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CHAPTER 1

Introduction

We want to know what values of the coe�cients a, b1, b2, c, d1, d2, d3 guarantee

�nitely many real solutions for x1, x2, and x3 in the system

ax1x2 − b1x1 − cx2 + d1 = 0

ax1x3 − b2x1 − cx3 + d2 = 0(1)

ax2x3 − b2x2 − b1x3 + d3 = 0,

where a, b1, b2, c, d1, d2, d3 are constants and x1, x2, x3 are unknowns. This system

derives from a linear algebra technique proposed by Alexander Pozhitkov, a chemist

at the Max Planck Institute for Evolutionary Biology [9]. The goal of Pozhitkov's

research is to take a sample �sh, examine the �sh's gene expression, and detect what

contaminant is a�ecting the �sh. Pozhitkov uses a tool called a microarray to generate

a vector of positive integers, which we can analyze mathematically.

Genes cannot be analyzed by simply comparing the microarray data because there

is not enough di�erence between the vectors to recognize the stressor. The reason is

that most genes remain the same, regardless of the stressor. Pozhitkov believes that

we can overcome this di�culty by solving the system (1) of equations.

The criterion we want for the coe�cients of system (1) is similar to the discrimant

of quadratic equations or the determinant of systems of linear equations. For example,

the discrimant of the quadratic equation ax2 + bx + c = 0 is b2− 4ac. If b2− 4ac > 0,

then we have two real solutions. If b2 − 4ac = 0, then we have one real solution.

If b2 − 4ac < 0, then we have two complex solutions. My focus on this system

of equations will be to �nd the criterion for the values of a, b1, b2, c, d1, d2, d3 that

guarantee �nitely many real solutions.
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1. INTRODUCTION 2

We will solve this system by applying principles of Gröbner bases. Gröbner bases

are a tool used to analyze non-linear polynomial systems that generalize Gaussian

elimination, and so they are well-suited for analyzing this type of problem.

Chapter 2 describes the background material. In Section 1 of Chapter 2, we

describe in detail the origins of the system of equations given above. In Section 2,

we describe Gröbner bases. In Section 3, we show how Gröbner bases address the

question. Chapter 3 states the result. In Section 1 of Chapter 3, we discuss the

approach taken to solve the given system. In Section 2, we state and prove the main

result.



CHAPTER 2

Background Material

1. Motivation for Studying the Given System

Our scenario is this: Humans dump contaminants into the water; the �sh are

exposed to the contaminants; the �sh have a reaction to the contaminants. The

ribonucleic acid (RNA) reacts to produce new proteins. Microarrays measure the

gene expression.

�Complementary DNA sequences for every gene in a genome (the probes)
are laid down in great quantity on individual spots on a glass slide or
silicon chip. This is the microarray itself. Then the mRNAs from a
cellular extract are washed over this array to allow them to �nd and
stick to their complements. By counting the number of transcripts that
bind to each spot, we can measure at least the relative abundance of
each.� [3, pg. 144]

The deoxyribonucleic acid (DNA) is coded with corresponding complements. �This

complementarity means that for each A, C, G, T in one strand, there is a T, G, C,

or A, respectively, in the other strand.� [3, pg. 3] The result for the microarray data

is that complements that bind glow; complements that do not bind do not glow.

�The �rst approach to the problem is to investigate linear relationships
between the hybridization patterns. If patterns of each treatment are
unique, then they can be treated as orthogonal vectors in a multidi-
mensional space. Hypothetically, the pattern of an unknown stress can
be either a linear combination of these vectors or there would be no
such combination possible.� [9]

Each stressor sets o� certain unique genes. Mathematically, this means that when

one stressor activates a gene, the gene's value in the corresponding vector is non-zero.

Since the other stressor does not activate this gene, the gene's value in the vector

corresponding to the other stressor is zero. Thus the dot product of the two vectors

will be zero, implying that they are orthogonal.

3



1. MOTIVATION FOR STUDYING THE GIVEN SYSTEM 4

Figure 1. vector diagram

Diagram of the hypothesized relationship between Li (microarray
data), Vi (a unique gene expression for the stressor), and g (genes
common to all the stressors). Notice V1 and V2 are orthogonal, and
g + Vi = Li.

The experiment includes vectors for hypoxia (or lack of oxygen, a vector repre-

sented by L1), cadmium (a heavy metal represented by L2), chromium (a heavy metal

represented by L3), pyrene (a poison represented by L4), and a control (represented

by Lctrl). Pozhitkov explains, �The experiments were replicated: 4 times for hypoxia

and 3 for the rest of the treatments. Gene expression levels were assessed by a mi-

croarray containing 16608 probes. In total, my dataset contained 16 arrays of 16608

intensity values, i.e. hybridization patterns.� [9] However, all the stressors stim-

ulate a common vector, g. �Each of the two vectors are orthogonal to each other.

It is the vector g that causes [L1] and [L2] to have an angle less than 90 between

them. Thus, subtraction of the vector g from [L1] and [L2] will result in accentuation

of distinctive features of the two vectors.� [9] V1 corresponds to the genes that the

�rst stressor stimulates and the second does not. (See Figure 1.) We want to �nd

unique vectors V1, V2, V3, V4, and Vctrl for this data set. Since Lctrl is the control, we

can hypothesize that all the common genes expressed will be contained in Lctrl. Let

A represent the matrix whose columns are the vectors L1, ..., Lctrl.

We can consider the matrix equation

A · x = g.
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This equation certainly should have a solution, because g is a common vector for

L1, ..., Lctrl and the columns of A are the vectors L1, ..., Lctrl.

However, we know neither x nor g. We can approximate g in the following fashion:

we believe that Lctrl is approximately equal to g, so the substitution

A · x = Lctrl

allows us to compute x. However, it is hard to compute x using simple linear algebra

because A has more rows (>16000) than columns (5).

Once we know x, we substitute back into A · x = g and we compute g easily.

One might expect g = Lctrl from this but because A · x = g is an overdetermined

system this is not actually the case; the solution for x is approximate. Nevertheless,

this method does give us a reasonable approximation to g; in tests Drs. Perry and

Pozhitkov found that the correlation between the computed g and the given Lctrl was

higher than 95%.

After approximating g by Lctrl, we return to the system of equations

Li = x1g + Vi.

We can rewrite this as

Vi = Li − xig.

If we knew the xi, we could solve for Vi, but we don't know the xi. However, recall

that the Vi are pairwise orthogonal. Thus for i 6= j,

Vi · Vj = 0.

By substituting the values of V1 and V2 in the dot product we get:

(L1 − x1g) · (L2 − x2g) = 0

L1 · L2 − x2L1g − x1L2g + x1x2g · g = 0
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This simpli�es to

ax1x2 − b1x1 − cx2 + d1 = 0

where a = g2, b1 = g · L2, c = g · L1, and d1 = L1 · L2. We determine the other

polynomials by taking the dot product of:

V2 · V3 = 0

V1 · V3 = 0.

Together, we have the following system of non-linear polynomial equations:

ax1x2 − b1x1 − cx2 + d1 = 0

ax1x3 − b2x1 − cx3 + d2 = 0

ax2x3 − b2x2 − b1x3 + d3 = 0

where

a = g · g

b1 = L2 · g

b2 = L3 · g

c = L1 · g

d1 = L1 · L2

d2 = L1 · L3

d3 = L2 · L3.
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Recall this is system (1). Such systems can be analyzed precisely using a tool devel-

oped in 1964 by Bruno Buchberger called Gröbner bases.

2. Gröbner Bases

Gröbner bases are a way of generalizing row-echelon form for nonlinear polyno-

mials.

�Gröbner bases are now recognized as an important tool for describing
solutions to systems of nonlinear equations. They form a part of all
major computer algebra systems, and have found their place as an
important application to scienti�c research in �elds such as physics
and engineering.� [8]

Buchberger �rst found an algorithm to compute such a basis [1]. Buchberger's algo-

rithm proceeds as follows, given as input a system of polynomials F :

• Set G = F .

• Repeat the following until there are no unconsidered pairs:

� Choose an as-yet unconsidered pair p, q ∈ G and construct their subtrac-

tion polynomial S (S-polynomial), the di�erence of the smallest poly-

nomial multiples of p and q such that the leading terms cancel.

� Top reduce S with respect to G. That is, while t = lt (S) remains

divisible by u = lt (g) for some g ∈ G , put

S := S − lc (S)

lc (g)

t

u
· g
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where lt represents the leading term1 and lc represents the leading coef-

�cient.

� Once no more top-reductions of S are possible, either S = 0 or lt (S) is

no longer divisible by lt (g) for any g ∈ G.

(1) In the �rst case, we say that the S-polynomial of p and q top-

reduces to zero with respect to G.

(2) In the second case, append S to G. The new entry in G means

that the S-polynomial of p and q now top-reduces to zero with

respect to G. Additional pairs will need to be considered in the

�rst step.

• The algorithm terminates once the S-polynomials of all pairs p, q ∈ G top-

reduce to zero.[4]

Example 1. Let's compute the Gröbner basis of:

G = {p = x2 + 1, q = y2 + 1}.

1What is a leading term? For univariate polynomials, the answer is easy: the variable with the
highest degree, or exponent: x+x5 +x3 +1 has x5 as its leading term. For multivariate polynomials,
consider x2 + y3 +xy2 . Should the leading term be x2 or y3? There are valid mathematical reasons
for both.
It turns out that there are in�nitely many ways to choose the leading term of an arbitrary polynomial.
The two most used are lexicographic and total degree (technically, graded reverse lexicographic but
we will refer to it as total degree) [1, 2].

∗ In lexicographic, choose the leading term alphabetically: that is, choose the term that would
come �rst in the dictionary. In x2 + y3 + xy2, the lexicographic order would choose x2 as the
leading term.
∗ In total degree, choose the term with the highest sum of exponents. If two terms have the

same total degree, then we drop the variable that comes last in the alphabet and recompute
the total degree. In x2 +y3 +xy2, the total degree of x2 is 2, of y3 is 3, and of xy2 is 1+2 = 3
because xy2 = x1y2. We can eliminate x2 because it has the lowest total degree. Since the
total degree of y3 and xy2 are the same, we drop the y's. These two terms become 1 and x.
The total degree of 1 is 0 (because 1 = x0) and the total degree of x is 1, so the leading term
of x2 + y3 + xy2 is xy2 because x came from xy2.

Di�erent ways of choosing the leading term can produce di�erent Gröbner bases, but for the questions
in this project, all the methods give the same answers. We use total degree to choose leading terms,
since it is usually the most e�cient.[2]
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Step 1: Generate the subtraction polynomial by multiplying y2 by p and x2 by q,

because x2 is the leading term of p and y2 is the leading term of q. The subtraction

cancels the leading terms of G.

y2(x2 + 1)

−x2(y2 + 1)

y2 − x2

Step 2: Reduction Step - Top reduce S with respect to G. Here we use x2 +1 because

the leading term of S is divisible by the leading term of p.

(y2 − x2)− (−1)(x2 + 1)

y2 − x2+x2 + 1

S =y2 + 1

Again, we refer to G to �nd a polynomial with which the leading term of the new

subtraction polynomial is divisible by. In this case, we use q = y2 + 1.

(y2 + 1)− (−1)

(1)

(y2)

(y2)
(y2 + 1)

y2 + 1− y2 − 1 = 0

S = 0

The algorithm now terminates because the S-polynomial has top-reduced to zero.

Because the only S-polynomial of this system reduces to zero, we verify that G is

initially a Gröbner basis.

In contrast, we will now look at an example system that is not initially a Gröbner

basis.
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Example 2. Let G = {g1 = x2 + y2− 4, g2 = xy− 1}. We begin with the elimination

step, by �nding the subtraction polynomial that cancels the leading terms of g1 and

g2.

y(x2 + y2 − 4)

−x(xy − 1)

g3 = y3 + x− 4y

where y3 is the leading term of g3.

Neither of the leading terms of G divides the leading term of g3 so we must add

g3 to the basis. Since no top reductions are possible, we must consider new pairs.

We will �rst consider the pair (g1, g3) by repeating the elimination step with the new

polynomials.

y3(x2 + y2 − 4)

−x2(y3 + x− 4y)

S = y5 − x3 + 4x2y − 4y3

Now we can top reduce S with respect to g3 because the leading term of S is y5 and

the leading term of g3 is y3.

(
y5 − x3 + 4x2y − 4y3

)
− (1)

(1)

(y5)

(y3)

(
y3 + x− 4y

)
S = −x3 + 4x2y − xy2

Top reduce S with respect to g1 because the leading term of S is x3 and the leading

term of g1 is x2.

(
−x3 + 4x2y − xy2

)
− (−1)

(1)

(x3)

(x2)

(
x2 + y2 − 4

)
S = 4x2y − 4x
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Top reduce S with respect to g2 because the leading term of S is x2y and the leading

term of g2 is xy.

(
4x2y − 4x

)
− (4)

(1)

(x2y)

(xy)
(xy − 1)

S = 0

Since S top reduced to zero, we must now consider the remaining pair (g2, g3) . Repeat

the process by �rst �nding the subtraction polynomial.

y2(xy − 1)

−x(y3 + x− 4y)

S = −x2 + 4xy − y2

Top reduce S with respect to g1 because the leading term of S is x2 and the leading

term of g1 is x2.

(−x2 + 4xy − y2)− (−1)

(1)

(x2)

(x2)
(x2 + y2 − 4)

S = 4xy − 4

Top reduce S with respect to g2 because the leading term of S is xy and the leading

term of g2 is xy.

(4xy − 4)− (4)

(1)

(xy)

(xy)
(xy − 1)

S = 0

Since S top reduced to 0, we have no new information, and no new pairs. We have

computed the Gröbner basis

G =
{
g1 = x2 + y2 − 4, g2 = xy − 1, g3 = y3 + x− 4y

}
.
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Figure 2. Plot of x2 + y2 − 4, xy − 1

3. How Do Gröbner Bases Address the Question?

We use Gröbner bases to analyze polynomial systems because they are a nice form

from which we can answer many questions such as: Is there a solution? Are there

in�nitely many solutions? If not, how many are there? We know from [2]:

Theorem 3. A system F has common solutions if and only if any Gröbner basis G

of F has common solutions. This is true if and only if no element of G is a nonzero

constant.

Let's consider a couple of examples.

Example 4. Recall Example 2. The original system was F = {x2 + y2 − 4, xy − 1}.

We calculated a Gröbner basis G = {x2 + y2 − 4, xy − 1, y3 + x− 4y}. Because no

element of G is a constant polynomial, we know that F has common solutions. (See

Figure 2 generated with the Sage computer algebra system [11]. Notice that the

common solutions that are real occur where the circle and hyperbola intersect.)

Now we consider an example with no solutions.

Example 5. Let f1 be any non-constant polynomial and

f2 = f1 + 1.
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Before computing the Gröbner basis, we know that F = {f1, f2} has no common

solutions because if f1 = 0 then f2 = 1.

Now compute the Gröbner basis to compare. Since f1 and f2 have the same

leading terms, their subtraction polynomial is f1 − f2 = −1, a constant polynomial.

The polynomial -1 does not top reduce with respect to F , so we must add -1, a

constant polynomial, to the Gröbner basis. Therefore, no common solutions exist.

How do we decide if there are �nitely or in�nitely many solutions? Again from

[2],

Theorem 6. A system F has �nitely many solutions if and only if for any Gröbner

basis G of F , a power of every variable in F appears as a leading term of some

polynomial in G.

For example:

Example 7. Again recall F = {x2 + y2 − 4, xy − 1} from Example 2. We calculated

a Gröbner basis G = {x2 + y2 − 4, xy − 1, y3 + x− 4y}. The variables of F are x and

y. Does a power of x appear as a leading term in G? Yes, x2 appears as the leading

term of x2 +y2−4. Does a power of y appear as a leading term in G? Yes, y3 appears

as the leading term of y3 + x− 4y. Therefore, F has �nitely many solutions.



CHAPTER 3

Results

The goal of the following approach is to use theorems 3 and 6 to �nd the conditions

on the coe�cients of system (1) that guarantee �nitely many real solutions.

1. Approach

First we must compute the Gröbner basis using symbolic, unknown coe�cients.

To compute the Gröbner bases, we wrote programs in Sage [11] to compute the S-

polynomial and to top reduce the polynomials one step at a time. Once we compute

the S-polynomial, we look at the leading term. Then we top reduce and look at the

new leading term. We continue top reduction until we get zero or a new constant.

This constant is a factor of the leading term that could be zero which implies either

addition or subtraction of the constant from the leading term.

For top reduction to be complete, either S = 0 or we are left with a new polynomial

to add to the set, in which case we consider new S-polynomials until all pairs top

reduce to zero. However, since the coe�cients are represented symbolically, we cannot

always be sure we are left with zero. Therefore, we consider a case analysis where each

factor of the leading term is either zero or nonzero. Once top reduction is complete,

we analyze the factor of the leading term. If the factor is nonzero, then we can stop.

Otherwise, the factor is zero which makes the leading term zero. Since this analysis is

symbolic, the computer algebra system does not recognize the leading term as zero;

thus, we must subtract the leading term manually. Therefore, we can subtract the

leading term that equals zero and look at the new leading term.

14
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2. Main Result

As a result of this approach, we get the following theorem:

Theorem 8. The system (1) has �nitely many real solutions if and only if

(2) (b1b2 − ad3)(b2c− ad2)(b1c− ad1) > 0.

When the product equals zero, there is either no solution or in�nitely many solutions.

Proof. Denote

g1 = ax1x2 − b1x1 − cx2 + d1

g2 = ax1x3 − b2x1 − cx3 + d2

g3 = ax2x3 − b2x2 − b1x3 + d3.

We consider several cases.

Case 1 : (b1b2 − ad3)(b2c− ad2)(b1c− ad1) 6= 0.

The S-polynomial for g1 and g2 is −b1x1x3 + b2x1x2 + d1x3− d2x2. After reducing

by g1 and g2 we get

g4 = (ad1 − b1c)x3 + (b2c− ad2)x2 − b2d1 + b1d2.

By assumption, (b2c−ad2) 6= 0. So the leading monomial is x2 and we cannot reduce

any further. Now we add g4 to the basis.

The S-polynomial for g1 and g3 is b2x1x2 − cx2x3 + d1x3 − d3x1. After reducing

by g1 and g3 we get

g5 = (b1b2 − ad3)x1 + (ad1 − b1c)x3 − b2d1 + cd3.
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By assumption, (b1b2−ad3) 6= 0. So the leading monomial is x1 and we cannot reduce

any further. Now we add g5 to the basis.

The S-polynomial for g2 and g3 is b1x1x3 − cx2x3 + d2x2 − d3x1. After reducing

by g2, g3, g4 and g5 we get zero.

The S-polynomial for g3 and g5 is

a(b1c− ad1)x
2
3 + b2(−b1c + ad2)x3 + b2(−b2c + ad2)x2 + d3(b2c− ad2).

By assumption, a(b1c−ad1) 6= 0. So the leading monomial is x2
3 and we cannot reduce

that any further. However, we can eliminate the x2 term by subtracting a multiple

of g4, obtaining

g6 = a(b1c− ad1)x
2
3 + 2b2(−b1c + ad1)x3 + b2(−b2d1 + b1d2) + d3(b2c− ad2).

Now we add g6 to the basis.

The rest of the S-polynomials reduce to zero. Notice that g6 is quadratic; the

leading term is squared and x3 is the only variable. Because g6 is quadratic, there is

a real solution if and only if the discriminant of g6 is nonnegative:

(2b2(−b1c + ad1))
2 − 4 (a(b1c− ad1)) (b2(−b2d1 + b1d2) + d3(b2c− ad2)) ≥ 0

4b2
2(b1c− ad1)

2 − 4ab2(b1c− ad1)(−b2d1 + b1d2)− 4ad3(b1c− ad1)(b2c− ad2) ≥ 0

4(b1c− ad1)
[
b2
2(b1c− ad1)− ab2(−b2d1 + b1d2)− ad3(b2c− ad2)

]
≥ 0

4(b1c− ad1)
[
b1b

2
2c((((

((((−ab2
2d1 + ab2

2d1 − ab1b2d2 − ab2d3c + a2d2d3

]
≥ 0

4(b1c− ad1) [b2c (b1b2 − ad3)− ad2 (b1b2 − ad3)] ≥ 0

4(b1c− ad1)(b1b2 − ad3)(b2c− ad2) ≥ 0.

Since each factor is positive, we can conclude that two real solutions exist.

Case 2 : (b1b2 − ad3) = 0 and (b2c− ad2)(b1c− ad1) 6= 0.



2. MAIN RESULT 17

We compute g4 the same way as in case 1. This time, however, g5 has the form

g5 = (ad1 − b1c)x3 − b2d1 + cd3.

The S-polynomial for g3 and g5 is

a(b1c− ad1)x
2
3 + b2(−b1c + ad2)x3 + b2(−b2c + ad2)x2 + d3(b2c− ad2).

This reduces by g4 and g5 to get

(−b1b2 + ad3)(−b2cd1 − b1cd2 + ad1d2 + c2d3).

By assumption the �rst factor is zero.

The S-polynomial of g2 and g5 is

c���
��

��:0
(b1b2 − ad3)x1 + c(b1c− ad1)x3 + d2(−b1c + ad1).

This reduces by g5 to

g6 = (−b1c + ad1)(−b2cd1 − b1cd2 + ad1d2 + c2d3).

By assumption the �rst factor is nonzero. If the second factor is nonzero, then we

have a constant polynomial in the Gröbner basis, and there is no solution. Otherwise,

g6 is zero and we continue with S-polynomials. The remaining S-polynomials reduce

to zero. No polynomial has a leading monomial that is a power of x1, so there are

in�nitely many solutions.

The remaining cases are similar to case 2 and give in�nitely many or zero solutions.

�



Appendix: Sample Sage Session

To avoid retyping certain patterns of computation, we de�ne functions when con-

venient. Here, spol computes the S-polynomial of two polynomials p and q. It won't

work properly if the inputs aren't functions.

sage: %hide

sage: #auto

sage: def degree(t, xs):

... result = 0

... for x in xs:

... result = result + t.degree(x)

... return result

...

sage: def lm(p): # grevlex or total degree lm of p

... result = 0

... mons = p.monomials()

... coeffs = p.coefficients()

... for i in range(len(p.monomials())):

... t = coeffs[i]*mons[i]

... if result == 0:

... result = t

... else:

... # if total degree of result is smaller than total degree of t,

... # change result to t

... if (degree(result,[x1,x2,x3]) < degree(t,[x1,x2,x3])):

... result = t

... # if total degree is the same, check individual variables x3,

18



APPENDIX: SAMPLE SAGE SESSION 19

... # then x2, then x1

... elif (degree(result,[x1,x2,x3]) == degree(t,[x1,x2,x3])):

... if (degree(result,[x3]) > degree(t,[x3])):

... result = t

... elif (degree(result,[x3]) == degree(t,[x3])):

... if (degree(result,[x2]) > degree(t,[x2])):

... result = t

... elif (degree(result,[x2]) == degree(t,[x2])):

... if (degree(result,[x1]) > degree(t,[x1])):

... result = t

... elif (degree(result,[x1]) == degree(t,[x1])):

... result += t

... return result

...

sage: def lt(p):

... m = lm(p)

... d1 = m.degree(x1)

... d2 = m.degree(x2)

... d3 = m.degree(x3)

... return x1**d1*x2**d2*x3**d3

...

sage: def lc(p):

... return lm(p)/lt(p)

...

sage: def spol(p,q):

... t = lt(p)

... u = lt(q)

... a = lc(p)

... b = lc(q)

... v = t.lcm(u)
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... s = v/(t*a)*p-v/(u*b)*q

... return s.numerator()

...

sage: def red(p,q):

... t = lt(p)

... u = lt(q)

... a = lc(p)

... b = lc(q)

... r = b*p-a*t/u*q

... return r.numerator()

First we de�ne the ring of polynomials over which we will work. (A ring is like a

group, only with a little more structure.)

sage: R.<x1,x2,x3,a,b1,b2,c,d1,d2,d3> = QQ[]

We next de�ne G. We want the Gröbner basis of G.

sage: g1 = a*x1*x2-b1*x1-c*x2+d1

sage: g2 = a*x1*x3-b2*x1-c*x3+d2

sage: g3 = a*x2*x3-b2*x2-b1*x3+d3

sage: lm(g1),lm(g2),lm(g3)

(x1*x2*a, x1*x3*a, x2*x3*a)

Now we create the S-polynomials for g1, g2, and g3.

sage: s12 = spol(g1, g2)

sage: lm(s12),s12

(x1*x2*b2, -x1*x3*b1 + x1*x2*b2 + x3*d1 - x2*d2)

sage: s23 = spol(g2,g3)

sage: lm(s23), s23

(x1*x3*b1, x1*x3*b1 - x2*x3*c + x2*d2 - x1*d3)

sage: s13 = spol(g1, g3)

sage: lm(s13),s13

(x1*x2*b2, x1*x2*b2 - x2*x3*c + x3*d1 - x1*d3)
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Now we reduce S13. First we check its leading monomial to �nd which polynomial to

reduce by, then we perform the reduction.

sage: lm(s13)

x1*x2*b2

sage: s13_1 = red(s13,g1)

sage: lm(s13_1)

-x2*x3*a*c

sage: s13_2 = (red(s13_1,g3)/a).numerator()

sage: factor(lm(s13_2)),s13_2

(x1 * (b1*b2 - a*d3), x1*b1*b2 - x3*b1*c + x3*a*d1 - x1*a*d3 - b2*d1 + c*d3)

We now assume that reduction is complete. This implies that that lm(s13_2) 6= 0.

That is,

b1b2 − ad3 6= 0.

sage: g4 = s13_2

sage: lm(g4)

x1*b1*b2 - x1*a*d3

Now, we reduce S12.

sage: lm(s12)

x1*x2*b2

sage: s12_1 = red(s12,g1)

sage: s12_1

-x1*x3*a*b1 + x1*b1*b2 + x2*b2*c + x3*a*d1 - x2*a*d2 - b2*d1

sage: lm(s12_1)

-x1*x3*a*b1

sage: s12_2 = (red(s12_1,g2)/a).numerator()

sage: factor(lm(s12_2)), s12_2

(x2 * (b2*c - a*d2), -x3*b1*c + x2*b2*c + x3*a*d1 - x2*a*d2 - b2*d1 + b1*d2)
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We now assume that reduction is complete. This implies that that lm(s12_2) 6= 0.

That is,

b2c− ad2 6= 0.

sage: g5 = s12_2

sage: lm(g5)

x2*b2*c - x2*a*d2

Now reduce S23.

sage: lm(s23)

x1*x3*b1

sage: s23_1 = red(s23,g2)

sage: s23_1

-x2*x3*a*c + x1*b1*b2 + x3*b1*c + x2*a*d2 - x1*a*d3 - b1*d2

sage: factor(lm(s23_1))

(-1) * c * a * x3 * x2

sage: s23_2 = (red(s23_1,g3)/a).numerator()

sage: factor(lm(s23_2))

x1 * (b1*b2 - a*d3)

sage: lm(s23_2),lc(s23_2)

(x1*b1*b2 - x1*a*d3, b1*b2 - a*d3)

sage: s23_3 = ((red(s23_2,g4)/b1)/b2).numerator()

sage: s23_3

x3*b1^2*b2*c - x2*b1*b2^2*c - x3*a*b1*b2*d1 + x2*a*b1*b2*d2 -

x3*a*b1*c*d3 + x2*a*b2*c*d3 + x3*a^2*d1*d3 - x2*a^2*d2*d3 + b1*b2^2*d1 -

b1^2*b2*d2 - a*b2*d1*d3 + a*b1*d2*d3

sage: factor(lm(s23_3))

(-1) * x2 * (-b2*c + a*d2) * (-b1*b2 + a*d3)

sage: s23_4 = red(s23_3,g5)

sage: s23_4

0
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Now we will consider g3 and g5.

sage: s35 = spol(g3, g5)

sage: s35

x3^2*a*b1*c - x3^2*a^2*d1 - x3*b1*b2*c - x2*b2^2*c + x3*a*b2*d1 + x2*a*b2*d2

+ b2*c*d3 - a*d2*d3

sage: factor(lm(s35))

(-1) * a * x3^2 * (-b1*c + a*d1)

We now assume that reduction is complete. This implies that that lm(s35) 6= 0. That

is,

b1c− ad1 6= 0.

sage: g6 = s35

Now we will consider g2 and g4.

sage: s24 = spol(g2, g4)

sage: lm(s24)

x3^2*a*b1*c - x3^2*a^2*d1

sage: s24_1 = red(s24,g6)

sage: factor(lm(s24_1))

(-1) * b2 * a * x1 * (-b1*c + a*d1) * (-b1*b2 + a*d3)

sage: s24_2 = red(s24_1,g4)

sage: lm(s24_2)

x2*a*b1^2*b2^3*c^2 - x2*a^2*b1*b2^3*c*d1 - x2*a^2*b1^2*b2^2*c*d2

+ x2*a^3*b1*b2^2*d1*d2 - x2*a^2*b1*b2^2*c^2*d3 + x2*a^3*b2^2*c*d1*d3

+ x2*a^3*b1*b2*c*d2*d3 - x2*a^4*b2*d1*d2*d3

sage: s24_3 = red(s24_2,g5)

sage: s24_3

0

Now we will consider g1 and g4.

sage: s14 = spol(g1, g4)

sage: lm(s14)
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x2*x3*a*b1*c - x2*x3*a^2*d1

sage: s14_1 = red(s14, g3)

sage: lm(s14_1)

-x1*a*b1^2*b2 + x1*a^2*b1*d3

sage: s14_2 = red(s14_1,g4)

sage: s14_2

0

We now have a GB. Since the lm's of g1, g2, g3 are redundant, we should be able to

discard them. We check that here.

sage: red(red(red(g1,g4),g3),g4)

0

sage: red(red(red(red(g2,g4),g6),g4),g5)

0

sage: red(red(g3,g5),g6)

0

So the basis consists only of g4, g5, g6. Since g4 and g5 are linear, they won't produce

quadratic solutions. However, g6 is quadratic; to see its solutions we should test the

discriminant. First we reduce g6 completely, removing x2.

sage: g6.coefficient(x2)

-b2^2*c + a*b2*d2

sage: lc(g5)

b2*c - a*d2

sage: factor(g6*lc(g5) - g5*g6.coefficient(x2))

(-b2*c + a*d2) * (-x3^2*a*b1*c + x3^2*a^2*d1 + 2*x3*b1*b2*c - 2*x3*a*b2*d1

+ b2^2*d1 - b1*b2*d2 - b2*c*d3 + a*d2*d3)

sage: g6 = ((g6*lc(g5) - g5*g6.coefficient(x2))/(lc(g5))).numerator()

sage: g6

x3^2*a*b1*c - x3^2*a^2*d1 - 2*x3*b1*b2*c + 2*x3*a*b2*d1 - b2^2*d1 + b1*b2*d2

+ b2*c*d3 - a*d2*d3

sage: qu_a = g6.coefficient(x3^2)
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sage: qu_a

a*b1*c - a^2*d1

sage: qu_b = g6.coefficient(x3)

sage: qu_b

-2*b1*b2*c + 2*a*b2*d1

sage: qu_c = g6 - qu_a*x3^2 - qu_b*x3

sage: qu_c

-b2^2*d1 + b1*b2*d2 + b2*c*d3 - a*d2*d3

Whether the solutions are real or complex depends on whether the discriminant of a

quadratic polynomial is positive or negative.

sage: factor(qu_b**2 - 4*qu_a*qu_c)

(4) * (-b2*c + a*d2) * (b1*c - a*d1) * (-b1*b2 + a*d3)
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