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Abstract

Cryptography is the study of a centuries–old technique of secretly transferring in-

formation between parties. Linear recurrences were the chosen method of encryption and

decryption in the thesis. The Fibonacci sequence, with its Zeckendorf representation, al-

lows for the flexibility of encoding any number desired based on a particular encoding

technique used in the film Sherlock Holmes: A Game of Shadows. The main goal is to find

other linear recurrences that possess characteristics similar to the Fibonacci sequence to

use as suitable substitutes for encoding.

Different sequences were analyzed based on a number of criteria. In order for a

sequence to be a candidate, it had to be first deemed a possible sequence based on the nature

of the roots of its characteristic equation. Once it passed this test, a particular method was

developed for showing that a sequence could be used to encode a set of numbers. This

method was applied to various sequences, showing which sequences satisfy the desired

encryption method.

Key Words: complete sequences, Fibonacci sequence, sequence-based cryptography
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Chapter 1

Introduction

In the movie Sherlock Holmes: A Game of Shadows, Professor Moriarty attempts,

and at first succeeds, in deceiving Sherlock Holmes about where he will strike his next tar-

get. Rather than being obvious by whispering to his evil henchmen the location of the next

assassination, he chooses to put the locations in a special numeric code delivered between

the members of his group. This idea is actually very old, an art known as cryptography,

which traces back several hundred years. Cryptography (a branch of mathematics) is the

study of methods to transfer information to another party securely without it being uncov-

ered and plans being intercepted (Luciano & Prichett, 1987). However, Holmes ultimately

figures out that his messages are in code, learns the location of his next target by decipher-

ing it, and foils Moriarty’s plan just like in the classic hero-villain tale.

While information can be encoded using all sorts of methods involving letters, matri-

ces, and even symbols, the method of encryption here is sequence-based cryptography. The

code that Moriarty uses is based on the (mathematically) well-known Pascal’s triangle and

Fibonacci numbers, the sums of the first diagonals of the triangle. The Fibonacci numbers

are written consecutively so that each is a sum of the previous two numbers; this can be

represented by the equation Fp(n) = Fp(n−1)+Fp(n− p−1), where p = 1 and Fp(0) = 1

and Fp(1) = 1. The versatility of the previous equation comes from the flexibility of the

value of p; by letting p be a different value for each set of encryptions, it makes the code

more difficult to decipher.

After choosing to use his horticultural book as a cipher, he formulates a basic code

through which he and his men can easily encode and decode messages to each other so that

they can communicate covertly. Moriarty first decides on his message then constructs it by

choosing letters from his book. He then encodes these page, line, and character numbers
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using his encryption method. With their own copy of the book, his colleagues simply

take the encoded numbers from the message and, using a particular starting value with

the correct sequence, decipher which letters the numbers represent, revealing the entire

message (Goriely & Moulton, 2012). While anyone could read the string of numbers, they

could not decipher the numbers without knowledge of the decryption process, the correct

book for a cipher, or starting value of the sequence. This is an example of how cryptography

plays such a crucial role; it allows the passage of important information that seems highly

unprotected while remaining indecipherable.

Some codes that are meant to be kept private only work with one sequence of num-

bers, or key. This key must be used in every encryption and decryption, or the decryption

will result in a message that consists of a string of letters making little to no sense. In this

case, the same key is used to both encode and decode a sequence. If the incorrect key were

to be used with a sequence of numbers meant for one key, then the result would not be

correct. It would be like trying to insert an actual key into a vehicle: the key may or may

not be able to jam into the car, but it still will not crank the vehicle if it is not an exact

match.

When a sequence is to be used as a key, it must consistently serve as the encoder

and decoder. Potential sequences must satisfy the following property of being complete,

that every positive integer can be represented as a distinct sum of terms in the sequence

(Brown, 1961). One goal is to construct an algorithm to indicate sequences that may serve

as keys, and to determine methods for identifying sequences that cannot serve as keys. The

Fibonacci sequence is a possible key because each positive number can be represented as

a sum of terms in the sequence (Zeckendorf, 1972). Other sequences, however, may have

problems where certain numbers cannot be expressed as a sum of terms, and therefore

cannot be encoded. Hence, the main goal is to identify other sequences of numbers similar

to the Fibonacci sequence that can serve as a functional key; the Tribonacci sequence is a

2



good candidate. It is similar to the Fibonacci sequence yet has different properties because

it takes a sum of three numbers to make the next term as opposed to two. Other linear

recursive sequences may also be possible candidates.
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Chapter 2

Literature Review

Whenever one party needs to communicate information to another without sharing it

with outside sources, there needs to be a way to pass the information on securely without

it being intercepted or damaged. A safe way of doing this is encoding the message via

cryptography; this is a category of mathematics that involves systematically encoding one

message into another. Not all cryptography is done the same way, however. Messages can

be encrypted using linear ciphers with numbers or letters, substitution ciphers, polyalpha-

betic ciphers, etc., just to name a few (Luciano & Prichett, 1987).

In sequence-based cryptography, all numbers that are to be encrypted must be suc-

cessfully translated into another set of values. The Fibonacci sequence works with the

code represented in the movie because each integer n can be represented by a sum of non-

consecutive Fibonacci numbers. In fact, each number n can be represented uniquely as a

sum of distinct non-consecutive sequence terms (Zeckendorf, 1972). This representation

(a “Zeckendorf representation”) was first made public by Lekkerkerker (1952); however,

Edouard Zeckendorf formulated his proof of the representation much earlier in 1939, even

though it was not published until later (Kimberling, 1998). Therefore, each positive integer

n that corresponds to a particular page, line, or character number that Moriarty would have

chosen to encode is able to be encrypted without any problems. No matter which integer

is to be encoded, some other numbers of the sequence do sum to it and can be chosen as

the set of numbers that replaces that page, line, or character number. Then, this number is

translated into the specific term number of the sequence, which forms the coded numbers

that Moriarty actually sends in his message (Goriely & Moulton, 2012). In addition, as

each n also has a unique representation in terms of the Fibonacci numbers, one number

would not have the same coded value as another number. This helps eliminate any con-

fusion in the decryption process as well, since no two values can correspond to the same
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plaintext message.

Because the idea of cryptography is to transmit information under the radar, the se-

quence to be used should be well disguised. The Fibonacci sequence is such a widely

known mathematical sequence that Sherlock Holmes was able to easily decipher Mori-

arty’s code and foil his plans. Being able to utilize different sequences within the same

code makes the code more versatile and harder to crack. However, as mentioned earlier,

each number must be able to be encoded. Using the sequence of the set of even integers

for encryption quickly falters because an odd number cannot be written as a sum of even

integers. An example of this is that an odd-numbered page could not be encoded into a

sum of any even terms because it is impossible to generate that odd number from only

even numbers. According to Daykin (1960), no other sequence of numbers besides the

Fibonacci sequence exhibits the property of having a Zeckendorf representation, that is,

that any integer n can be expressed as a unique sum of non-consecutive sequence elements

(Zeckendorf, 1972). A sequence that is complete (Brown, 1961) can work without the re-

straint of using only unique or non-consecutive sequence elements as with a Zeckendorf

representation. Furthermore, depending on the nature of the numbers that are trying to be

encoded, a specific sequence could serve as a suitable cipher with limited exceptions, such

as choosing a lower limit for the integer to be encoded.

In order to find another sequence to fit Moriarty’s encryption style, the code to be used

should have similar properties as the Fibonacci sequence. The Tribonacci sequence may

be one such sequence. The Tribonacci numbers are defined as Tn = Tn−3 + Tn−2 + Tn−1

where three numbers sum to the next; this is a very similar sequence to the Fibonacci

numbers (Feinberg, 1963). The difference lies in that the three previous terms sum up

to the next term rather than the two previous terms. These numbers can be generated

from a triangle just like the Fibonacci numbers can (Edwards, 2008/2009). Because of the

similarity between the Tribonacci numbers and the Fibonacci numbers, it may be possible
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to form an altered Zeckendorf representation for these numbers.
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Chapter 3

Methodology

While Moriarty uses the popular Fibonacci sequence, other linear sequences have

similar patterns. Therefore, one question to ask is what other sequences can serve as a

proper key for this particular code. Testing hundreds or thousands of integers in a sequence

can become very tedious if done by hand, but a computer can perform these calculations in

fractions of a second. Therefore, any needed computations will be written in a computer

program known as Sage (Stein, 2012) to allow them to be done in mass quantity in an ideal

amount of time.

In order to test sequences for the code, the sequences must first be created. In order

to do so, this will require writing a code in Sage that can generate a desired number of

terms of a sequence based on the recurrence for the sequence. For example, when the first

3 integers of the equation of the Tribonacci sequence are given, it can compute the next,

say 100 integers of the sequence, based on the equation Tn = Tn−1 +Tn−2 +Tn−3, which

explains that the next term of the sequence is given by the sum of previous three terms.

This code can be altered to generate a sequence with any number of starting terms and

any linear recurrence. A linear recurrence is a sequence in which the next number in the

sequence is created by adding linear combinations of previous terms of the sequence with

initial values established. For example, the Fibonacci sequence, Fn = Fn−1 +Fn−2, is one

such that Fn is formed by the linear combinations of coefficients (equal to 1) multiplied by

the previous two consecutive terms. Because of how Sage works, any recursive sequence

can be generated using this approach.

The idea of cryptography is to write one number as another; therefore, it must be

possible to write each positive integer as a sum of the numbers of the sequence being used

for the encryption. For a sequence to be acceptable for use as a key, it must be complete
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(Brown, 1961). After generating a sequence, there must be a way to test this “rewriting

process” with any integer. One method to obtain representations that may work is the use

of a greedy algorithm, where a representation is the form of writing a single integer n as a

sum of elements from a particular sequence. This is like a change-making algorithm, and it

involves taking the largest term of a sequence that goes into the integer n then subtracting

it from n leaving a smaller value. Unless the difference is 0, the process continues to repeat

until the difference of 0 is reached, resulting in a sum of terms from the sequence that makes

up n. Again, because this can be tedious, writing a function in Sage will allow this greedy

algorithm to be run on any given integer for a particular sequence. This can allow the

testing of hundreds of integers, which can eliminate or suggest sequences as possibilities

for keys of the code.
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Chapter 4

Complete Sequences

4.1 Fibonacci Numbers and the Code

As already described, each letter of the message refers to a specific letter of a specific

line of a specific page. The page, line, and character numbers have to then be converted

into the coded numbers. Before they can be converted, a key must be formulated as a basis

for the conversion. The Fibonacci sequence is used as the key for encoding and decoding

the message in the movie Sherlock Holmes: A Game of Shadows.

The Fibonacci sequence is a linear recurrence of the form Fn = Fn−1 +Fn−2; thus,

each term is made by summing the previous two terms of the sequence. Altering the defi-

nition slightly can lead to an entire family of recurrences based on the Fibonacci sequence.

A value p can be used in the sequence to give an altered form of the following:

Fp( j) = Fp( j−1)+Fp( j− p−1).

For the Fibonacci sequence, this p-value is 1, resulting in the sequence 1,2,3,5,8,13, . . .

(or sometimes 1,1,2,3,5,8,13, . . .) . To add variation to the sequence, the value of p can

simply be changed so that the sequence will follow a different pattern. For encryption

purposes, choosing a p-value other than 1 may decrease the likelihood that the sequence

will be known, thus heightening the security of the encryption.

In order to begin the encryption of a number, it is crucial to know the initial p-value.

Each number n is encoded as a codeword consisting of the sequence indices of the sequence

terms that add to achieve n. The process begins with choosing the largest term less than or

equal to n and proceeds by subtracting that largest term from n. Putting together the values

that sum to n in this manner is a concept known as the greedy algorithm. The indices of

9



the terms are then used to encode that number. For example, using p = 3 (with the indices

beginning at 0 rather than 1, which is the sequence used in Goriely & Moulton, 2012):

Sequence: 0,1,2,3,4,5,7,10,14,19,26,36,50,59,85,121, . . .

23 = 19 + 4, encoded as 0409
72 = 59 + 10 + 3, encoded as 030713
100 = 85 + 14 + 1, encoded as 010814

In the above example, the integer 23 is found by first subtracting the largest number

from the sequence that is less than or equal to 23. After 19 is subtracted, the remaining 4

is also a term of the sequence. The index of 4 is 04, and the index of 19 is 09, using two

digits for consistency. Thus, the encoded form of 23 is 0409. The following numbers are

encoded in the same fashion.

To decode a set of numbers, the same concept applies in reverse. The main necessity

for the decoding party is the initial p-value so the decoder knows what sequence he/she

is working with. After acquiring that, the sequence can be found from the equation, then

the encoded numbers are simply the term numbers. Those terms can be added up to equal

the final value, which stands for a specific page, line, or character number. This method of

encryption and decryption is adapted from the method used in Sherlock Holmes (Goriely

& Moulton, 2012).

4.2 Zeckendorf Representation and Brown’s Theorem

In the previous example that was used to encode a set of numbers, the greedy algo-

rithm was used to find which terms of the sequence added to make the number of choice.

In order for this to be possible, particular terms of the sequence must be available in order

to make those sums. The Fibonacci sequence possesses the virtue that every positive inte-

ger can be expressed as a unique sum of non-consecutive Fibonacci numbers (Zeckendorf,
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1972).

The basic concept behind finding the Zeckendorf representation for the Fibonacci

sequence is using the greedy algorithm. An integer n is chosen for which to find the Fi-

bonacci numbers that sum to it. An observation made in the proof by Zeckendorf is that no

two consecutive Fibonacci numbers are included in the sum representation, as two consec-

utive numbers are equivalent to the next Fibonacci number in the sequence. It has already

been stated that each Zeckendorf representation is unique, that is an integer n can only have

one representation. An example of a sequence that does not have a unique representation is

1,2,4,6,8,10,12,14,16,18,20,22, . . . . Using the greedy algorithm, the number 10 could

be written as a sum of the sequence elements 10 = 8+ 2, but it could also be written as

10 = 6+ 4. Both representations allow the number 10 to be written as a sum of sequence

elements, but the second one uses consecutive sequence terms.

In order to make other sequences work, it is necessary to be able to rewrite integers as

sums of their sequence elements just as the Fibonacci sequence. It has been shown that no

other linear recurrence has the capability of representing integers as sums of unique, non-

consecutive sequence elements (Daykin, 1960). However, unique representations as a sum

of non-consecutive sequence terms is not necessary. All that is necessary for encryption and

decryption is that the sequence is complete; neither consecutive terms nor non-uniqueness

have any detrimental effect on encryption or decryption.

Brown (1961) showed that, given a nondecreasing sequence of positive integers with

f1 = 1, the sequence { fi} is complete if and only if fp+1≤ 1+∑
p
1 fi for p= 1,2, . . . . Also in

this paper is a corollary to this theorem stating that if a sequence consists of nondecreasing

positive integers, then any element, say fi, of that sequence will be less than or equal to 2i−1.

In Chapter 5, it will be shown that a sequence can have the possibility of being complete

only if the roots of the characteristic equation of the sequence satisfy −2 < ri < 2. The

closed form of a sequence can be found via two methods, either generating functions or

11



the characteristic equation of a sequence. The Fibonacci sequence, having a Zeckendorf

representation and roots 1+
√

5
2 and 1−

√
5

2 , is also a complete sequence. The closed form of

the Fibonacci sequence can be written as

Fj =−0.447213595499958

(
1−
√

5
2

) j

+0.447213595499958

(
1+
√

5
2

) j

where the closed form coefficients of the sequence have been computed. But it is possible

for a sequence to be complete without having a Zeckendorf representation because the sum

does not have to consist of non-consecutive sequence elements. It is necessary to require

distinct terms from the sequence in a representation of an integer.

It is advantageous to utilize the property of completeness to analyze other sequences

for their possibility as candidates for encryption. If the roots of the characteristic equation

of a sequence are outside the accepted interval, then the sequence can quickly be elimi-

nated. Once this test has been performed on a sequence and passed, other methods can be

used to further analyze if integers can be encoded using terms of the sequence.

12



Chapter 5

Linear Recurrences

5.1 Generating Functions

Based on a previously mentioned corollary of Brown’s theorem, one method to de-

termine if a sequence is not complete is by going through numerous elements of a sequence

until a sequence term fails fi ≤ 2i−1. However, that can become time-consuming or may

not occur for a long time, if at all. One way to go about quickly identifying sequences that

are not complete is through the use of generating functions. (For a more extensive look at

generating functions, see Tucker, 2012.)

The formula for a particular generating function can be expressed as f (x) = a0 +

a1x+ a2x2 + a3x3 + a4x4 + a5x5 + · · · , where ai are the terms of the sequence. Using this

equation, the following displays an example for how a generating function can be used on

the Fibonacci sequence, which is of the form an = an−1 +an−2, to obtain a closed form of

the sequence for analysis of its roots.

f (x) = a0 +a1x+a2x2 +a3x3 +a4x4 +a5x5 + · · · (1)

x f (x) = a0x+a1x2 +a2x3 +a3x4 +a4x5 + · · · (2)

x2 f (x) = a0x2 +a1x3 +a2x4 +a3x5 + · · · (3)

Line 1 represents the basic equation for a generating function for the sequence. In Line 2,

the equation is being multiplied by x because the term an is created by first shifting back

one term before adding it to its previous term. So multiplying by x in a sense ”shifts” the

equation back a term. Likewise, in Line 3, the equation is multiplied by x2 because this

causes the sequence to shift back another term. The terms that not all three equations have

in common are being set equal to an arbitrary j. Part of the first line of the next equation,

13



f (x) = x f (x)+ x2 f (x), is derived from the formula of the sequence an = an−1 +an−2.

f (x) = x f (x)+ x2 f (x)+ j

f (x)− x f (x)− x2 f (x) = j

f (x)(1− x− x2) = j

f (x) =
j

1− x− x2

f (x) =
− j

x2 + x−1

Next, the denominator of f (x) can be factored by the quadratic equation.

x =
−1±

√
(1)2−4(1)(−1)

2(1)
=
−1±

√
5

2

The roots can be set up as if the equation were going to be solved via partial fractions.

− j
x2 + x−1

=
A

x−
(
−1+

√
5

2

) +
B

x−
(
−1−

√
5

2

)
The denominator of each partial fraction can be rearranged so that the root is in the geo-

metric series form (1−ax).

Positive Root : x−

(
−1+

√
5

2

)
=

1−
√

5
2

(
1− 2
−1+

√
5

x
)

Negative Root : x−

(
−1−

√
5

2

)
=

1+
√

5
2

(
1− 2
−1−

√
5

x
)

Each root can be used to write the closed form of the sequence.

an =C1

(
2

−1−
√

5

)n

+C2

(
2

−1+
√

5

)n

Note that, when rationalized, 2
−1−

√
5
= 1−

√
5

2 and 2
−1+

√
5
= 1+

√
5

2 .
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When the larger root is evaluated,
(

2
−1+

√
5

)
≈ 1.6. Since 1.6 < 2, 1.6n increases at

a slower rate than 2n. This information infers that the sequence has a possibility of being

complete. (The Fibonacci sequence has already been proved to be complete, but this is

an example of how the approach of using generating functions can render possible com-

plete sequences.) When the smaller root is evaluated,
(

2
−1−

√
5

)
≈−0.6, which eventually

approaches zero when raised to the nth power. Therefore, the previous equation can be

written as the following:

an ≈C2

(
2

−1+
√

5

)n

.

Another example for using a generating function to check the possible completeness

on a sequence will be shown below. The sequence of interest is a linear sequence, but

different from the previous example, as the coefficients of the previous two terms are no

longer 1. A linear sequence is one such that each term of the sequence can be found

via an equation using the previous terms of the sequence. The sequence to be used is

an = 4an−1 +3an−2.

f (x) = a0 +a1x+a2x2 +a3x3 +a4x4 +a5x5 + · · · (4)

4x f (x) = 4a0x+4a1x2 +4a2x3 +4a3x4 +4a4x5 + · · · (5)

3x2 f (x) = 3a0x2 +3a1x3 +3a2x4 +3a3x5 + · · · (6)

The same manipulations to the generating function are being applied just as with the pre-

vious example. Whenever a coefficient is present, that number is also multiplied by each

term in the function in addition to power of x being multiplied by the function. Again, the
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value of j will represent the difference between the three equations, in terms of recurrence.

f (x) = 4x f (x)+3x2 f (x)+ j

f (x)−4x f (x)−3x2 f (x) = j

f (x)(1−4x−3x2) = j

f (x) =
j

1−4x−3x2

f (x) =
− j

3x2 +4x−1

After shifting the original generating function, the differences between the equations are

being set equal to f (x). The equation can then be solved for f (x), where the denominator

is then factored by the quadratic equation.

x =
−4±

√
(4)2−4(3)(−1)

2(3)
=
−2±

√
7

3

The roots are then set up into partial fractions, so as to see that they can then be rearranged

into a form of the geometric series, (1−ax).

− j
3x2 +4x−1

=
A

x−
(
−2+

√
7

3

) +
B

x−
(
−2−

√
7

3

)
Positive Root : x−

(
−2+

√
7

3

)
=−−2+

√
7

3

(
1− 3
−2+

√
7

x
)

Negative Root : x−

(
−2−

√
7

3

)
=−−2−

√
7

3

(
1− 3
−2−

√
7

x
)

The following is the closed form of the sequence in terms of the roots and unknown closed

form coefficients.

an =C1

(
3

−2−
√

7

)n

+C2

(
3

−2+
√

7

)n

When evaluated, the smaller root
(

3
−2−

√
7

)
≈ −1.5. Depending on the parity of n, this
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number raised to the nth power may have a positive or negative contribution to the se-

quence. The larger root,
(

3
−2+

√
7

)
≈ 4.6 > 2, and therefore 4.6n increases at a faster rate

than 2n. Because one of the roots dissatisfies the root conditions, this sequence does not

satisfy the conditions of being complete, and therefore no further testing is necessary.

5.2 Characteristic Equations

The characteristic equation is a useful tool that can be used to help check the com-

pleteness of a sequence by allowing for the determination of the closed form of a sequence.

It works in a manner analogous to generating functions, except the method is much quicker.

(For a complete description of characteristic equations, see Tucker, 2012.)

When given the formula for the terms of a sequence, the first step is to rearrange

the equation so that it is equal to zero. From there, the coefficients can be extracted from

the terms of the sequence and paired with corresponding x-values. For example, using the

formula for the Fibonacci sequence:

an = an−1 +an−2,

an−an−1−an−2 = 0,

x2− x−1 = 0.

Assuming that an = xn, the last line of the equation is translated from the previous. Then

an−1 = xn−1, and an−2 = xn−2. Because the Fibonacci sequence is a two term recurrence,

n = 2, yielding an = x2, an−1 = x, and an−2 = 1.

Using the equation now at hand, the roots of the equation can now be computed.

Using the same example as above, the following roots are found for the Fibonacci sequence
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using the quadratic formula:

x =
1±
√
(−1)2−4(1)(−1)

2(1)
,

x =
1±
√

5
2

.

Now that the roots of the equation have been found, this leads to being able to deter-

mine if the sequence may or may not be complete. If the absolute values of the roots are

all less than or equal to 2, then the sequence has a possibility of being complete. On the

other hand, if any of the absolute values of the roots are greater than 2, this implies that the

sequence will not be complete. However, the coefficients of the roots of the sequence in the

closed form must be taken into account. If a root has an absolute value that is greater than

or equal to 2, but its coefficient is zero, then the root has no contribution to the sequence.

Therefore this root can be ignored when checking for completeness of the sequence. When

generating a formula for the terms of the sequence using the roots, the coefficients can

cause certain roots to be ignored. The formula for finding the terms of the sequence is as

follows, given that the roots are distinct (where ri are the roots of the sequence and ci are

the closed form coefficients):

ak = c1rk
1 + c2rk

2 + · · ·+ cnrk
n

If the roots repeat, the equation changes only slightly. For the following example, the root

r1 is repeated three times. Then the first time r1 appears in the closed form of the sequence,

it is paired with the coefficient c1. To account for the first repetition of r1, a factor of

k is introduced and the product is multiplied by c2. The second repetition of r1 consists

of a factor of k2, with the next coefficient c3. The remaining roots are written as linear

18



combinations as usual:

ak = c1rk
1 + c2krk

1 + c3k2rk
1 + c4rk

4 + · · ·+ cnrk
n.

If several of the coefficients ci were to be zero, then the sequence would have a

possibility of being complete with the given initial conditions regardless of the roots. When

testing for the completeness of the sequence, it is necessary to see that the coefficients of

roots with absolute values greater than 2 not have coefficients of zero. Because the terms

of the sequence are known in addition to the roots, the coefficients can be found. The

number of unknown coefficients is equivalent to the value of k of the desired term ak. This

results in a set of equations numbered 1 to k. Since there are an equal number of unknown

coefficients as there are equations to solve for, then a system of equations can be used to

solve for the coefficients. The following function was written and tested in Sage to test

both the roots and coefficients, allowing the user to input any number of initial values and

coefficients for the linear sequence. (Details of the exact Sage code can be found in the

Appendix.)

complete ([1 ,1] ,[1 ,1])

(

[ -0.447213595499958]

[ 0.447213595499958] , ‘‘This sequence may be complete.’’

)

Based on the results from the computed function, the chosen initial values and coefficients

are those from a sequence that meets the necessary condition on the roots of the character-

istic equation (for completeness). A different example, such as the one shown below, can
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be ruled out immediately based on its initial values and coefficients.

an = 3an−1 +4an−2

an−3an−1−4an−2 = 0

x2−3x−4 = 0

x =
−4±

√
(4)2−4(3)(−1)

2(3)
=
−2±

√
7

3

complete ([1 ,1] ,[3 ,4])

‘‘This sequence cannot be complete.’’

Without even running the initial values and coefficients of the sequence through the code,

speculation of the roots shows that the sequence will not be complete simply because one

of the roots is larger than 2, while the other is negligible. However, the Sage function

analyzes the closed form coefficients that are multiplied by the roots of the sequence to see

that roots with absolute values larger than 2 have nonzero coefficients. The function only

considers roots of the characteristic equation with nonzero coefficients.

5.3 Generating Sequences

In order to work with a linear sequence, such as rewriting an integer as a sum of

the sequence elements, it is first necessary to generate the elements of the sequence. The

Fibonacci sequence, for example, is created by summing the previous two terms to get the

next term. It is quite tedious to manually calculate many terms of a sequence, and many

sequences for that matter. This type of process can be quickly accomplished by a computer,

therefore different functions can be written to find the number of terms of a sequence,

a particular term from a list of terms, or access which term number from a sequence an

element is.

20



The following function is a short function that is an example of one that would be

used to find a given number of terms for the Fibonacci sequence.

def Fibonacci_sequence(n):

terms = []

terms.append (1)

terms.append (1)

for i in range(2,n+1):

T = terms[i-1] + terms[i-1]

terms.append[T]

return terms

The user would simply choose a number of terms n and the code would compute n terms

of the Fibonacci sequence in seconds. The above code illustrates the general mechanism

that can be used to generate sequences that have any chosen starting values and any chosen

coefficients. The Appendix contains the details of the function that is used to find the terms

of the sequence given particular initial values and coefficients.
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Chapter 6

Step-by-Step Process of Proving a Sequence is Complete

6.1 A Modification of Brown’s Theorem

Brown’s theorem shows that a sequence of nondecreasing positive integers with f1 =

1 is complete if it satisfies fn+1 ≤ 1+∑
n
1 fi for n = 1,2, . . . (Brown, 1961). We want to

show that the same result holds if fn+1 ≤ 1+∑
n
1 fi for n ≥ N0, and that m ≥ fN0 can be

represented as a sum of sequence elements.

Theorem 1. Suppose fi is a nondecreasing positive sequence with the property that every

m< 1+∑
N0
i=1 fi can be represented as a sum of distinct sequence terms (which avoid fN0+1).

Then fn+1 ≤ 1+∑
n
i=1 fi for n > N0 implies { fi} is complete.

Proof. Suppose that, for m ≤ M0 where M0 = 1+∑
N0
i=1 fi, m can be written as a sum of

distinct sequence elements such that for the smallest m, fm+1 (the next element in the

sequence) is not used. It is necessary to show that

fn+1 ≤ 1+
n

∑
i=1

fi

for n≤N0 for { fi}∞
i=1, implies { fi} is complete. This modifies Brown’s theorem by relaxing

the condition that N0 = 1. To show this, consider m such that

1+
n

∑
i=1

fi < m≤ 1+
n+1

∑
i=1

fi

where n≥ N0. The values of m such that m≤ 1+∑
N0
i=1 fi are handled either by assumption

or induction. That is, it can be assumed that the integers less than m can be expressed as

sums of sequence elements. Then, by the condition that fN+1 ≤ 1+∑
n
i+1 fi (since n≥ N0),

m− fn+1 > 0. Also, since m ≤ 1+∑
n+1
i+1 fi, then m− fn+1 ≤ 1+∑

n
i=1 fi by transitivity.

Then, m− fn+1 can be represented as a sum. The term fn+1 can then be added to m− fn+1
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to obtain m. (It can be assumed that for m ≤ 1+∑
n
i=1 fi, m can be written as a sum of

distinct sequence elements such that fn+1 is not used.)

6.2 Overview of the Process

For the scope of this project, results were obtained for sequences that satisfy the

following properties:

1. All roots are real,

2. all coefficients are nonzero,

3. and there are no repeated roots.

Suppose that

fn = c1rn
1 + c2rn

2 + · · ·+ ckrn
k

The goal here is to show that for n > N0

fn+1 ≤ 1+
n

∑
l=1

fl

= 1+
n

∑
l=1

c1rl
1 + c2rl

2 + · · ·+ ckrl
k

= 1+ c1

(
n

∑
l=1

rl
1

)
+ c2

(
n

∑
l=1

rl
2

)
+ · · ·+ ck

(
n

∑
l=1

rl
k

)
.

It can be assumed that |ri| < 2 or ci = 0, as a sequence will have been tested by Sage

functions up to this point.

Let a be a computed root of the equation, and assume that a 6= 1. The previous sum

∑
n
l=1 rl

k can be written as a geometric series as follows: a+ a2 + a3 + a4 + · · ·+ an. The

following manipulations can be done on the series to get the series to the form an+1−a
a−1 . Let
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S simply be the sum of the series. Then

S = a+a2 +a3 +a4 + · · ·+an

aS = a2 +a3 +a4 + · · ·+an +an+1

Subtracting aS from S,

S−aS = (a+a2 +a3 +a4 + · · ·+an)− (a2 +a3 +a4 + · · ·+an +an+1)

S(1−a) = a−an+1

S =
a−an+1

1−a

S =
an+1−a

a−1

Now the sums of the powers of the roots can be rewritten in the form an+1−a
a−1 .

fn+1 ≤ 1+
n

∑
1

fl

= 1+ c1

(
rn+1

1 − r1

r1−1

)
+ c2

(
rn+1

2 − r2

r2−1

)
+ · · ·+ ck

(
rn+r

k − rk

rk−1

)

Now that each geometric series has been replaced by a closed form, a sequence of

steps can be taken to check if a particular sequence is complete. For a linear recurrence, it

is first necessary to find the closed form of the sequence. That is, to find each of the roots

and their corresponding coefficients that form a linear combination for the next term of the

sequence. Unless the sequence is ruled as incomplete, then this process progresses from

here.

Using the closed form for 1+∑
n
1 fi (for which each term above was determined to be
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of the form an+1−a
a−1 ), each root can be compared individually, solving for n for the following:

rn+1
i ≤

(
rn+1

i − ri

ri−1

)
.

Solving for n for each root will result in a set of different values of n. These values can

then be compared, where the largest will serve as a lower bound for which integers can be

represented as sequence elements.

Ideally, the main objective is to be able to represent any integer m as a sum of the

elements of the sequence of interest, which makes it complete. To verify that our sequence

is complete starting from a specific integer m = 1+∑
N0
i=1 fi, the functions in Sage can be

performed on the initial values and coefficients of the sequence.

Using the extension of Brown’s theorem, the next step is to be able to determine N0

for Brown’s Lemma so that if fi is increasing, then fn+1 ≤ 1+∑
n
i=1 fi for n ≥ N0. Taking

that inequality, it can be manipulated into another way of writing the inequality to solve for

n:

c1rn+1
1 + c2rn+1

2 ≤ 1+ c1

(
rn+1

1 − r1

r1−1

)
+ c2

(
rn+1

2 − r2

r2−1

)

While Sage can be used to solve for n once the roots of the characteristic equation

have been computed, the following shows patterns of how the value of n will behave de-

pending on which interval it lies within (−2,2).

6.3 Analyzing Roots

The goal is to obtain a lower bound for n, and the work below shows for which roots this

can be accomplished.
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Condition: ri = 0

0n+1 ≤ (01 +02 +03 + · · ·+0n)

0≤ 0

Since the above case is always true, there is no restriction on n.

Condition: ri = 1

1n+1 ≤ (11 +12 +13 + · · ·+1n)

1≤ n

n≥ 1

Sequences typically begin at 1, therefore the n will always be at least 1. Now since the

above case is always true, there is no restriction on n.

Condition: ri =−1

−1n+1 ≤ (−11 +−12 +−13 + · · ·+1n)

1≤−1 (result if n is odd)

−1≤ 0 (result if n is even)

If the value of n is odd, then the result of the inequality is a false expression of 1 ≤ −1.

However, if the value of n is even, the result is a true inequality. A root of −1 thus has a

parity restriction on solving for n.
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Condition: 1 < r < 2

rn+1
i ≤

rn+1
i − ri

ri−1

rn+1
i (ri−1)≤ rn+1

i − ri

rn+2
i − rn+1

i ≤ rn+1
i − ri

rn+2
i −2rn+1

i ≤−ri

−rn+2
i +2rn+1

i ≥ ri

rn+1
i (2− ri) ≥ ri

2− ri ≥
ri

rn+1
i

2− ri ≥ r−n
i

ln(2− ri)︸ ︷︷ ︸
negative

≥ −n ln(ri)︸ ︷︷ ︸
positive

ln(2− ri)

ln(ri)
≥ −n

− ln(2− ri)

ln(ri)
≤ n

n≥ − ln(2− ri)

ln(ri)

Here there are two sign changes (signified by two changes in color), resulting in a lower

bound on n.

27



Condition: 0 < ri < 1

rn+1
i ≤

rn+1
i − ri

ri−1︸ ︷︷ ︸
negative

rn+1
i (ri−1) ≥ rn+1

i − ri

rn+2
i − rn+1

i ≥ rn+1
i − ri

rn+2
i −2rn+1

i ≥ − ri

−rn+2
i +2rn+1

i ≤ ri

rn+1
i (2− ri)≤ ri

2− ri ≤
ri

rn+1
i

2− ri ≤ r−n
i

ln

2− ri︸ ︷︷ ︸
positive

≤−n ln(ri)︸ ︷︷ ︸
negative

ln(2− ri)

ln(ri)︸ ︷︷ ︸
negative

≥ −n

− ln(2− ri)

ln(ri)
≤ n

n≥ − ln(2− ri)

ln(ri)

Here there are four sign changes (signified by four changes in color), resulting in a lower

bound for n.

From the above algebraic manipulations, it is shown that for any roots larger than

0 (and of course below 2 for the sequence to be complete), that the value of n should be

greater than or equal to − ln(2−ri)
ln(ri)

. The next cases that will be handled will be for negative

roots.
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Condition: −1 < ri < 0

rn+1
i ≤

rn+1
i − ri

ri−1︸ ︷︷ ︸
negative

rn+1
i (ri−1) ≥ rn+1

i − ri

rn+2
i − rn+1

i ≥ rn+1
i − ri

rn+2
i −2rn+1

i ≥ − ri

−rn+2
i +2rn+1

i ≤ ri

rn+1
i (2− ri)≤ ri

Here, we have two different cases for how n will play out depending on if n is odd or even.

Below we show the outcome of the two.

If n is odd, then rn+1
i is positive.

rn+1
i (2− ri)≤ ri

2− ri ≤
ri

rn+1
i

2− ri︸ ︷︷ ︸
positive

≤ r−n
i︸︷︷︸

negative

If n is even, then rn+1
i is negative.

rn+1
i (2− ri)≤ ri

2− ri ≥
ri

rn+1
i

2− ri︸ ︷︷ ︸
positive

≥ r−n
i︸︷︷︸

positive

2− ri ≥ (−1)−n(ri)
−n

2− ri ≥ (1)(ri)
−n

2− ri ≥ (−ri)
−n

ln(2− ri) ≥ −n ln(−ri)

ln(2− ri)

ln(−ri)
≤−n

− ln(2− ri)

ln(−ri)
≥ n
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The above situation when n is odd yields a positive solution being greater than a

negative solution, but this is not possible. However, when n is even the solution is possible

with the value of n begin smaller than some value.

Condition: −2 < ri <−1

rn+1
i ≤

rn+1
i − ri

ri−1︸ ︷︷ ︸
negative

rn+1
i (ri−1) ≥ rn+1

i − ri

rn+2
i − rn+1

i ≥ rn+1
i − ri

rn+2
i −2rn+1

i ≥ − ri

−rn+2
i +2rn+1

i ≤ ri

rn+1
i (2− ri)≤ ri

As with the previous condition, there are again two different cases for how n will play out

depending on if n is odd or even. Below is the outcome of the two different parity options.

If n is odd, then rn+1
i is positive.

rn+1
i (2− ri)≤ ri

2− ri ≤
ri

rn+1
i

2− ri︸ ︷︷ ︸
positive

≤ r−n
i︸︷︷︸

negative

If n is even, then rn+1
i is negative.

rn+1
i (2− ri)≤ ri

2− ri ≥
ri

rn+1
i

2− ri︸ ︷︷ ︸
positive

≥ r−n
i︸︷︷︸

positive

2− ri ≥ (−1)−n(ri)
−n

2− ri ≥ (1)(ri)
−n

2− ri ≥ (−ri)
−n
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ln(2− ri) ≥ −n ln(−ri)

ln(2− ri)

ln(−ri)
≥−n

− ln(2− ri)

ln(−ri)
≤ n

The result regarding the parity of n for this condition is the same as before. Whenever

there is a negative root, including analyzing the case of −1, n can never be odd. If n is

even and lies on the interval (−2,−1), then it will be greater than or equal to some value.

However if n is even and lies on the interval (−1,0), n will be less than or equal to some

value. With the case of positive roots, the value of n will always be greater than some value

with no parity restrictions.
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Chapter 7

Application

After going through the steps of determining how a sequence can be deemed com-

plete, a particular sequence other than the Fibonacci sequence can be chosen with which

to encode the original page, line, and character numbers, as was the main goal. To begin,

the sequence that is chosen will be tested for completeness in Sage to determine whether

or not it will be ruled out immediately based upon the values of its roots. The sequence of

interest is

an = 2an−1−an−3.

The above sequence coefficients are 2, 0, and −1. In order to be complete, the sequence

needs to be able to represent 1, so we choose a0 = 1. To finish defining the sequence, we

arbitrarily choose a1 = 2 and a2 = 4. From there the sequence was run through the follow-

ing function in order to obtain the possibility of completeness and yielded the following

results.

complete ([1,2,4],[2,0,-1])

([ -0.170820393249937]

[ -1.00000000000000]

[ 1.17082039324994] , ‘‘This sequence may be complete.’’)

The closed form coefficients have now been determined to be −0.1708, −1.000, and

1.1708, in addition to the possibility of the sequence being complete. Now the next step

is to determine the roots of the sequence. The following function utilizing the sequence

coefficients allowed for the computation of the roots of the sequence.

characteristic ([2,0,-1])

[ -0.618033988749895 , 1.00000000000000 , 1.61803398874989]
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The roots of the characteristic equation have now been found to be −0.618, 1.000, and

1.618. Combining both the roots and the closed form coefficients, each subsequent term of

the sequence can be written as

an = (−0.1708)(−0.618)n +(−1.000)(1.000)n +(1.1708)(1.618)n.

Going back to the closed form of 1+∑
n
1 ai, the previously derived inequality that charac-

terizes n is

rn+1
i ≤

(
rn+1

i − ri

ri−1

)
.

The n value for each case for the appropriate value of ri has already been obtained. The

appropriate case will then be chosen so that the values of n can be computed and compared.

n1 = -log(2-(1-sqrt (5))/2)/ log(-(1-sqrt (5))/2)

n1.n()

2.00000000000000

n2 = -log(2-(1+ sqrt (5))/2)/ log ((1+ sqrt (5))/2)

n2.n()

2.00000000000000

The value for n for the root 1.000 does not have to be computed because there is no

restriction on 1 when solving for n. Since the largest computed value of n resulted in

n≥ 2, it is safe to assume that the sequence is complete starting from the integer satisfying

m= 1+∑
1
i=0 ai, that is, m= 4. (The starting value of the sum has been adjusted because the

indexing of the sequence begins at zero, therefore the upper bound must be set at n−1; this

makes n−1 = 1.) The first four numbers up to 4 can be manually represented by sequence

elements using the greedy algorithm.

1 = 1
2 = 2
3 = 2 + 1
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4 = 4

The next step would be to encode a particular set of numbers, such as a set of page,

line, and character numbers. Let the arbitrarily chosen values be page 329, line 23, and

character 45. The greedy algorithm function in Sage is then used to determine which

numbers of the sequence make up the values to be encoded.

greedy ([1,2,4],[2,0,-1], 329)

([232, 88, 7, 2], 4)

greedy ([1,2,4],[2,0,-1], 23)

([20, 2, 1], 3)

greedy ([1,2,4],[2,0,-1], 45)

([33, 12], 2)

After determining which terms of the sequence will be used to encode the original page,

line, and character numbers, the indices of the terms must be recorded. Taking the largest

sequence term necessary to encode a number, each term number can be found using the

following function in Sage.

S = sequence ([1,2,4],[2,0,-1], 12)

S

[1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376]

A = 1 + S.index (232)

A

11

The last step would repeat until all term numbers are found. The following page, line, and

character numbers would be written as follows:

Page 329 = 2 + 7 + 88 + 232 = 02040911
Line 23 = 1 + 2 + 20 = 010206
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Character 45 = 12 + 33 = 0507

Therefore page 329, line 23, character 45 would be encoded as

02040911 010206 0507

which is an example of encoding a single letter on a page.
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Chapter 8

Conclusion

Because every integer can be written as a sum of its sequence elements, the Fibonacci

sequence is obviously one of the most useful linear recurrences that can be used for cryp-

tographic applications. Exhibiting the properties of completeness and having a Zeckendorf

representation, it is a rank above all other linear sequences. However, it is also a model,

with its many properties, which other sequences will be compared to.

Through the use of generating functions, the characteristic equation, and computer

programming, it is possible to analyze various parts of a linear sequence. Sequence coef-

ficients, initial values, closed form coefficients, and the roots of a sequence all play vital

roles in the behavior of a sequence from how it grows to if it will be able to be used for

encoding numbers.

Even though the Fibonacci sequence seems like the perfect candidate for every occa-

sion, the original idea behind cryptography is to be as secretive as possible. The only danger

with the Fibonacci sequence is that it is highly recognizable. Being able to find other se-

quences that fit the bill for encryption of this sort decreases the chances for deciphering,

which is the ultimate goal when passing secret messages. As shown in the application of

using an alternative sequence, Sherlock Holmes may not have as easily uncovered the loca-

tions of escapade if a different sequence had been chosen. In order to encode (and decode)

a message using an alternative linear recurrence, much analysis and thought must go into

the process of choosing a sequence that is suitable, from the terms of the sequence all the

way down to its roots.
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Appendix

Generating Sequences

The following function can be used to find any given number of terms for the Fibonacci

sequence. Following the function are two examples of how the function finds n terms of

the Fibonacci sequence.

def Fibonacci_sequence(n):

#input is the number of terms desired

terms = []

terms.append (0)

terms.append (1)

for i in range(2,n+1):

T = terms[i-2] + terms[i-1]

terms.append(T)

return terms

#output the generated terms of the sequence

Fibonacci_sequence (9)

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Fibonacci_sequence (14)

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]

The next function is analogous to the previous function, except that it finds any given

number of terms for a Tribonacci sequence. This type of sequence takes into account three

initial values, so that the fourth term (and every term thereafter) is found by adding the

previous three. Following the function are two examples of how the function finds n terms

of a Tribonacci sequence.
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def tribonacci_sequence(a1,a2,a3 ,n):

#inputs are the three initial values and the desired

#number of terms

terms = []

terms.append(a1)

terms.append(a2)

terms.append(a3)

for i in range(3,n+1):

T = terms[i-3] + terms[i-2] + terms[i-1]

terms.append(T)

return terms

#output the generated terms of the sequence

tribonacci_sequence (1,2,3,11)

[1, 2, 3, 6, 11, 20, 37, 68, 125, 230, 423, 778]

tribonacci_sequence (2,3,5,9)

[2, 3, 5, 10, 18, 33, 61, 112, 206, 379]

Not all sequences follow the pattern of the Fibonacci or Tribonacci sequences, so another

function must be written to formulate sequences with any given initial coefficients and any

coefficients. The following function displays a function that does so, with two examples to

follow.

def sequence(IV,CF,k):

#input a list of initial values , list of coefficients

#for the sequence , and the desired number of terms

LIV = len(IV)

LCF = len(CF)
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RCF = CF

RCF.reverse ()

if LIV != LCF:

print ‘‘This sequence will not work!’’

else:

for j in range(LIV ,k):

T = 0

for i in range(LCF):

T = T + RCF[i]*IV[i+j-LIV]

IV.append(T)

return IV

#output the generated terms of the sequence

sequence ([1 ,1] ,[1 ,1] ,15)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

sequence ([1 ,2],[3,4] ,8)

[1, 2, 10, 38, 154, 614, 2458, 9830]

Complete Sequences

This first function computes the roots of a sequence by the process of finding the

characteristic equation using the sequence coefficients. It is followed by two examples of

how a sequence’s roots are computed.

def characteristic(CF):

#input a list of sequence coefficients

LCF = len(CF)

x = PolynomialRing(CC,’x’).gen()

f = x^LCF
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for i in range(LCF):

f = f - CF[i]*x^(LCF - i - 1)

roots = f.roots ()

L = len(roots)

R = []

for i in range(L):

RP = roots[i]

for j in range(RP [1]):

R.append(RP[0])

return R

#output the roots of the sequence

characteristic ([2 ,2])

[ -0.732050807568877 , 2.73205080756888]

characteristic ([1 ,1,1])

[1.83928675521416 , -0.419643377607081 -

0.606290729207199*I, - 0.419643377607081 +

0.606290729207199*I]

This function returns whether or not the sequence may or may not be complete, given the

particular initial values and sequence coefficients. It finds the roots of the function (using

a previous function) and determines whether they fall in the range −2 < ri < 2. After

finding these roots, it determines the closed form coefficients to determine whether a

sequence can actually be ruled as not complete or possibly complete. There are also two

examples of sequences being tested for completeness.

def complete(IV,CF):

#input a list of initial values and list of coefficients
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#of the sequence

LIV = len(IV)

LCF = len(CF)

if LIV != LCF:

print ‘‘Try again.’’

return

R = characteristic(CF)

RootMatrix = matrix(CC,LCF ,LCF)

k = 0

for j in range(LCF):

if (j > 0) and (R[j] == R[j -1]):

k = k + 1

else:

k = 0

for i in range(LCF):

RootMatrix[i,j] = (R[j]^(i+1))*(i+1)^k

SequenceMatrix = matrix(CC,LCF ,1)

for i in range(LCF):

SequenceMatrix[i] = IV[i]

CoefficientMatrix = RootMatrix\SequenceMatrix

for i in range(LCF):

if ((R[i] > 2 or R[i] < -2) and (CoefficientMatrix[i]

!= 0)):

return ‘‘This sequence cannot be complete.’’

return CoefficientMatrix , ‘‘This sequence may be

complete.’’

#output if the sequence may complete or not
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#if the sequence is complete , also include the closed

#form coefficients

complete ([1 ,1] ,[1 ,1])

(

[ -0.447213595499958]

[ 0.447213595499958] , ‘‘This sequence may be complete.’’

)

complete ([1 ,1] ,[3 ,4])

‘‘This sequence cannot be complete.’’

Using the Greedy Algorithm

Since the idea behind the Zeckendorf representation is to use the greedy algorithm, the

following function employs that particular algorithm on the Fibonacci sequence, followed

by two examples of an integer being broken down by it, including how many terms it takes

to make up the integer. It consists of the basic mechanism for how the greedy algorithm

works.

def greedy_fib(m,n):

#input the integer to be encoded and the number of sequence

#terms to encode the integer using a previous function

F = Fibonacci_sequence(n)

F.reverse ()

S = []

while m > 0:

while F[0] > m:

F.remove(F[0])

m = m - F[0]
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S.append(F[0])

F.remove(F[0])

L = len(S)

return S, L

#output the terms that sum to the integer and the

#number of terms needed for the sum

greedy_fib (213 ,20)

([144, 55, 13, 1], 4)

greedy_fib (1281 ,15)

([987, 233, 55, 5, 1], 5)

The next function is analogous to the function that determines if a sequence is complete. It

only determines the closed form coefficients for the sequence, which can be used for the

greedy algorithm.

def coefficients(IV,CF ,R):

#input a list of initial values , a list of coefficients ,

#and a list of roots of a sequence

LIV = len(IV)

LCF = len(CF)

if LIV != LCF:

print ‘‘Try again.’’

return

RootMatrix = matrix(CC,LCF ,LCF)

k = 0

for j in range(LCF):

if (j > 0) and (R[j] == R[j -1]):
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k = k + 1

else:

k = 0

for i in range(LCF):

RootMatrix[i,j] = (R[j]^(i+1))*(i+1)^k

SequenceMatrix = matrix(CC,LCF ,1)

for i in range(LCF):

SequenceMatrix[i] = IV[i]

CoefficientMatrix = RootMatrix\SequenceMatrix

return CoefficientMatrix

#output the closed form coefficients of the sequence

coefficients ([1,1],[1,1], characteristic ([1 ,1]))

[ -0.447213595499958]

[ 0.447213595499958]

The final function employs the greedy algorithm on any sequence, using any given initial

values and coefficients.

def greedy(IV ,CF,m):

#input a list of initial values and a list of coefficients

#of the sequence and an integer to be encoded

R = characteristic(CF)

CM = coefficients(IV,CF ,R)

RL = len(R)

C = []

D = []

for i in range(RL):
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if abs(R[i]) > 1:

C.append(abs(R[i]))

D.append(CM[i,0])

CL = len(C)

minimum = 3

for j in range(CL):

if C[j] <= minimum:

minimum = C[j]

location = j

p = minimum

c = abs(D[location ])

n = log(m/c,p)

q = n.n()

n = q.ceil()

S = sequence(IV ,CF,n)

S.reverse ()

G = []

while m > 0:

while S[0] > m:

S.remove(S[0])

m = m - S[0]

G.append(S[0])

S.remove(S[0])

L = len(G)

return G, L

#output the terms necessary to sum to the integer m and

#the number of terms it takes
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greedy ([1,2 ,3],[1,1 ,1],564)

([423, 125, 11, 3, 2], 5)

greedy ([1 ,2 ,4] ,[2 ,0 , -1] ,123987)

([121392 , 2583, 12], 3)
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