
The University of Southern Mississippi The University of Southern Mississippi 

The Aquila Digital Community The Aquila Digital Community 

Honors Theses Honors College 

Spring 5-2013 

Drosophila T-Box Transcription Factor Midline Functions in the Drosophila T-Box Transcription Factor Midline Functions in the 

Notch-Delta Signaling Pathway to Regulate Sensory Organ Notch-Delta Signaling Pathway to Regulate Sensory Organ 

Precursor Cell Fate and Cell Survival and Embryonic Development Precursor Cell Fate and Cell Survival and Embryonic Development 

Profile of Midline, Senseless, and Achaete in the CNS and PNS Profile of Midline, Senseless, and Achaete in the CNS and PNS 

Joseph D. Saucier 
University of Southern Mississippi 

Follow this and additional works at: https://aquila.usm.edu/honors_theses 

 Part of the Life Sciences Commons 

Recommended Citation Recommended Citation 
Saucier, Joseph D., "Drosophila T-Box Transcription Factor Midline Functions in the Notch-Delta Signaling 
Pathway to Regulate Sensory Organ Precursor Cell Fate and Cell Survival and Embryonic Development 
Profile of Midline, Senseless, and Achaete in the CNS and PNS" (2013). Honors Theses. 140. 
https://aquila.usm.edu/honors_theses/140 

This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital 
Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila 
Digital Community. For more information, please contact Joshua.Cromwell@usm.edu. 

https://aquila.usm.edu/
https://aquila.usm.edu/honors_theses
https://aquila.usm.edu/honors_college
https://aquila.usm.edu/honors_theses?utm_source=aquila.usm.edu%2Fhonors_theses%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=aquila.usm.edu%2Fhonors_theses%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/honors_theses/140?utm_source=aquila.usm.edu%2Fhonors_theses%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu


The University of Southern Mississippi 
 
 
 
 
 

Drosophila T-Box Transcription Factor Midline Functions in the Notch-Delta 
Signaling Pathway to Regulate Sensory Organ Precursor Cell Fate and Cell Survival 

and 
Embryonic Development Profile of Midline, Senseless, and Achaete in the CNS and 

PNS 
 
 
 
 
 
 

By 
 

Joseph Saucier 
 
 
 
 
 

A Thesis  
Submitted to the Honors College of  

The University of Southern Mississippi 
in Partial Fulfillment 

of the Requirements for the Degree of 
Bachelor of Science 

in the Department of Biological Sciences 
 
 
 
 
 
 

 
 

May 2013 
 
 
 
 
 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 iii 

Approved By 
 
 
 
 
 

________________________________________ 
Dr. Sandra Leal 

Assistant Professor of Biology  
 
 
 
 
 
 
 
 
 
 
 

________________________________________ 
Dr. Glen Shearer, Chair 

Department of Biological Sciences 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

_______________________________________ 
Dr. David R. Davies, Dean 

Honors College 
 
 
 
 

  



 iv 

Acknowledgements: 

 I would like to thank Dr. Leal for allowing me to perform research in her lab. 

She taught me the importance of research and, with a highly involved approach, 

continuous encouragement, and understanding, made sure that I was comfortable in 

the lab and understood the background of our research at all times. She has helped 

me prepare for a future career and is the definition of a true mentor. I would also 

like to thank Sudeshna Das, a graduate student who I worked very closely with in 

the lab and was really a second mentor to me. Sudeshna aided me in staining 

embryos, data collection, and taking confocal images. It is an honor to be listed as 

second author with Sudeshna on a paper that is currently under revision for 

publication.  

 

 

 

 

 

 

 

 

 

 

 

 



 v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi 

Abstract: 

 The gene mid of Drosophila is a highly conserved gene that codes for a T-box 

transcription factor with similar functionality to its vertebrate homolog Tbx20. Mid 

and Tbx20 are important for their roles in heart and CNS development. Additionally, 

these transcription factors aid in proper eye development but this area of research 

is vastly understudied. This study uses the eye of Drosophila to report that mid and 

its paralog H15 expression aid in the specification of sensory organ precursor (SOP) 

cell fates and cell survival in the pupal eye imaginal disc. Using RNAi interference to 

reduce mid expression resulted in the loss of interommatidial bristles as well as cell 

death due to the misspecification of SOP cells during pupal development. We 

completed genetic studies to place mid in the Notch-Delta genetic pathway because 

it is known to specify SOP cell fates and were able to determine that Mid functions 

downstream of Notch, upstream of the Enhancer of Split (E(Spl)) gene complex, and 

tentatively parallel with Suppressor of Hairless (Su(H)) in the pathway. 

Additionally, mid interactions with extramacrochaete (emc) and Senseless (sens) play 

a role in cell survival. These studies suggest that Mid functions within the Notch-

Delta signaling pathway with a dual role of cell-fate specification and cell survival.  

 Another aspect of this research study was to evaluate the role of Mid in the 

developing central nervous system (CNS) and peripheral nervous system (PNS) of 

Drosophila embryos. Mid expression was compared to the expression of Sens and 

Achaete (Ac), SOP cell markers during various stages of embryonic development. 

Our results show a coordinated co-expression pattern of Sens and Ac with Mid. Sens 

is highly expressed in the PNS of stages prior to stage 12 and then fades. Ac is 
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expressed in the neurons of the CNS and PNS in early stages and continues after 

stage 12, which is when Mid expression begins. Ac is co-expressed with Mid 

beginning in stage 12. Further experiments will be performed using mid-RNAi 

embryos to evaluate if reducing mid expression affects the expression patterns of 

Sens and Ac.  

 This research has clinical applications to further the understanding of 

developmental and neurodegenerative diseases of the CNS, PNS, and eye. 

Additionally, Mid may have a link to the development of cancer, an area of research 

that will be studied in the Leal lab in the future.   
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Introduction: 

 This research study seeks to improve the understanding of genetic 

interactions between the transcription factor gene, midline, and other candidate 

genes that regulate the development of the eye, central nervous system (CNS), and 

peripheral nervous system (PNS) of Drosophila melanogaster, the fruit fly.  

Drosophila melanogaster 

Drosophila melanogaster is a useful model organism for this study because it 

shares 70% similarity with the human genome. The similarity between the 

organisms’ genomes is represented by evolutionarily conserved gene homologues 

within both genomes. While the genes between differing species may not be exactly 

the same, homologous genes share functionality in both species. Thus, 

understanding the function of genes in the fruit fly will help understand the function 

of the homologous genes in humans. In addition, the genome of the fruit fly offers a 

wide range of unique tools that make it a perfect candidate for genetic studies. 

 Drosophila melanogaster was the first species to have the entirety of its 

genome sequenced. The genome of the fruit fly is composed of only four 

chromosomes and has fewer repeating units than larger eukaryotes, which can be 

seen by comparing the genomes of humans and fruit flies. The human genome is 

composed of 23 pairs of chromosomes totaling about 3 billion base pairs. Of these, it 

was found that only 1-2% are genes coding for protein products, while the rest is 

comprised of non-coding DNA (U.S. Department of Energy Genome Programs, 

2012). The smaller genome of Drosophila encodes approximately 13,600 genes. 

(Adams et al., 2000). A large number of genes are contained in a much smaller 
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amount of DNA in fruit flies, since there are fewer non-coding regions of DNA in fruit 

flies than in humans.  

 The generation time of some model organisms including mice is long. The 

time required to complete experiments in mice requires months. In Drosophila, 

however, eggs laid by a female will mature into a full adult stage in about 11 days 

after which the results of an experiment can be seen (Powell, 1997). This is 

especially useful in genetic studies when the function of a gene is unknown because 

it allows a quick assessment of the function of the gene. Additionally, short 

generation time allows for experiments to be repeated and validated over a much 

shorter period of time than what is required in other organisms.  

 Meiosis, the production of eggs and sperm, is a process of cellular division 

that helps produce genetic variance. During meiosis, a phenomenon referred to as 

crossing over occurs where portions of chromosomes exchange genetic material. 

Crossing over allows the combination of many differing sets of chromosomes in 

gametes, ensuring that the genotypes of the parental and offspring genotypes differ. 

In Drosophila melanogaster, however, crossing over does not occur in male 

specimens and occurs in moderation within females (Schug). This is useful in 

genetic studies because it ensures the inheritance of a specific gene, or lack thereof, 

from the male, allowing for the study of a specific gene via mutations when crossed 

with a female of a known genotype.  

T-box Genes 

The expression of genetic characteristics occurs through the processes of 

transcription and translation. Transcription is the conversion of DNA into form that 
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can leave the nucleus, called mRNA. Translation is the process of reading mRNA and 

building proteins; certain sections of DNA that encode for a specific trait are 

referred to as genes. During transcription and translation, these genes are expressed 

with the production of proteins being the end result. 

The T-box transcription factor genes are highly conserved throughout the 

animal kingdom serving a variety of functions in development including “mesoderm 

formation, morphogenetic movements, cell adhesion, cell migration, tissue 

patterning, limb patterning, limb bud outgrowth, and organogenesis (Leal et al., 

2009).” T-box genes are split into families that are further divided into subfamilies. 

In Drosophila melanogaster, there are eight identified T-box genes from four 

different subfamilies (Leal et al., 2009). Although these genes may have varied 

functions, all share a common region known as the T-box. The T-box is a conserved 

sequence involved in protein dimerization and DNA binding (Minguillon and Logan, 

2003).  

The general role of a transcription factor is to bind to another region of DNA 

and either promote or inhibit the transcription of other genes. Therefore, 

transcription factors play an integral role in proper development of different tissues. 

Specifically, T-box genes have been found to play an important role in proper heart 

and forelimb abnormalities in mammals. Mutations in T-box genes may result in 

different diseases, such as Holt-Oram syndrome, which is characterized by heart and 

forelimb abnormalities (Bruneau et al., 2001). Tbx20 is a T-box gene that has been 

highly studied in vertebrates, primarily for its effect on heart development but also 

for its effect on the developing CNS and eye. mid, an equivalent gene in 
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invertebrates, shares a similar function with the Tbx20 gene but is less researched in 

many aspects. Researching whether mid and Tbx20 have parallel functionality in 

many different aspects of developing invertebrates and vertebrates, respectively, 

will lead to a deeper understanding of the genetic pathways involved in heart, eye, 

CNS, and PNS development.  

Role of midline and Tbx20 in Development: Clinical Implications 

 mid and its paralog, H15, are vital to the development of the dorsal vessel 

which is equivalent to the heart in vertebrates. Research showed that mid and H15 

interact in a functionally redundant manner to regulate heart development. The 

complete knockout or los of mid resulted in severe defects of the dorsal vessel, while 

the loss of H15 had no effects on heart development. These studies show that mid 

has a stronger effect on dorsal vessel development than H15  (Miskolczi-McCallum 

et al., 2004).  

 Stennard et al. reported a similar result in vertebrates and determined that 

Tbx20 plays a key role in genetic pathways that lead to cardiac cell specification 

(Stennard et al., 2003). The researchers’ experiments using mice showed that Tbx20 

is expressed in the myocardium and endocardium.  Through physical interactions 

with cardiac specific transcription factors, such as Nkx2-5, GATA4, and GATA5, 

Tbx20 activates the expression of cardiac genes responsible for heart cell 

specification (Stennard et al., 2003). Another research study by Takeuchi et al. 

reiterates that Tbx20 is crucial for heart development. Specifically, Tbx20 is 

important for proper valve formation and mutations in the Tbx20 gene lead to 

congenital heart defects. Additionally, the research found that Tbx20 is necessary for 
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the proper development of motoneurons in developing mouse and chick embryos. 

Motoneurons extend from the CNS and act as a relay system to the organs of the 

body, integrating signals from the brain with responses from organs. The 

researchers found that with a knockdown of Tbx20 expression, there was a lack of 

differentiation into the multiple motoneuron subtypes and a lack of patterning was 

also detected. These defects occurred because Tbx20 was found to interact with Islet 

2 (Isl2) and Hb9 which regulate differentiation and patterning in developing 

motoneurons (Takeuchi et al., 2005).  

 mid was also found to be an important factor for motoneuron development in 

Drosophila melanogaster embryos. In normal embryos, axons develop outwardly 

from the CNS in a ladder-like scaffold and mid is highly expressed in these 

developing axons. However, in embryos where mid is knocked-down, this 

scaffolding pattern is disrupted. It is likely that mid is necessary for the secretion of 

guidance factors that lead the developing axon to its required destination (Liu et al., 

2009).  

 As the mentioned research studies show, there is a distinct similarity 

between the functions of mid and Tbx20 even though the mechanism for their effects 

may differ. The similarities between these genes can have clinical implications that 

will help toward developing therapies for the prevention of heart developmental 

defects in humans and other higher-level vertebrates. Understanding the function of 

these genes will also allow for predicting the chances of developing congenital heart 

diseases, CNS disorders, and specific diseases that affect motor function through the 

use of genetic screening. Genetic screening processes are currently used to detect 
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genetic disorders such as Huntington’s disease, Alzheimer’s disease, and some forms 

of breast cancer. Currently, there is no cure for these diseases. However, it is 

probable that treatment of these diseases could come from understanding the 

nature of the genetic variations that cause them (Risch and Merikangas, 1996).  The 

future of medicine potentially lies in genetic screening and gene therapy. Thus, it is 

important to identify gene mutations that give rise to specific heart, eye, and CNS 

disorders. Before potential treatments are tested on humans, it will be beneficial to 

experiment on model organisms such as the fruit fly and mouse.  

Role of mid in CNS Development 

 Buescher et al. state that “the Drosophila melanogaster ventral nerve cord 

derives from neural progenitor cells called neuroblasts (2006).” Within these 

neuroblasts, the expression of different genes gives rise to neurons that differ from 

one another. midline was found to contribute to the  formation of these neuroblasts 

within the anterior of the ventral nerve cord and is a key factor in the development 

of the CNS (Buescher et al., 2006). Leal et al. found that mid (also known as 

neuromancer 2 or nmr2) and H15 (also known as neuromancer 1 or nmr1) interact 

with even-skipped (eve), a gene that affects the fate of neurons in the developing 

organism to control the specification of these neurons in the CNS (2009). However, 

the specific role of mid in the development of the CNS is understudied. In order to 

place it in a regulatory network guiding CNS development, more research is 

required.   
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Role of mid in PNS Development 

 The peripheral nervous system (PNS) of Drosophila melanogaster is a 

network of neurons that innervate the organs connecting them to the CNS. The 

neurons of the PNS act to relay electrical signals from the CNS to the organs leading 

to a response from the organs. Neurectoderm cells of the fruit fly can either 

differentiate into epidermal cells or neurons (Simpson, 1990). The genetics of the 

developing PNS, however, is vastly understudied with many gaps remaining in the 

genetic model describing it. Witt et al. described a model describing the 

coordination between the senseless (sens) transcription factor gene and another 

gene atonal in the abdominal sensory organ precursors (Witt et al., 2010). While 

these genes are expressed in the abdominal region SOPs, this research thesis found 

that mid is also expressed in the developing neurons, suggesting that it could play a 

role in this genetic pathway. However, the role of mid in the developing neurons of 

the PNS is an area that is completely void of research and one goal of this research is 

to affirm that mid plays a role in the developmental pathway of the PNS.  

Eye Development 

 The compound eye of Drosophila is composed many smaller units called 

ommatidia. Approximately 750 ommatidia combine to create the compound eye and 

each ommatidium is an arrangement of eight photoreceptor cells and 12 accessory 

cells; the complex of these cells that constitute each ommatidium create a hexagonal 

shape with a mechanosensory bristle projecting from each alternative vertex of the 

hexagon (Tomlinson, 1988). There are approximately 450 bristle in each Drosophila 

eye.  
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 The Notch-Delta signaling pathway is a defined regulatory pathway involved 

in eye development. In the Notch-Delta signaling pathway, a sensory organ 

precursor (SOP) is selected from a field of cells depending on its expression of Delta. 

Delta and Notch are transmembrane proteins that act as ligand (Delta signal) and 

receptor (Notch) on neighboring cells. When Delta meets Notch on the outside of a 

cell, it activates an intracellular signaling pathway. SOPs are selected to become 

proneural cells because they express higher levels of Delta on their cell surface than 

neighboring cells. This high level of Delta on the surface of the cell selects it to 

become a proneural cell by inhibiting the surrounding cells, which become 

epidermal cells (Heitzler et al., 1996). The internal cell signaling pathways involve 

the inhibition and activation of many different genes to cause differentiation into 

either an epidermal or SOP proneural cell. One goal of this research was to place mid 

in the Notch-Delta signaling pathway that specifies the fate of SOP cells (Das et al., 

2013). 

Role of midline in Eye Development 

 The role of mid in eye development is highly understudied. The role of its 

vertebrate homolog, Tbx20, in retinal development has been documented in mice. 

Meins et al. found that Tbx20 is expressed in the periphery of the neural retina and 

the optic cup in early staged fetuses (2000). In later stage fetuses, the presence of 

Tbx20 was detected in more parts of the eye, including the sclera, optic nerve, 

cornea, and ganglion and neuroblastic layers of the neural retina (Meins et al., 2000; 

Kraus et al., 2001; Pocock et al., 2008). The studies mentioned focus on the 

vertebrate Tbx20 gene, highlighting its function in eye development. However, there 
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is much similarity between the Tbx20 and mid gene functions, as observed in the 

studies that explain the development of the CNS and heart. Therefore, this research 

addresses the function of mid on eye development.  

Knockdown of mid results in apoptosis and fusion of ommatidial units as well 

as the loss of bristles. By knocking down other genes of interest that are believed to 

interact with mid in the mid-RNAi background, a rescue or further depletion in 

number of bristles affirms that the gene of interest interacts with mid to regulate 

eye development. Additionally, using suppressors and enhancers of the genes allows 

the placement of the genes interacting with mid either upstream or downstream of 

mid in the Notch-Delta Pathway. This is used to genetically place mid within the 

Notch-Delta pathway.  
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Materials and Methods: 

UAS-Gal4 System and RNA Interference  

 Brand and Perrimon  developed the UAS-GAL4 system, which relies on 

crossing two genetically different parental lines (1993). One of the parents will have 

the B-galactosidase gene that codes for GAL4, a transcription factor DNA binding 

protein. The other parent’s genome contains an upstream activator sequence (UAS) 

that is present before the transcriptional start site of the gene of interest (mid). The 

UAS serves as the binding site for the GAL4 transcription factor. The transcription of 

mid in the progeny relies on the presence of both of these sequences (Brand and 

Perrimon, 1993).  

 In order to target the eye tissue for these experiments, the glass multiple 

reporter (GMR) driver line was utilized. Driver lines can be used to target specific 

tissues with the UAS-Gal4 system by “placing specific elements upstream of Gal4”, 

known as promoters, that lead to the directed expression of genes in target tissues 

(Duffy, 2002). GMR is an eye-specific promoter region. Placing mid under the control 

of UAS-GMR-Gal4 allows for its targeted expression in the eye but not other tissues.   

 By combining the UAS-Gal4 system with another method, referred RNA 

interference (RNAi), the expression of mid can be reduced in order to detect its 

effect on eye development. RNAi depends on a cell’s natural ability to degrade 

double-stranded RNA molecules (dsRNA). When mid mRNA is produced through 

transcription, it pairs with short, complementary RNA sequences placed into the 

UAS construct (UAS-mid-RNAi), and an antisense strand is formed. This antisense 

strand marks the dsRNA for degradation of both the inserted RNA molecules and the 



 11 

endogenous mRNA transcribed from DNA. Destroying the products of a gene before 

they can be translated into protein is known as gene silencing (Hannon, 2002). 

When mid expression was silenced in the eye tissues, there was an approximate 

50% loss of bristles in the eye as well as other tissue defects as compared to Oregon-

R (OR) wild-type flies with no mutations.  

 In order to find genes that interact with mid to regulate eye bristle 

development, flies with certain genes removed from their genome, referred to as 

chromosomal deficiency lines, were crossed with mid-RNAi flies. The rescue or 

further loss of bristles in these progeny determines whether the removed gene 

suppresses or enhances the mid-RNAi phenotype, respectively (Fig. 1). This is also 

referred to as a genetic modifier screen. Genetics is an ongoing process in the Leal 

lab and I was able to assist a current graduate student, Sudeshna Das, in the 

generation of genetic crosses, identification of different genotypes, and collection of 

flies.  

Bristle Counts 

  To quantify bristle counts for F1 progeny, images were taken of each 

compound eye of ten adult female flies using a high-power Leica M165C dissection 

microscope. Flies were transfixed to a slide using clear nail polish and submerged in 

water to reduce the amount of refracted light in the photograph. A series of images 

which focused on different areas of the eye were collected over 10-15 focal planes. 

The images were compiled together to create a single, flattened montage with the 

entire eye in focus. Next, the image was imported using Image Pro Plus software 

where an annotation tool was used to distinguish the dorsal and ventral regions of 
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the eye and each eye bristle was manually tagged. The Image Pro Plus software 

counted each tag and provided a final total count of eye bristles as well as dorsal and 

ventral counts (Media Cybernetics, Inc., Bethesda, MD).  

Scanning Electron Microscopy 

 Sudeshna Das, a graduate student in the Leal lab at The University of 

Southern Mississippi acquired scanning electron microscopy (SEM) images of one-

day old adult fly eyes of the Oregon-R (wild-type) and UAS-mid-RNAi phenotypes. 

The compound eyes were gold sputter coated to a thickness of 10nm and high-

resolution images were acquired on an FEI (FEI Company, Hollsboro, OR) Quanta 

200 scanning electron microscope with an accelerating voltage of 20kv (The 

Department of High Performance Materials and Polymers, USM).  

I assisted with the manual bristle counts of the SEM images. Images were 

divided into dorsal, ventral, anterior, and posterior segments and bristles were 

counted separately for each segment. These counts were used to support that a 

further loss of bristles were observed in the ventral region compared to the dorsal 

region of the eye field. Additionally, overlapping deficiency mapping in the specific 

areas where deficiencies were seen in the UAS-mid-RNAi phenotype was used when 

screening for gene candidates that interact with mid to regulate eye development 

(Das et al., 2013).  

Embryo Collection and Preparation 

 In order to stain embryos with specific antibodies that identify the presence 

of proteins, they must first be collected and fixed. Embryos can be collected 

continuously over a period of 0-20 hours to produce batches of embryos that have 
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more stages common than others. Collection in the early hours of development will 

produce more early stage embryos, while collection at the end of 20 hours after 

being laid will result in more late stage embryos.  

 Two outer layers protect Drosophila embryos: the outer layer or the chorion 

and the inner layer, the vitelline membrane. To prepare embryos for staining, the 

outer layers must be removed. The chorion is removed by soaking the embryos in a 

50% bleach solution for 3 minutes, followed by a rinse with distilled water. Next, 

2mL of heptane and 2mL of 37% formaldehyde are added, fixing the tissues. Fixing 

tissues induces chemical crosslinks that stiffen and preserve the tissue. This mixture 

is removed and 6-10mL of methanol is added, followed by shaking for 1-2 minutes 

to remove the vitelline membrane. Embryos that sink should have both membranes 

removed and stored in methanol at -20°C for 3-4 months (Forstall, 2012).  

Immunofluorescent Studies 

 Immunofluorescence uses antibodies that have been tagged with fluorescent 

molecules that can be excited at specific wavelengths of light with the use of lasers 

to detect the presence of proteins in tissues. Primary antibodies, because of their 

very specific affinities, are used to mark the protein of interest. For example, when 

looking for Mid presence in tissues, anti-Mid is used to interact with Mid proteins. 

Next, a secondary antibody bound to a fluorophore, a molecule with fluorescent 

properties, is added. The secondary antibody has a specific affinity for the primary 

antibody. In order to complete a double immunostaining experiment, where two 

different antibodies are used to detect different proteins in a single specimen, it is 

crucial that the antibodies be bred from different species. For example, anti-Mid is 
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bred in rabbit. As such, the secondary antibody is specific for the anti-Mid antibody 

and must be bred in a rabbit as well. To mark a second protein, such as Senseless or 

Achaete, another species must be used to produce the antibody. Anti-Sens and its 

secondary antibody are produced in guinea pigs. Anti-Ac and its secondary antibody 

are produced in mouse. Using two separate species prevents the possibility of cross 

reactivity. 

 Before embryos are incubated with antibodies, they are removed from 

methanol and rinsed three times with phosphate buffered saline (PTX), composed of 

0.1% Triton-X and PBS, which is a set solution of NaH2PO4, Na2HPO4, and NaCl, for 

10 minutes each time. Then, three washes with PBT, a mixture of 1% Bovine serum 

albumin and PTX, are performed for 10 minutes each. The primary antibody may be 

added after these washes occur. The wash cycle is repeated after the addition of 

primary and secondary antibodies. Embryos are preserved in PBS containing 50% 

glycerol for mounting purposes. Some antibodies require additional buffers to allow 

proper binding between proteins and antibodies. Embryos younger than Stage 10 

required the addition of PEMF, a mixture of 100 mM Pipes at pH 6.9, 2mM EGTA, 

and 1mM MgSO4, to allow for optimal binding of the antibody to Mid and Sens 

proteins in younger tissues, as detailed by Skeath and Carroll (1994).  

 The primary antibodies used in these experiments were used at the following 

dilutions: guinea pig anti-H15 (1:2000), rabbit anti-Mid (1:1000) (Leal et al., 2009), 

anti-Achaete (1:2) (Skeath and Carroll, 1991), and anti-Senseless (1:800) (Nolo et 

al., 2000). The monoclonal antibody Elav (1:10, O’Neill et al., 1994) was obtained 

from the Developmental Studies Hybridoma Bank developed under the auspices of 
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the National Institute of Child Health and Development at The University of Iowa. 

Alexafluor 488, 594, and 633 secondary antibodies with coordinating species 

specificity were use for immunofluorescent labeling (Molecular Probes).  

Embryo Staging 

 Drosophila melanogaster embryos mature over a series of 24 hours and their 

development has been divided into distinct stages, depending on the development 

of the stomodeum, the position and length of the ventral nerve cord and the 

development of the cephalic cleft. In order to create a developmental profile, these 

different stages had to be collected, mounted, and viewed under a confocal 

microscope.  

 Stages of embryo development were studied prior to mounting using the 

website flymove.uni-meunster.de, which has detailed descriptions and photographs 

of each stage and how it can be uniquely identified from other stages (2013). After 

embryos were separated by stage, they were mounted on a slide with 1,4-

Diazabicyclo[2.2.2]octane (DABCO) and a coverslip for preservation. The cover slips 

were sealed to the slide using clear nail polish. To create a full developmental 

profile, collection began with stage 8 or stage 9 embryos and continued through 

stage 17 embryos.  

Confocal Microscopy 

 Confocal microscopy uses lasers to excite the fluorophores bound to 

secondary antibodies to visualize the expression of proteins in tissues. Different 

fluorophores are excited at different wavelengths, allowing them to be viewed 
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separately. Images can be taken of the emitted fluorescence and merged together to 

detect whether different proteins are co-localized in the same tissues.  

 Confocal images were captured by a Zeiss LSM510 META confocal 

microscope and analyzed using the accompanying Zeiss LSM Image Browser 

software (version 5). Immunofluorescent probes were excited at 488 nm (to detect 

Mid) and 594 nm (to detect Sens) of the absorption spectrum (Das et al., 2013).  

Data Representation 

 Confocal images were assembled using Adobe Photoshop CS6 software 

(Adobe Systems, Inc.) and GraphPad Software, Inc. (La Jolla, CA) was used to 

represent data as bar graphs. 
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Results: 
 
 Using the GMR-Gal4 driver line and UAS-mid-RNAi transgenes, we reduced 

mid expression in the eye. The eyes of ten UAS-mid-RNAi/CyO;GMR-Gal4/TM3 (mid-

RNAi, Fig. 1B) one-day old adult female flies were examined using SEM and 

compared to the images of ten Oregon-R (WT, Fig. 1A) females. By counting the 

interommatidial bristles, we detected an approximate 50% decrease of bristles in 

the mid-RNAi mutants (Fig. 1H). Bristle counts of the different regions of the eye 

revealed a more significant loss of bristles in the ventral region of the eye compared 

to the dorsal region of the eye (Fig. 1C). Anterior and posterior regions were also 

counted and compared but a less significant difference was noted between these 

regions when compared to the loss in the ventral region compared to the dorsal 

region (Fig. 1D). Additionally, mid-RNAi mutants displayed a variety of other tissue 

defects including ommatidial fusion, bristle polarity defects (Fig. 1B’), and the 

presence of patches of discolored tissue suggestive of cell death (Fig. 1G).  
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Figure 1: Light microscope and SEM images of wild-type and mid-RNAi eyes. A, 

A’: SEM images of wild-type eye. B,B’: SEM images of mid-RNAi eye. C: Graphical 

representation of bristle counts of wild-type and mid-RNAi eyes of dorsal and ventral 

regions. D: Graphical representation of bristle counts of wild-type and mid-RNAi eyes of 

anterior and posterior regions. E: Wild-type eye under light microscope. F: mid-RNAi 

eye under light microscope. G: mid-RNAi eye under light microscope presenting loss of 

bristles and melanized tissue. H: Graphical representation of bristle count totals of wild-

type and mid-RNAi eyes. 
 
 To verify that Mid expression is occurring in proneuronal SOP cells in the 

eye, the expression pattern of Mid and H15 was examined in the eye imaginal discs 

of P1 and P2 pupal stages. Eye imaginal discs were stained with an antibody specific 

for Elav, a neural-specific, RNA binding protein important for proper neuron 

development of the eye and CNS (Yao et al., 1993). During the P1 stage, H15 and 
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H15 were co-expressed with Elav within photoreceptor neuron clusters (Fig. 4A-D). 

In the P2 stage, when many cells have selectively become SOP cells, Mid and H15 

expression shifted with respect to Elav, now co-expressed in photoreceptors 

neurons and a population of SOP cells (Fig. 2G-H; Das et al., 2013).  

 
Figure 2: Immunostaining of eye imaginal discs with anti-Mid, anti-H15, and anti-

Elav at P1 and P2 stages during pupal development. A-D: Mid, H15, and Elav 

expression during the P1 stage. A’-D’: Zoomed in region of A-D. E-H: Mid, H15, and 

Elav expression during the P2 stage. E’-H’: Zoomed in region of E-H.  
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 To validate the expression of Mid in SOP cells, stage P2 pupae were labeled 

with anti-Achaete (Ac), which is an SOP cell marker. Many of the SOP cells 

highlighted by Ac expression also co-expressed Mid (Fig. 3A-C). When 

immunostained stage P2 pupae of the mid-RNAi genotype were compared to WT 

pupae, a reduction in the expression of Ac in SOP cells was observed suggesting that 

Mid positively regulates Ac expression in SOP cells (Fig. 3D-F). To validate this 

result, another protein present in SOP cells, Senseless (Sens), was labeled with 

antibodies. Mid and Sens were also co-expressed in SOP cells (Fig. 3G-I) of WT P2 

pupae and Sens expression was reduced in the SOP cells of the mid-RNAi pupae (Fig. 

3J-L). This suggests that Mid also positively regulates the expression of Sens in SOP 

cells. 
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Figure 3: Immunostaining of eye imaginal discs of wild-type and mid-RNAi P2 

staged pupae with anti-Mid, anti-Ac, and anti-Sens. A-C, A’-C’: Mid and Ac 

expression in wild-type eye discs. D-F, D’-F’: Mid and Ac expression in mid-RNAi in 

wild-type eye discs. G-I, G’-I’: Mid and Sens expression in wild-type eye discs. J-L, J’-

L’: Mid and Sens expression in mid-RNAi eye discs. 
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Figure 4: Light microscope and SEM images of eyes when removal of emc was 

placed in the mid-RNAi background. A-C: Light microscope images of the F1 progeny 

generated from the parental cross. A and B show no significant loss of bristles while C 

shows an approximate 6% decrease in bristles. D: mid-RNAi eye under light microscope. 

E: Light microscope image of eye with one functional copy of the emc gene removed. F: 

SEM image of +/CyO;emc
1
/GMR-Gal4 eye presenting ~6% loss of bristles. G: SEM 

image of mid-RNAi eye. H: SEM image of eye with one functional copy of the emc gene 

removed. I: Graphical representation of bristle counts of the listed genotypes. J: 

Representation of ANOVA Single Factor statistical analysis of bristle counts.  
 
 Preliminary data suggested that mid functions within the Notch-Delta 

signaling pathway to specific SOP cell fates. A chromosomal deficiency line 

,Df(3L)ED4196, was observed to suppress the mid-RNAi phenotype, recovering 

bristles, when placed in the mid-RNAi background. Within this large stretch of DNA, 

85 genes were surveyed and genes known to interact with the Notch-Delta pathway 

were chosen for further study. emc has a documented relationship with the Notch-

Delta pathway for the regulation of the development of mechanosensory bristles 

and lies within the mentioned deficiency line (Chen et al., 1996). For these reasons, 
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emc was chosen as a gene for further study. The F1 progeny produced from the 

parental cross exhibited no significant loss of bristles (Fig. 4A-B) except for 

+/CyO;emc
1
/GMR-Gal4, which presented an approximate 6% loss of bristles. When one 

copy of the emc gene was removed and placed in the mid-RNAi background, a significant 

recovery of bristles was observed as well as removal of tissue defects seen in the mid-

RNAi phenotype. We were able to easily collect and separate the different genotypes 

using marker genes such as curly of oster (CyO), that when present results in a curly 

wing phenotype, and TM3, which causes a stubble bristle phenotype seen in the dorsal 

region. Finding and evaluating the flies with the missing emc gene allowed us to 

conclude that Mid and Emc interact with Mid playing a cell-survival role as an antagonist 

of Emc function.  
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Figure 5: Light microscope images of eyes when ato

1
 was placed in the mid-RNAi 

background. A-C: Light microscope images of F1 progeny of crossed parental flies 

exhibiting no significant loss of bristles. D: Light microscope image of a mid-RNAi fly 

eye. E: Light microscope image of eye with one functional copy of ato
1
 gene removed 

shows suppression of mid-RNAi phenotype. F: Graphical representation of bristle counts 

of A-E. G: Representation of ANOVA Single Factor statistical analysis of bristle counts.   
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Locating mid within the Notch-Delta signaling pathway required further genetic 

studies by placing mid-RNAi flies within heterozygous mutant backgrounds of genes that 

known to function within the Notch-Delta signaling pathway. Of the surveyed genes, 

including Su(H), E(spl)-m8, H, hairy (h), ato, da, ac, sc, and sens, many exhibited normal 

bristle count numbers when compared to WT flies. Two genes, ato
1
 (Fig. 5) and sens

E2
 

(Fig. 6), were observed suppressing the mid-RNAi phenotype through a recovery of 

bristles. The other members of the Notch-Delta pathway that were tested displayed no 

recovery of bristles when compared to the mid-RNAi phenotype. Using these genetic 

studies and the immunolabeling showing the effects of reduction of Mid on Ac activity 

(Fig. 3), mid was placed upstream of E(Spl) parallel to Su(H) in the Notch-Delta pathway 

to specify SOP cell fates. Additionally, the expression of the genes downstream of mid in 

the Notch-Delta pathway rely on the expression of mid for their own expression.  
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Figure 6: Light microscope images of eyes when sens

E2 
was placed in the mid-RNAi 

background. A-C: Light microscope images of F1 progeny of crossed parental flies 

exhibiting no significant loss of bristles. D: Light microscope image of a mid-RNAi fly 

eye. E: Light microscope image of eye with one functional copy of sens
E2

 gene removed 

shows suppression of mid-RNAi phenotype. F: Graphical representation of bristle counts 

of A-E. G: Representation of ANOVA Single Factor statistical analysis of bristle counts.   
 
 Notch regulates apoptosis, or programmed cell death, of excess 

interommatidial precursor cells in the developing eye disc of WT flies (Wolff and 

Ready, 1991). We used this research to explain the patches of melanized tissue 

observed in some of the eyes of mid-RNAi flies. Due to the reduction of the 

expression of mid, a higher number of cells were incorrectly specified as epithelial 

cells. We predicted that these excess cells were undergoing apoptosis, resulting in 

the loss of pigmentation and bristles. To test this, flies that overexpressed p35, an 
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anti-apoptotic factor, were bred in the mid-RNAi background. The flies of genotype 

UAS-p35/w1118; UAS-mid-RNAi/+;GMR-Gal4/+ suppressed the mid-RNAi phenotype, 

recovering bristles and reducing the amount of discolored tissue. This supports the 

prediction that, to an extent, loss of bristles occurs due to apoptosis (Fig. 7).  

 
Figure 7: Diagram showing the Notch-Delta signaling pathway in neighboring 
cells, deciding cell fate as SOP cell or epidermal cell. A: Cell-to-cell interactions 
between Delta-Signaling cells and Delta-receiving cells, determining cell fate as SOP 
or epidermal. B1: Formation of differentiated cells in WT flies. B2: Formation of 
excess epithelial cells that undergo apoptosis in mid-RNAi flies. B3: Replacing mid 
results in the recovery of bristles. 
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 Another goal of this research was to expand the understanding of the 

importance of mid in the developing CNS and PNS of Drosophila. To accomplish this, 

we created a developmental profile using double immunostaining techniques to 

highlight the expression of Mid and its co-expression with Ac and Sens in the stages 

of embryonic development of Oregon-R (WT) Drosophila embryos.  

  Sens was previously described in the results of our genetics studies as a 

protein that is present in SOP cells. By looking for co-expression of Mid and Sens, we 

can determine if Mid is present in proneural cells of the CNS and PNS as it was in the 

eye imaginal disc. Sens expression is turned on in SOP cells of the CNS and PNS in 

stages 9 through 11 of embryonic development (Fig. 8A-C’’’). Witt et al. report that 

Sens is present in C1 SOP cells and its lineage during these stages (Fig. 8A-B’’’) and 

that the expression begins to fade in stage 12 embryos (2010). We support these 

results, showing very little Sens expression in the stage 12 embryo (Fig. 8D-D’’’). 

Mid expression begins around stage 11 (Fig. 8B-B’’’) and is highly expressed in both 

the CNS and PNS after stage 11. In late stage 11 and stage 12 embryos, Sens and Mid 

are co-expressed in SOP cells but this may be an artifact of Sens providing false 

results. Further research is required to affirm the co-expression of Sens and Mid 

during these stages.  
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Figure 8: Expression of Mid and Sens in PNS and CNS during stages of embryonic 

development. A-A’’’: Mid and Sens expression in dorsal abdominal region of stage 9 

embryo. B-B’’’: Mid and Sens expression in ventral abdominal region of early stage 11 

embryo. C-C’’’: Mid and Sens expression in dorsal abdominal region of late stage 11 

embryo. D-D’’’: Mid and Sens expression in ventral abdominal region of stage 12 

embryo. E-E’’’: Mid and Sens expression in ventral abdominal region of stage 15 

embryo. F-F’’’: Mid and Sens expression in ventral abdominal region of stage 17 

embryo. 
 
 
 
 



 30 

Mid expression continues through the later stages of embryonic development 

but appears to begin to fade after stage 15 (Fig. 8 E-E’’’). Dissections of the VNC of a 

stage 15 embryo validates that Sens is not expressed in the CNS during later stages. 

Another useful area of future research will be dissection of the VNC of stage 12 

embryos to detect if Sens and Mid are co-expressed in the CNS at earlier stages, 

which is hard to detect with whole mount embryos. 

 

 
Figure 9: Expression of Mid and Sens in dissected Stage 15 Ventral Nerve Cord. 

The ventral nerve cord of an Oregon-R (wild-type) embryo that was double 

immunostained with anti-Mid and anti-Sens antibodies was dissected and viewed under a 

confocal microscope. At stage 15 Mid is highly expressed in the neurons of the CNS but 

Sens protein expression has ceased.  
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 We also screened for another SOP cell marker, Ac, to detect the presence of 

Mid in SOP cells. As with Sens, Ac was present beginning in stage 8, when Mid is not 

yet expressed. Skeath et al. noted that Ac was expressed in three distinct rows in 

stage 8 embryos (Fig. 10A-B’’’), marking SOP cells that develop into the neurons of 

the CNS and PNS at later stages (1994). Our data shows that there is co-expression 

of Mid and Ac in a few SOP cells beginning at stage 9 (Fig. 10B-B’’’) but this may be 

an artifact of Mid, since it has been shown that Mid expression does not begin until 

around stage 11 or 12. More confocal images will need to be gathered to rule out 

Mid expression at stage 9.  

 As seen in the confocal images presented of Mid and Sens expression (Fig. 8), 

Mid is highly expressed after stage 12. However, our data shows that Ac expression, 

unlike Sens, does not stop after late stage 11 or stage 12. Ac is observed co-

expressing with Mid in the CNS and PNS neuronal cells continuing through stage 17. 

VNC dissection of a stage 15 embryo supports that Mid and Ac are co-expressed in 

the CNS neurons in these later stages. This may also be an artifact, allowing the anti-

Ac antibody to bind to these cells, providing false results. No prior research could be 

found detailing the expression of Ac during the stages of embryonic development 

past stage 8, so, repetition of this study will be needed to affirm that Ac expression 

continues past the early stages and that this is not mislabeling.   
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Figure 10: Expression of Mid and Ac in PNS and CNS during stages of embryonic 

development. A-A’’’: Mid and Ac expression in the thoracic region of a stage 8 embryo. 

B-B’’’: Mid and Ac expression in the dorsal abdominal region of a stage 9 embryo. C-

C’’’: Mid and Ac expression in the ventral abdominal region of a stage 13 embryo. D-

D’’’: Mid and Ac expression in the ventral abdominal region of a stage 15 embryo. E-

E’’’: Mid and Ac expression in the ventral abdominal region of a stage 17 embryo.  
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Figure 11: Expression of Mid and Ac in dissected stage 15 ventral nerve cord. 
The ventral nerve cord of an Oregon-R (wild-type) embryo that was double 

immunostained with anti-Mid and anti-Ac antibodies was dissected and viewed under a 

confocal microscope. At stage 15, Mid and Ac proteins are co-expressed in the neurons 

of the CNS. 
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Discussion:   

The Notch-Delta signaling pathway regulates SOP cell specification and is a 

highly organized intercellular and intracellular process. A single cell in a cluster of 

proneural cells is selected to become a proneural cell by expressing Delta, a surface 

protein, in higher levels than the surrounding cells. The Delta receptor protein 

Notch receives the signal from the Delta signaling cell and triggers a downstream, 

intracellular pathway regulating the expression of genes that leads to the formation 

of epithelial cells. Knock-down of mid using RNAi techniques and the GMR-Gal4 

driver line allowed us to find that eye development is highly affected without the 

presence of mid and hypothesized that mid was a member of the Notch-Delta 

pathway, acting to regulate eye development.  

 Using genetic modifier studies to place mutant alleles of the Notch-Delta 

pathway within the mid-RNAi background, we were able to place mid in the pathway 

downstream of Notch, upstream of E(spl)-m8, and in parallel for the signaling in 

both SOP cells and epidermal cells (Das et al., 2013). With a loss of mid, no cells have 

high levels of delta expressed and no cell is selected from a proneural cluster as an 

SOP cell. A lack of SOP cells to develop into shaft and socket cells results in a loss of 

bristles and an excess of epidermal cells that undergo apoptosis. This result puts 

Mid in both a cell survival and cell specification role.   

An additional source of bristle loss, the inclusion of the GMR-Gal4 driver line, 

must also be accounted for in this research as it could have slightly altered the 

amount of bristle loss in the progeny. Several combinations of mutant alleles with 

the driver line resulted in a 5-15% loss of bristles, while the most significant loss 
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occurred with the Hairless, H1, mutant alleles. A loss of 25% occurred in these flies 

when compared to the WT phenotype (Fig. 12). Therefore, it was not possible to 

accurately analyze H1 effects on the mid-RNAi phenotype. Besides H1, the loss of 

bristles was much more extensive than the 5-15% that could have been due to the 

GMR-Gal4 driver line, so, we are accurately able to identify that they do have effects 

on the mid-RNAi phenotype.  

 
Figure 12: Light microscope images of the effect of the GMR-Gal4 driver line on 
bristle loss when combined with H1 mutant allele. A and C: Light microscope 
images of F1 progeny displaying minimal bristle loss in comparison to WT 
phenotype. B: Light microscope images of F1 progeny displaying an ~25% loss of 
bristles. D: Light microscope image of mid-RNAi phenotype. E: Light microscope 
image of eye with removal of one functional copy of H1. F: Graphical representation 
of bristle counts of the listed genotypes. G: Representation of ANOVA Single Factor 
statistical analysis of bristle counts.  
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For the future directions of this research, the Leal lab is interested in 

investigating why the ventral region of the mid-RNAi eyes exhibited greater bristle 

loss than the dorsal region. Additionally, this research does not eliminate the 

possibility of interactions between mid and other genes of the Notch-Delta pathway 

so further analyses of the interactions between these two may be undertaken.  

The developmental profiles of the Oregon-R (WT) embryos revealed that 

expression of Mid, Sens, and Ac in the CNS and PNS occurs in a choreographed 

manner during embryonic development. Due to extremely limited research on PNS 

development, extensive research will be required to determine the developmental 

significance of Mid in the PNS.  

Sens expression fades immediately when Mid expression begins. Whether 

Sens expression or activation is due to interactions with Mid or regulated by Mid in 

the CNS and PNS will require further research. From our immunostaining images 

(Figs. 8-11), it is clear that Mid is highly expressed in the neurons of the PNS and 

CNS, so determining whether Mid exhibits a cell survival and specification role in 

these areas, as it does in the eye, will further develop a more extensive 

understanding of a possible universal role of Mid in Drosophila.  

Discovering that Ac expression was continuous from early to late stages of 

embryonic CNS development and its high levels of co-expression was an exciting 

finding from this research. No other genes have been found that are so highly co-

expressed with mid, asserting that there may be a very close relationship with mid 

and achaete that is worth further research. Additionally, the Leal lab plans to repeat 

this experiment to verify that Ac expression was not just an artifact.  
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To continue this research, the Leal lab plans to repeat the double-

immunostaining procedures on mid-RNAi embryos and evaluate its effects on the 

expression of Sens and Ac during the stages of embryonic development. If Ac 

expression was not an artifact, it can be expected that reducing Mid expression will 

also reduce Ac expression in the CNS and PNS. This will be an area of future 

research and will further distinguish a close relationship between achaete and 

midline.  

Clinical Implications  

 This research may have future clinical implications as it reveals that mid 

plays a cell survival and cell specification role in the eye. The expression of Tbx20 

has been documented in mice photoreceptor neuron development (Meins et al., 

2000) and our research shows that Mid is also expressed in the photoreceptors of 

Drosophila. Since Tbx20 heterozygotes display developmental disorders of the heart 

and CNS, Tbx20 could also be involved in photoreceptor neurodegenerative 

diseases.  

Fortini and Bonini report that Drosophila can serve as a model for 

understanding human neurodegenerative diseases by studying the basic protein 

functions of gene homologues, such as mid and Tbx20 (2000). Also, since mutations 

of mid and Tbx20 are known to cause developmental disorders of the heart and CNS 

in heterozygotes, it may be a useful area of research to look for neurological 

disorders, eye disorders, the rate of cataract development compared to 

homozygotes, etc. in heterozygotes. By placing Mid in the Notch-Delta pathway, we 

observed interactions between Mid and Notch. Alagille syndrome, which displays 
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symptoms of liver, eye, cardiac, and skeletal deformities has been linked to 

mutations in JAGGED1 (JAG1), a ligand for the for Notch receptors (Jones et al., 

2000). Overlap in symptoms of the heart and CNS with neurological disorders would 

provide further evidence that Tbx20 has a multifaceted role in development, 

including the regulation of Notch receptors leading to the development of Alagille 

syndrome. Future research to determine if mid also plays a cell survival role in the 

PNS could lead to a better understanding of degenerative diseases affecting motor 

function in humans by screening for motor function disorders in vertebrates.  

 Another student in the Leal lab is experimenting to determine if Mid 

regulates cell proliferation. Uncontrolled cell division leads to the development of 

cancer. From our research, the gene emc, which has a known relationship with the 

Notch-Delta pathway, was found to interact with mid to regulate eye development. 

The vertebrate homologue of Emc is the Inhibitor of DNA-binding protein (Id), 

which has been highly studied for its relationship to the development of various 

types of cancer. Maw et al. found that Id-4 expression is elevated in patients with 

ovarian cancer and may serve in the diagnosis of ovarian cancer (2009). Another 

research study reports that Id-1 regulation has a link to melanoma progression 

(Zigler et al., 2011). Since we found that Mid plays a cell survival role as an 

antagonist of Emc function, there may also be a relationship between these two 

genes concerning the development of cancer. Considering this relationship in 

Drosophila can lead to discoveries between interaction of Tbx20 and Id in 

vertebrates, potentially finding that Mid plays a role in the regulation of cell 

proliferation.  
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 While research with Drosophila provides a basic understanding of protein 

function that does not fully match the complexity of protein function and expression 

in vertebrates, this basic understanding will lead to greater developments in the 

research of diseases in vertebrates. Drosophila also has a fast generation time, which 

can lead to faster developments in the understanding of diseases than research in 

mice and without the ethical constraints faced in human research. In the near future, 

genetic screening for mutations of Tbx20 genes could lead to the prevention and 

enhanced, personalized treatment of diseases.  
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