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Numerica l modelin g of self-propagatin g polymerizatio n fronts : The role
of kinetic s on fron t stability

Stanislav E. Solovyov, Victor M. Ilyashenko, and John A. Pojman
Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg,
Mississippi 39406-5043

~Received 18 November 1996; accepted for publication 14 February 1997!

Frontal propagation of a highly exothermic polymerization reaction in a liquid is studied with the
goal of developing amathematical model of the process. As amodel case we consider monomers
such as methacrylic acid and n-butyl acrylate with peroxide initiators, although the model is not
limited to these reactants and can be applied to any system with the similar basic polymerization
mechanism. A three-step reaction mechanism, including initiation, propagation and termination
steps, aswell as amore simple one-step mechanism, were considered. For the one-step mechanism
the lossof stability of propagating front wasobserved as asequenceof period doubling bifurcations
of the front velocity. It was shown that the one-step model cannot account for less than 100%
conversion and product inhomogeneities as a result of front instability, therefore the three-step
mechanism was exploited. The phenomenon of superadiabatic combustion temperature was
observed beyond the Hopf bifurcation point for both kinetic schemes and supported by the
experimental measurements. One- and two-dimensional numerical simulations were performed to
observe various planar and nonplanar periodic modes, and the results for different kinetic schemes
were compared. It was found that stability of the frontal mode for a one-step reaction mechanism
does not differ for 1-D and 2-D cases. For the three-step reaction mechanism 2-D solutions turned
out to be more stable with respect to the appearance of nonplanar periodic modes than
corresponding 1-D solutions. Higher Zeldovich numbers ~i.e., higher effectiveactivation energiesor
lower initial temperatures! are necessary for the existence of planar and nonplanar periodic modes
in the 2-D reactor with walls than in the 1-D case.¬ © 1997 American Institute of Physics.
@S1054-1500~97!00202-4#

Autocatalytic reactions have long been known to support
a constant velocity wave front resulting from the cou-
pling of diffusion and chemical reaction, with a common
example being the reaction front of an ordinar y flame. In
general, this type of self-propagating reaction front con-
sists of „1… the ignition step, where some form of energy
„e.g., heat, light … is applied to initiat e the reaction, fol-
lowed by „2… the diffusion of heat and reactive radicals
into unreacted regions, inducing the reaction there. For a
reaction front to exist, the chemical reaction must beexo-
thermic, with a fairl y high activation energy. In this
work, fronta l propagation of a highly exothermic poly-
merization reaction in a liqui d was studied experimen-
tally with the goal of developing a realistic model. The
models examined included either one or three chemical
reaction steps, and it was found that the stability of the
wave front for the one-step model was the same for both
one- and two-dimensional geometries. However, for the
more realistic three-step reaction model, the two-dimen-
sional case was more stable than the one-dimensional
case.

I. INTRODUCTION

Propagating fronts of autocatalytic reactions have been
observed in gaseous, liquid, and solid phases. An example of
a successful application of propagating fronts in solids is the

self-propagating high-temperature synthesis ~SHS! of ad-
vancedmaterials.1,2 Frontal propagation of addition polymer-
ization is an example of a chemical reaction in condensed
phase.3–5 Depending upon the experimental conditions ~e.g.,
adiabatic propagation, the presence of heat losses, or applied
pressure! the reaction proceeds in liquid phase only, or may
involve the solidification of the resulting polymer. In both
cases propagating fronts resemble gaseous flames and SHS
because they both involve the thermal propagation mecha-
nism. Free radical polymerization reactions are usually
highly exothermic, and the heat of the reaction provides au-
tocatalysis for a polymerization front propagating through a
liquid monomer. Model systems most commonly used in
frontal polymerization processes include such monomers as
methacrylic acid ~MA !, n-butyl acrylate ~BA!, methyl meth-
acrylate¬ ~MMA !,¬ triethylene¬ glycol¬ dimethacrylate
~TGDMA!, etc., and initiators such as benzoyl peroxide
~BPO!, tert-butyl peroxide ~tBPO!, lauroyl peroxide ~LPO!
and 2,28-azo-bis-isobutyronitrile ~AIBN !. Commercial appli-
cations of these processes ~such as synthesis of phase-
separated materials6! may come from the high-energy effi-
ciency and low environmental impact of the technique.7

Polymer fronts have been studied at the Institute of
Chemical Physics ~Chernogolovka!, Russia since the early
1970s in tubular chemical reactors under high pressure.3,4

More recently frontal regimes in an unmoving medium for
various monomer1initiator systems were studied under am-
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bient conditions.5,8,9High-viscosity modifiers were also used
in our lab experiments to suppress convective instabilities,
and high pressures were used to prevent bubbles that affect
the front velocity and may lead to front decay.10 In recent
years afew modifications of the technique such as cylindri-
cal and spherical fronts in plug-flow reactors were proposed
to avoid difficulties of maintaining stable front propagation
arising from formation of jet flows and inherit thermal
instabilities.11–13 Under certain conditions thermal instabili-
ties in plug-flow reactors combined with hydrodynamic
effects are known to result in a transition of frontal
propagation¬ mode¬ to¬ low-temperature¬ homogeneous
polymerization.11,12

The theory of similarity of temperature and concentra-
tion fields allowed Zeldovich and Frank-Kamenetsky to de-
velop an approximate theory of slow combustion for such
systems14–16 in 1938. The normal velocity of front propaga-
tion in an unmoving condensed medium was calculated by
Novozhilov17 using the infinitely narrow reaction zone ap-
proximation, and an explicit formula for it was proposed for
first- and second-order reactions. By using this formula the
effective activation energy of a polymerization reaction can
be calculated by measuring the velocity of front propagation
at different initial temperatures and assuming the thermal
diffusivity is temperature independent.

Recently, our experiments demonstrated much more
complex behavior of the system than that anticipated in early
works.8,9,18This includes convective effects inherit to liquid
polymerizing systemsand the effects of thematerials’ physi-
cal properties such as monomer boiling point, viscosity of
monomer and polymer phases on the front existence, and
hydrostatic stability. Al l these factors could not beaccounted
for in simple earlier models. Thus, a mathematical model
adequately describing such a system must include realistic
polymerization kinetics, thermal diffusion, and appropriate
hydrodynamics if convective liquid motion is involved. In
this paper we take a step in that direction and develop the
mathematical model with three-step polymerization kinetics
and heat diffusion, not only reproducing experimental results
but also predicting the qualitative system behavior and some
properties of the final product in the absence of convection.

II. EXPERIMENTAL

The experimental setup for studying polymerization
frontsconsistsof a vertical glass tubefilled with asolution of
methacrylic acid ~MA ! and a thermal initiator such as ben-
zoyl peroxide ~BPO! at room temperature ~other polymeriz-
ing systemswere also used!. The front is triggered by apply-
ing a heat source to the top of the tube for a short period of
time. The autocatalytic polymerization reaction propagates
through the solution of the monomer and initiator as awave
front leaving the solid polymer behind. To control the initial
temperature and homogeneous reaction in the cold zone, the
tube was placed into awater bath at a fixed temperature and
slowly withdrawn to maintain the constant clearance be-
tween the water surface and the reaction front as the poly-
merization front proceeded.10 The front velocity and tem-

perature¬ profiles¬ were¬ measured¬ during¬ the¬ front
propagation, and the polymer obtained was analyzed.9,19 At
some experimental conditions front instabilities such as ve-
locity pulsations and spin modes were observed.9

III. KINETIC MODEL

For the model purposes an adiabatic unstirred reactor is
considered. The rate of the radical generation is considered
to be negligible at the initial temperature. Diffusion of the
radicals is neglected because thermal diffusion in such poly-
merization systems is faster than mass diffusion by at least
100 times.

The simplified kinetic model of the addition polymeriza-
tion with thermal initiation has the following form:

I1D→2R,¬ kd5Ad exp~2Ea,d /RgT!,¬ ~1!

R1M→P11D,¬ kp5Ap exp~2Ea,p /RgT!,¬ ~2!

Pn1M→Pn111D,¬ kp ,¬ ~3!

Pn1R→Pdead1D,¬ kt5At exp~2Ea,t /RgT!,¬ ~4!

Pn1Pm→Pdead1D,¬ kt .¬ ~5!

Here I is the initiator, R denotes the primary radicals, M is
the monomer, Pn is the growing polymer chain, Pdead is the
dead polymer, kd , kp , kt are corresponding temperature de-
pendent rate constants for the reactions shown, Ea,d , Ea,p ,
Ea,t are the activation energies for these reactions and Ad ,
Ap , At are corresponding preexponents; D is the reaction
heat release, Rg is the universal gas constant, and T is the
temperature,

IV. MATHEMATICAL MODEL

Weconsider the heat release during the first propagation
step ~2! and termination steps ~4! and ~5! to be negligible
compared to the propagation step ~3!. That is certainly true
for our systems. Then the nonstationary two-dimensional
equations describing the kinetics of the process and the heat
balance for the system ~1!–~5! have the following form:

d@ I #

dt
52kd@ I #,¬ ~6!

d@R#

dt
52kdf @ I #2kp@R#@M #2kt@R#@P•#2kt@R#2,¬ ~7!

d@M #

dt
52kp@R#@M #2kp@M #@P•#,¬ ~8!

d@P•#

dt
5kp@R#@M #2kt@R#@P•#2kt@P•#2,¬ ~9!

d@P#

dt
5kt@R#@P•#1kt@P•#2,¬ ~10!

]T

]t
5kS ]2T

]x2
1

]2T

]y2 D2
DH

rcp
kp~@M #@R#1@M #@P•# !.

~11!
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Here, the reaction enthalpy DH5213.8 kcal mol21, the
monomer densityr51038 g L21, the monomer heat capac-
ity¬ cp50.4 cal g21 K21,¬ the¬ thermal¬ diffusivity k
50.0014 cm2 s21, the initiator efficiency f50.5, and all
concentrations are in mol L21: @ I # is the initiator concentra-
tion, @R# is the concentration of primary radicals, @M # is the
monomer concentration, @P•# is the concentration of poly-
mer radicals, and @P# is the dead polymer concentration.

V. INITIAL AND BOUNDARY CONDITIONS

For 0<x<L, 2r<y<r wherex is thecoordinatealong
the tubeaxis in thedirection of front propagation and y is the
radial coordinate in the cross section of a cylinder, the initial
conditions are

@R#050,

@M #056mol L21,
~12!

@P•#050,

@P#050,

for x50: Ti5T01DT, @ I #050 ~the ignition zone, DT
5150–200 K!;¬ for¬ 0,x<L:¬ T05250–320 K,¬ @ I #0
50.002–0.1 mol L21. The initial temperature T0 and the
initiator concentration @ I #0 were varied depending on the
conditions and the initiator used.

Adiabatic boundary conditions at both tube ends and
walls are assumed:

dT/dx50¬ for x50, x5L,¬ ~13!

dT/dy50¬ for y52r , y5r .¬ ~14!

The tube radius r51–2 cm, and the tube length L
515–30 cm.

VI. COMBINED CONCENTRATION OF FREE
RADICALS

In deriving the system ~6!–~11! weassumed that the rate
constants kp for reactions of primary radicals ~from the ini-
tiator! and growing polymer chains with the monomer are
the same. It is an acceptable assumption for long polymer
radicals where the propagation rate constant does not change
significantly with the length of the polymer if the gel effect
can be neglected. However, it is obviously not truewhen the
primary and polymer radicals are compared because of their
different chemical nature. While there are no widely avail-
able data on the reaction rate constants of primary radicals
with the monomer for our systems, we can eliminate this
problem considering the combined concentration of the free
radicals:

@R̃#5@R#1@P•#.¬ ~15!

It is possible to do so because the reaction frequency of the
primary radicals with the monomer is much lower than that
of the polymer radicals. For example, the average degree of
polymerization of MA with BPO in the frontal regime at
ambient conditions19 was estimated to be 25. It means that
even for the low molecular weights obtained, 24 addition

reactions take place per one reaction of the BPO primary
radical with the monomer. Then, the effect of this reaction
on the overall propagation step kinetics does not exceed 4%
even if its rate differs significantly ~0.5kp,kprimary,` and
even broader range for higher molecular weights! and can
thereforebeneglected. Recent experimental studiesof propa-
gation¬ step¬ kinetics¬ of¬ methyl¬ methacrylate¬ and
methacrylonitrile20 demonstrated that the rate constant of the
first propagation step kprimary[kp1 is 4–6 times greater than
kp[kp` at 60 °C. Considering this, we used the combined
concentration of free radicals in our simulations for the
three-step reaction mechanism. Then the nonstationary two-
dimensional equations corresponding to Eqs. ~6!–~11! take
the following form:

d@ I #

dt
52kd@ I #,¬ ~16!

d@R̃#

dt
52kdf @ I #2kt@R̃#2,¬ ~17!

d@M #

dt
52kp@R̃#@M #,¬ ~18!

d@P#

dt
5kt@R̃#2,¬ ~19!

]T

]t
5kS ]2T

]x2
1

]2T

]y2 D2
DH

rcp
kp@M #@R̃#.¬ ~20!

In the following sections the tilde sign is dropped out, and
@R# denotes the combined concentration of the free radicals.

VII. SINGLE-STEP REACTION MECHANISM

A well-known single-step reaction mechanism with
equations for monomer conversion and heat diffusion21 was
also considered for the comparison purpose. In this case the
2-D equations for the first-order reaction are

da

dt
5k1~12a!, ~21!

wherea is dimensionless conversion with zero value corre-
sponding to puremonomer and 1 to pure polymer, The reac-
tion rate k1 has the usual Arrhenius temperature dependence

k15A1 expS 2Ea

RgT
D ~22!

and the heat balance equation takes the form

]T

]t
5kS ]2T

]x2
1

]2T

]y2 D2
DH

rcp
k1~12a!. ~23!

Here we assume that the only reaction taking place converts
monomer into polymer. The preexponential factor and acti-
vation energy in this case are ‘‘effective’ ’ kinetic parameters
of the process, representing all the reactions taking place in
real systems.
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For purpose of testing the model the values of Ea were
varied in the range 14–30 kcal mol21 and A1 in the range
105–1012 s21, respectively.

VIII. NUMERICAL METHODS

Finite difference numerical methods were used in our
simulations. The system ~16!–~20! with initial conditions
~12! and boundary conditions ~13! and ~14! was integrated
on an adaptive space grid with a constant time step. In a
typical wave front, variables such as the concentrations of
the initiator, free radicals, and monomer, as well as the tem-
perature change very slowly away from the reaction zone
and extremely rapidly in the reaction zone. That is why an
adaptive grid with the variable space step was used to main-
tain roughly the same number of grid points ~20–30! in the
narrow moving reaction zone ~2–5 mm wide! to accurately
resolve large gradients.

Ordinary differential equations describing kinetics of the
process were solved using explicit Runge–Kutta methods of
second or fourth order. Valuesof all variableswhenever pos-
sible were taken from the upper time layer, i.e., the discrete
solution on the current time step n11 was used instead of
values from previous time step n. Obviously, that could not
be done for the temperature in the exponential temperature
dependence of the reaction rates; its value was taken from
thestep n, i.e., thesemi-implicit integrator wasemployed for
the temperature. Iterations were performed for all variables
using the updated temperature solution on each time step
until the convergence of the solution was achieved. The con-
vergence criterion was chosen to be the maximum scaled
divergence for all variables on two consecutive iterations not
to exceed 10210.

Semi-implicit finite difference schemes12 were used for
linearization of Eqs. ~20! and ~23! on the discrete space grid.
The system of linear equations with a tridiagonal matrix re-
sulting from the finite difference approximation of the para-
bolic thermal conductivity Eqs. ~20! and ~23! was inverted
using amodification of theGaussmethod. The values of the
temperature in the heat source term from the current time
layer n11 could not be used, however, without significant
complications in the solution algorithm. Thus the values
from the time step n were used, and updated temperature
values were substituted into all equations of the system for
performing the iteration procedure described above.

The accuracy and convergence of the solution have been
verified by consecutive divisions of the time step and com-
paring the results. The iterations continued until the conver-
gence criterion was satisfied for all variables. Decreasing of
the time step was used to eliminate large time scale depen-
dence of the solution. At some critical value of the time step
~usually in the range 1024–1023 s! the solutions cease to
depend on it and are believed to represent the real system
behavior.

Theoriginal adaptivegrid algorithm12 wasdeveloped for
the 1-D case. Based on it we developed the 2-D grid algo-
rithm for use in our systems. It realizes dividing space steps
according to custom defined criteria, i.e., inserts new points

in the regions of high gradients of given variables along with
interpolation of variables’ values and deletes points in the
regions with small changes. The numerical scheme realized
on the nonuniform space grid has the second order of ap-
proximation.

IX. RESULTS AND DISCUSSION

A. One-ste p reactio n mechanism

The effective activation energy Ea of the polymerization
reaction and the effective preexponent A1 were used for the
1-D and 2-D simulations. The route to chaosas asequenceof
period doubling bifurcations was observed as Ea increased
from¬ 16–18 kcal mol21 ~constant¬ front¬ velocity! to
28–30 kcal mol21 ~chaotic oscillations of the front velocity!
in the1-D caseashad been previously shown by Matkowsky
et al.22,23 for solid-state combustion reactions. Figures 1–4
show the 1-D front velocity versus time for the same initial
and adiabatic combustion temperatures as the Zeldovich
number increases. The Zeldovich number16 is defined as

Z5
Tm2T0
Tm

Ea,eff

RgTm
.¬ ~24!

FIG. 1. Constant velocity front propagation: one-step reaction, Ea

518 kcal mol21, k1583107 s21, T05300 K, DT5200 K,

FIG. 2. Periodic oscillations, Ea520 kcal mol21, k1583108 s21, Z58.
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Here, Ea,eff is the effective activation energy of the reaction,
and Tm is themaximum adiabatic temperature in the case of
constant velocity front propagation. In case of oscillations
the temperature in the front routinely exceeds the adiabatic
temperature of combustion, balanced by the temperature dip
behind the front. This is a specific feature of all periodic
modes obtained numerically and supported by the experi-
mental measurements in our lab ~Fig. 5!.

Strange as it might seem the phenomenon of superadia-
batic combustion temperature has never been explained in
the literature, although it can serve as an experimental indi-
cator of any thermal instability beyond the Hopf bifurcation
as it never appears in stable combustion. The difference in
characteristic times of the chemical reaction and thermal dif-
fusion at initial and combustion temperatures ~as a result of
exponential temperature dependence of the reaction rates! at
some point leads to preheating of the initial reactivemixture
ahead of the temperaturewavewithout significant reaction in
this zone. The following thermal ‘‘explosion’’ on the wave
front results in apparent exceeding of the adiabatic combus-
tion temperaturebecause it occursat effectively higher initial
temperature. The energy conservation law, however, is not
violated here since this excessive heat release is localized in
the wave front and balanced by lower than adiabatic tem-

perature behind the ‘‘explosion.’’ When this structure even-
tually goes through a relaxation stage ~as the temperature
gradient is extremely high, and some time is needed for heat
to diffuse and trigger the reaction in the cold mixture!, the
temperature on and behind the wave front equilibrates, and
the superadiabatic peak disappears. The critical difference in
characteristic times between the chemical reaction and diffu-
sion for thephenomenon to appear is determined by the ther-
mal diffusivity coefficient and the Zeldovich number at
which the Hopf bifurcation occurs.

The superadiabatic temperature Ts does not stay the
same during the oscillation period being the highest as the
front velocity n reaches its maximum and the lowest~equal
to adiabatic temperature! as n reaches its minimum@com-
pare, e.g., Figs. 9~c! and 10~c! for the three-step model; for
the one-step model the temperature profiles remain basically
the same#. That is why themaximum front temperature can-
not be used as Tm for determining Z, and the established
equilibrium temperature behind the front is used for this pur-
pose. In Figs. 9~c! and 10~c! thisequilibrium temperature lies
in the range x54–7 cm, higher temperatures around x50
are the result of prolonged ignition and adiabatic boundary
conditions.

Planar 2-D front velocity oscillations or one and two
head periodic modes were observed in our simulations de-
pending on the tube diameter, effective activation energy
~Zeldovich number! and initial conditions. Shown in Figs.
6~a! and 6~b! are two possible patterns for one and two head
mode propagation that can coexist at the same conditions.
The two head modewith headsmoving in the samedirection
was never observed in 2-D simulations, although it can exist
if periodic boundary conditions ~i.e., in the case of a front
propagating on the surface of the cylinder! are used.12 Fig-
ures 7~a! and 7~b! show numericallyalculated sample 2-D
temperature fields corresponding to the patterns in Fig. 6. In
Fig. 7~a! the head moves from left to right leaving high-
temperature trace behind, and in Fig. 7~b! two heads are
moving in opposite directions near the collision at the tube
axis.

FIG. 3. Period two oscillations, Ea524 kcal mol21, k1583109 s21, Z
59.6.

FIG. 4. Chaotic oscillations, Ea530 kcal mol21, k15831013 s21, Z512.

FIG. 5. Experimental temperature profile for methacrylic acid with 2 wt. %
benzoyl peroxide system exhibiting a single head spin mode, T05273 K,
D522mm.
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B. 2-D stabilit y diagram

Our approximate analytical stability analysis of the 2-D
problem ~following the 2-D analysis by Makhviladze and
Novozhilov24 resulted in k-Z stability diagram where k is a
wave number! shows the neutral stability boundaries be-
tween different modes arising in 2-D fronts on theD-Z dia-
gram ~Fig. 8!. Here D is the tube diameter. Crossing any
stability boundary whilemoving up or right in the parameter

space results in theappearanceof thedenoted mode. As seen
from the figure, for sufficiently small Zeldovich numbers
only constant velocity wave fronts can be observed. As Z
increases planar front velocity oscillations are the case if the
tube diameter is small. These planar oscillations can exhibit
period doubling as Z increases further. We demonstrated it
earlier for the 1-D model.

For larger tubediametersonehead, two head, and higher
nonplanar modes ~multiple heads, standing waves, etc.! ap-
pear asD increases. In the regions where stability zones for
different modes overlap, bistability was observed depending
on the initial conditions. For example, for Z . 8.48 and 5
,D,10mm planar oscillations and one head mode are ex-
pected to coexist. Indeed, the one head mode is observed
only if the perturbation of the planar initial conditions is
large enough, otherwise planar oscillations are sustained un-
til the front reaches the bottom of the tube.

C. Three-ste p reactio n mechanism

Numerical simulations showed that results for the three-
step and one-step reaction kinetics significantly differ with
respect to the front stability and the final product distribu-
tion. From the steady-state approximation of the free radical
concentration in the reaction zone25 the effective activation
energy can be calculated as

Ea,eff5Ea,p1
Ea,i2Ea,d

2
~25!

and the effective preexponent as

Aeff5Ap A2 fAd

At
.¬ ~26!

FIG. 6. Proposed patterns of propagation of one ~a! and two ~b! head modes
in the 2-D case. Arrows show the direction of the head~s! movement along
the wave front moving downward.

FIG. 7. Sample 2-D temperature profiles with one head ~a! and two heads
~b! for one-step reaction mechanism. The tube diameter D512mm, T0
5253 K, Z59.7.

FIG. 8. D-Z stability diagram for one-step reaction, Ea518 kcal mol21,
k1511.583107 s21, k50.001 cm2 s21, DT5200 K.

336¬ Solovyov, Ilyashenko, and Pojman: Numerical modeling

CHAOS, Vol. 7, No. 2, 1997

Copyright ©2001. All Rights Reserved.



In this case the 1-D solutions for the three-step mechanism
exhibit period doubling bifurcations at higher effective acti-
vation energies and correspondingly higher Zeldovich num-
bers @Figs. 9~a! and 10~a!# compared to the one-step mecha-
nism ~Figs. 2 and 3!. The kinetic constants for Fig. 9 are

Ea,d530.0 kcal mol21,¬ Ad54.031012 s21,

Ea,p510.5 kcal mol21,¬ Ap51.03109 s21 M21,

Ea,t50.7 kcal mol21,¬ At53.03107 s21 M21,

and for Fig. 10:

Ea,d530.0 kcal mol21,¬ Ad54.031012 s21,

Ea,p511.5 kcal mol21,¬ Ap55.03109 s21 M21,

Ea,t50.7 kcal mol21,¬ At53.03107 s21 M21.

More complicated kinetics in this case gives rise to the
effects that could not beaccounted for in theone-step model.
First of all the complete conversion of themonomer is never
observed in the three-step model and experimentally18 com-
pared to the one-step case where the conversion is always
100%. Figure9~b! shows the traceof theunreactedmonomer
behind the front, and its concentration oscillates in phase
with the front velocity oscillations ~the solution behind the
front does not seem well resolved only because the adaptive
grid algorithm does not keep too many points behind the
front where there are no high gradients of important vari-

ables!. When the front velocity reaches a maximum the
monomer conversion is the lowest and vice versa. The rea-
son for this is that during the temperature surge the initiator
is being quickly burnt out in the front, and the free radicals
are no longer produced. That leads a lower monomer con-
version compared to the periods of slowdowns when the
lower temperature allows for longer times of the initiator
consumption and longer free radical lifetimes. It also should
lead to a lower degree of polymerization during these tem-
perature surges. Figures 9~c! and 9~d! show the temperature
and free radical profiles at the same time as the monomer
concentration profile in Fig. 9~b!. The same holds for the
period two front velocity oscillationsshown in Fig. 10~a! and
corresponding monomer, temperature, and free radical con-
centration profiles in Figs. 10~b!–10~d! where theperiod two
oscillations of the monomer conversion along the tube are
clearly defined. In Figs. 9~c! and 10~c! the temperature is
constant behind the front except in the area close to x50
where it is higher because of the adiabatic boundary condi-
tions and the ignition temperature Ti which was set to be
higher than combustion temperature for specified conditions.

As seen from the figures the samemodesareobserved at
higher Zeldovich numbers for the three-step mechanism than
for the one-step mechanism. It should be noted that for the
three-step mechanism corresponding Zeldovich numbers
were calculated using lower than adiabatic combustion tem-
peratures reflecting less than 100% conversion. This is spe-

FIG. 9. ~a! Front velocity versus time, Ea,eff524.15 kcal mol21, keff53.731011 s21, @ I #050.02 M, Z59.64 ~periodic oscillations!. ~b! The monomer
concentration profile at t536min. ~c! The temperature profile at t536min ~the highest point of the front velocity oscillation!. ~d! The free radical
concentration profile at t536min.
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cific for the experimental data and the three-step mechanism
involving the initiator and free radicals. Thus, the three-step
reaction mechanism always tends to producemore stable so-
lutions in the Zeldovich number sense, i.e., for the same Z
~assuming the steady-state approximation is valid! the three-
step solutions are expected to exhibit ‘‘lower’ ’ modes com-
pared to the one-step solutions. Here the ‘‘lower’ ’ modes
mean, e.g., period one oscillations compared to period two
and constant velocity wave front compared to periodic oscil-
lations.

D. 2-D simulations

The same trend as for the 1-D case is observed in the
2-D simulations. Many 2-D nonplanar periodic modescan be
obtained in the numerical experiments only for larger tube
diameters ~seeFig. 8!. Higher Zeldovich numbersareneeded
to observenonplanar periodic modes compared to the single-
step reaction mechanism. Increasingly complex behavior is
observed as Z increases. The 2-D temperature profiles in
Figs. 11~a!–11~e! calculated for the parameters producing
period two 1-D oscillations @see Fig. 10~a!# with an asym-
metric initial temperature perturbation demonstrate thepoint.
The complicated asymmetric pattern with two heads similar
to the pattern in Fig. 6~b! was observed. The difference is
that two heads moving in opposite directions appear not in
the center of the tube but somewhat closer to the right wall.
When these heads move around and collide, the collision
occurs near the left wall because the velocities of the heads

are approximately equal. After the collision the heads disap-
pear until the next hot spot is formed again near the right
wall and thecycle repeats. Thispattern appeared to bestable,
however, for axisymmetric initial conditions a symmetric
pattern like in Fig. 6~b! was observed.

We note that when the head reflects from the wall, its
maximum temperature Ts does not significantly exceed Tm
but as long as it moves along the front its Ts increases up to
30–50 K higher than Tm . We concluded from the results of
our 1-D simulations that during the oscillation period high
front velocities with very high Ts in the front result in lower
conversions. The same behavior was expected for the 2-D
model. Due to asymmetry of the propagation pattern ob-
tained for asymmetric initial conditions ~Fig. 11! the maxi-
mum head temperature was the highest during its movement
from right to left along the front moving downward. It
should have left low monomer conversion traces in the
formed product. Indeed, the traces of low conversion follow-
ing the head paths from right to left were observed, and they
are shown in Fig. 12~a! which represents the 2-D monomer
profile in and behind the reaction zone @compare to Fig.
10~b!#. The contour plot in Fig. 12~b! corresponding to Fig.
12~a! clearly shows the right to left direction of these traces
as the front moved downward.

X. CONCLUSIONS

Periodic modesplay a significant role in propagating po-
lymerization fronts dynamics and also affect properties of

FIG. 10. ~a! Front velocity versus time. Ea,eff525.15 kcal mol21, keff51.831012 s21, @ I #050.02 M, Z510.25 ~period two oscillations!. ~b! The monomer
concentration profile at t516min. ~c! The temperature profile at t516min ~close to the lowest point of the front velocity oscillation!. ~d! The free radical
concentration profile at t516min.
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the final product. In this paper we demonstrated that the ef-
fective activation energy of the polymerization reaction, the
Zeldovich number, and the tube diameter are some of the
bifurcation parameters determining the stability of propagat-
ing polymerization fronts, and also offered an explanation of
the phenomenon of superadiabatic combustion temperature.
Other factors such as the initiator concentration, reaction en-
thalpy, etc affect the velocity of the front rather than its
stability. As was found, stability of the frontal mode for the
one-step reaction mechanism doesnot differ for 1-D and 2-D
cases. For the three-step reaction mechanism 2-D solutions
are more stable than corresponding 1-D ones in respect to
appearance of nonplanar periodic modes contrary to the ac-
cepted result24 that 2-D solutions are always less stable. In
our case it can be explained by the stabilizing effect of the

tube walls. Higher Zeldovich numbers ~i.e., higher effective
activation energies or lower initial temperatures! are needed
for the existence of nonplanar periodic or planar oscillatory
modes in the 2-D reactor with walls than for the existence of
oscillations in the 1-D case.

Comparing the one-step and three-step kinetics we con-
clude that the more realistic three-step reaction mechanism
shifts up and right the stability boundaries on the D-Z dia-
gram compared to the simplified one-step mechanism, be-
cause for the three-step mechanism the nonplanar periodic
modesarenot observed for the tubediameters and Zeldovich
numbers resulting in such modes for the one-step mecha-
nism. The boundary between stable front velocity and 1-D
oscillations stays, and it is not surprising because this bound-
ary does not depend on the tube diameter. Nonplanar modes

FIG. 11. The 2-D temperature profiles for Ea,eff525.15 kcal mol21, keff
51.831012 s21, @ I #050.02 M, Z510.25, D520mm. ~a! t5260 s, the
heads near the collision close to the left wall. ~b! t5300 s, after separation
the left head moves left as the right head hits the wall. ~c! t5380 s, the left
head moves left with very high Ts as the right head has very low Ts after
reflection from the wall. ~d! t5460 s, after collision the heads die near the
left wall because of the initiator burnout as anew hot spot appears near the
right wall. ~e! t5480 s, shortly after two head separation @compare to ~b!#.
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also are not observed if the tube diameter is sufficiently
small.
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