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This paper is devoted to the investigation of polymerization fronts converting a liquid monomer into
a liquid polymer. We assume that the monomer and the polymer are immiscible and study the
influence of the interfacial tension on the front stability. The mathematical model consists of the
reaction-diffusion equations coupled with the Navier–Stokes equations through the convection
terms. The jump conditions at the interface take into account the interfacial tension. Simple physical
arguments show that the same temperature distribution could not lead to Marangoni instability for
a nonreacting system. We fulfill a linear stability analysis and show that interaction of the chemical
reaction and of the interfacial tension can lead to an instability that has another mechanism: the heat
produced by the reaction decreases the interfacial tension and initiates the liquid motion. It brings
more monomer to the reaction zone and increases even more the heat production. This feedback
mechanism can lead to the instability if the frontal Marangoni number exceeds a critical value.
© 2000 American Institute of Physics.@S1054-1500~00!01701-8#

Similar to gaseous flames, exothermic polymerization
fronts can propagate through a medium if the activation
energy of the reaction is sufficiently high. If the monomer
and polymer are immiscible liquids, the frontal reaction
results in a narrow interface moving at constant velocity
when the monomer is changed into polymer. The surface
tension varies with temperature, which may generate a
convective flow in the liquids. We show analytically that
under microgravity conditions the interaction of the exo-
thermic chemical reaction and of the surface tension may
lead to an instability. We propose experimental condi-
tions to verify these theoretical results.

I. INTRODUCTION

Frontal polymerization can be accompanied by various
instabilities, such as the thermal instability~see Refs. 1–3,
hydrodynamical instabilities~see Refs. 4–7!, the Rayleigh–
Taylor instability ~see Ref. 8!. The thermal instability ap-
pears because of the competition of heat production due to
the chemical reaction and heat diffusion from the reaction
zone to the cold reagents. It is well known for combustion
~see, for example, Ref. 9! and it leads to periodic oscillations
or to various multidimensional modes of the front propaga-
tion. The hydrodynamical instability is also observed for the
gaseous combustion~see Refs. 10 and 11! and it appears
because of the heat expansion of the gas in the reaction zone.
The Rayleigh–Taylor instability is caused by the density dif-
ference between the reagents and the products of the reac-
tion. It appears as a result of action of the gravity and it can
lead to reactive fingering. In this work we study another type

of instability of polymerization fronts. We assume that the
monomer and the polymer are immiscible liquids, and we
study the influence of interfacial tension on the front stabil-
ity.

To describe expected phenomena, suppose that there is a
perturbation at the interface, where the temperature is greater
than at other points of the interface. In most cases the inter-
facial tension decreases with increasing temperature, and we
assume that this is true here. Then the liquid will move along
the interface from the spot where the perturbation is located.
To maintain the continuity of fluid flow the liquid moves to
this spot from both sides of the interface. This motion brings
to the interface the cold monomer and the hot polymer,
which has the same temperature as the interface. Hence the
average temperature decreases, and the perturbation decays.
Thus the Marangoni instability cannot exist.

On the other hand, we should take into account the
chemical reaction. The liquid motion to the interface brings
more monomer to the reaction zone. The heat release be-
cause of the reaction can increase the temperature perturba-
tion, which in its turn intensifies the liquid motion and leads
to the instability.

We show in this work that the instability resulting from
the interaction of a chemical reaction and the interfacial ten-
sion exists. We find the critical conditions of the instability.
The comparison with experimental values of the parameters
shows that the conditions for the instability are realistic, but
they may be difficult to obtain experimentally. The instabil-
ity generates a convective flow in the monomer and polymer,
which can distort the front.

The experiments must be performed in simulated micro-
gravity conditions to avoid the interference of gravitationally
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induced instabilities. We can choose also the values of pa-
rameters when there is no thermal instability. Finally the
monomer and the polymer are practically incompressible and
this excludes the possibility of the hydrodynamical instabil-
ity.

II. MATHEMATICAL MODEL

We consider a model consisting of equations for the
temperature, for the depth of conversion, and of the Navier–
Stokes equations. We assume that

~1! the monomer and the polymer are incompressible, im-
miscible, have the same densityr, the same coefficient
of thermal diffusivity k but different viscosities,n1 for
the polymer andn2 for the monomer,n1>n2 ;

~2! the chemical reaction is a one-step zero-order reaction
with the reaction rate given by
W5k~T!w~a!,

whereT is the temperature,a is the depth of conversion,

w~a!5H 1 if 0<a,1,

0 if a51,

and

k~T!5k0 exp~2E/~RT!!.

HereE is the activation energy,R the ideal gas constant, and
k0 is a pre-exponential factor.

~3! The influence of the walls can be neglected.
~4! The coefficient of mass diffusion is much less than the

coefficient of thermal diffusivity, and the mass diffusion
can be neglected. This condition holds for frontal poly-
merization.

Under these assumptions we have the following system
of equations:

]T

]t
1v"¹T5kDT1qW, ~1!

]a

]t
1v"¹a5W, ~2!

]v i

]t
1v"¹v i52

1

r

]p

]xi
1divFnS ¹v i1

]v
]xi

D G , i 51,2,3,

~3!

div v50. ~4!

Herev5(v1 ,v2 ,v3) is the velocity of the medium,p is the
pressure,q is the adiabatic heat release,n5n(a,T) is the
viscosity of the medium,

¹5S ]

]x1
,

]

]x2
,

]

]x3
D and D5

]2

]x1
2

1
]2

]x2
2

1
]2

]x3
2

.

The viscosity dependence on the depth of conversion is
essentially stronger than its dependence on temperature. In
what follows we considern only as a function ofa, and we
put n(0)5n2 , n(1)5n1 .

The system of Eqs.~1!–~4! is considered in the whole
space 2`,x1 ,x2 ,x3,1`. We suppose that the front
propagates in the directionx3 and that

T→T0 , a→0, v→0 as x3→1`,

T→Ta5T01q, a→1, v→0 asx3→2`.

Using nondimensional variables and parameters:

c25k0k
RTa

2

2E
expS 2

E

RTa
D ,

x̄i5
xic

k
, i 51,2,3, t15

tc2

k
, p15

c2p

r
,

u5
T2Ta

q
,

and omitting the bar forxi (¹,D,div, will now be operators
related to the new variables! and the subscript 1, we can
rewrite the problem in the form:

]u

]t
1v"¹u5Du1Z expS u

Z211du
D w~a!, ~5!

]a

]t
1v"¹a5Z expS u

Z211du
D w~a!, ~6!

]v i

]t
1v"¹v i52

]p

]xi
1PDv i1¹P"S ¹v i1

]v
]xi

D ,

i 51,2,3, ~7!

div v50 ~8!

with conditions at infinity:

u→0, a→0, and v→0 as x3→1`,

u→21, a→1, and v→0 as x3→2`.

Here Z5qE/(RTa
2) is the Zeldovich number,d5RTa /E,

P5n/k, P15n1 /k is the Prandtl number for the polymer,
andP25n2 /k is the Prandtl number for the monomer.

It is important to note that a system in which the mono-
mer and its polymer are totally immiscible has not been
found yet. However for some polymerization fronts there is a
very sharp concentration gradient in the mixing zone, and it
is close to an interface separating two liquids. One of them
contains mostly the monomer, the other one mostly the poly-
mer ~see Fig. 1, or Ref. 7 for other examples!.

The goal of this work is to investigate whether the inter-
facial tension can influence the front stability. In order to
study this stability analytically, we employ the so-called in-
finitely narrow reaction zone method, which assumes that the
chemical reaction occurs at a surfacex35z(x1 ,t). It is a
conventional approach for combustion problems developed
by Zeldovich and Frank–Kamenetskii for gaseous combus-
tion ~see Ref. 12! and later used also to study condensed
phase reaction fronts~see Ref. 13!. In our case it means that
the monomer is located in the regionx3.z(x1 ,t), the poly-
mer in x3,z(x1 ,t). Then instead of Eqs.~5! and ~6! we
have outside the reaction surface
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]u

]t
1v•¹u5Du, x3Þz~x1 ,t ! ~9!

a5H 0, x3.z~x1 ,t !,

1, x3,z~x1 ,t !.
~10!

Equations~7!–~10! should be completed by the jump condi-
tions for the temperature and for the velocity at the interface.
We discuss them in the next section.

This problem has a travelling wave solution of the form:
u(x1 ,x3 ,t)5u0(x32ut), a(x1 ,x3 ,t)5a0(x32ut),v050.
We will analyze its stability. In what follows we assume for
simplicity that the temperature, depth of conversion and ve-
locity do not depend on the variablex2 , and thatv250. It
does not change the critical conditions of the instability.

III. JUMP CONDITIONS AT THE INTERFACE

A. Conditions for the temperature

The jump conditions for the temperature have a conven-
tional form ~see Refs. 13 and 14! and we recall them briefly.

The temperature is continuous at the interface:

@u#2
150. ~11!

Here @¯#2
1 denotes the jump of a function at the reaction

zone,@ f #2
15 f (z20)2 f (z10).

We rewrite Eqs.~5! and~6! with the change of variables
z5x32z(x1 ,t) so that the reaction front is fixed:

]u

]t
5

]2u

]z2
1S ]z

]t
~ t,x1!2vzD ]u

]z

1Z expS u

Z211du
D w~a!, ~12!

]a

]t
5S ]z

]t
~ t,x1!2vzD ]a

]z
1Z expS u

Z211du
D w~a!.

~13!

Subtracting~13! from ~12! and integrating with respect toz
we find

@u8#2
152

]z

]t
1vz~01!. ~14!

Here as well as in the next jump condition we neglect the
second order terms. For example, if we putv5vs1 ṽ, u

5us1 ũ, wherevs andus correspond to the travelling wave
solution, andṽ and ũ are small perturbations, then the term

v1

]u

]x1
5 ṽ

]ũ

]x1

is a second order term. It can be neglected in the linear
stability analysis.

Multiplying ~12! by u8 and integrating with respect toz
we find:

@u82#2
1522ZE

21

u(z)

expS t

Z211dt
D dt

.u212Zu~z!. ~15!

Here

u2522ZE
21

0

expS t

Z211dt
D dt

is the normal speed of front propagation.
The problem~9!, ~11!, ~14!, ~15! has a travelling wave

solution:

us5H 0 if z5x32z~x1 ,t !,0,

211exp~2uz! if z5x32z~x1 ,t !.0,
vs50.

To fulfill the linear stability analysis we linearize the
jump conditions~11!, ~14!, and~15!. We put

u5us1u j~z!exp~vt1 ikx1!,

v5vs1v j~z!exp~vt1 ikx1!,

z~ t,x1!5ut1j~ t,x1!5ut1e exp~vt1 ikx1!,

where j 51 ( j 52) corresponds to the regionz,0 (z.0).
The perturbationsu j andv j are supposed to be small. Taking
into account that

uuj605usu601jus8~60!1u j~60!exp~vt1 ikx1!,

]u

]x3
U

j60

5us8u601jus9~60!

1
]u j

]x3
~j60!exp~vt1 ikx1!,

and neglecting the second order terms, we obtain

u2~0!2u1~0!5eu, ~16!

u28~0!2u18~0!52e~v1u2!1v2~0!, ~17!

u2e1u28~0!52
Z

u
u1~0!. ~18!

B. Conditions for the velocity

The first two conditions

@v3#2
15F]v3

]x3
G

2

1

50 ~19!

FIG. 1. A polymerization front with a monomer and a polymer separated by
a very sharp concentration gradient. Silica gel is used to prevent convection.
Adapted from Ref. 2.
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have a conventional form and come from the assumption that
the velocity is continuous at the interface.

The next condition can be obtained from the balance of
tangential stresses at the interface~see Ref. 15!. In the linear
approximation it can be written in the form:

F P

P2
S 2

]v1

]x3
1

]v3

]x1
D G

2

1

5M S ]u

]x1
1

]u

]x3
z8D . ~20!

HereM is a nondimensional parameter defined by

M52
ds

dT

q

crn2
, ~21!

wheres is the coefficient of surface tension. It can be called
the frontal Marangoni number. If we introduce the width of
the preheat zoneh5k/c thenM takes the form

M52
ds

dT

qh

krn2
,

and coincides with the usual Marangoni number.
In the approximation of the infinitely narrow reaction

zone the temperature gradient is discontinuous at the inter-
face. Hence the last term in the right-hand side of~20! is not
defined. We recall that inside the reaction zone

]u

]x3
52u~u112a!.

If we assume that the phase transition occurs at a critical
depth of conversiona5ac then we can determine the tem-
perature gradient at the interface. Hence we have an addi-
tional parameterac , 0<ac<1. To simplify the computa-
tions we putac51. In this case

]u

]x3
5O~e!

and in the linear stability analysis this term should be omit-
ted.

We differentiate Eq.~20! with respect tox1 in order to
eliminate the derivatives with respect tox3 @using ~4!#. The
x1 derivatives ofP are of order«. Neglecting them, we
obtain

F P

P2
S 2

]2v3

]x3
2

1
]2v3

]x1
2 D G

2

1

5M
]2u

]x1
2

. ~22!

If we assume thatv350 at the interface then~22! has the
usual form ~see Ref. 16!. However, we cannot assumea
priori that this condition is satisfied.

To obtain the last jump condition at the interface we
consider the case where the interface has a finite width and
then we pass to the limit as its width tends to zero. For
simplicity we will assume that in the case of the finite width
a is continuous in the whole domain and is twice differen-
tiable inside the reaction zone.~For example,a may be a
constant on either side of the reaction zone, and linear inside
the reaction zone.!

Suppose thatP(a) is twice continuously differentiable
as a function ofa. ThenP(a(x3)) is twice differentiable as
a function of x3 inside the reaction zone. Up to the high
order terms, Eq.~7! becomes

]v1

]t
52

]p

]x1
1PS ]2v1

]x3
2

2
]2v3

]x3]x1
D 1P8S ]v1

]x3
1

]v3

]x1
D ,

~23!
]v3

]t
52

]p

]x3
1PS ]2v3

]x3
2

1
]2v3

]x1
2 D 12P8

]v3

]x3
,

whereP85 ]P/]x3 . Applying twice the operator rotation in
order to eliminate the pressure gradient and the terms inv1

we find

2
]

]t
Dv35PS 2

]4v3

]x3
4

22
]4v3

]x3
2]x1

2
2

]4v3

]x1
4 D

12P8S 2
]3v3

]x3
3

2
]3v3

]x1
2]x3

D
1P9S 2

]2v3

]x3
2

1
]2v3

]x1
2 D . ~24!

Looking for v3 in the form v3(x1 ,x3 ,t)5v(x3

2ut)exp(vt1ikx1), we obtain

~Pv9!91k2~P8v23Pv8!81uv-1~Pk22v!v9

2k2uv81k2~Pk21v!v50.

Suppose thatP(a(x3)) is continuously differentiable in the
whole domain. For example,a is continuously differen-
tiable, ora only satisfies a Lipschitz condition at the bound-
ary of the reaction zone, and the derivative ofP(a) satisfies
P8(a)ua505P8(a)ua5150. We integrate the equality over
the reaction zone. Taking into account thatv9 is bounded,P8
is continuous and equals 0 outside of the transition zone we
obtain in the limit as its width tends to zero,

@Pv-23k2Pv81uv9#2
150. ~25!

For an unmovable interface (u50) this jump condition co-
incides with that in Ref. 16. We note that without the as-
sumption that the functionP is twice differentiable there are
some additional jump conditions for the velocity~cf. Ref.
17!. However it does not mean that the problem is overde-
termined. Indeed the problem~23! is not equivalent to the
problem ~24!, and we need additional conditions to deter-
mine arbitrary functions appearing in~24!.

IV. LINEAR STABILITY ANALYSIS

We obtain the following linearized problems:
z,0 ~polymer!,

u191uu181~v2k2!u150, ~26!

v~v192k2v1!5P1~v1-822k2v191k4v1!1u~v1-2k2v18!;

~27!

z.0 ~monomer!,

u291uu281~v2k2!u252uv2e2uz2, ~28!
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v~v292k2v2!5P2~v2-822k2v291k4v2!1u~v2-2k2v28!;

~29!

z50 ~interface!,

u2~0!2u1~0!5eu, ~30!

u28~0!2u18~0!52e~v1u2!1v1~0!, ~31!

u2e1u28~0!52
Z

u
u1~0!, ~32!

v1~0!5v2~0!, ~33!

v18~0!5v28~0!, ~34!

P2~v29~0!1k2v2~0!!5P1~v19~0!1k2v1~0!!

1M P2k2u1~0!, ~35!

P2v2-~0!23k2P2v28~0!1uv29~0!

5P1v1-~0!23k2P1v18~0!1uv19~0!. ~36!

We recall thatu1 ,u2 ,v1 ,v2 are bounded at6`.
The condition of nontrivial solvability of the system

~26!–~36! gives the stability boundary. We want to find the

cellular stability boundary, i.e., the case when the eigenvalue
with maximum real part is 0. The system~26!–~29! can be
solved explicitly:

v1~z!5c1ekz1c2el2z,z,0, ~37!

u1~z!5c3em1z,z,0, ~38!

v2~z!5c4e2kz1c5el4z,z.0, ~39!

u2~z!5c6em2z1c7e2(k1u)z1c8e(l42u)z,z.0. ~40!

Here

l25
2u

2P1
1A u2

4P1
2

1k2, l45
2u

2P2
2A u2

4P2
2

1k2,

m15
2u

2
1Au2

4
1k2, m25

2u

2
2Au2

4
1k2.

Substituting solutions~37!–~40! into ~31!–~36!, we ob-
tain a system of linear algebraic equations. The condition of
its nontrivial solvability can be written in the form

M5SAu214k42u1
2Z

u D H

kP2
, ~41!

where

H5
~P12P2!@2k2u1k~l42l2!u1~l41k!~l22k!~P1~k2l2!2P2~k1l4!!#

2~P12P2!~l41k!~l22k!1u~l42l212k!

1
u2~l42l2!

2~P12P2!~l41k!~l22k!1u~l42l212k!
.

We denoteM cr the right-hand side in~41!. If M is greater
than the critical value given by~41! then the instability may
occur, whereas ifM,M cr the stationary solution will be
stable. We study the dependence ofM cr on parameters in two
limiting cases:P15P2 , andP1→1`.

If P15P25P, then

l25
2u

2P
1A u2

4P2
1k2, l45

2u

2P
2A u2

4P2
1k2,

andH has a relatively simple form:

H5
uAu2/P2 14k2

A~u2/P2! 14k222k
.

We note that this expression and consequentlyM cr are posi-
tive.

If P1→1`, then

P1~k2l2!5P1k1
u

2
2Au2

4
1P1

2k2

5P1k1
u

2
2P1kS 11

u2

8P1
2k2D 1oS 1

P1
D

5
u

2
2

u2

8P1k
1oS 1

P1
D

andH5N/D where

N5P1ku~k1l4!1u2~l42k!1o~P1!

;P1k~k1l4!u,0,

D5~l41k!~2P1~l22k!1u!

1~2P2~l41k!1u!~k2l2!

5~l41k!
u2

4P1k
1

u

2P1
~2P2~l41k!1u!1oS 1

P1
D .

But l41k,0 and 2P2(l41k)1u,0 so D,0. HenceH
→1` asP1→1`. More precisely,H;aP1

2.
Another interesting issue is the behavior ofM cr as k

→0, P1 andP2 being kept constant. It is easy to observe that
in this case,l2→0, l4→2u/P2 so thatH→uÞ0. It shows
that M cr tends to infinity ask→0. ConsequentlyM cr(k)
reaches a minimal value for a certaink5k* .

In the general case the stability boundary cannot be
found analytically, but a numerical study shows thatM cr is
always positive~see Fig. 2!, which is physically consistent,
and proves that the loss of stability may occur. It is easy to
compute the stream function, and to observe what the insta-
bility would look like ~see Fig. 3!. The zero of the vertical
coordinate represents the interface, and we can observe a
strong vortex above it~in the monomer! caused by this in-

228 Chaos, Vol. 10, No. 1, 2000 Texier-Picard, Pojman, and Volpert



stability. We can see that the streamlines intersect the inter-
face, because of the chemical reaction~the monomer is
changed into polymer!. We have to point out that Fig. 3
represents the velocity field in coordinates attached to the
front. We also observe in the polymer a counter-vortex in-
duced by the vortex in the monomer. In Fig. 3~b! the poly-
mer is more viscous, therefore the streamlines cannot cross
the interface so easily and are flat near the interface.

V. COMPARISON WITH THE EXPERIMENTAL VALUES
OF PARAMETERS

We take the values of parameters corresponding to the
polymerization of benzyl acrylate in DMF~see Ref. 7!.

• Front velocity:c50.6 cm/min,
• Adiabatic heat release:q5140 K,
• Thermal conductivity:k5631022 cm2/min,
• Density:r51 g/cm3.
The problem for this comparison is to find an estimate

for the derivative of surface tension coefficient with respect
to temperature. Indeed we know of no experimental system
in which the monomer is immiscible with its molten poly-
mer. Further investigation is necessary in this domain. Even
for partially miscible systems we know the values of surface
tension, but not of their derivatives with respect to tempera-
ture. Our estimate is based on the conjecture that the propor-
tion between the coefficients of surface tension for the air/
water interface and the monomer/polymer interface can be
the same as the proportion between their derivatives. Conse-
quently we putds/dT525.4 g/(min2 K!521.5 mN/~m K!.

We vary the parametersn1 and n2 and find the experi-
mental valueMexp by the formula~21!, the minimum of the
function M cr given by ~41! and the corresponding value of
the wave numberk* ~see Table I!. The wave number deter-
mines the spatial periodd of the convective structure,d
52p/k.

We see that in the cases 1–3,Mexp is greater than the
minimum of M cr , and the instability may occur. However
the period is too large to observe the instability experimen-
tally because it is quite greater than the realistic diameters of
experimental tubes. Let us rather consider the wave numbers
corresponding to the diameters of the tubesda51.5 cm and
db53 cm, and compute the corresponding values of the criti-
cal Marangoni number. The wave numbers corresponding to
the diametersda anddb areka.0.42 andkb.0.21, respec-
tively. The values of the critical Marangoni number fork
5ka ~respectively,k5kb) equal 690~respectively, 340) in
case 1, 21 000~respectively, 10 500) in case 2, and 2800
~respectively, 1420) in case 3. Hence fork5ka as well as for
k5kb the instability can be observed only in the first case.

If we fix n251.5 cm2/min, andk5kb , then the instabil-
ity can be observed for 1.5 cm2/min <n1<3.18 cm2/min.
~The maximum viscosity for the polymer is only a little more
than twice the viscosity of the monomer.! For k5ka , the
condition is: 1.5 cm2/min <n1<1.8 cm2/min. We see that
the viscosity of the product of the reaction should be suffi-
ciently close to the viscosity of the monomer in order to
observe the instability. Hence the molecular weight of the

FIG. 2. M cr as a function of the wave numberk for n250.01 cm2/s and~a!
n15n2, ~b! n1510n2 .

FIG. 3. Streamlines of the velocity perturbation~a! n15n2 , ~b! n152n2 .

TABLE I. Comparison of experimental and critical Marangoni numbers for
various viscosities: in cases 1, 2, and 3, instability may occur, and the
corresponding spatial period is indicated.

Case n2 (cm2/min! n1 (cm2/min! M exp min of M cr period ~cm!

1 1.5 1.5 840 75 28.5
2 1.5 15 840 600 190.4
3 6 6 210 75 78.5
4 6 60 210 610
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polymer chains should be very low, which can be achieved
experimentally by the addition of a chain transfer agent~Ref.
4!.

VI. CONCLUSIONS AND DISCUSSION

In this work we study theoretically exothermic reaction
fronts propagating in liquids. We find analytically that a new
type of instability may occur as a result of interaction of
chemistry and hydrodynamics. It can be explained as fol-
lows: suppose that there is a small perturbation of the sta-
tionary state, and that the temperature increases locally at the
front. This can lead to a weak convective motion that brings
fresh monomer to the reaction zone. Though this fresh
monomer is colder than the front, it speeds up the reaction
and raises the heat release, so that the perturbation amplifies,
and the process may lead to an instability.

We find the critical condition when this instability ap-
pears: it has the formM.M cr(P1 ,P2 ,u,k), i.e., the frontal
Marangoni numberM should be greater than a critical value
depending on the Prandtl numbersP1 ~polymer! and P2

~monomer!, on the front velocityu, and on the wave number
of the perturbationk. We have shown that this critical value
has a minimum as a function ofk.

The critical conditions of the instability correspond to
physically realistic values of parameters though it may be
difficult to find an appropriate experimental system. Indeed
in most cases the instability cannot be observed experimen-
tally because the wave numberk of the perturbation is too
small ~see Sec. V!. If we match the value ofk with the
dimensions of the tube, we obtain that instability can be ob-
served for example in the case wheren153 cm2/min, n2

51.5 cm2/min. In order to verify these results experimen-
tally we should reduce the viscosity of the product of the
reaction as much as possible. This is experimentally pos-
sible, but there is a risk that if the polymer is only a little
more viscous than the monomer then they may be miscible,
which does not agree with our model.

We have considered the case where monomer and poly-
mer have the same density, but this model does not totally
agree with the reality. Physically the polymer is always more
dense than the monomer.

In Sec. V we assumed that the derivative of the coeffi-
cient of surface tension with respect to the temperature was
one percent of the value for the water/air interface. Actually
it is difficult to estimates for a monomer/polymer interface,
because experimentally a completely immiscible system is

not yet found. Therefore this value was estimated for a mis-
cible system. It can also be estimated for immiscible polymer
melts. See, for example, Ref. 18 for polystyrene and poly-
methyl methacrylate~Ref. 19!, for low molecular weight
polypropylene glycol and polyethylene glycol, and Ref. 20
for the polypropylene/polystyrene interface.

The values we used for benzyl acrylate in DMF corre-
spond to a solution polymerization. For a solvent-free sys-
tem, the heat releaseq is much larger, and we may haveq
5200 K. Thus this would aid observing the instability.

We should note finally that this study cannot be experi-
mentally realized under usual gravity~1g! because gravity
leads to convection of higher amplitude than the weak con-
vective motion due to the perturbation of surface tension. It
is well-known that for descending front there is the
Rayleigh–Taylor instability and for ascending, simple con-
vection ~see Refs. 2 and 7!. Thus, a microgravity investiga-
tion is required.
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