The University of Southern Mississippi
The Aquila Digital Community

Faculty Publications

6-17-2016

# Crystal Structure of Di-Aqua-Bis-(7-Di-Ehtyl-Amino-3-Formyl-2-Oxo-2H-Chromen-4-Olato-K (2) 0 (3), 0 (4))zinc(II) Dimethyl Sulfoxide Disolvate 

Aaron B. Davis<br>University of Southern Mississippi<br>Frank R. Fronczek<br>Louisiana State University<br>Karl J. Wallace<br>University of Southern Mississippi, Karl.Wallace@usm.edu

Follow this and additional works at: https://aquila.usm.edu/fac_pubs
Part of the Chemistry Commons

## Recommended Citation

Davis, A. B., Fronczek, F. R., Wallace, K. J. (2016). Crystal Structure of Di-Aqua-Bis-(7-Di-Ehtyl-Amino-3-Formyl-2-Oxo-2H-Chromen-4-Olato-k(2) O (3), O (4))zinc(II) Dimethyl Sulfoxide Disolvate. Acta Crystallographica Section E: Crystallographic Communications, E72, 1032-1036.
Available at: https://aquila.usm.edu/fac_pubs/16784

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 15 June 2016
Accepted 17 June 2016

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; zinc complex; coumarin ligands; hydrogen bonding; DMSO solvate.

CCDC reference: 1486125

Supporting information: this article has supporting information at journals.iucr.org/e

# Crystal structure of diaquabis(7-diethylamino-3-formyl-2-oxo-2H-chromen-4-olato- $\kappa^{2} O^{3}, O^{4}$ )zinc(II) dimethyl sulfoxide disolvate 

Aaron B. Davis, ${ }^{\text {a }}$ Frank R. Fronczek ${ }^{\text {b }}$ and Karl J. Wallace ${ }^{\text {a }}{ }^{\text {* }}$


#### Abstract

${ }^{\text {a }}$ Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA, and ${ }^{\text {b }}$ Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA. *Correspondence e-mail: karl.wallace@usm.edu


The structure of the title coordination complex, $\left[\mathrm{Zn}\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$-$2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$, shows that the $\mathrm{Zn}^{\mathrm{II}}$ cation adopts an octahedral geometry and lies on an inversion center. Two organic ligands occupy the equatorial positions of the coordination sphere, forming a chelate ring motif via the O atom on the formyl group and another O atom of the carbonyl group (a pseudo- $\beta$-diketone motif). Two water molecules occupy the remaining coordination sites of the $\mathrm{Zn}^{\mathrm{II}}$ cation in the axial positions. The water molecules are each hydrogen bonded to a single dimethyl sulfoxide molecule that has been entrapped in the crystal lattice.

## 1. Chemical context

Fluorescent molecular probes have been utilized in the monitoring of anions, cations, and neutral species in many applications in supramolecular analytical chemistry (Lee et al., 2015). In particular, derivatives of 1,2-benzopyrone (commonly known as coumarin) have been used extensively as fluorescent chemosensors for a wide range of applications due to their unusual photo-physical properties in different solvent systems and using theoretical calculations (Lanke \& Sekar, 2015; Liu et al., 2013). There is a plethora of coumarin dyes and their derivatives that have been used as colorimetric and fluorescent sensors (Lin et al., 2008; Ray et al., 2010). In fact our own group has used a coumarin-enamine organic compound as a chemosensor for the detection of cyanide ions, via a Michael addition approach (Davis et al., 2014). Additionally, we have utilized a small family of the coumarin chemosensors to discriminate metal ions as their chloride salts utilizing Linear Discriminant Analysis (Mallet et al., 2015).


OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$



Figure 1
The molecular structure of the title compound, showing displacement ellipsoids at the $50 \%$ probability level, with a single DMSO molecule hydrogen bonded to a water molecule coordinating to the zinc cation.

The detection of one particular metal ion, $\mathrm{Zn}^{\mathrm{II}}$, is of special interest to our group. The $\mathrm{Zn}^{\text {II }}$ ion is ubiquitous in nature, playing important biological roles, and acting as a Lewis acid in the hydrolysis process involving carboxypeptides. Zinc also plays many structural roles and is often found accompanied with cysteine and histidine residues (the classic zinc finger motif; Osredkar \& Sustar, 2011). As a consequence of the filled $d$ shell with its $d^{10}$ electron configuration, the zinc ion is found in all geometrical arrangements, with the tetrahedral and octahedral being the two most common motifs. Additionally $\mathrm{Zn}^{\mathrm{II}}$ is spectroscopically silent, therefore direct monitoring of this ion is challenging, especially in aqueous media. Our intention was to synthesize a planar molecular chemosensor with a high degree of conjugation which can be easily perturbed to produce a spectroscopic response upon the coordination of $\mathrm{Zn}^{\text {II }}$ ions. In this paper we report the synthesis and the supramolecular architecture of $[\mathrm{Zn}(7$-diethylamino-3-formyl-chromen-2,4-dione $)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ ], (1).

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| O5-H52 . . O6 | 0.83 (1) | 1.98 (1) | 2.8030 (11) | 171 (2) |
| O5-H51 . $\mathrm{O}^{\text {i }}$ | 0.83 (1) | 1.99 (1) | 2.8126 (9) | 169 (1) |
| $\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$ | 0.98 | 2.62 | 3.5805 (12) | 167 |
| C13-H13A . . O 4 | 0.98 | 2.52 | 3.4050 (13) | 151 |
| C13-H13C $\cdots \mathrm{O}^{\text {iii }}$ | 0.98 | 2.29 | 3.1299 (14) | 143 |

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+2,-y+1,-z+1$; (iii) $x+1, y, z$.

## 2. Structural commentary

The molecular structure of (1) is shown in Fig. 1. The coumarin ligand is planar and is coordinated to the $\mathrm{Zn}^{\mathrm{II}}$ ion in a chelating fashion by the two carbonyl functional groups that form a pseudo- $\beta$-diketone motif. This is indicated by the short $\mathrm{C}=\mathrm{O}$ bond of the dione $(\mathrm{O} 3-\mathrm{C} 4)$ and the $\mathrm{C}=\mathrm{O}$ bond length of the formyl moiety (O4-C9), with values of 1.2686 (10) and 1.2603 (10) A, respectively. The $\mathrm{Zn}-\mathrm{O}$ bonds complete the stable six-membered chelating motif, which is favorable for smaller metal ions (Hancock \& Martell, 1989). The lengths of the $\mathrm{Zn}-\mathrm{O}$ (carbonyl) bond $\mathrm{Zn} 1-\mathrm{O} 3$ [2.0221 (6) $\AA$ ] and the $\mathrm{Zn}-\mathrm{O}$ (formyl) bond $\mathrm{Zn} 1-\mathrm{O} 4[2.063$ (6) $\AA$ ] in the equatorial positions are in excellent agreement with similar chelating motifs (Dong et al., 2010). The metal ion is located on an inversion center. The axial positions are occupied with two water molecules, the $\mathrm{Zn} 1-\mathrm{O} 5$ bond length is at 2.1624 (7) $\AA$ slightly longer than that in other hydrated $\mathrm{Zn}^{\mathrm{II}}$ coordination complexes, whereby the average $\mathrm{Zn}-\mathrm{O}$ (aqua ligand) distance is $2.09 \AA$ (Nimmermark et al., 2013). The coordination sphere of the $\mathrm{Zn}^{\mathrm{II}}$ ion is a near perfect octahedron with all of the bond angles close to $90^{\circ}$, ranging from 86.82 (3) to


Figure 2
The crystal packing of the title compound highlighting the extensive hydrogen-bond network. The left side is the view down [100] and the right view highlights the five unique hydrogen-bonding interactions and three $R_{2}^{2}(8)$ systems.


Figure 3
Side view of the crystal packing showing both the unit cell and the $\pi-\pi$ stacking ( $3.734 \AA$ ). DMSO molecules have been removed for clarity.
93.18 (3) ${ }^{\circ}$. A single DMSO solvent molecule completes the asymmetric unit.

## 3. Supramolecular features

The crystal structure of the title compound shows an extensive array of hydrogen-bonding interactions (Table 1) forming hydrogen-bond ring systems and infinite chains (Fig. 2). The encapsulated DMSO solvent molecule forms a hydrogenbonding interaction with a single water molecule that is coordinating to the $\mathrm{Zn}^{\mathrm{II}}$ ion $\mathrm{S} 1-\mathrm{O} 6 \cdots \mathrm{H} 52-\mathrm{O} 5[1.983$ (9) Å]. Interestingly, there are also two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions from the methyl moiety of DMSO; one with the O atom on the formyl functional group in the equatorial position ( $\mathrm{H} 13 A \cdots \mathrm{O} 4=2.52 \AA$ ) and an additional hydrogen-bonding
(A)


(C)



Figure 5
Chemical structures used in the CSD similarity search.
interaction from the carbonyldione group occupying another equatorial position $(\mathrm{H} 12 B \cdots \mathrm{O} 3=2.62 \AA)$. Together these two interactions form three $R_{2}^{2}(8)$ systems. Furthermore, the DMSO solvent molecule encapsulated within the crystal structure forms a single hydrogen-bonding interaction with an adjacent DMSO molecule H13C $\cdots \mathrm{O} 6(x+1, y, z)(2.29 \AA)$, forming an infinite chain.

It is well known that coumarin crystal packing displays $\pi$ stacking motifs as a consequence of the planarity of the organic framework (Guha et al., 2013). Interestingly, the crystal packing of the title compound is influenced by off-set $\pi-\pi$ interactions between the electron deficient coumarin ring system of one molecule (ring system $\mathrm{O} 1-\mathrm{C} 8 A$ ) and the elec-tron-rich region of the second coumarin ring system ( $\mathrm{C} 4 A-$ $\mathrm{C} 8 A$ ) of an adjacent compound, whereby the centroids are $3.734 \AA$ apart (Fig. 3). This is in good agreement with other $\pi$ stacking motifs (Wallace et al., 2005). As a consequence, the packing arrangement shows a distinct zigzag pattern (Fig. 4).

## 4. Database survey

For coumarin-derived molecular probes for the detection of neutral compounds, see: Wallace et al. (2006). A coumarinbased chemosensor for the detection of copper(II) ions was prepared by Xu et al. (2015). There are very few literature examples of Michael acceptors with cyanide that have been isolated, however Sun et al. (2012) have published an elegant


Figure 4
Side view of the crystal packing showing the $\pi-\pi$ stacking of the coumarin of adjacent coordination complexes, emphasizing the zigzag motif.
crystal structure of a coumarin-cyanide adduct. There are over 25,000 zinc(II) coordination complexes in the Cambridge Structure Database (CSD; Groom et al., 2016), both the tetrahedral and octahedral environments. Therefore, the authors carried out a refined structure search based on the structures shown in Figs. 5(a) and 5(b); however, these did not yield any results. Therefore a modification of the search by specifically searching structures that have a bidentate chelating $\beta$-diketone motif coordinated to the zinc(II) in the equatorial position, with two water molecules in the axial position, as shown in Fig. 5(c) was carried out. This refined search yielded two similar structures with $\mathrm{Zn}^{\mathrm{II}}$ octahedrally coordinated, the first by Solans et al., whereby two 1,3-bis(2-hydroxyphenyl)propane-1,3-dionate ligands coordinate to the $\mathrm{Zn}^{\mathrm{II}}$ ion, with the remaining two coordination sites occupied by two ethanol molecules (Solans et al., 1983). The other similar structure was reported by Dong et al. (2010) who incorporated two 2-(4-benzoyloxy-2-hydroxybenzoyl)-1phenylethenolate ligands that were bound to the metal ion in the equatorial position and two ethanol molecules situated in the axial postions.

## 5. Synthesis and crystallization

7-(Diethylamino)-4-hydroxycoumarin ( $467 \mathrm{mg}, \quad 2.00 \mathrm{mmol}$ ) was dissolved in 2-propanol ( 20 mL ), triethyl orthoformate $(500 \mu \mathrm{~L}, \quad 3.00 \mathrm{mmol})$ and 2-aminopyriimidine $(190 \mathrm{mg}$, 2.00 mmol ) were added and the solution was heated to reflux for 4 h . Upon cooling, the solid was collected and used without further purification. This compound ( $200 \mathrm{mg}, 0.59 \mathrm{mmol}$ ) was then dissolved in methanol $(10 \mathrm{~mL})$, to which $\mathrm{Zn}(\mathrm{OAc})_{2}$ ( $130 \mathrm{mg}, 0.59 \mathrm{mmol}$ ) was then added to the solution. After stirring for 20 min , a yellow solid formed, which was collected by filtration and dried. A small amount of the solid ( 20 mg ) was redissolved in a 1:1 mixture of MeOH and DMSO to form a saturated solution ( 1 mL ) which was was allowed to stand for several weeks to form the title compound as colorless needles suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{~K}, \mathrm{CHCl}_{3}-d\right.$, 600 MHz p.p.m.): $\delta 9.68(s, 2 \mathrm{H}, \mathrm{CHO}), 7.91(d, 2 \mathrm{H}, J=2.4 \mathrm{~Hz}$, $\mathrm{ArH}), 6.53(d, J=2.3 \mathrm{~Hz}, \mathrm{ArH}), 6.33(s, 2 \mathrm{H}, \mathrm{ArH}), 3.41(q, 8 \mathrm{H}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.23\left(t, 12 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $300 \mathrm{~K}, \mathrm{CHCl}_{3}-d, 150 \mathrm{MHz}$ p.p.m.) $\delta 192.2,169.1,165.8,159.5$, 157.7, 153.3, 128.3, 108.4, 108.0, 102.8, 96.9, 44.9, 40.6, 29.7, 12.5; LRMS-ESI (negative mode), NaCl was added as a charging agent $\left[M-2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}\right]^{-}=619 \mathrm{~m} / \mathrm{z},\left[M-\mathrm{H}_{2} \mathrm{O}-\right.$ $\left.\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}+2 \mathrm{Cl}\right]^{-}=396 \mathrm{~m} / \mathrm{z}$, CID 396 yields $\left[\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}\right]^{-}=$ $261 \mathrm{~m} / \mathrm{z}$; IR (ATR solid); 3364 ( $b r, s) v_{\mathrm{OH}}, 2972,2926(m) v_{\mathrm{CH}}$, 1722 (m) $v_{\mathrm{CO}}$ ( $\delta$-lactone), $1689 \nu_{\mathrm{CO}}$ (ketone), $1590 \nu_{\mathrm{CO}}$ (formyl), $564 \nu_{\mathrm{CO}}(\mathrm{Zn}-\mathrm{O}) \mathrm{cm}^{-1}$.

## 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms on C were idealized with a $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$ for $\mathrm{Csp}^{2}, 0.99 \AA$ for $\mathrm{CH}_{2}$, and $0.98 \AA$ for methyl groups. Those on O atoms were assigned from difference maps, and their positions refined, with $\mathrm{O}-\mathrm{H}$

Table 2
Experimental details.
Crystal data

| Chemical formula | $\begin{aligned} & {\left[\mathrm{Zn}\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot-} \\ & \quad 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS} \end{aligned}$ |
| :---: | :---: |
| $M_{\text {r }}$ | 778.18 |
| Crystal system, space group | Monoclinic, $P 2_{1} / n$ |
| Temperature (K) | 90 |
| $a, b, c(\AA)$ | 5.2704 (2), 20.2885 (8), 16.0314 (8) |
| $\beta\left({ }^{\circ}\right.$ ) | 94.210 (2) |
| $V\left(\AA^{3}\right)$ | 1709.59 (13) |
| Z | 2 |
| Radiation type | Mo K $\alpha$ |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 0.91 |
| Crystal size (mm) | $0.42 \times 0.13 \times 0.06$ |
| Data collection |  |
| Diffractometer | Bruker Kappa APEXII CCD DUO |
| Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
| $T_{\text {min }}, T_{\text {max }}$ | 0.839, 0.948 |
| No. of measured, independent and observed $[I>2 \sigma(I)$ ] reflections | 52833, 7923, 6800 |
| $R_{\text {int }}$ | 0.034 |
| $(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$ | 0.821 |
| Refinement |  |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | $0.029,0.074,1.05$ |
| No. of reflections | 7923 |
| No. of parameters | 233 |
| No. of restraints | 2 |
| H -atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| $\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$ | 0.64, -0.29 |

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).
distances restrained to 0.86 (1) $\AA$. $U_{\text {iso }}$ values for H atoms were assigned as 1.2 times $U_{\text {eq }}$ of the attached atoms ( 1.5 for methyl and water groups).

## Acknowledgements

The KJW group is grateful for the financial support from NSF Grant OCE-0963064. The upgrade of the diffractometer was made possible by grant No. LEQSF(2011-12)-ENH-TR-01, administered by the Louisiana Board of Regents.

## References

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Davis, A. B., Lambert, R. E., Fronczek, F. R., Cragg, P. J. \& Wallace, K. J. (2014). New J. Chem. 38, 4678-4683.

Dong, K., Sun, J., Ruan, B.-F. \& Gong, H.-B. (2010). Acta Cryst. E66, m1290.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Guha, S., Lohar, S., Sahana, A., Banerjee, A., Safin, D. A., Babashkina, M. G., Mitoraj, M. P., Bolte, M., Garcia, Y. K. M. S. \& Das, D. (2013). Dalton Trans. 42, 10198-10207.
Hancock, R. D. \& Martell, A. E. (1989). Chem. Rev. 89, 1875-1914.
Lanke, S. K. \& Sekar, N. (2015). J. Fluoresc. 25, 1469-1480.
Lee, M. H., Kim, J. S. \& Sessler, J. L. (2015). Chem. Soc. Rev. 44, 41854191.

Lin, W., Yuan, L., Cao, X., Tan, W. \& Feng, Y. (2008). Eur. J. Org. Chem. pp. 4981-4987.
Liu, X., Xu, Z. \& Cole, J. M. (2013). J. Phys. Chem. C, 117, 1658416595.

Mallet, A., Davis, A., Davis, D., Panella, J., Wallace, K. \& Bonizzoni, M. (2015). Chem. Commun. 51, 16948-16951.

Nimmermark, A., Ohrstrom, L. \& Reedijk, J. (2013). Z. Kristallogr. 228, 311-317.
Osredkar, J. \& Sustar, N. (2011). J. Clin. Toxicol. S3, 001.
Ray, D., Nag, A., Jana, A., Goswami, D. \& Bharadwaj, P. K. (2010). Inorg. Chim. Acta, 363, 2824-2832.
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Solans, X., Font-Altaba, M., Briansó, J. L., Llobet, A., Teixidor, F. \& Casabó, J. (1983). Acta Cryst. C39, 1512-1514.
Sun, Y., Wang, Y., Cao, D., Chena, C., Liu, Z. \& Fang, Q. (2012). Sens. Actuators B Chem. 174, 500-505.
Wallace, K. J., Fagbemi, R. I., Folmer-Andersen, F. J., Morey, J., Lynch, V. M. \& Anslyn, E. V. (2006). Chem. Commun. pp. 38863888.

Wallace, K. J., Gray, M., Zhong, Z., Lynch, V. M. \& Anslyn, E. V. (2005). Dalton Trans. pp. 2436-2441.

Xu, W.-J., Qi, D.-Q., You, J. Z., Hu, F.-F., Bian, J.-Y., Yang, C.-X. \& Huang, J. (2015). J. Mol. Struct. 1091, 133-137.

## supporting information

Acta Cryst. (2016). E72, 1032-1036 [https://doi.org/10.1107/S2056989016009853]
Crystal structure of diaquabis(7-diethylamino-3-formyl-2-oxo-2H-chromen-4-olato- $\kappa^{2} O^{3}, O^{4}$ )zinc(II) dimethyl sulfoxide disolvate

Aaron B. Davis, Frank R. Fronczek and Karl J. Wallace

## Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Diaquabis(7-diethylamino-3-formyl-2-oxo-2H-chromen-4-olato- $\kappa^{2} O^{3}, O^{4}$ )zinc(II) dimethyl sulfoxide disolvate

## Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$
$M_{r}=778.18$
Monoclinic, $P 2{ }_{1} / n$
$a=5.2704$ (2) $\AA$
$b=20.2885(8) \AA$
$c=16.0314(8) \AA$
$\beta=94.210(2)^{\circ}$
$V=1709.59(13) \AA^{3}$
$Z=2$

## Data collection

## Bruker Kappa APEXII CCD DUO

 diffractometerRadiation source: fine-focus sealed tube
TRIUMPH curved graphite monochromator $\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.839, T_{\text {max }}=0.948$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.074$
$S=1.05$
7923 reflections
233 parameters
2 restraints

$$
F(000)=816
$$

$D_{\mathrm{x}}=1.512 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9942 reflections
$\theta=2.7-35.6^{\circ}$
$\mu=0.91 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Needle, colorless
$0.42 \times 0.13 \times 0.06 \mathrm{~mm}$

52833 measured reflections
7923 independent reflections
6800 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=35.7^{\circ}, \theta_{\text {min }}=1.6^{\circ}$
$h=-8 \rightarrow 8$
$k=-32 \rightarrow 33$
$l=-26 \rightarrow 26$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.037 P)^{2}+0.4839 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.64 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.29$ e $\AA^{-3}$

## Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Zn1 | 1.0000 | 0.5000 | 0.5000 | 0.00796 (3) |
| O1 | 0.76292 (12) | 0.75420 (3) | 0.39084 (4) | 0.01077 (11) |
| O2 | 1.07150 (13) | 0.72578 (3) | 0.31308 (4) | 0.01409 (12) |
| O3 | 0.84598 (12) | 0.58615 (3) | 0.53466 (4) | 0.00965 (10) |
| O4 | 1.23910 (12) | 0.55264 (3) | 0.42845 (4) | 0.01070 (11) |
| O5 | 0.71499 (13) | 0.49969 (3) | 0.39585 (4) | 0.01339 (12) |
| H51 | 0.5673 (19) | 0.5100 (7) | 0.4057 (10) | 0.020* |
| H52 | 0.697 (3) | 0.4765 (7) | 0.3534 (7) | 0.020* |
| N1 | 0.08901 (14) | 0.83166 (4) | 0.54592 (5) | 0.01113 (12) |
| C2 | 0.95013 (16) | 0.71005 (4) | 0.37136 (5) | 0.00949 (13) |
| C3 | 0.97983 (15) | 0.64990 (4) | 0.42057 (5) | 0.00849 (12) |
| C4 | 0.82637 (15) | 0.63719 (4) | 0.48897 (5) | 0.00782 (12) |
| C4A | 0.64144 (15) | 0.68716 (4) | 0.50673 (5) | 0.00800 (12) |
| C5 | 0.48155 (16) | 0.68183 (4) | 0.57310 (5) | 0.00925 (13) |
| H5 | 0.4947 | 0.6441 | 0.6082 | 0.011* |
| C6 | 0.30707 (16) | 0.72985 (4) | 0.58833 (5) | 0.01032 (13) |
| H6 | 0.2068 | 0.7257 | 0.6349 | 0.012* |
| C7 | 0.27487 (16) | 0.78592 (4) | 0.53494 (5) | 0.00915 (13) |
| C8 | 0.43691 (16) | 0.79177 (4) | 0.46922 (5) | 0.00975 (13) |
| H8 | 0.4241 | 0.8291 | 0.4335 | 0.012* |
| C8A | 0.61446 (16) | 0.74331 (4) | 0.45661 (5) | 0.00859 (12) |
| C9 | 1.18006 (16) | 0.60867 (4) | 0.39914 (5) | 0.00982 (13) |
| H9 | 1.2830 | 0.6251 | 0.3576 | 0.012* |
| C10 | -0.05833 (17) | 0.83018 (5) | 0.61973 (6) | 0.01397 (15) |
| H10A | -0.1134 | 0.7843 | 0.6292 | 0.017* |
| H10B | -0.2132 | 0.8573 | 0.6086 | 0.017* |
| C11 | 0.0875 (2) | 0.85532 (6) | 0.69888 (6) | 0.0237 (2) |
| H11A | 0.2527 | 0.8331 | 0.7061 | 0.036* |
| H11B | -0.0103 | 0.8461 | 0.7473 | 0.036* |
| H11C | 0.1138 | 0.9030 | 0.6943 | 0.036* |
| C10' | 0.05448 (17) | 0.88743 (4) | 0.48901 (6) | 0.01302 (14) |
| H10C | -0.1202 | 0.9048 | 0.4918 | 0.016* |
| H10D | 0.0711 | 0.8718 | 0.4312 | 0.016* |
| C11' | 0.24407 (19) | 0.94345 (5) | 0.50790 (7) | 0.01896 (18) |
| H11D | 0.2154 | 0.9628 | 0.5624 | 0.028* |
| H11E | 0.2204 | 0.9773 | 0.4644 | 0.028* |
| H11F | 0.4179 | 0.9261 | 0.5089 | 0.028* |
| S1 | 0.92308 (4) | 0.42229 (2) | 0.19940 (2) | 0.01629 (5) |
| O6 | 0.68156 (15) | 0.43188 (5) | 0.24310 (6) | 0.0304 (2) |


| C12 | $1.0926(2)$ | $0.35719(6)$ | $0.25330(6)$ | $0.02078(19)$ |
| :--- | :--- | :--- | :--- | :--- |
| H12A | 1.0056 | 0.3153 | 0.2408 | $0.031^{*}$ |
| H12B | 1.0995 | 0.3654 | 0.3137 | $0.031^{*}$ |
| H12C | 1.2659 | 0.3551 | 0.2351 | $0.031^{*}$ |
| C13 | $1.1280(2)$ | $0.48866(6)$ | $0.23282(8)$ | $0.0241(2)$ |
| H13A | 1.1447 | 0.4902 | 0.2941 | $0.036^{*}$ |
| H13B | 1.0559 | 0.5303 | 0.2110 | $0.036^{*}$ |
| H13C | 1.2959 | 0.4819 | 0.2117 | $0.036^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Zn1 | $0.00668(6)$ | $0.00682(6)$ | $0.01065(6)$ | $0.00185(4)$ | $0.00248(4)$ | $-0.00008(4)$ |
| O1 | $0.0130(3)$ | $0.0096(3)$ | $0.0103(2)$ | $0.0026(2)$ | $0.0048(2)$ | $0.00221(19)$ |
| O2 | $0.0158(3)$ | $0.0148(3)$ | $0.0124(3)$ | $0.0006(2)$ | $0.0065(2)$ | $0.0027(2)$ |
| O3 | $0.0115(3)$ | $0.0071(2)$ | $0.0107(2)$ | $0.0026(2)$ | $0.00331(19)$ | $0.00131(18)$ |
| O4 | $0.0085(2)$ | $0.0094(2)$ | $0.0147(3)$ | $0.0012(2)$ | $0.0038(2)$ | $-0.0001(2)$ |
| O5 | $0.0082(3)$ | $0.0180(3)$ | $0.0140(3)$ | $0.0031(2)$ | $0.0009(2)$ | $-0.0041(2)$ |
| N1 | $0.0107(3)$ | $0.0101(3)$ | $0.0127(3)$ | $0.0043(2)$ | $0.0020(2)$ | $0.0003(2)$ |
| C2 | $0.0098(3)$ | $0.0096(3)$ | $0.0092(3)$ | $0.0001(3)$ | $0.0018(2)$ | $-0.0003(2)$ |
| C3 | $0.0086(3)$ | $0.0084(3)$ | $0.0088(3)$ | $0.0007(2)$ | $0.0028(2)$ | $0.0002(2)$ |
| C4 | $0.0074(3)$ | $0.0077(3)$ | $0.0084(3)$ | $0.0004(2)$ | $0.0008(2)$ | $-0.0006(2)$ |
| C4A | $0.0079(3)$ | $0.0073(3)$ | $0.0090(3)$ | $0.0012(2)$ | $0.0020(2)$ | $0.0001(2)$ |
| C5 | $0.0094(3)$ | $0.0088(3)$ | $0.0097(3)$ | $0.0015(2)$ | $0.0024(2)$ | $0.0014(2)$ |
| C6 | $0.0105(3)$ | $0.0095(3)$ | $0.0113(3)$ | $0.0024(3)$ | $0.0031(3)$ | $0.0013(2)$ |
| C7 | $0.0088(3)$ | $0.0081(3)$ | $0.0105(3)$ | $0.0017(2)$ | $0.0006(2)$ | $-0.0009(2)$ |
| C8 | $0.0110(3)$ | $0.0077(3)$ | $0.0107(3)$ | $0.0023(3)$ | $0.0017(2)$ | $0.0010(2)$ |
| C8A | $0.0094(3)$ | $0.0079(3)$ | $0.0086(3)$ | $0.0005(2)$ | $0.0019(2)$ | $0.0005(2)$ |
| C9 | $0.0086(3)$ | $0.0102(3)$ | $0.0110(3)$ | $-0.0003(3)$ | $0.0031(2)$ | $-0.0008(2)$ |
| C10 | $0.0112(3)$ | $0.0149(4)$ | $0.0163(4)$ | $0.0037(3)$ | $0.0041(3)$ | $-0.0010(3)$ |
| C11 | $0.0239(5)$ | $0.0321(6)$ | $0.0155(4)$ | $0.0050(4)$ | $0.0034(3)$ | $-0.0067(4)$ |
| C10' | $0.0106(3)$ | $0.0103(3)$ | $0.0180(4)$ | $0.0031(3)$ | $0.0001(3)$ | $0.0014(3)$ |
| C11' | $0.0153(4)$ | $0.0106(4)$ | $0.0312(5)$ | $0.0008(3)$ | $0.0028(4)$ | $-0.0005(3)$ |
| S1 | $0.00995(9)$ | $0.02305(11)$ | $0.01552(9)$ | $0.00354(8)$ | $-0.00148(7)$ | $-0.00841(8)$ |
| O6 | $0.0089(3)$ | $0.0480(5)$ | $0.0346(4)$ | $0.0016(3)$ | $0.0025(3)$ | $-0.0249(4)$ |
| C12 | $0.0204(4)$ | $0.0264(5)$ | $0.0155(4)$ | $0.0024(4)$ | $0.0017(3)$ | $0.0002(3)$ |
| C13 | $0.0160(4)$ | $0.0238(5)$ | $0.0319(5)$ | $0.0009(4)$ | $-0.0015(4)$ | $-0.0105(4)$ |

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

| $\mathrm{Zn} 1-\mathrm{O} 3^{\mathrm{i}}$ | $2.0221(6)$ | $\mathrm{C} 7-\mathrm{C} 8$ | $1.4090(11)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Zn} 1-\mathrm{O} 3$ | $2.0221(6)$ | $\mathrm{C} 8-\mathrm{C} 8 \mathrm{~A}$ | $1.3823(11)$ |
| $\mathrm{Zn} 1-\mathrm{O} 4$ | $2.0631(6)$ | $\mathrm{C} 8-\mathrm{H} 8$ | 0.9500 |
| $\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{i}}$ | $2.0632(6)$ | $\mathrm{C} 9-\mathrm{H} 9$ | 0.9500 |
| $\mathrm{Zn} 1-\mathrm{O} 5$ | $2.1624(7)$ | $\mathrm{C} 10-\mathrm{C} 11$ | $1.5224(14)$ |
| $\mathrm{Zn} 1-\mathrm{O} 5^{\mathrm{i}}$ | $2.1624(7)$ | $\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$ | 0.9900 |
| $\mathrm{O} 1-\mathrm{C} 8 \mathrm{~A}$ | $1.3762(10)$ | $\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$ | 0.9900 |
| $\mathrm{O} 1-\mathrm{C} 2$ | $1.3852(10)$ | $\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$ | 0.9800 |


| $\mathrm{O} 2-\mathrm{C} 2$ | 1.2132 (10) |
| :---: | :---: |
| $\mathrm{O} 3-\mathrm{C} 4$ | 1.2683 (10) |
| O4-C9 | 1.2603 (10) |
| O5-H51 | 0.832 (9) |
| O5-H52 | 0.827 (9) |
| N1-C7 | 1.3700 (11) |
| N1-C10' | 1.4565 (11) |
| N1-C10 | 1.4624 (12) |
| C2-C3 | 1.4552 (11) |
| C3-C9 | 1.4088 (11) |
| C3-C4 | 1.4330 (11) |
| C4-C4A | 1.4490 (11) |
| C4A-C8A | 1.3953 (11) |
| C4A-C5 | 1.4091 (11) |
| C5-C6 | 1.3739 (11) |
| C5-H5 | 0.9500 |
| C6-C7 | 1.4263 (12) |
| C6-H6 | 0.9500 |
| $\mathrm{O} 3{ }^{\text {i }} \mathrm{Z} \mathrm{Zn} 1-\mathrm{O} 3$ | 180.00 (3) |
| O3 ${ }^{\text {i}}-\mathrm{Zn} 1-\mathrm{O} 4$ | 91.19 (2) |
| $\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 4$ | 88.81 (2) |
| O3 ${ }^{\text {i }} \mathrm{Z} \mathrm{Zn} 1-\mathrm{O} 4{ }^{\text {i }}$ | 88.81 (2) |
| $\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 4^{\text {i }}$ | 91.19 (2) |
| $\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 4{ }^{\text {i }}$ | 180.0 |
| O3 ${ }^{\text {i}}-\mathrm{Zn} 1-\mathrm{O} 5$ | 93.18 (3) |
| $\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 5$ | 86.82 (3) |
| $\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 5$ | 89.44 (3) |
| $\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 5$ | 90.56 (3) |
| O3 ${ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 5^{\text {i }}$ | 86.83 (3) |
| $\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O}^{\text {i }}$ | 93.17 (3) |
| $\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O}^{\text {i }}$ | 90.56 (3) |
| $\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 5^{\mathrm{i}}$ | 89.44 (3) |
| O5-Zn1-O5 ${ }^{\text {i }}$ | 180.00 (4) |
| C8A-O1-C2 | 121.56 (6) |
| $\mathrm{C} 4-\mathrm{O} 3-\mathrm{Zn} 1$ | 124.36 (5) |
| C9-O4-Zn1 | 122.01 (5) |
| $\mathrm{Zn} 1-\mathrm{O} 5-\mathrm{H} 51$ | 117.4 (11) |
| $\mathrm{Zn} 1-\mathrm{O} 5-\mathrm{H} 52$ | 131.9 (11) |
| H51-O5-H52 | 104.3 (15) |
| C7-N1- $\mathrm{Cl}^{\prime}{ }^{\prime}$ | 120.21 (7) |
| C7-N1-C10 | 121.15 (7) |
| C10'-N1-C10 | 118.26 (7) |
| $\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$ | 115.34 (7) |
| $\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$ | 126.61 (8) |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$ | 118.04 (7) |
| C9-C3-C4 | 123.69 (7) |
| C9-C3-C2 | 114.74 (7) |


| $\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$ | 0.9800 |
| :--- | :--- |
| $\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$ | 0.9800 |
| $\mathrm{C} 10^{\prime}-\mathrm{C} 11^{\prime}$ | $1.5289(14)$ |
| $\mathrm{C} 10^{\prime}-\mathrm{H} 10 \mathrm{C}$ | 0.9900 |
| $\mathrm{C} 10^{\prime}-\mathrm{H} 10 \mathrm{D}$ | 0.9900 |
| $\mathrm{C} 11^{\prime}-\mathrm{H} 11 \mathrm{D}$ | 0.9800 |
| $\mathrm{C} 11^{\prime}-\mathrm{H} 11 \mathrm{E}$ | 0.9800 |
| $\mathrm{C} 11^{\prime}-\mathrm{H} 11 \mathrm{~F}$ | 0.9800 |
| $\mathrm{~S} 1-\mathrm{O} 6$ | $1.5100(8)$ |
| $\mathrm{S} 1-\mathrm{C} 12$ | $1.7822(11)$ |
| $\mathrm{S} 1-\mathrm{C} 13$ | $1.7836(11)$ |
| $\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$ | 0.9800 |
| $\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$ | 0.9800 |
| $\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$ | 0.9800 |
| $\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$ | 0.9800 |
| $\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$ | 0.9800 |
| $\mathrm{C} 13-\mathrm{H} 13 \mathrm{C}$ | 0.9800 |

119.9
115.27 (7)
122.18 (7)
122.55 (7)
127.84 (8)
116.1
116.1
113.70 (8)
108.8
108.8
108.8
108.8
107.7
109.5

C10-C11-H11B 109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 109.5$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
$\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
$\mathrm{N} 1-\mathrm{C} 10^{\prime}-\mathrm{C}^{\prime} 1^{\prime} \quad 113.80(8)$
$\mathrm{N} 1-\mathrm{C} 10$ - $\mathrm{H} 10 \mathrm{C} \quad 108.8$
C11'—C10'—H10C 108.8
$\mathrm{N} 1-\mathrm{C} 10{ }^{\prime}$ - H10D 108.8
C11'—C10'—H10D 108.8
$\mathrm{H} 10 \mathrm{C}-\mathrm{C} 10$ '—H10D 107.7
C10'-C11'—H11D 109.5
C10'-C11'—H11E 109.5
H11D-C11-H11E 109.5
C10'—C11'—H11F 109.5

| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ | 121.43 (7) |
| :---: | :---: |
| O3-C4-C3 | 124.22 (7) |
| $\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$ | 119.03 (7) |
| C3-C4-C4A | 116.75 (7) |
| C8A-C4A-C5 | 117.14 (7) |
| C8A-C4A-C4 | 119.98 (7) |
| C5-C4A-C4 | 122.88 (7) |
| C6-C5-C4A | 121.67 (7) |
| C6-C5-H5 | 119.2 |
| C4A-C5-H5 | 119.2 |
| C5-C6-C7 | 120.71 (7) |
| C5-C6- H 6 | 119.6 |
| C7-C6-H6 | 119.6 |
| N1-C7-C8 | 121.16 (7) |
| N1-C7-C6 | 121.18 (7) |
| C8-C7-C6 | 117.64 (7) |
| C8A-C8-C7 | 120.23 (7) |
| C8A-C8-H8 | 119.9 |
| C8A-O1-C2-O2 | -178.59 (8) |
| C8A-O1-C2-C3 | 2.40 (11) |
| $\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 9$ | 3.39 (13) |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 9$ | -177.73 (7) |
| $\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | 179.19 (8) |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | -1.93 (11) |
| $\mathrm{Zn} 1-\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$ | -22.08 (11) |
| $\mathrm{Zn} 1-\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$ | 159.09 (6) |
| C9-C3-C4-O3 | -3.62 (13) |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$ | -179.04 (8) |
| C9-C3-C4-C4A | 175.24 (7) |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$ | -0.18 (11) |
| $\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$ | -179.20 (7) |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$ | 1.88 (11) |
| $\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5$ | 0.24 (12) |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5$ | -178.68 (7) |
| C8A-C4A-C5-C6 | -0.29 (12) |
| $\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5-\mathrm{C} 6$ | -179.74 (8) |
| C4A-C5-C6-C7 | 2.53 (13) |
| C10'-N1-C7-C8 | 0.37 (12) |
| C10-N1-C7-C8 | -172.43 (8) |

121.43 (7)
124.22 (7)
119.03 (7)
116.75 (7)
117.14 (7)
119.98 (7)
122.88 (7)
121.67 (7)
119.2
11.2
120.71 (7)
119.6
121.16 (7)
121.18 (7)
117.64 (7)
120.23 (7)
119.9
-178.59 (8)
2.40 (11)
3.39 (13)
-177.73 (7)
179.19 (8)
. 23.08 (11)
159.09 (6)
-3.62 (13)
-179.04 (8)
175.24 (7)
-0.18 (11)
-179.20 (7)
1.88 (11)
0.24 (12)
-178.68 (7)
-0.29 (12)
-179.74 (8)
2.53 (13)
-172.43 (8)

| $\mathrm{H} 11 \mathrm{D}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~F}$ | 109.5 |
| :--- | :--- |
| $\mathrm{H} 11 \mathrm{E}-\mathrm{C} 11^{\prime}-\mathrm{H} 11 \mathrm{~F}$ | 109.5 |
| $\mathrm{O} 6-\mathrm{S} 1-\mathrm{C} 12$ | $106.27(6)$ |
| $\mathrm{O} 6-\mathrm{S} 1-\mathrm{C} 13$ | $106.01(5)$ |
| $\mathrm{C} 12-\mathrm{S} 1-\mathrm{C} 13$ | $98.22(6)$ |
| $\mathrm{S} 1-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$ | 109.5 |
| $\mathrm{~S} 1-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$ | 109.5 |
| $\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$ | 109.5 |
| $\mathrm{~S} 1-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$ | 109.5 |
| $\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$ | 109.5 |
| $\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$ | 109.5 |
| $\mathrm{~S} 1-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$ | 109.5 |
| $\mathrm{~S} 1-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$ | 109.5 |
| $\mathrm{H} 13 \mathrm{~A}-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$ | 109.5 |
| $\mathrm{~S} 1-\mathrm{C} 13-\mathrm{H} 13 \mathrm{C}$ | 109.5 |
| H13A-C13-H13C | 109.5 |
| H13B-C13-H13C | 109.5 |

C 10 - $\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6 \quad-178.06$ (8)
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6 \quad 9.15(12)$
C5-C6-C7-N1 175.22 (8)
C5-C6-C7-C8 -3.26 (12)
N1-C7-C8-C8A -176.64 (8)
C6-C7-C8-C8A 1.84 (12)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8 \quad 179.44$ (7)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A} \quad-0.73(12)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8 \mathrm{~A}-\mathrm{O} 1 \quad-179.82(7)$
C7-C8-C8A-C4A 0.35 (13)
$\mathrm{C} 5-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{O} 1 \quad 179.02$ (7)
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{O} 1 \quad-1.52$ (12)
$\mathrm{C} 5-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8 \quad-1.16$ (12)
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8 \quad 178.30$ (8)
$\mathrm{Zn} 1-\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 3 \quad 13.02$ (12)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 9-\mathrm{O} 4 \quad 8.25$ (14)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 9-\mathrm{O} 4 \quad-176.05$ (8)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11 \quad 75.54$ (11)
C 10 '-N1-C10-C11 -97.39 (10)
C7-N1-C10'-C11' -80.01 (10)
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 10^{\prime}-\mathrm{C} 11^{\prime} \quad 92.99$ (10)

Symmetry code: (i) $-x+2,-y+1,-z+1$.

Hydrogen-bond geometry $\left(\hat{A},{ }^{\circ}\right)$

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O5—H52 $\cdots \mathrm{O} 6$ | $0.83(1)$ | $1.98(1)$ | $2.8030(11)$ | $171(2)$ |
| O5—H51 $\cdots \mathrm{O} 44^{\mathrm{ii}}$ | $0.83(1)$ | $1.99(1)$ | $2.8126(9)$ | $169(1)$ |

## supporting information

| $\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O}^{\mathrm{i}}$ | 0.98 | 2.62 | $3.5805(12)$ | 167 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 13 — \mathrm{H} 13 A \cdots \mathrm{O} 4$ | 0.98 | 2.52 | $3.4050(13)$ | 151 |
| $\mathrm{C} 13 — \mathrm{H} 13 C \cdots \mathrm{O}^{\text {iii }}$ | 0.98 | 2.29 | $3.1299(14)$ | 143 |

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $x-1, y, z$; (iii) $x+1, y, z$.

