run, the tubas also play on the euphonium’s starting note. Then in
measure 57, the euphoniums play the sixteenth note run simultaneously a second
(interval) apart from each other, adding more cacophony to the uneasiness of the
measures. Measures 58-59 change the meter to further destabilize the meter, and the
euphonium parts continue to clash with one another. Tuba 1 plays a monothematic line
in measure 60 which can be broken down into four groupings of three sixteenth notes and
a quarter note. The first grouping starts on F#, uses thirds travel up to the beginning Eb of
the next grouping, which uses a second and thirds to reach a G. Once this grouping ends,
the final grouping displays a G-F-E pattern. These groupings reflect the three-note
pattern with the starting notes, use of thirds, and the direct use of the final G-F-E pattern.
The quarter note at the end of the measure with all parts playing functions to inject
intense harmonic dissonance back into the measure. Measures 61-62 function the same
as measures 58-59. Then, in measure 63, the euphoniums return with the sixteenth note
runs from previous measures while Tuba 1 plays a pattern on E-G-F#. By measure 64,
anger has consumed the victim, represented in the driving E-G-F# pattern in Tuba 2. In
measures 64-87, Tuba 2 maintains the same driving pattern while the Tuba 1 part
becomes more detailed with shorter note values to continue increasing the momentum of
the piece. During these phrases, the euphoniums play melodic material that becomes
more dissonant as time progresses. The final build to the climax occurs in measures 88-
91, where the euphoniums accent every fourth beat while the tubas, staggered two beats

23

from the euphoniums, also accent every fourth beat. Tuba 1 also plays an E-G-F# eighth
note pattern while Tuba 2 rests to maintain motion. The climax of anger is reached in
measures 92-97, with a final dissonant chord in measure 95 pushing into measure 96.
Here Tuba 2 gives a final, explosive pedal E to symbolize the last outburst of anger in the
victim, followed by a decay in volume to represent the anger fading away from the
victim. A quick moment of silence between measures 97 and 98 returns the feeling of
isolation and reflection in the victim. Then Euphonium 2 provides a solo melodic line
similar to the melancholy material from measures 11-16, bringing back the lugubrious
tone. This is followed by another short pause and a similar line in Tuba 1 that references
material from measures 30-45. Another short pause, and Euphonium 1 introduces new
material that hints at the key change to G maj. that shortly follows.
 Measure 111 marks the beginning of the victim’s progress of overcoming his/her
grief. Euphonium 1 carries the lyrical melody while the tuba parts focus on using chord
changes to convey the feeling of change and hope. Euphonium 2 joins in on a harmony
line in measure 115, and in measure 118, Euphonium 2 introduces an E-F#-G motif that
will prevail the remaining portion of the piece. This motif uses the same notes that
conveyed pain and anger in the first two sections of Grief, but now it intends to inspire
positive feelings. This represents the internal change within the victim as he/she
transitions from sadness and ire to a more positive outlook. In measures 119-130, the
euphonium parts switch roles approximately every four measures, one playing the
melody and the other playing the motif, so that the players may catch their breath.
Measures 119-122 rebuild the intensity from the middle angry section, but this time the
intensity is not found in anger, but in hope and strength. In measures 123-130, the victim

24

has overcome his/her grief and finds the courage to carry on. The euphoniums play the
motif and melody while the tubas provide accompaniment. Tuba 1 joins the melodic
material as a harmony line beginning in measure 126. In measures 131-136, the
instrument parts retain some dissonance, but now there is more beauty than pain in these
sonorities. This represents the victim looking back on the traumatic experience and
his/her recent grief with the knowledge that he/she has triumphed over the situation,
becoming stronger for it. During this phrase, the Euphonium 1 continues playing the
melody from the preceding measures while Euphonium 2 provides a countermelody
every other measure. A decay in volume in measure 136 brings all instrument parts to
tender whisper for measure 137 to the end, which represents the victim reaching the end
of the stages of grief.
 The final movement of the work, in F min., is titled Funk-ish. It incorporates blues
scales and syncopated rhythms to create a funk-like groove throughout. In general, the
tubas lay down a bass line with some embellishment while the euphoniums provide the
melody and harmony. For some sections, however, no particular part has a “melody,” but
instead, the ensemble grooves together as one single unit. That is, every part is of equal
“importance” melodically and harmonically. The focus of this movement is to create
music where the audience feels the urge to tap their feet or bob their heads to the music.
 The first four measures of the movement are introductory material. Measures 1 and 3
have an F in octaves for the first two eighth notes, while measures 2 and 4 have the F-Gb-
Eb pattern as the notes distributed across all four parts for the first two eight notes. Tuba
1 plays for the remaining beats in the first two measures, introducing the rhythm and
theme in measure 2 that will occur at the end of every main phrase for the rest of the

25

movement. Euphonium 1 solos in measure 3 based on the Gb-F-Eb pattern, and in
measure 4, Euphonium 2 and Tuba 2 carry the ensemble into measure 5. In measures 5-
8, Tuba 2 provides a bass line partially based on the F-Gb-Eb pattern while Tuba 1
focuses on the upbeats. Measure 9 begins the first non-introductory section. For
measures 9-12, Tuba 2 continues with a similar bass line as before while Euphonium 2
plays a rhythmic melody. Euphonium 1 and Tuba 1enter in layers for the last two
measures. In measures 13-16, Tuba 2 focuses on playing a C to give the feeling of being
on a dominant, rather than tonic, chord. Euphonium 1 takes the melody, and Tuba 1
plays upbeats. Euphonium 2 joins Euphonium 2 as harmony in measure 15, and in
measure 16, the Euphoniums play two sixteenth notes on alternating eighth note beats
(Euph. 1 on the first eight note, Euph. 2 on the second eighth note, etc.) so that sixteenth
notes are always being played. This builds the intensity going into measure 17 where the
upper three instruments play a staggered F-Bb-Cb-Eb theme that reoccurs throughout the
piece. In measure 18, the upper three voices play a harmonized version of the line from
the Tuba 1 part in measure 2. During these two measures, Tuba 2 plays the F-F-Gb-Eb
pattern in quarter notes.
 The next phrase, beginning in measure 19, is one of the sections that focuses less on
melodic material and more on the ensemble grooving together. In measures 19-22, the
groove is generally created by the tubas playing the first two eighth notes with the
euphoniums playing a quarter note on beat 2. Then the tubas play a bass rhythm in
tandem during the remaining two beats. The tubas enter a sixteenth note apart from each
other in fifths to mimic an electric bass playing on two different strings. The exception is
measure 20, where the tubas play a different funk line in octaves. The F-Gb-Eb pattern is

26

found in these measures with the F in the tuba parts on beat one and the Eb and Gb in the
euphonium parts on beat two. Measures 23-26 are similar but focus on the dominant
chord again. In these measures, Tuba 1 plays four sixteenth notes on beat one,
Euphonium 2 plays four sixteenth notes on beat two, and Euphonium 1 plays a sixteenth
note run in the remaining beats. The sixteenth notes in Tuba 1 focus on a G, and Tuba 2
plays Eb and F in beats three and four, forming a G-Eb-F pattern. Measures 27-30
resemble measures 19-22 but with Tuba 1 playing the F-Bb-Cb-Eb theme on beat one, and
the euphoniums playing sixteenth notes on beats three and four. Measures 31-32 mimic
measures 17-18 but with a modified Tuba 2 resembling the bass material from measures
19-30.
 The next phrase in measures 33-46 follows the same general form as the previous
phrase with a section in F, a section in Bb instead of C, another section in F, and the
closing two measures. It maintains constant sixteenth notes scattered throughout the
Euphonium 1, Euphonium 2, and Tuba 2 parts. In measures 33-36, Tuba 1 provides the
basic bass line while the other parts provide the constant sixteenth notes. Tuba 2 picks up
the bass line in measure 37 while the euphonium parts maintain the sixteenth notes;
Euphonium 2 plays two sixteenth notes, then Euphonium 1 plays two sixteenth notes, and
they continue alternating. Tuba 1 contrasts the quick sixteenth notes with a melodic line
made of longer note values, namely half notes and quarter notes. This melody also
contains instances of the F-Eb-Gb pattern. In measures 41-44, Tuba 1 continues the
melody and Tuba 2 continues the bass line. The euphonium parts play the F-Bb-Cb-Eb
pattern as sixteenth notes in a general arch shape. That is, the parts follow the pattern
going up in pitch the first two beats of each measure, and follow the pattern down the last

27

two beats. However, in measure 44, the euphoniums mimic the material from measures
33-36 to build intensity going into the concluding two measures of the phrase. Again the
last two measures resemble measures 17-18 with a modified bass line.
 Measure 47 marks the final phrase of the movement. The euphonium parts play a
rhythmic pattern based on a repetition of an eighth note followed by a sixteenth note with
the Euphonium 1 part containing an F-Eb-Gb pattern. The tubas play F in octaves as two
strong eighth notes on beat one of each measure, then fill in the rest of the measure while
the euphoniums rest. Tuba 1 plays the F-Bb-Cb-Eb pattern on beat four. At measure 51,
the euphoniums switch parts, and the tubas echo in fifths the pattern in the euphoniums.
Tuba 2 echoes the pattern three times: the first beginning on Eb, the second on Gb, and
the third on F. This forms an Eb-Gb- F pattern across the three measures. The final
measure follows the form of the other phrases and resembles measure 18.
 The overall structure of the movements also reflects the three-note pattern. Energy is
in the key of Eb maj., Grief is in E min./G maj., and Funk-ish is in F min. This resembles
Figure 3.2 in that the triangle on the E vertex is the largest, so most of the musical work
is in Eb maj. or E min. The next largest triangle is on the F vertex, so F min. covers the
next largest section of the work. Finally, the triangle on the G vertex is smallest, so the
smallest portion of the work is in G maj. All of the movements use similar permutations
of E-G-F from the Sierpiński Pedal L-System at various levels of the music, but the
effects created by these permutations vastly differ from each other between the individual
movements.

28

Bibliography

1. Andrilli, S. and Hecker, D (2016). Computer Graphics. Elementary Linear
Algebra. Elsevier Inc.

2. Devaney, R. L. (1995, April). The Sierpinski Triangle. Retrieved from Boston
University, http://math.bu.edu/DYSYS/chaos-game/node2.html.

3. Ding, J., Hitt, L. R., Wang, B., & Zhang, X. Sierpinski Pedal Triangle.
4. Hazard, C., Johnson, D., & Kimport, C. (1999). Fractal Music. Retrieved from

 http://www.tursiops.cc/fm/.
5. Lasota, A. & Mackey, M. C. (1994). Iterated Function Systems and Fractals.

 Chaos, fractals, and noise (2nd ed.). New York: Springer-Verlag New York,
 Inc.

6. Peitgen, H., Jürgens, H., & Saupe, D. (2004). The Backbone of Fractals.
 Chaos and fractals: New frontiers of science (2nd ed.). New York: Springer-
 Verlag,New York, Inc.

29

Appendices
Appendix A: SAGE Codes

Algorithm 1: redo_points

def redo_points(a1,a2,b1,b2,c1,c2):

 if a2 < b2 and a2 < c2:

 if c1 < b1:

 A = matrix([[a1],[a2]])

 B = matrix([[b1],[b2]])

 C = matrix([[c1],[c2]])

 elif b1 < c1:

 A = matrix([[a1],[a2]])

 B = matrix([[c1],[c2]])

 C = matrix([[b1],[b2]])

 elif b1 == c1:

 if b1 < a1:

 if b2 < c2:

 A = matrix([[a1],[a2]])

 B = matrix([[c1],[c2]])

 C = matrix([[b1],[b2]])

 else:

 A = matrix([[a1],[a2]])

 B = matrix([[b1],[b2]])

 C = matrix([[c1],[c2]])

 else:

 if c2 < b2:

 A = matrix([[a1],[a2]])

 B = matrix([[c1],[c2]])

 C = matrix([[b1],[b2]])

 else:

 A = matrix([[a1],[a2]])

 B = matrix([[b1],[b2]])

 C = matrix([[c1],[c2]])

 elif a2 == b2 and a2 < c2:

 if a1 < b1:

 A = matrix([[a1],[a2]])

 B = matrix([[b1],[b2]])

 C = matrix([[c1],[c2]])

 else:

 A = matrix([[b1],[b2]])

 B = matrix([[a1],[a2]])

 C = matrix([[c1],[c2]])

 elif a2 == c2 and a2 < b2:

 if a1 < c1:

30

 A = matrix([[a1],[a2]])

 B = matrix([[c1],[c2]])

 C = matrix([[b1],[b2]])

 else:

 A = matrix([[c1],[c2]])

 B = matrix([[a1],[a2]])

 C = matrix([[b1],[b2]])

 elif b2 < a2 and b2 < c2:

 if c1 < a1:

 A = matrix([[b1],[b2]])

 B = matrix([[a1],[a2]])

 C = matrix([[c1],[c2]])

 elif a1 < c1:

 A = matrix([[b1],[b2]])

 B = matrix([[c1],[c2]])

 C = matrix([[a1],[a2]])

 elif a1 == c1:

 if a1 < b1:

 if a2 < c2:

 A = matrix([[b1],[b2]])

 B = matrix([[c1],[c2]])

 C = matrix([[a1],[a2]])

 else:

 A = matrix([[b1],[b2]])

 B = matrix([[a1],[a2]])

 C = matrix([[c1],[c2]])

 else:

 if a2 < c2:

 A = matrix([[b1],[b2]])

 B = matrix([[a1],[a2]])

 C = matrix([[c1],[c2]])

 else:

 A = matrix([[b1],[b2]])

 B = matrix([[c1],[c2]])

 C = matrix([[a1],[a2]])

 elif b2 == c2 and b2 < a2:

 if b1 < c1:

 A = matrix([[b1],[b2]])

 B = matrix([[c1],[c2]])

 C = matrix([[a1],[a2]])

 else:

 A = matrix([[c1],[c2]])

 B = matrix([[b1],[b2]])

 C = matrix([[a1],[a2]])

 elif c2 < a2 and c2 < b2:

 if a1 < b1:

 A = matrix([[c1],[c2]])

 B = matrix([[b1],[b2]])

 C = matrix([[a1],[a2]])

31

 elif b1 < a1:

 A = matrix([[c1],[c2]])

 B = matrix([[a1],[a2]])

 C = matrix([[b1],[b2]])

 elif a1 == b1:

 if a1 < c1:

 if a2 < b2:

 A = matrix([[c1],[c2]])

 B = matrix([[b1],[b2]])

 C = matrix([[a1],[a2]])

 else:

 A = matrix([[c1],[c2]])

 B = matrix([[a1],[a2]])

 C = matrix([[b1],[b2]])

 if c1 < a1:

 if a2 < b2:

 A = matrix([[c1],[c2]])

 B = matrix([[a1],[a2]])

 C = matrix([[b1],[b2]])

 elif b2 < a2:

 A = matrix([[c1],[c2]])

 B = matrix([[b1],[b2]])

 C = matrix([[a1],[a2]])

 return A,B,C

 Algorithm 2: Pedal_Triangle_Matrix_3

def Pedal_Triangle_Matrix_3(a1,a2,b1,b2,c1,c2):

 A0,B0,C0 = redo_points(a1,a2,b1,b2,c1,c2)

 j = A0[0,0]

 k = A0[1,0]

 B0 = matrix([[B0[0,0]-A0[0,0]],[B0[1,0]-A0[1,0]]])

 C0 = matrix([[C0[0,0]-A0[0,0]],[C0[1,0]-A0[1,0]]])

 A0 = matrix([[A0[0,0]-A0[0,0]],[A0[1,0]-A0[1,0]]])

 rotation = arctan((B0[1,0]-A0[1,0])/(B0[0,0]-A0[0,0]))

 #R(theta) = matrix([[cos(theta),-sin(theta)],[sin(theta),cos(theta)]])

 A0 = matrix([[cos(-rotation),-sin(-rotation)],[sin(-rotation),cos(-rotation)]])*A0

 B0 = matrix([[cos(-rotation),-sin(-rotation)],[sin(-rotation),cos(-rotation)]])*B0

 C0 = matrix([[cos(-rotation),-sin(-rotation)],[sin(-rotation),cos(-rotation)]])*C0

 #return show(polygon([(A0[0,0],A0[1,0]),(B0[0,0],B0[1,0]),(C0[0,0],C0[1,0])]),

 #aspect_ratio = 1)

32

 m1 = ((B0[1,0]-C0[1,0])/(B0[0,0]-C0[0,0])) #for finding A1 (of pedal triangle)

 m2 = ((C0[1,0]-A0[1,0])/(C0[0,0]-A0[0,0])) #for finding B1

 #m3 should be zero since we rotated the triangle

 a0 = sqrt((B0[0,0]*1.-C0[0,0])**2+(B0[1,0]*1.-C0[1,0])**2) #distance from B0 to C0

 b0 = sqrt((A0[0,0]*1.-C0[0,0])**2+(A0[1,0]*1.-C0[1,0])**2) #distance from A0 to C0

 c0 = sqrt((A0[0,0]*1.-B0[0,0])**2+(A0[1,0]*1.0-B0[1,0])**2)#distance from A0 to B0

 theta_A = arccos((a0**2 - b0**2 - c0**2)/(-2*b0*c0)) #the measure of angle A

 theta_B = arccos((b0**2 - a0**2 - c0**2)/(-2*a0*c0)) #the measure of angle B

 theta_C = arccos((c0**2 - a0**2 - b0**2)/(-2*a0*b0)) #the measure of angle C

 a_1 = a0*cos(theta_A)

 b_1 = b0*cos(theta_B)

 c_1 = c0*cos(theta_C)

 #producing the bottom left triangle

 #We shrink the original triangle

 Shrink1 = matrix([[a_1/a0, 0],[0,a_1/a0]])

 A_1 = Shrink1*A0 # this should result in [[0],[0]]

 A_2 = Shrink1*B0

 A_3 = Shrink1*C0

 #We reflect the triangle about a line First we need to find the slope of the line

 #about which we will reflect the triangle

 k1 = 0. #the slope between A0 and B0

 k3 = m2 #the slope between A0 and C0

 k2 = var('k2')

 sols3 = solve([(k2-k1)/(1.+k2*k1) == (k3-k2)/(1.+k3*k2)],k2)

 k2 = round(sols3[1].right_hand_side(),10)

 M = 1/(1. +k2**2)*matrix([[1-k2**2,2*k2],[2*k2,k2**2 -1]])

 A_1 = M*A_1

 A_2 = M*A_2

 A_3 = M*A_3

 #return show(polygon([(A0[0,0],A0[1,0]),(B0[0,0],B0[1,0]),(C0[0,0],C0[1,0])])+

 #polygon([(A_1[0,0],A_1[1,0]),(A_2[0,0],A_2[1,0]),(A_3[0,0],A_3[1,0])], color =

 #'red',zorder = 5), aspect_ratio = 1) due to the way we repositioned the original

 #triangle,this smaller triangle is done

 #producing the bottom right triangle

 #Shrink

 Shrink2 = matrix([[b_1/b0, 0],[0,b_1/b0]])

 B_1 = Shrink2*A0 # this should result in [[0],[0]]

 B_2 = Shrink2*B0

 B_3 = Shrink2*C0

33

 #Reflect

 B_1 = M*B_1

 B_2 = M*B_2

 B_3 = M*B_3

 #return show(polygon([(A0[0,0],A0[1,0]),(B0[0,0],B0[1,0]),(C0[0,0],C0[1,0])])+

 #polygon([(B_1[0,0],B_1[1,0]),(B_2[0,0],B_2[1,0]),(B_3[0,0],B_3[1,0])], color =

 #'red',zorder = 5), aspect_ratio = 1)

 #Now we need to rotate the triangle to the correct position

 B_1 = matrix([[round(cos(theta_C - pi),10),round(-sin(theta_C –

 pi),10)],[round(sin(theta_C - pi),10),round(cos(theta_C - pi),10)]])*B_1

 B_2 =matrix([[round(cos(theta_C - pi),10),round(-sin(theta_C –

 pi),10)],[round(sin(theta_C - pi),10),round(cos(theta_C - pi),10)]])*B_2

 B_3 = matrix([[round(cos(theta_C - pi),10),round(-sin(theta_C –

 pi),10)],[round(sin(theta_C - pi),10),round(cos(theta_C - pi),10)]])*B_3

 #Now we translate the triangle to the correct position

 B_1 = B_1 - B_2 + B0

 B_3 = B_3 - B_2 + B0

 B_2 = B_2 - B_2 + B0

 #return show(polygon([(A0[0,0],A0[1,0]),(B0[0,0],B0[1,0]),(C0[0,0],C0[1,0])])+

 #polygon([(B_1[0,0],B_1[1,0]),(B_2[0,0],B_2[1,0]),(B_3[0,0],B_3[1,0])], color =,

 #'red',zorder = 5), aspect_ratio = 1)

 #producing the top triangle

 #Shrink

 Shrink3 = matrix([[c_1/c0, 0],[0,c_1/c0]])

 C_1 = Shrink3*A0 # this should result in [[0],[0]]

 C_2 = Shrink3*B0

 C_3 = Shrink3*C0

 #Reflect

 C_1 = M*C_1

 C_2 = M*C_2

 C_3 = M*C_3

 #return show(polygon([(A0[0,0],A0[1,0]),(B0[0,0],B0[1,0]),(C0[0,0],C0[1,0])])+

 #polygon([(B_1[0,0],B_1[1,0]),(B_2[0,0],B_2[1,0]),(B_3[0,0],B_3[1,0])], color =

 #'red',zorder = 5), aspect_ratio = 1)

 #Now we need to rotate the triangle to the correct position

 C_1 = matrix([[round(cos(pi - theta_B),10),-round(sin(pi - theta_B),10)],

 [round(sin(pi - theta_B),10),round(cos(pi - theta_B),10)]])*C_1

 C_2 = matrix([[round(cos(pi - theta_B),10),-round(sin(pi - theta_B),10)],

 [round(sin(pi - theta_B),10),round(cos(pi - theta_B),10)]])*C_2

 C_3 = matrix([[round(cos(pi - theta_B),10),-round(sin(pi - theta_B),10)],

34

 [round(sin(pi - theta_B),10),round(cos(pi - theta_B),10)]])*C_3

 #Now we translate the triangle to the correct position

 C_1 = C_1 - C_3 + C0

 C_2 = C_2 - C_3 + C0

 C_3 = C_3 - C_3 + C0

 #return show(polygon([(A0[0,0],A0[1,0]),(B0[0,0],B0[1,0]),(C0[0,0],C0[1,0])])+

 #polygon([(C_1[0,0],C_1[1,0]),(C_2[0,0],C_2[1,0]),(C_3[0,0],C_3[1,0])], color =

 #'red',zorder = 5), aspect_ratio = 1)

 #rotate all points to the original triangle's position

 A_1 = matrix([[cos(rotation),-sin(rotation)],[sin(rotation),cos(rotation)]])*A_1

 A_2 = matrix([[cos(rotation),-sin(rotation)],[sin(rotation),cos(rotation)]])*A_2

 A_3 = matrix([[cos(rotation),-sin(rotation)],[sin(rotation),cos(rotation)]])*A_3

 B_1 = matrix([[cos(rotation),-sin(rotation)],[sin(rotation),cos(rotation)]])*B_1

 B_2 = matrix([[cos(rotation),-sin(rotation)],[sin(rotation),cos(rotation)]])*B_2

 B_3 = matrix([[cos(rotation),-sin(rotation)],[sin(rotation),cos(rotation)]])*B_3

 C_1 = matrix([[cos(rotation),-sin(rotation)],[sin(rotation),cos(rotation)]])*C_1

 C_2 = matrix([[cos(rotation),-sin(rotation)],[sin(rotation),cos(rotation)]])*C_2

 C_3 = matrix([[cos(rotation),-sin(rotation)],[sin(rotation),cos(rotation)]])*C_3

 #translate triangles to position of the original

 A = matrix([[j],[k]])

 A_1 = A_1 + A

 A_2 = A_2 + A

 A_3 = A_3 + A

 B_1 = B_1 + A

 B_2 = B_2 + A

 B_3 = B_3 + A

 C_1 = C_1 + A

 C_2 = C_2 + A

 C_3 = C_3 + A

 #return show(polygon([(A_1[0,0],A_1[1,0]),(A_2[0,0],A_2[1,0]),(A_3[0,0],

 # A_3[1,0])], color = 'black') +polygon([(B_1[0,0],B_1[1,0]),(B_2[0,0],B_2[1,0]),

 #(B_3[0,0],B_3[1,0])],color = 'black')\

 #+ polygon([(C_1[0,0],C_1[1,0]),(C_2[0,0],C_2[1,0]),(C_3[0,0],C_3[1,0])], color =

 #'black'), aspect_ratio = 1)

 return A_1, A_2, A_3, B_1, B_2, B_3, C_1, C_2, C_3

Algorithm 3: SPT_Matrix

def SPT_Matrix(a1, a2, b1, b2, c1, c2, level):

 P = Pedal_Triangle_Matrix_3(a1,a2,b1,b2,c1,c2)

 p11 = P[0][0][0]

 p12 = P[0][1][0]

 p21 = P[1][0][0]

 p22 = P[1][1][0]

35

 p31 = P[2][0][0]

 p32 = P[2][1][0]

 p41 = P[3][0][0]

 p42 = P[3][1][0]

 p51 = P[4][0][0]

 p52 = P[4][1][0]

 p61 = P[5][0][0]

 p62 = P[5][1][0]

 p71 = P[6][0][0]

 p72 = P[6][1][0]

 p81 = P[7][0][0]

 p82 = P[7][1][0]

 p91 = P[8][0][0]

 p92 = P[8][1][0]

 #print (p11, p12), (p21, p22), (p31, p32), (p41, p42), (p51, p52), (p61, p62),

 #(p71, p72), (p81, p82), (p91, p92)

 T = [(p11,p12,p21,p22,p31,p32,level),(p41,p42,p51,p52,p61,p62,level),

 (p71,p72,p81,p82,p91,p92,level)]

 if level - 1 > 0:

 print "Processing. ",level

 T += SPT_Matrix(p11,p12,p21,p22,p31,p32,level-1)

 print "Processing.. ",level

 T += SPT_Matrix(p41,p42,p51,p52,p61,p62,level-1)

 print "Processing... ",level

 T += SPT_Matrix(p71,p72,p81,p82,p91,p92,level-1)

 print "Moving to next one"

 return T

Algorithm 4: SPT_Graph

def SPT_Graph(a1,a2,b1,b2,c1,c2,level):

 T = SPT_Matrix(a1,a2,b1,b2,c1,c2,level)

 #print "I have a matrix"

 p = Graphics()

 for P in T:

 if P[6] == 1:

 p += polygon([(P[0],P[1]),(P[2],P[3]),(P[4],P[5])], color = 'black')

 #print "I have a polygon"

 return show(p, aspect_ratio = 1)

36

Appendix B: Example Graphs
SPT_Graph(-1.,0.,1.,1.,1./2., -2., 3)

37

SPT_Graph(0.,0.,1.,0.,1./2., 1., 5)

38

39

SPT_Graph(0.,1./2,1.,0,1., 1., 3)

Appendix C: Sierpiński Pedal Quartet
 The following pages contain the Sierpiński Pedal Quartet. At the beginning of each
movement, the lines of the staff system are labeled with the beginning letter of the
instrument part and the part number (e.g. E 1 = Euphonium 1, T 1 = Tuba 1).

Ebullient! ()

4

Energy
Sam Dent

Score

40

E 1

E 2

T 1

T 2

8

12

13

Energy

41

15

18

Energy

42

21

24

Energy

43

27

29

30

Energy

44

33

36

Energy

45

39

41

cresc.

cresc.

cresc.

43

Energy

46

46

49

Energy

47

52

55

Energy

48

58

61

Energy

49

65

69

Energy

50

72

75

Energy

51

78

81

Energy

52

84

87

Energy

53

90

92

Energy

54

8

11

Grief
Sam Dent

Score

55

E 1

E 2

T 1

T 2

13

18

Grief

56

23

28

30

3

3

Grief

57

33

38

Grief

58

43

47
3 3 3 3

3 3 3

48

Grief

59

49
3 3 3

3 3 3

3

3

51
3 3 3

3 3 3

Grief

60

53
3 3 3

3

3

3 3 3

3

3

55
3 3 3

Grief

61

57

59

Grief

62

62

3

(‰=Œ)

64

3

3

3

3

Grief

63

69

3

3

3

3

3

74

3

3

3

3

3

Grief

64

79

3

3

3

3

cresc.

cresc.

cresc.

cresc.

3

84

3

3

3

3

Grief

65

89

3

3

3

3

95

98

Grief

66

101

107

rit.

cresc.

cresc.

cresc.

111

Grief

67

112

cresc.

117

Grief

68

119
3

3

3

121

3

3

3

Grief

69

123

125

Grief

70

127

129

Grief

71

131

134

3 3

Grief

72

137

rit.

Grief

73

Feel the groove!

3

Funk-ish
Sam Dent

Score

74

E 1

E 2

T 1

T 2

5

8

9

Funk-ish

75

10

12

Funk-ish

76

14

16

Funk-ish

77

18

19

20

Funk-ish

78

22

24

Funk-ish

79

26

cresc.

cresc.

cresc.

cresc.

28

Funk-ish

80

30

32

33

Funk-ish

81

34

36

Funk-ish

82

38

40

Funk-ish

83

42

44

Funk-ish

84

46

cresc.

cresc.

47

 cresc.

 cresc.

48

Funk-ish

85

50

52

Funk-ish

86

53

54

Funk-ish

87

	Applications of the Sierpiński Triangle to Musical Composition
	Recommended Citation

	tmp.1468250398.pdf.JETFo

