View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Aquila Digital Community

The University of Southern Mississippi

The Aquila Digital Community

Faculty Publications

3-1-2000

Effect of Interfacial Tension on Propagating Polymerization
Fronts

R. Texier-Picard
Université Lyon

John A. Pojman
University of Southern Mississippi, john@pojman.com

Vitaly Volpert
Université Lyon

Follow this and additional works at: https://aquila.usm.edu/fac_pubs

b Part of the Chemistry Commons

Recommended Citation

Texier-Picard, R., Pojman, J. A., Volpert, V. (2000). Effect of Interfacial Tension on Propagating
Polymerization Fronts. Chaos, 10(1), 224-230.

Available at: https://aquila.usm.edu/fac_pubs/9191

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for
inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more
information, please contact Joshua.Cromwell@usm.edu.


https://core.ac.uk/display/301296765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aquila.usm.edu/
https://aquila.usm.edu/fac_pubs
https://aquila.usm.edu/fac_pubs?utm_source=aquila.usm.edu%2Ffac_pubs%2F9191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=aquila.usm.edu%2Ffac_pubs%2F9191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu

CHAOS VOLUME 10, NUMBER 1 MARCH 2000

Effect of interfacial tension on propagating polymerization fronts
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Mississippi 39406-5043

Vit. A. Volpert
Analyse Nurmique, UniversiteLyon 1, UMR 5585 CNRS, 69622 Villeurbanne cedex, France

(Received 5 April 1999; accepted for publication 14 October 1999

This paper is devoted to the investigation of polymerization fronts converting a liquid monomer into

a liquid polymer. We assume that the monomer and the polymer are immiscible and study the
influence of the interfacial tension on the front stability. The mathematical model consists of the
reaction-diffusion equations coupled with the Navier—Stokes equations through the convection
terms. The jump conditions at the interface take into account the interfacial tension. Simple physical
arguments show that the same temperature distribution could not lead to Marangoni instability for
a nonreacting system. We fulfill a linear stability analysis and show that interaction of the chemical
reaction and of the interfacial tension can lead to an instability that has another mechanism: the heat
produced by the reaction decreases the interfacial tension and initiates the liquid motion. It brings
more monomer to the reaction zone and increases even more the heat production. This feedback
mechanism can lead to the instability if the frontal Marangoni number exceeds a critical value.
© 2000 American Institute of Physids$1054-150000)01701-9

Similar to gaseous flames, exothermic polymerization
fronts can propagate through a medium if the activation
energy of the reaction is sufficiently high. If the monomer
and polymer are immiscible liquids, the frontal reaction
results in a narrow interface moving at constant velocity
when the monomer is changed into polymer. The surface
tension varies with temperature, which may generate a
convective flow in the liquids. We show analytically that
under microgravity conditions the interaction of the exo-
thermic chemical reaction and of the surface tension may
lead to an instability. We propose experimental condi-
tions to verify these theoretical results.

I. INTRODUCTION

Frontal polymerization can be accompanied by various

instabilities, such as the thermal instabilisee Refs. 1-3,
hydrodynamical instabilitieg¢see Refs. 47 the Rayleigh—
Taylor instability (see Ref. 8 The thermal instability ap-

of instability of polymerization fronts. We assume that the
monomer and the polymer are immiscible liquids, and we
study the influence of interfacial tension on the front stabil-
ity.

To describe expected phenomena, suppose that there is a
perturbation at the interface, where the temperature is greater
than at other points of the interface. In most cases the inter-
facial tension decreases with increasing temperature, and we
assume that this is true here. Then the liquid will move along
the interface from the spot where the perturbation is located.
To maintain the continuity of fluid flow the liquid moves to
this spot from both sides of the interface. This motion brings
to the interface the cold monomer and the hot polymer,
which has the same temperature as the interface. Hence the
average temperature decreases, and the perturbation decays.
Thus the Marangoni instability cannot exist.

On the other hand, we should take into account the
chemical reaction. The liquid motion to the interface brings
more monomer to the reaction zone. The heat release be-
cause of the reaction can increase the temperature perturba-

pears because of the competition of heat production due tion, which in its turn intensifies the liquid motion and leads
the chemical reaction and heat diffusion from the reactiorto the instability.

zone to the cold reagents. It is well known for combustion ~ We show in this work that the instability resulting from
(see, for example, Ref)@nd it leads to periodic oscillations the interaction of a chemical reaction and the interfacial ten-
or to various multidimensional modes of the front propaga-sion exists. We find the critical conditions of the instability.
tion. The hydrodynamical instability is also observed for theThe comparison with experimental values of the parameters
gaseous combustiofsee Refs. 10 and lland it appears shows that the conditions for the instability are realistic, but
because of the heat expansion of the gas in the reaction zornkey may be difficult to obtain experimentally. The instabil-
The Rayleigh—Taylor instability is caused by the density dif-ity generates a convective flow in the monomer and polymer,
ference between the reagents and the products of the reaghich can distort the front.

tion. It appears as a result of action of the gravity and it can  The experiments must be performed in simulated micro-
lead to reactive fingering. In this work we study another typegravity conditions to avoid the interference of gravitationally
224
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induced instabilities. We can choose also the values of pa- The system of Eqs(1)—(4) is considered in the whole
rameters when there is no thermal instability. Finally thespace —oo<x;,X,,Xxg<+%. We suppose that the front
monomer and the polymer are practically incompressible angropagates in the directioxy and that

this excludes the possibility of the hydrodynamical instabil-

ity T—Ty, a—0, v—0 as xz3—+o,

T—-T,=Totq, a—1, v—0 asxz——o=.

Using nondimensional variables and parameters:
Il. MATHEMATICAL MODEL

RT2 E
We consider a model consisting of equations for the CZ:koKEeXF{ " RT,
temperature, for the depth of conversion, and of the Navier—

Stokes equations. We assume that — XjC | tc? c’p
Xi:_, |:1,2,3, tl:_, p]_:_,
(1) the monomer and the polymer are incompressible, im- K K p
miscible, have the same densjiy the same coefficient T-T,
of thermal diffusivity x but different viscositiesy, for 0= q

the polymer andv, for the monomery;=v,;
(2) the chemical reaction is a one-step zero-order reactioand omitting the bar fok; (V,A,div, will now be operators

with the reaction rate given by related to the new variablegnd the subscript 1, we can
W=k(T)¢(a), rewrite the problem in the form:
whereT is the temperaturey is the depth of conversion, a—0+v~V6=A6+Zexp( o ) o(a), (5)
1 if O<a<1, g 1450
PO=0 i g=1, Ja 0
and E-I-U'VCYZZGX[{ m) o(a), (6)
k(T)=ko exp(—E/(RT)). v, ap v
HereE is the activation energyR the ideal gas constant, and ot oY= - 8_xi+ PAvi+ VP Vui+ &_xl '
ko is a pre-exponential factor. =123, @

(3) The influence of the walls can be neglected. _
(4) The coefficient of mass diffusion is much less than the  divo=0 (8
coefficient of thermal diffusivity, and the mass diffusion

can be neglected. This condition holds for frontal poly-
merization. 0—0, a—0, andv—0 as Xxz— +x,

with conditions at infinity:

Under these assumptions we have the following system o, 1 4—1, and v—0 as X;— —c.

of equations: o .
Here Z=qE/(RT,) is the Zeldovich number§=RT,/E,

al P=v/k, P;=v,/k is the Prandtl number for the polymer
— +0-VT=kAT+qW, 1 T POlymer,
at Y K g @) andP,=v,/k is the Prandtl number for the monomer.

It is important to note that a system in which the mono-

(7—a+v-Va=W, (2) ~ mer and its polymer are totally immiscible has not been
at found yet. However for some polymerization fronts there is a
v, ov very sharp concentration gradient in the mixing zone, and it
Wﬂ) Vui=———+div| v| Vv, + I } i=1,2,3, is close to an interface separating two liquids. One of them

' ! 3) contains mostly the monomer, the other one mostly the poly-

mer (see Fig. 1, or Ref. 7 for other examples

divo=0. (4) The goal of this work is to investigate whether the inter-
facial tension can influence the front stability. In order to
study this stability analytically, we employ the so-called in-
finitely narrow reaction zone method, which assumes that the
chemical reaction occurs at a surfaxg={(x,,t). It is a

Herev=(vq,v,,v3) is the velocity of the mediuny is the
pressure( is the adiabatic heat release= v(a,T) is the
viscosity of the medium,

( g d 9 ) 2 92 92 conventional approach for combustion problems developed
=|—,—,—] andA=—+—+—. i _ T ]
X1’ 9%y’ IXs PP by Zeldovich and Frank—Kamenetskii for gaseous combus

tion (see Ref. 12 and later used also to study condensed

The viscosity dependence on the depth of conversion iphase reaction frontsee Ref. 18 In our case it means that
essentially stronger than its dependence on temperature. the monomer is located in the regigg> {(x4,t), the poly-
what follows we consider only as a function oy, and we  mer in x3<{(x4,t). Then instead of Eqg5) and (6) we
put v(0)=w,, v(1)=v;. have outside the reaction surface
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Here as well as in the next jump condition we neglect the
second order terms. For example, if we putv+v, 6

= 6S+"é, wherev ¢ and 65 correspond to the travelling wave
solution, andv and '@ are small perturbations, then the term

90 -0

1)1(9—)(1—0&—)(1

imonomer/initiaton is a second order term. It can be neglected in the linear
Isilica gel : stability analysis.

Multiplying (12) by 6’ and integrating with respect o

FIG. 1. A polymerization front with a monomer and a polymer separated bywe find:
a very sharp concentration gradient. Silica gel is used to prevent convection.

Adapted from Ref. 2. [6’2]+ szﬁ(é) T q
= exp ———|dT7
-1 Z Y+ 67
EY) 2u2+220(§). (15
E‘FUV@—A@, X37& {(Xl,t) (9) Here

0, X3>0(Xq,1), 0 T
o= a7 bab (10 u2=—2zf exp —— |dr
1, X3<l(Xq,1). -1 Z '+ 67

Equations(7)—(10) should be completed by the jump condi- is the normal speed of front propagation.
tions for the temperature and for the velocity at the interface. ~ The problem(9), (11), (14), (15) has a travelling wave
We discuss them in the next section. solution:

This problem has a travelling wave solution of the form: 0 if z=xs— £(x,,1)<0,

6(X1,X3,t)= (X3 —Ut), a@(Xy,X3,t)=ao(Xz—Uut),vo=0. -

We will analyze its stability. In what follows we assume for —1+exp—uz) if z=X3—{(X1,1)>0,

simplicity that the temperature, depth of conversion and ve- 14 fifj|| the linear stability analysis we linearize the
locity do not depend or.1.the vana_pkg, and the}tvzzq.. It jump conditions(11), (14), and(15). We put

does not change the critical conditions of the instability.

vs=0.

0= 05+ 0;(z)explwt+ikxy),

IIl. JUMP CONDITIONS AT THE INTERFACE v=vstvj(Z)expwt+ikxy),
A. Conditions for the temperature £(t,x) =ut+&(t,x;) = ut+ e explwt +ikxy),

The jump conditions for the temperature have a convenwherej=1 (j=2) corresponds to the regia<0 (z>0).
tional form (see Refs. 13 and 14nd we recall them briefly. The perturbations; andv; are supposed to be small. Taking
The temperature is continuous at the interface: into account that

[6]"=0. (11) 0] +0= 0| =0t £05(=0) + 6;(£0)explwt+ikxy),

Here[---]" denotes the jump of a function at the reaction a0 L .
zone,[f]X=f({—0)—f({+0). TN 0| =0+ £05(£0)

We rewrite Eqs(5) and(6) with the change of variables

z=X3— {(Xq,t) so that the reaction front is fixed: 0 )
3= {0 (£+0)exp wt+ikx,),

* o
90 %0 |a¢ 3
ot EJF E(tlxl)_vz 9z and neglecting the second order terms, we obtain
62(0) = 6,1(0) = eu, (16)
0
+Zexp( m) ¢(a), (12 65(0)— 0,(0)=— e(w+Uu?)+v,(0), (17)
z
da [d da 0 u?e+ 05(0)=— —6,(0). (189
= . = - u
pr (&t (t,X9)—v, 7z +Z exp( 7711 50 o(a).
(13

B. Conditions for the velocity
Subtracting(13) from (12) and integrating with respect

we find The first two conditions

[9']f=—(;—f+vz(0+). (14) [vs]”

=0 (19
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have a conventional form and come from the assumption that Suppose thaP(«) is twice continuously differentiable
the velocity is continuous at the interface. as a function ofx. ThenP(a(x3)) is twice differentiable as

The next condition can be obtained from the balance of function of x5 inside the reaction zone. Up to the high
tangential stresses at the interfdsee Ref. 1b In the linear  order terms, Eq(7) becomes

approximation it can be written in the form: ) )
dvg  dp v, Jv3 L p Jvy  dug
P (_ R (903) +—|v|( a6 N a0 g') 20 gt Xy ox2  OX30Xq Xy IXq)’
Pz 5X3 (9X1 B &Xl (9X3 ) ) ) (23)
(9U3_ 0')p (?Ug J U3 +2P,§U3
HereM is a nondimensional parameter defined by gt Xy ax% f?Xf X3’
do q whereP’ = dP/dx5. Applying twice the operator rotation in
M== 3T v’ @D ord liminate th di d th i
dT cpv, order to eliminate the pressure gradient and the terms in
we find
whereo is the coefficient of surface tension. It can be called 4 4 4
the frontal Marangoni number. If we introduce the width o~ _ 7, [ _Jvs_, dvs I3
— SoUsT 4 2.2 7
the preheat zonk= «/c thenM takes the form at X3 IX30X2  oX;
Mz_d_(r ah +op _&3v3_ Pvg
dT kpvy’ a3 axlox
3 1943
and coincides with the usual Marangoni number. v~ 9
In the approximation of the infinitely narrow reaction +P” —23 —23) (29
zone the temperature gradient is discontinuous at the inter- X3 IXy
face. Hence the last term in the right-hand side2d) is not Looking for vs in the form ws(Xq,Xs,t)=v(Xs
defined. We recall that inside the reaction zone — ut)exp(wt+ikx,), we obtain

96 (Pv")"+k3(P'v—3Pv") +uv” +(PKk>—w)v"
—=—u(8+1-a).
X3 —K2uv' +k(PK2+ w)v =0.

If we assume that the phase transition occurs at a criticabuppose thaP(«(xs3)) is continuously differentiable in the
depth of conversiomr= a then we can determine the tem- whole domain. For exampleg is continuously differen-
perature gradient at the interface. Hence we have an addiiable, ora only satisfies a Lipschitz condition at the bound-
tional parameterr., O<a.<1. To simplify the computa- ary of the reaction zone, and the derivativeR{iw) satisfies

tions we puta.=1. In this case P'(a)|4=0=P’(a)|,—1=0. We integrate the equality over
the reaction zone. Taking into account thatis boundedpP’
‘7_‘920(6) is continuous and equals O outside of the transition zone we
X3 obtain in the limit as its width tends to zero,
and in the linear stability analysis this term should be omit-  [Pv"” —3k?Pv’+uv"]2=0, (25)
ted. For an unmovable interfacel&0) this jump condition co-

~ We differentiate Eq(20) with respect tox, in order o jncides with that in Ref. 16. We note that without the as-
eliminate the derivatives with respectxg [using (4)]. The  symption that the functioR is twice differentiable there are
x, derivatives ofP are of ordere. Neglecting them, we some additional jump conditions for the velocitgf. Ref.
obtain 17). However it does not mean that the problem is overde-
termined. Indeed the proble23) is not equivalent to the
P ( 52U3 32U3>

+
=M

2
S| _ZYs 7Y ‘9_0 (22) problem (24), and we need additional conditions to deter-
Pol ax2  ax? ax3’ mine arbitrary functions appearing {84).

If we assume thab;=0 at the interface the22) has the IV. LINEAR STABILITY ANALYSIS
usual form(see Ref. 16 However, we cannot assunze

priori that this condition is satisfied. We obtain the following linearized problems:
To obtain the last jump condition at the interface we  Z<0 (polyme,
consider the case where the interface has a finite width and 0] +uf,+(w—k2)0,=0, (26)

then we pass to the limit as its width tends to zero. For

simplicity we will assume that in the case of the finite width (v —Kk?v 1) =Py (v}’ —2k% [+ k%) +u(v) —k%v1);
«a is continuous in the whole domain and is twice differen- (27)
tiable inside the reaction zoné-or example,a may be a z>0 (monomey,

constant on either side of the reaction zone, and linear inside

the reaction zong. 05+ ubs+(w—Kk?) 0= —uv,e "%, (28
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w(v5—Kk?2,)=Py(vy —2k% 5+ k*v,) +u(vy —k?v)); cellular stability boundary, i.e., the case when the eigenvalue
(29) with maximum real part is 0. The systef®6)—(29) can be

z=0 (interface, solved explicitly:

= kz oz
Z)=C,€ +CeZ1Z<O, 3
02(0)_61(0):€U, (30) vl( ) 1 2 ( 7)
2 01(2):C36#1Z,2<0, (38)
! _ ! — + + 1
05(0)—61(0) e(w+u®)+v4(0), (31) 02(2):C4e—kz+ cseM?,z>0, (39
ule+ 05(0) =— E 6.(0) (32) 05(2) = cget2*+ C7ef(k+ wzy Cse(>‘4*“)z,z>o_ (40)
u 1
Here

P2(v5(0) +k?v,(0))=P1(v1(0) +k?4(0))
+MP,k?6,(0), (35
P,v’5(0)—3k?P,v 5(0) + uvy(0)

_+k2 ho=—

v1(0)=v,(0), (33
_ - 2
01(0)=0}(0), (34 2‘2P1 +" ha= 2P2 \/4p2 i
\/—+k2

Substltutmg solutlon$37)—(40) into (31)—(36), we ob-
tain a system of linear algebraic equations. The condition of

=P, (0)—3K2Pv(0) + uv/(0). (3¢)  Iits nontrivial solvability can be written in the form
We recall thatd,,0,,v,,v, are bounded at-. M= (\/ 2+ 4k —u+ g i (41)
The condition of nontrivial solvability of the system kP’
(26)—(36) gives the stability boundary. We want to find the where
|
He (P1=Po)[2K2u+K(Ng= AU+ (N g+ K)(Ao— K)(P1(k—A5) = Pa(k+A4))]
N VEOVESD WY
2(P1=Po)(A4+K)(Ao—K)tu(hAg—No+2K)
|
We denoteM¢, the right-hand side inf41). If M is greater andH=N/D where
than the critical value given b41) then the instability may - )
occur, whereas iM<M,, the stationary solution will be N=Piku(k+Xa) +us(Xs=k)+0(Py)
s_ta_b_le. We study the dependenceévif; on parameters in two ~Pk(k+X\4)u<O0,
limiting cases:P,=P,, andP;— + .
—-u [u? —u [uz T (2P3(A g+ K)+u)(K—X5)
)\Z—E‘F H+k’ )\4—ﬁ— H'Fk, U2 U 1
=N+ k) —=—+ = (2Py(\s4+k)+Uu)+0 )
andH has a relatively simple form: T ap, k" 2P, 72 P1
uu?/PZ + 4k? But A, +k<0 and P,(\,+Kk)+u<0 soD<0. HenceH
H=—= . —+ asP;— +%. More preciselyH~ aP?.
V(u/P%) +4k"—2k Another interesting issue is the behavior M, as k
We note that this expression and consequeltlyare posi- —0, P, andP, being kept constant. It is easy to observe that
tive. in this caseh,—0, A\y,— —U/P, so thatH—u=0. It shows
If P;— +, then that M, tends to infinity ask—0. ConsequentlyM (k)
reaches a minimal value for a certdir k* .
Pi(k—X\y)=P; k+—— \ /u_+p 22 In the general case the stability boundary cannot be
4

found analytically, but a numerical study shows tig{; is
always positive(see Fig. 2, which is physically consistent,
) (i) and proves that the loss of stability may occur. It is easy to
Py compute the stream function, and to observe what the insta-
bility would look like (see Fig. 3. The zero of the vertical
_u (_) coordinate represents the interface, and we can observe a
"2 8P1k strong vortex above itin the monomer caused by this in-

- ( 8Pk2
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Mer | TABLE |. Comparison of experimental and critical Marangoni numbers for
140/ ! / various viscosities: in cases 1, 2, and 3, instability may occur, and the
| UNSTABLE / corresponding spatial period is indicated.
1207 | /
: S/ Case v, (cn?/min) v, (cm?/min) Mgy Mmin of M, period(cm)
100 /
1 15 15 840 75 285
o \_~ STABLE 2 15 15 840 600 190.4
0 0.1 02 3 6 6 210 75 78.5
4 6 60 210 610
(a)
Mer |
1400 |
12001 |
. UNSTABLE V. COMPARISON WITH THE EXPERIMENTAL VALUES
1000 \\ OF PARAMETERS
800 1\ . .
o We take the values of parameters corresponding to the
“._ " STABLE o .
800 T2 . polymerization of benzyl acrylatg in DMsee Ref. 1.
(b) * Front velocity:c=0.6 cm/min,
 Adiabatic heat releasej=140 K,
FIG. 2. M., as a function of the wave numbkifor v,=0.01 cnf/s and(a) « Thermal conductivityx=6x10"2 cm?/min,
vi=vz (D) »1=10v;. « Density: p=1 g/cnr.

The problem for this comparison is to find an estimate
for the derivative of surface tension coefficient with respect
to temperature. Indeed we know of no experimental system

stability. We can see that the streamlines intersect the intefn which the monomer is immiscible with its molten poly-
face, because of the chemical reactithe monomer is mer. Further investigation is necessary in this domain. Even
changed into polymer We have to point out that Fig. 3 for partially miscible systems we know the values of surface
represents the velocity field in coordinates attached to thesnsjon, but not of their derivatives with respect to tempera-
front. We also observe in the polymer a counter-vortex inture. Our estimate is based on the conjecture that the propor-
duced by the vortex in the monomer. In FigbBthe poly-  tion between the coefficients of surface tension for the air/
mer is more viscous, therefore the streamlines cannot crosgater interface and the monomer/polymer interface can be
the interface so easily and are flat near the interface. the same as the proportion between their derivatives. Conse-

quently we pude/dT=—5.4 g/(mirf K)=—1.5 mN{m K).

We vary the parameters, and v, and find the experi-

mental valueM,, by the formula(21), the minimum of the
4 function M, given by (41) and the corresponding value of
the wave numbek* (see Table). The wave number deter-
mines the spatial period of the convective structured
=27/k.

We see that in the cases 1-1d,, is greater than the
minimum of M, and the instability may occur. However
the period is too large to observe the instability experimen-
tally because it is quite greater than the realistic diameters of
experimental tubes. Let us rather consider the wave numbers
corresponding to the diameters of the tuldgs-1.5 cm and
d,=3 cm, and compute the corresponding values of the criti-
cal Marangoni number. The wave numbers corresponding to
the diametersl, andd, arek,=0.42 andk,=0.21, respec-
tively. The values of the critical Marangoni number flor
=k, (respectively,k=k,) equal 690(respectively, 340) in
case 1, 2100Qrespectively, 10500) in case 2, and 2800
(respectively, 1420) in case 3. Hence kot k, as well as for
k=k, the instability can be observed only in the first case.

If we fix v,=1.5 cnf/min, andk=Kk,, then the instabil-
ity can be observed for 1.5 & min <v;=<3.18 cnf/min.
(The maximum viscosity for the polymer is only a little more
than twice the viscosity of the monomefFor k=k,, the
condition is: 1.5 crymin <v;=<1.8 cnf/min. We see that
the viscosity of the product of the reaction should be suffi-
ciently close to the viscosity of the monomer in order to
FIG. 3. Streamlines of the velocity perturbatita® v,=1v,, (b) v;=2v,. observe the instability. Hence the molecular weight of the
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polymer chains should be very low, which can be achievedot yet found. Therefore this value was estimated for a mis-
experimentally by the addition of a chain transfer ag&af.  cible system. It can also be estimated for immiscible polymer

4). melts. See, for example, Ref. 18 for polystyrene and poly-
methyl methacrylatgRef. 19, for low molecular weight
VI. CONCLUSIONS AND DISCUSSION polypropylene glycol and polyethylene glycol, and Ref. 20

for the polypropylene/polystyrene interface.
The values we used for benzyl acrylate in DMF corre-
spond to a solution polymerization. For a solvent-free sys-

In this work we study theoretically exothermic reaction
fronts propagating in liquids. We find analytically that a new

type of instability may occur as a result of interaction of tem, the heat releaspis much larger, and we may have
chemistry and hydrodynamics. It can be explained as fol-~_” '
ISy yarotynarmi xpal —200 K. Thus this would aid observing the instability.

lows: suppose that there is a small perturbation of the sta- We should note finallv that this stud tb .
tionary state, and that the temperature increases locally at the € should note finally that this study cannot be experi-
entally realized under usual gravitg) because gravity

front. This can lead to a weak convective motion that bring . . .
eads to convection of higher amplitude than the weak con-

fresh monomer to the reaction zone. Though this fres ) ) . :
monomer is colder than the front, it speeds up the reactioP{eCt'Ve motion due to the perturbation of surface tension. It
! well-known that for descending front there is the

and raises the heat release, so that the perturbation ampliﬁél%éyleigh—Taylor instability and for ascending, simple con-

and the process may lead to an instability. " Refs. 2 and)7Th . it i
We find the critical condition when this instability ap- vec |_on(see_ efs. 2 and)7Thus, a microgravity investiga-
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