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Breast cancer is associated with the highest morbidity rates for cancer diagnoses in

the world and has become a major public health issue. Early diagnosis can increase

the chance of successful treatment and survival. However, it is a very challenging

and time-consuming task that relies on the experience of pathologists. The automatic

diagnosis of breast cancer by analyzing histopathological images plays a significant

role for patients and their prognosis. However, traditional feature extraction methods

can only extract some low-level features of images, and prior knowledge is necessary

to select useful features, which can be greatly affected by humans. Deep learning

techniques can extract high-level abstract features from images automatically. Therefore,

we introduce it to analyze histopathological images of breast cancer via supervised and

unsupervised deep convolutional neural networks. First, we adapted Inception_V3 and

Inception_ResNet_V2 architectures to the binary and multi-class issues of breast cancer

histopathological image classification by utilizing transfer learning techniques. Then, to

overcome the influence from the imbalanced histopathological images in subclasses, we

balanced the subclasses with Ductal Carcinoma as the baseline by turning images up

and down, right and left, and rotating them counterclockwise by 90 and 180 degrees.

Our experimental results of the supervised histopathological image classification of

breast cancer and the comparison to the results from other studies demonstrate that

Inception_V3 and Inception_ResNet_V2 based histopathological image classification

of breast cancer is superior to the existing methods. Furthermore, these findings

show that Inception_ResNet_V2 network is the best deep learning architecture so far

for diagnosing breast cancers by analyzing histopathological images. Therefore, we

used Inception_ResNet_V2 to extract features from breast cancer histopathological

images to perform unsupervised analysis of the images. We also constructed a new

autoencoder network to transform the features extracted by Inception_ResNet_V2 to a

low dimensional space to do clustering analysis of the images. The experimental results

demonstrate that using our proposed autoencoder network results in better clustering

results than those based on features extracted only by Inception_ResNet_V2 network.

All of our experimental results demonstrate that Inception_ResNet_V2 network based

deep transfer learning provides a new means of performing analysis of histopathological

images of breast cancer.

Keywords: histopathological images, breast cancer, deep convolutional neural networks, autoencoder, transfer

learning, classification, clustering
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INTRODUCTION

Cancers have become one of the major public health issues.
According to statistics by the IARC (International Agency
for Research on Cancer) from the WHO (World Health
Organization), and GBD (Global Burden of Disease Cancer
Collaboration), cancer cases increased by 28% between 2006 and
2016, and there will be 2.7 million new cancer cases emerging in
2030 (Boyle and Levin, 2008; Moraga-Serrano, 2018). Among the
various types of cancer, breast cancer is one of the most common
and deadly in women (1.7 million incident cases, 535,000 deaths,
and 14.9 million disability-adjusted life years) (Moraga-Serrano,
2018). Therefore, the diagnosis of breast cancer has become very
important. Although the diagnosis of breast cancers has been
performed for more than 40 years using X-ray, MRI (Magnetic
Resonance Imaging), and ultrasound etc. (Stenkvist et al., 1978),
biopsy techniques are still themainmethods relied on to diagnose
breast cancer correctly. Common biopsy techniques include fine-
needle aspiration, vacuum-assisted biopsy and surgical biopsy.
The process involves collecting samples of cells or tissues, fixing
them on themicroscope slide, and then staining them (Veta et al.,
2014). After that, the histopathological images are analyzed and
the diagnosis is made by pathologists (Spanhol et al., 2016a).

However, the analysis of the histopathological images is a
difficult and time-consuming task that requires the knowledge
of professionals. Furthermore, the outcome of the analysis
may be affected by the level of experience of the pathologists
involved. Therefore, computer-aided (Aswathy and Jagannath,
2017) analysis of histopathological images plays a significant role
in the diagnosis of breast cancer and its prognosis. However,
the process of developing tools for performing this analysis is
impeded by the following challenges. First, histopathological
images of breast cancer are fine-grained, high-resolution images
that depict rich geometric structures and complex textures. The
variability within a class and the consistency between classes can
make classification extremely difficult, especially when dealing
with multiple classes. The second challenge is the limitations
of feature extraction methods for histopathological images of
breast cancer. Traditional feature extraction methods, such as
scale-invariant feature transform (SIFT) (Lowe, 1999) and gray-
level co-occurrence matrix (GLCM) (Haralick et al., 1973), all
rely on supervised information. Furthermore, prior knowledge of
data is needed to select useful features, which makes the feature
extraction efficiency very low and the computational load very
heavy. In the end, the final extracted features are only some low-
level and unrepresentative features of histopathological images.
Consequently, this can lead to the final model producing poor
classification results.

Deep learning techniques have the power to automatically
extract features, retrieve information from data automatically,
and learn advanced abstract representations of data. They can
solve the problems of traditional feature extraction and have been
successfully applied in computer vision (He et al., 2015; Xie et al.,
2018), biomedical science (Gulshan et al., 2016; Esteva et al.,
2017) and many other fields.

In view of the powerful feature extraction advantages of deep
learning and the challenges in histopathological image analysis

of breast cancer, this paper analyzes histopathological images
of breast cancer using deep learning techniques. On one hand,
we use advanced deep convolutional neural networks, including
Inception_V3 (Szegedy et al., 2016) and Inception_ResNet_V2
(Szegedy et al., 2017), combinedwith transfer learning techniques
to classify the histopathological images of breast cancer (Pan and
Yang, 2010). On the other hand, by combining deep learning with
clustering and utilizing the dimension-reduction functionality
of the autoencoder network (Hinton and Salakhutdinov, 2006),
we propose a new autoencoder network structure to apply
non-linear transformations to features in histopathological
images of breast cancer extracted by the Inception_ResNet_V2
network. This effectively maps the extracted features to a lower
dimensional space. The newly obtained features are then used
as input for the classical clustering algorithm known as K-
means (MacQueen, 1967) to perform clustering analysis on
histopathological images of breast cancer. Also, we designed a
number of comparable experiments to verify the validity of our
proposed method of histopathological image analysis of breast
cancer images based on deep learning techniques.

RELATED WORKS

Breast cancer diagnosis based on image analysis has been studied
for more than 40 years, and there have been several notable
research achievements in the area. These studies can be divided
into two categories according to their methods: one is based on
traditional machine learning methods, and the other is based on
deep learning methods. The former category is mainly focused
on small datasets of breast cancer images and is based on labor
intensive and comparatively low-performing, abstract features.
The latter category can deal with big data and can also extract
much more abstract features from data automatically.

For example, Zhang et al. (2013) proposed a new cascade
random subspace ensemble scheme with rejection options
for microscopic biopsy image classification in 2012. This
classification system consists of two random subspace classifier
ensembles. The first ensemble consists of a set of support
vector machines which correspond to the K binary classification
problems transformed from the original K-class classification
problem (K= 3). The second ensemble consists of a Multi-Layer
Perceptron ensemble which focuses on rejected samples from the
first ensemble. This system was tested on a database composed of
361 images, of which 119 were normal tissue, 102 were carcinoma
in situ, and 140 were lobular carcinoma or invasive ductal. The
authors randomly split the images into training and testing sets,
with 20% of each class’ images used for testing and the rest
used for training. It obtained a high classification accuracy of
99.25% and a high classification reliability of 97.65% with a
small rejection rate of 1.94%. In 2013, Kowal et al. (2013) used
four clustering algorithms to perform nuclei segmentation for
500 images from 50 patients with breast cancer. Then, they
used three different classification approaches to classify these
images into benign and malignant tumors. Among 500 images,
there were 25 benign and 25 malignant cases with 10 images
per case. They achieved classification accuracy between 96 and
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100% using a 50-fold cross-validation technique. In the same
year, Filipczuk et al. (2013) presented a breast cancer diagnosis
system based on the analysis of cytological images of fine needle
biopsies to discriminate between benign or malignant biopsies.
Four traditional machine learning methods including KNN (K-
nearest neighbor with K = 5), NB (naive Bayes classifier with
kernel density estimate), DT (decision tree) and SVM (support
vector machine with Gaussian radial basis function kernel and
scaling factor σ = 0.9) were used to build the classifiers of
the biopsies with 25 features of the nuclei. These classifiers were
tested on a set of 737 microscopic images of fine needle biopsies
obtained from 67 patients, which contained 25 benign (275
images) and 42 malignant (462 images) cases. The best reported
effectiveness is up to 98.51%. In 2014, George et al. (2014)
proposed a diagnosis system for breast cancer using nuclear
segmentation based on cytological images. Four classification
models were used, including MLP (multilayer perceptron using
the backpropagation algorithm), PNN (probabilistic neural
network), LVQ (learning vector quantization), and SVM. The
parameters for each model can be found in Table 5 in George
et al. (2014). The classification accuracy using 10-fold cross-
validation is 76∼94% with only 92 images, including 45 images
of benign tumors and 47 images of malignant tumors. In 2016,
a performance comparison was conducted by Asri et al. (2016)
between four machine learning algorithms, including SVM, DT,
NB and KNN, on the Wisconsin Breast Cancer dataset, which
contains 699 instances (including 458 benign and 241 malignant
cases). Experimental results demonstrated that SVM achieved the
highest accuracy of 97.13% with 10-fold cross-validation.

However, the above breast cancer diagnosis studies focused
on Whole-Slide Imaging (Zhang et al., 2013, 2014). Since the
operation of Whole-Slide Imaging is complex and expensive,
many studies based on this technique use small datasets
and achieve poor generalization performance. To solve these
problems, Spanhol et al. (2016a) published a breast cancer
dataset called BreaKHis in 2016. BreaKHis contains 7,909
histopathological images of breast cancer from 82 patients. The
authors used 6 different feature descriptors and 4 different
traditional machine learning methods, including 1-NN (1
Nearest Neighbor), QDA (Quadratic Discriminant Analysis), RF
(Random Forest), and SVM with the Gaussian kernel function,
to perform binary diagnosis of benign and malignant tumors.
The classification accuracy is between 80 and 85% using 5-fold
cross-validation.

Although traditional machine learning methods have made
great achievements in analyzing histopathological images of
breast cancer and even in dealing with relatively large datasets,
their performance is heavily dependent on the choice of data
representation (or features) for the task they are trained to
perform. Furthermore, they are unable to extract and organize
discriminative information from data (Bengio et al., 2013). Deep
learning methods typically are neural network based learning
machines with much more layers than the usual neural network.
They have been widely used in the medical field since they can
automatically yield more abstract—and ultimately more useful—
representations (Bengio et al., 2013). That is, they can extract
the discriminative information or features from data without

requiring the manual design of features by a domain expert
(Spanhol et al., 2016b).

As a consequence, Spanhol et al. (2016b) classified
histopathological images of breast cancer from BreaKHis
using a variation of the AlexNet (Krizhevsky et al., 2012)
convolutional neural network that improved classification
accuracy by 4–6%. Bayramoglu et al. (2016) proposed to classify
breast cancer histopathological images independently of their
magnifications using CNN (convolutional neural networks).
They proposed two different architectures: the single task CNN
used to predict malignancy, and the multi-task CNN used
to predict both malignancy and image magnification level
simultaneously. Evaluations were carried out on the BreaKHis
dataset, and the experimental results were competitive with
the state-of-the-art results obtained from traditional machine
learning methods.

However, the above studies on the BreaKHis dataset only focus
on the binary classification problem. Multi-class classification
studies on histopathological images of breast cancer can provide
more reliable information for diagnosis and prognosis. As a
result, Araújo et al. (2017) proposed a CNN based method
to classify the hematoxylin and eosin stained breast biopsy
images from a dataset composed of 269 images into four
classes (normal tissue, benign lesion, in situ carcinoma and
invasive carcinoma), and into two classes (carcinoma and non-
carcinoma), respectively. An SVM classifier with the radial basis
kernel function was trained using the features extracted by
CNN. The accuracies of the SVM for the four-class and two-
class classification problems are 77.8–83.3%, respectively. To
realize the development of a system for diagnosing breast cancer
using multi-class classification on BreaKHis, Han et al. (2017)
proposed a class structure-based deep convolutional network to
provide an accurate and reliable solution for breast cancer multi-
class classification by using hierarchical feature representation.
Using these techniques, they were able to achieve multi-class
classification of breast cancer with amaximum accuracy of 95.9%.
This study is important for precise treatment of breast cancer.
In addition, Nawaz et al. (2018) presented a DenseNet based
model for multi-class breast cancer classification to predict the
subclass of the tumors. The experimental results on BreaKHis
achieved the accuracy of 95.4%. After that, Motlagh et al. (2018)
used the pre-trained model of ResNet_V1_152 (He et al., 2016)
to perform diagnosis of benign and malignant tumors as well as
diagnosis based on multi-class classification of various subtypes
of histopathological images of breast cancer in BreaKHis. They
were able to achieve an accuracy of 98.7–96.4% for binary
classification and multi-class classification, respectively.

Although there are 7,909 histopathological images from 82
patients in BreaKHis, the number of images is far from enough
for effectively using deep learning techniques. Therefore, we
proposed to combine transfer learning techniques with deep
learning to perform breast cancer diagnosis using the relatively
small number of histopathological images (7,909) from the
BreaKHis dataset.

The Inception_V3 (Szegedy et al., 2016) and
Inception_ResNet_V2 (Szegedy et al., 2017) networks were
proposed by Szegedy et al. (2016, 2017), respectively. In the 2012
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
competition, the Inception_V3 network achieved 78.0–93.9%
accuracy in top-1 and top-5 metrics, respectively, while the
Inception_ResNet_V2 achieved 80.4–95.3% accuracy in the
same evaluation.

One common method for performing transfer learning (Pan
and Yang, 2010) involves obtaining the basic parameters for
training a deep learning model by pre-training on large data sets,
such as ImageNet, and then using the data set of the new target
task to retrain the last fully-connected layer of the model. This
process can achieve good results even on small data sets.

Therefore, we adopt two deep convolutional neural networks,
specifically Inception_V3 and Inception_Resnet_V2, to study
the diagnosis of breast cancer in the BreaKHis dataset
via transfer learning techniques. To solve the unbalanced
distribution of samples of histopathological images of breast
cancer, the BreaKHis dataset was expanded by rotation,
inversion, and several other data augmentation techniques. The
Inception_ResNet_V2 network was chosen to conduct binary
and multi-class classification diagnosis on the expanded set of
histopathological breast cancer images for its better performance
on the original dataset of BreaKHis compared to that of
Inception_V3. The powerful feature extraction capability of the
Inception_ResNet_V2 network was used to extract features of the
histopathological images of breast cancer for the linear kernel
SVM and 1-NN classifiers. The image features extracted by
the Inception_ResNet_V2 network are also used as the input
of the K-means algorithm to do clustering analysis for the
BreaKHis dataset. Furthermore, a new autoencoder deep learning
model is constructed to apply a non-linear transformation to
the image features extracted by Inception_ResNet_V2 network
in order to get the low-dimensional features of the image, and
to do clustering analysis for BreaKHis dataset using the K-
means algorithm.

DATA AND METHODS

Datasets
The dataset named BreaKHis used in this article was published
by Spanhol et al. (2016a) in 2016. It is composed of
7,909 histopathological images from 82 clinical breast cancer
patients. The database can be accessed through the link http://
web.inf.ufpr.br/vri/breast-cancer-database. To save the original
organization structure and molecular composition, each image
was taken by a pathologist from a patient’s breast tissue section
using a surgical biopsy. Then, the images were collected via
haematoxylin and eosin staining. Finally, the real class label was
given to each image by pathologists via their observations of
the images from a microscope. All the histopathological images
of breast cancer are 3 channel RGB micrographs with a size
of 700 × 460. Since objective lenses of different multiples were
used in collecting these histopathological images of breast cancer,
the entire dataset comprised four different sub-datasets, namely
40, 100, 200, and 400X. All of these sub-datasets are classified
into benign and malignant tumors. Therefore, both benign and
malignant tumors have four different subsets. Benign tumors
include Adenosis (A), Fibroadenoma (F), Phyllodes Tumor

(PT), and Tubular Adenoma (TA). Malignant tumors include
Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous
Carcinoma (MC), and Papillary Carcinoma (PC). Sample
descriptions for the BreaKHis dataset are shown in Table 1.

Since the input sizes of Inception_V3 and
Inception_ResNet_V2 networks used in this paper are both
299 × 299, each of the histopathological images of breast
cancer must be transformed into a 299 × 299 image to match
the required input size of the network structure. Some image
preprocessing methods in the TensorFlow framework were used
in the transforming process, including cutting the border box,
adjusting image size, and adjusting saturation, etc. In this way, a
3-channel image conforming to the input size of the model was
generated, and the pixel values of each channel were normalized
to the interval of [−1, 1]. In order to ensure the universality of
the experimental results in the classification task, the datasets of
the four magnification factors were randomly partitioned into
training and testing subsets according to the proportion of 7:3.

Classification Analysis
This subsection will discuss our experiments of classifying
histopathological images of breast cancer using the deep
learning models of Inception_V3 (Szegedy et al., 2016) and
Inception_ResNet_V2 (Szegedy et al., 2017) as well as the
analyses of our experimental results.

Network Structures for Classification
The Inception_V3 (Szegedy et al., 2016) and
Inception_ResNet_V2 (Szegedy et al., 2017) networks,
proposed by Szegedy et al. in 2016 and 2017, respectively,
were adopted in our experiments. It was demonstrated in
the ILSVRC competition that Inception_ResNet_V2 could
defeat the Inception_V3 network when applied to big data.
An important difference between the Inception_V3 and
Inception_ResNet_V2 networks is that the latter is equipped
with residual connections. To test whether the experimental
results from Inception_ResNet_V2 are superior to those from
Inception_V3 on small datasets or not, these two networks
are adopted in this paper to perform classification of the
histopathological images of breast cancer. The network
structures are shown in Figure 1.

It can be seen from Figure 1 that the structures of the
two networks are very similar. The first several layers are
characteristic transformation via the traditional convolutional
layers and the pooling layers, and the middle part is composed
of multiple Inception modules stacked together. The results
are finally output through the fully-connected layer using the
Softmax function. One of the main differences between the
Inception_V3 and Inception_ResNet_V2 networks lies in the
differing composition of the two networks’ Inception modules.
To enhance the network’s adaptability to different convolution
kernels, each Inception module of the Inception_V3 network is
composed of filters with different sizes including 1 × 1, 1 ×
3, 3 × 1. For the Inception_ResNet_V2 network, to avoid the
deterioration of the network gradient that is often associated
with an increase in the number of layers, a residual unit is
added to each Inception module. Besides using filters of different
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TABLE 1 | Image distribution of different subclasses in different magnification factors.

Magnification Benign Malignant Total

A F PT TA DC LC MC PC

40X 114 253 109 149 864 156 205 145 1,995

100X 113 260 121 150 903 170 222 142 2,081

200X 111 264 108 140 896 163 196 135 2,013

400X 106 237 115 130 788 137 169 138 1,820

Total 444 1,014 453 569 3,451 626 792 560 7,909

#Patients 4 10 3 7 38 5 9 6 82

FIGURE 1 | The network structures, (A) Inception_V3, (B) Inception_ResNet_V2.

sizes in the network, the deterioration caused by increasing
layers can also be solved by jumping layers as allowed by the
use of residual connections. Figure 2 displays the differences in
the construction of the Inception module with a size of 8 ×
8 between Inception_V3 and Inception_ResNet_V2. The other
details can be found in the original references (Szegedy et al.,
2016, 2017).

Transfer Learning
Transfer learning (Pan and Yang, 2010) emerges from deep
learning. It is well-known that it is typically impossible to

train a complex deep network from scratch with only a small
dataset. Furthermore, there are not any existing principles
to design a network structure for a specific task. What we
can do is adopt the model and the parameters obtained
by other researchers via time-consuming and computationally
intensive training on the very large image dataset of ImageNet
and use the knowledge it has gained as pre-training for
our specific research task. Then, we can retrain the last
defined fully-connected layer of the model using only a
relatively small amount of data to achieve good results for our
target task.
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FIGURE 2 | The inception module of size 8× 8 in two networks, (A) Inception_V3, (B) Inception_ResNet_V2.

FIGURE 3 | The Inception_ResNet_V2 network structure for transfer learning.

Transfer learning is adopted in this paper to classify
the histopathological images of breast cancer using
Inception_V3 and Inception_ResNet_V2 networks. We
first downloaded the models and parameters of Inception_V3
and Inception_ResNet_V2 networks trained on the ImageNet
dataset. The dataset is composed of about 1.2 million training
images, 50,000 validation images, and 100,000 testing images.
This comprises a total of 1,000 different categories. Then,
we froze all of the parameters before the last layer of the
networks. We modified the number of neurons of the last
fully-connected layer as 2 for binary classification and 8 for
multi-class classification. After that, the parameters of the
fully-connected layer are trained on the histopathological
images of breast cancer. The modified network structure
of the Inception_ResNet_V2 network is shown in Figure 3.
The modified Inception_V3 network structure is similar, so
it is omitted.

Our classification process was developed based on the
TensorFlow deep learning framework. The Adam (adaptive
moment estimation) (Kingma and Ba, 2014) algorithm was used
in the training process to perform optimization by iterating
through 70 epochs using the histopathological image dataset of
breast cancer. The batch_size is set to 32 in the experiments,
and the initial learning rate is 0.0002 (Bergstra and Bengio,
2012). Then, the exponential decay method is adopted to reduce
the learning rate and ensure that the model moves through
iterations quickly at the initial training stage. This also helps to

provide more stability at the later stage and makes it easier to
obtain the optimal solution. The decay coefficient is set as 0.7
(Bergstra and Bengio, 2012), and the decay speed is set so that
the decay occurs every two epochs. The specific decay process is
shown in (1), where decayed_learning_rate is the current learning
rate, learning_rate is the initial learning rate, decay_rate is the
decay coefficient, global_step is the current iteration step, and
decay_steps is the decay speed.

decayed_learning_rate = learning_rate

×decay_rate(global_step/decay_steps) (1)

Evaluation Criteria for Classification Results
To evaluate the performance of the classification model more
accurately and comprehensively, the classification results are
evaluated by some popular benchmark metrics, including
sensitivity (Se), specificity (Sp), positive predictive value (PPV),
diagnostic odds ratio (DOR), F1 measure (F1), area under
the receiver operating characteristic curve (AUC), Kappa
criteria (Kappa), Macro-F1, Micro-F1, image level test accuracy
(ACC_IL), and patient level test accuracy (ACC_PL). The latter
two criteria were proposed in (5). The Macro-F1 and Micro-F1
are two variations of F1 for multi-class classification problems.
Macro-F1 is the average of F1 for each class. Micro-F1 is defined
as F1 but depending on the precision and recall defined by the
sum of TP (true positive), FP (false positive), and FN (false
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negative) for all classes. The definitions of the criteria are shown
in Equations (2–9).

Se =
TP

TP + FN
(2)

Sp =
TN

TN + FP
(3)

PPV =
TP

TP + FP
(4)

DOR =
TP × TN

FP × FN
(5)

ACC_IL =
Nrec

Nall
(6)

ACC_PL =
∑

Patient Score

Total Number of Patients
, Patient Score =

Nrec

NP

(7)

F1 =
2× precision× recall

precision+ recall
, recall =

TP

TP + FN
(8)

Kappa =
p0 − pe

1− pe
, p0=

Nrec

Nall
, Pe =

∑

Ntrue_i × Npre_i

Nall × Nall
(9)

The value of TP in the equations above is the number of images
correctly recognized as malignant tumor in the testing subset.
FP is the number of images that were incorrectly recognized
as malignant tumor in the testing subset. FN is the number of
images incorrectly recognized as benign tumor in the testing
subset. TN is the number of images correctly recognized as
benign tumor in the testing subset. Therefore, Se in (2) defines the
ratio of the recognized malignant tumor images to all malignant
tumor images in the testing subset. Sp in (3) expresses the ratio
of the recognized benign tumor images to all benign tumor
images. That is, Se and Sp are the accuracy of the positive and
negative class, respectively. PPV in (4) is the ratio of correctly
recognized malignant tumor images to all recognized malignant
tumor images in the testing subset. In fact, it is the precision
in (8). DOR expresses the ratio of the product of TP and TN
to the product of FP and FN. It is clear that DOR will become
infinity when the related classifier is perfect. It is reported that a
diagnosis system is reliable if Se> = 80%, Sp> = 95%, PPV> =
95%, and DOR> = 100 (Ellis, 2010; Colquhoun, 2014). Equation
(6) defines image level test accuracy (ACC_IL) by the ratio
of Nrec (the number of the histopathological images of breast
cancer correctly identified in the testing subset), to Nall (the total
number the histopathological images of breast cancers in the
testing subset). Equation (7) defines patient level test accuracy
(ACC_PL), that is, the ratio of the sum of patient score to the
total number of patients in the testing subset. Here, the patient
score is the ratio of Nrec to NP, that is, the ratio of correctly
identified images of patient P to all the images of patient P
in the testing subset. Equation (8) describes a popular metric
known as the harmonic mean of precision and recall. Here,
precision is the same as PPV defined as the ratio of correctly
recognized malignant tumor images to all recognized malignant
tumor images in the testing subset, and recall is the ratio of
correctly recognized malignant tumor images to the true number
of malignant tumor images in the testing subset. AUC is the area

under the ROC curve, which is another widely used metric for
evaluating binary classification models. The range of AUC is [0,
1] (Bradley, 1997), with higher values representing better model
performance. We calculate AUC in our experiments by calling
the roc_auc_score function from the Scikit-learn library that is
available as a Python package (sklearn). Equation (9) is the Kappa
coefficient, where P0 is the image level test accuracy defined in (6),
and Pe is the ratio of the sum of the product of the number of real
images in each category and the predicted number of images in
that category to the square of the total samples. The calculation
of the Kappa coefficient is based on the confusion matrix. Kappa
is used for consistency checking, and its value is in the range
of [−1, 1]. It can be divided into six groups representing the
following consistency levels: −1∼0.0 (poor), 0.0∼0.20 (slight),
0.21∼0.40 (fair), 0.41∼0.60 (moderate), 0.61∼0.80 (substantial),
and 0.81∼1 (almost perfect) (Landis and Koch, 1977).

Clustering Analysis
The classification analysis of histopathological images of
breast cancer based on deep convolutional neural networks
is introduced in the previous section. However, this type of
classification is supervised learning and requires experienced
pathologists to examine the histopathological images of breast
cancer and assign labels to them that identify the data as coming
from patients or normal people. This is very difficult, time-
consuming, and expensive work, especially with the increasing
number of samples in the dataset. On the contrary, unsupervised
learning, specifically clustering, does not need any labels for
samples. It only uses the similarities between samples to group
them into different clusters, such that the samples in the same
cluster are similar to each other and dissimilar to those from
other clusters. Therefore, we adopt clustering techniques to study
the histopathological images of breast cancer.

Network Structures for Clustering
The Inception_ResNet_V2 network is adopted to extract features
for performing clustering analysis of the histopathological
images of breast cancer because of its excellent performance
when classifying these images using its advantage of extracting
features automatically. Each histopathological image of breast
cancer can be well-expressed by the extracted features of the
1,536-dimension vector produced by the Inception_ResNet_V2
network before its final classification layer. The extracted feature
vectors are used as input to a clustering algorithm in order to
perform clustering analysis on the histopathological images of
breast cancer.

The very simple and fast, typical clustering algorithm K-
means is adopted in this paper to perform this clustering analysis.
To determine the proper value of K for the K-means algorithm,
the internal criterion metric SSE (Silhouette Score) (Rousseeuw,
1987) is adopted to search for the optimal K. The features
extracted by the Inception_ResNet_V2 network for each breast
cancer histopathological image are thought of as a representation
of the images, and the K-means clustering algorithm is adopted
to cluster the breast cancer histopathological images into clusters.
Also, in order to get better clustering results and to visualize the
clustering results, we constructed a new autoencoder network
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FIGURE 4 | The network structures of our proposed autoencoder and its combination with Inception_ResNet_V2, (A) Autoencoder network, (B)

Inception_ResNet_V2 and autoencoder network.

to map the 1,536-dimension vector to a 2-dimension vector
via a non-linear transformation. In this way, the breast cancer
histopathological images can be represented in a very low
dimensional space. Figure 4A displays the autoencoder network
we constructed in our experiments. There are 2 encode layers
with neuron sizes of 500 and 2, respectively, and there are
2 corresponding decode layers to reconstruct the original
input. Using this autoencoder, the 1,536-dimension feature
vector extracted by the Inception_ResNet_V2 network for a
breast cancer histopathological image will be transformed to
2-dimenision feature vector via training the layers depicted in
Figure 4A. Then, the 2-dimension feature vector is used as
input for K-means which performs the clustering analysis for
histopathological images of breast cancer. The entire network is
shown in Figure 4B.

Evaluation Criteria of Clustering Results
The evaluation criteria of clustering results comprise internal and
external metrics. The internal metrics are independent of the
external information, so they are always used to find the true
number of clusters in a dataset. The external metrics depend
on the true pattern of the dataset. Some of the most common
external metrics are clustering accuracy (ACC), adjusted rand
index (ARI) (Hubert and Arabie, 1985), and adjusted mutual
information (AMI) (Vinh et al., 2010).

The internal metric SSE (Silhouette Score) (Rousseeuw, 1987)
is used in our experiments. It is first used to find the most proper

number of clusters of the histopathological images of breast
cancer. Then, after the clustering results have been obtained by
K-means, it is used to evaluate the clustering results together
with the aforementioned external metrics. Equation (10) gives the
Silhouette value of sample i.

s (i) =
b (i) − a (i)

max
{

a (i) , b (i)
} (10)

Here, b (i) is the smallest average distance of sample i to all
samples in any other cluster to which sample i does not belong.
a (i) is the mean distance from sample i to all other samples
within the same cluster, and s (i) is the Silhouette value of sample
i. The average s (i) of all samples in a cluster is a measure of how
tightly grouped all the samples in the cluster are. Therefore, the
average s (i) over all samples in an entire dataset is a measure of
how appropriately the samples have been clustered; that is what
is called the SSE metric.

The external metrics used in this paper are ACC, ARI
(Hubert and Arabie, 1985) and AMI (Vinh et al., 2010). It
was reported that ARI is one of the best external metrics
(Hubert and Arabie, 1985). ARI is defined in (11) and uses
the following variables: a (the number of pairs of samples in
the same cluster before and after clustering), b (the pairs of
samples in the same cluster while partitioned into different
clusters by the clustering algorithm), c (the pairs of samples that
are from different clusters but are grouped into the same cluster
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incorrectly by the clustering algorithm), and d (the number of
pairs of samples from different clusters that are still in different
clusters after clustering). The AMI is defined in (12), where U
is the original partition and V is the clustering of a clustering
algorithm. Here, MI (U,V) denotes the mutual information
between two partitions U and V, and E {MI (U,V)} represents
the expectedmutual information between the original partitionU
and the clusteringV.H (U) ,H (V) are the entropy of the original
partition U and the clustering V, respectively. AMI is a variation
of mutual information and can be used to compare the clustering
V of a clustering algorithm and the true pattern U of the dataset.
It corrects the effect of agreement solely due to chance between
the clustering and the original pattern. This is similar to the way
that the adjusted Rand index corrects the Rand index.

ARI =
2(ad − bc)

(a+ b)(b+ d)+ (a+ c)(c+ d)
(11)

AMI (U,V) =
MI (U,V) − E {MI (U,V)}

max {H (U) ,H (V)} − E {MI (U,V)}
(12)

We calculate the criteria listed above in our experiments by
calling functions embedded in the sklearn library (available
as a Python package), such as silhouette_score (SSE),
linear_assignment (ACC), adjusted_rand_score (ARI), and
adjusted_mutual _info_score (AMI).

EXPERIMENTAL RESULTS AND ANALYSIS

The section will present our classification and clustering
experimental results on the 7,909 histopathological images of
breast cancer from the BreaKHis dataset and provide some
analyses and discussions of the results.

Classification Results
This subsection will present and discuss all of the classification
results of histopathological images of breast cancer from
BreaKHis dataset provided by Spanhol (Spanhol et al., 2016a).
The experimental results include those conducted on the raw
dataset and on the augmented dataset. In addition to this,
we provide a comparison between our results and the results
produced by other researchers.

Experiments on the Raw Dataset
We used the Inception_V3 and Inception_ResNet_V2 networks
to perform binary classification of histopathological images of
breast cancer into benign and malignant tumors via transfer
learning. Table 2’s upper part gives the experimental results using
Inception_V3 and Inception_ResNet_V2 networks to perform
binary classification on the histopathological images of breast
cancer in terms of Se, Sp, PPV, DOR, ACC_IL, ACC_PL, F1,
AUC and Kappa. In the table, INV3 is the abbreviation for the
Inception_V3 network, and IRV2 is the abbreviation for the
Inception_ResNet_V2 network.

According to the description of the histopathological image
dataset of breast cancer, the benign and malignant tumors
can be classified into four different subclasses, respectively. So,

there are 8 subclasses in total, including 4 benign tumors (A,
F, PT, and TA) and 4 malignant tumors (DC, LC, MC, and
PC). The available studies for the histopathological images of
breast cancer only focus on binary classification of the images.
However, multi-class classification ismore significant than binary
classification for providing accurate treatment and prognosis
for breast cancer patients. Therefore, we did a multi-class
classification diagnosis study on the histopathological images of
breast cancer by using Inception_V3 and Inception_ResNet_V2
with transfer learning techniques. The experimental results of
ourmulti-class classification of histopathological images of breast
cancer are shown in the bottom half in Table 2 in terms of
ACC_IL, ACC_PL, Macro-F1, Micro-F1 and Kappa.

The experimental results in Table 2 show that the
Inception_ResNet_V2 network can get better results in all
evaluation metrics compared to the Inception_V3 network,
regardless of binary or multi-class classification (which is
indicated by the red underline). One reason for this is that
residual connections are added to the Inception_ResNet_V2
network, which avoids the vanishing gradient problem typically
caused by increasing the number of layers in a network. This also
improves the network performance and allows it to extract more
informative features from images than Incepiton_V3 can.

Furthermore, the experimental results show that all metrics
on the 40X dataset are better than those on the other datasets
with any other magnification factors, which is shown in black
font. These results are in agreement with those reported in (5).
The reason for this should be the 40X dataset containing more
significant characteristics of breast cancer.

The experimental results in Table 2 show that Se>95%,
Sp>90%, PPV>95%, and DOR>100 on each dataset
regardless of magnification factor and network structure
(Inception_V3 or Inception_ResNet_V2). The results from the
Inception_ResNet_V2 network show that Se>98%, Sp>92%,
PPV>96%, and DOR>100, especially on the 40X dataset where
Se >98%, Sp>96%, PPV>98%, and DOR>100. Considering
research which suggests that a diagnosis system is reliable
when Se> = 80%, Sp> = 95%, PPV> = 95%, and DOR>

= 100 (Ellis, 2010; Colquhoun, 2014), we can say that our
breast cancer diagnosis system based on the 40X dataset
and the Inception_ResNet_V2 network is very reliable. The
diagnosis system based on the Incepiton_V3 network is also
comparatively reliable.

In addition, the values of AUC and Kappa in Table 2 tell us
that our models are perfect and have obtained almost perfect
agreement for binary classification of histopathological images
of breast cancer. The values of Kappa in Table 2 reveal that
our models for multi-class classification are also perfect. The
models based on the Inception_ResNet_V2 network can get
perfect agreement for multi-class classification of breast cancer
histopathological images, except when applied to the 400X
dataset (which still achieves substantial agreement).

Besides the above analysis, we further verify the power of
our approaches for analyzing the breast cancer histopathological
images using the p-value of AUC and Kappa. The p-value is a
probability that measures the statistical significance of evidence
against the null hypothesis. A lower p-value provides stronger
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TABLE 2 | Results of binary and multi-class classification using Inception_V3 (INV3) and Inception_ResNet_V2 (IRV2)/%.

Classification Network Criteria Magnification factors

40X 100X 200X 400X

Binary INV3 Se 98.00 98.48 99.01 96.41

Sp 94.31 93.46 91.40 90.99

PPV 97.41 96.67 95.88 95.89

DOR 81,233 92,303 106,700 27,105

ACC_IL 96.84 96.76 96.49 94.71

ACC_PL 97.74 94.19 87.21 96.67

F1 97.70 97.56 97.42 96.15

AUC 99.47 99.03 99.29 97.91

Kappa 92.64 92.74 91.95 87.68

IRV2 Se 98.48 98.90 99.13 98.06

Sp 96.63 92.95 92.80 92.10

PPV 98.46 96.45 96.39 96.51

DOR 185,774 118,782 147,138 58,835

ACC_IL 97.90 96.88 96.98 96.98

ACC_PL 98.03 97.07 82.74 88.12

F1 98.47 97.66 97.74 97.28

AUC 99.57 98.84 99.61 98.81

Kappa 95.12 92.96 93.18 91.05

Multi-class INV3 ACC_IL 90.28 85.35 83.99 82.08

ACC_PL 90.44 89.05 80.63 81.08

Macro-F1 88.55 82.59 79.64 77.98

Micro-F1 90.28 85.35 83.99 82.08

Kappa 87.37 80.26 77.91 76.39

IRV2 ACC_IL 92.07 88.06 87.62 84.50

ACC_PL 89.11 88.45 86.07 71.42

Macro-F1 90.89 85.67 84.08 80.13

Micro-F1 92.07 88.06 87.62 84.50

Kappa 89.74 84.03 82.84 79.70

†
For each magnification factor, the underline shows the best result of each evaluation index between the two network structures of INV3 and IRV2. Bold font shows the best result of

each evaluation index with respect to the different magnification factors.

evidence to reject the null hypothesis. Therefore, to determine
whether the predictions are due to chance, we calculate the p-
values for AUC and Kappa and compare the p-value to the
significance level α . It is usually set as α = 0.05. We
consider both binary and multi-class classification of breast
cancer histopathological images with Inception_ResNet_V2
when calculating the p-value for AUC and Kappa. The null
hypothesis is “the prediction is a random guess.” The p-values
for AUC and Kappa are calculated in Equations (13–16) and
the pnorm function in R. It should be noted that for multi-class
classification, there is only the p-value of Kappa to be calculated.

SEAUC =
√

0.25+ (na+ nn− 2)

na× nn× 12
(13)

ZAUC =
A− 0.5

SEAUC
(14)

SEKappa =

√

p0 ×
(

1− p0
)

√
N ×

(

1− pe
) (15)

ZKappa =
Kappa

SEKappa
(16)

Here, na and nn in (13) are, respectively, the number of abnormal
(malignant tumor) and normal (benign tumor) samples (breast
cancer histopathological images) in the testing subset. A in (14)
is the value of AUC. p0 and pe in (15) are the same as those in (9),
and N in (15) is the total number of samples. We convert the z
value for AUC in (14) and for Kappa in (16) to the corresponding
p-value by using the pnorm function in R.

Except for in binary classification, the p-values for AUC are p
= 6.88e-85 (40X), p= 2.24e-89 (100X), p= 3.73e-89 (200X), and
p = 9.20e-75 (400X). P-values for Kappa are all 0.0, regardless
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TABLE 3 | The augmented image distribution of different subclasses in different magnification factors.

Magnification Benign Malignant Total

A F PT TA DC LC MC PC

40X 798 759 763 894 864 936 1,025 870 6,909

100X 791 780 847 900 903 1,020 1,110 852 7,203

200X 777 792 756 840 896 978 980 810 6,829

400X 742 711 805 780 788 822 845 828 6,321

Total 3,108 3,042 3,171 3,414 3,451 3,756 3,960 3,360 27,262

#Patients 4 10 3 7 38 5 9 6 82

FIGURE 5 | The change in the loss function during the training of Inception_ResNet_V2 on raw and augmented data with 40 factor magnification, (A) binary

classification, (B) multi-class classification.

of binary or multi-class classification. All the p-values for AUC
and Kappa are much <0.05. This means that we can reject the
null hypothesis (that the predictive result is a random guess)
and accept that our prediction is statistically significant and not
random. This holds true for both our binary and multi-class
image classification results.

Experiments on the Augmented Dataset
Comparing the results in Table 2 for binary and multi-class
classification, we can see that the performance of multi-class
classification is worse than that of the binary classification. So,
we output the confusion matrix of multi-class classification for
further analysis. The confusion matrix can be found in the
Supplementary Material. From observing this confusionmatrix,
we can see that many benign tumors are incorrectly classified
as malignant tumors. This causes a high false positive rate.
For example, some samples from F are erroneously recognized
as being from DC. Also, the different subclasses in the same
class are often misclassified, such as samples from LC being
recognized as samples from DC. One reason leading to the
poor classification results for multi-class classification is the
imbalance in sample distribution. This makes the extracted
features unable to thoroughly represent the subclasses with
fewer samples. As a result, the samples from the subclass with
fewer samples are erroneously classified into the categories with
more samples.

To avoid the high false positive rate in multi-class
classification, we expanded the original samples of the dataset
to suppress the influence that sample imbalance has on the

experimental results. For each magnification factor dataset,
we chose the DC subclass as the baseline, and amplified each
of the remaining subclasses by turning images up and down,
left and right, and using counterclockwise rotation of 90◦and
180◦. After doing this, the sample number of each subclass
was approximately the same. The extended datasets are shown
in Table 3.

We randomly partitioned the extended datasets into training
and testing subsets in a 7:3 ratio as we did with the original
datasets. Then, we used transfer learning to retrain the
Inception_ResNet_V2 network to perform effective diagnosis of
breast cancer based on histopathological images of breast cancer.
Here, we only retrained the Inception_ResNet_V2 network
because it performed better than the Incepiton_V3 network on
the raw datasets. To compare the differences in the loss function
on the original datasets and on the expansion datasets during
the training process, we plotted the value of the loss function
changing with the number of epochs in the raw and extended
datasets. Here, we only compared the loss function from the
Inception_ResNet_V2 network on the 40X dataset in order to
observe the changing trend of the loss function. The trends
of the other magnification factor datasets are similar. Figure 5
compared the loss function of the Inception_ResNet_V2 network
on the raw and extended datasets, respectively, for binary and
multi-class classification of histopathological images of breast
cancer. Table 4 shows the experimental results on the original
and expanded datasets for binary and multi-class classification,
respectively. The deep learning parameters for both binary and
multi-class classification remain the same.
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TABLE 4 | Results of binary and multi-class classification on raw and augmented data using Inception_ResNet_V2/%.

Classification Datasets Criteria Magnification factors

40X 100X 200X 400X

Binary Raw_data Se 98.48 98.90 99.13 98.06

Sp 96.63 92.95 92.80 92.10

PPV 98.46 96.45 96.39 96.51

DOR 185,774 118,782 147,138 58,835

ACC_IL 97.90 96.88 96.98 96.98

ACC_PL 98.03 97.07 82.74 88.12

F1 98.47 97.66 97.74 97.28

AUC 99.57 98.84 99.61 98.81

Kappa 95.12 92.96 93.18 91.05

Aug_data Se 99.95 99.45 99.65 98.88

Sp 99.61 99.26 99.18 99.34

PPV 99.66 99.39 99.31 99.42

DOR 56122,884 2440,736 3427,114 1342,245

ACC_IL 99.79 99.37 99.43 99.10

ACC_PL 99.93 99.96 100.0 99.90

F1 99.81 99.42 99.48 99.15

AUC 100.0 99.99 99.95 99.97

Kappa 99.59 98.72 98.86 98.19

Multi-class Raw_data ACC_IL 92.07 88.06 87.62 84.50

ACC_PL 89.11 88.45 86.07 71.42

Macro-F1 90.89 85.67 84.08 80.13

Micro-F1 92.07 88.06 87.62 84.50

Kappa 89.74 84.03 82.84 79.70

Aug_data ACC_IL 97.63 97.00 96.89 97.49

ACC_PL 98.42 98.07 97.85 97.40

Macro-F1 97.68 97.06 97.02 97.48

Micro-F1 97.63 97.00 96.89 97.49

Kappa 97.28 96.55 96.44 97.13

†
The underline shows the best result of each metric between the two network structures being compared (INV3 and IRV2). The bold font shows the best result of each metric for each

magnification level.

The results in Figure 5 show that the value of the loss
function decreases much faster and more smoothly converges
to a much smaller value on the extended datasets than on
the raw datasets. This is true for both experiments on binary
and multi-class classification of histopathological images of
breast cancer.

The experimental results in Table 4 show that the experiments
on extended datasets have produced much better results than
those performed on the raw datasets. This is reflected by the
data marked with red underlines, especially the results of multi-
class classification on the expanded datasets. These results are
a significant improvement compared to those from the original
datasets. In addition, the experimental results in Table 4 tell
us that the evaluation metrics of experimental results on 40X
datasets are much better than those on any other datasets
with different magnification factors, which can also be seen
from the values with black fonts in Table 4. The results further
demonstrate that the 40X dataset should contain more significant
characteristics of breast cancer.

The experimental results in Table 4 for binary classification
show that Se>98%, Sp>92%, PPV>96%, and DOR>100 on

each dataset regardless of magnification factor or the effects
of augmentation (raw or augmented). This is especially true
for the results on the augmented datasets where Se>98%,
Sp>99%, PPV>99%, and DOR>100. This tells us that the
breast cancer diagnosis system based on the augmented
dataset and the Inception_ResNet_V2 network is very
reliable. Compared to the results in Table 2, we can say
that augmenting raw imbalanced breast cancer histopathological
image datasets can greatly improve the reliability of the
diagnosis system.

In addition, the values of AUC in Table 4 show that our
models are excellent. One even achieved the maximum value
of AUC (1.0) on the augmented 40X dataset. The values of
Kappa in Table 4 show that our models have obtained perfect
agreement for binary classification of histopathological images
of breast cancer. The values of Kappa in Table 4 show that
our models are perfect when applied to augmented datasets for
multi-class classification.

Furthermore, we calculated the p-values for AUC and
Kappa on all augmented datasets for binary and multi-class
classification. The p-values for AUC and Kappa are both 0.0,
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TABLE 5 | Binary and multi-class classification comparison between our experimental results and the ones available from other studies /%.

Classification Criteria Methods Magnification factors

40X 100X 200X 400X

Binary ACC_IL AlexNet_Raw(25) 85.6 ± 4.8 83.5± 3.9 83.1± 1.9 80.8± 3.0

CSDCNN_Raw(29) 95.8± 3.1 96.9± 1.9 96.7± 2.0 94.9± 2.8

INV3_Raw 96.84 96.76 96.49 94.71

IRV2_Raw 97.90 96.88 96.98 96.21

IRV2_Aug 99.79 99.37 99.43 99.10

ACC_PL PFTAS+QDA_Raw(5) 83.8± 4.1 82.1± 4.9 84.2± 4.1 82.0± 5.9

PFTAS+SVM_Raw(5) 81.6± 3.0 79.9± 5.4 85.1± 3.1 82.3± 3.8

AlexNet_Raw(25) 90.0± 6.7 88.4± 4.8 84.6± 4.2 86.1± 6.2

CSDCNN_Raw(29) 97.1± 1.5 95.7± 2.8 96.5± 2.1 95.7± 2.2

INV3_Raw 97.74 94.19 87.23 96.67

IRV2_Raw 98.03 97.07 82.74 88.12

IRV2_Aug 99.93 99.96 100.0 99.90

Multi-class ACC_IL LeNet_Raw(29) 40.1± 7.1 37.5± 6.7 40.1± 3.4 38.2± 5.9

LeNet_Aug(29) 46.4± 4.5 47.3± 4.9 46.5± 5.6 45.2± 9.1

AlexNet_Raw(29) 70.1± 7.4 68.1± 7.6 67.6± 4.8 67.3± 3.4

AlexNet_Aug(29) 86.4± 3.1 75.8± 5.4 72.6± 4.8 84.6± 3.6

CSDCNN_Raw(29) 89.4± 5.4 90.8± 2.5 88.6± 4.7 87.6± 4.1

CSDCNN_Aug(29) 92.8± 2.1 93.9± 1.9 93.7± 2.2 92.9± 1.8

INV3_Raw 90.28 85.35 83.99 82.08

IRV2_Raw 92.07 88.06 87.62 84.50

IRV2_Aug 97.63 97.00 96.89 97.49

ACC_PL LeNet_Raw(29) 38.1± 9.3 37.5± 3.4 38.5± 4.3 37.2± 3.6

LeNet_Aug(29) 48.2± 4.5 47.6± 7.5 45.5± 3.2 45.2± 8.2

AlexNet_Raw(29) 70.4± 6.2 68.7± 5.3 66.4± 4.3 67.2± 5.6

AlexNet_Aug(29) 74.6± 7.1 73.8± 4.5 76.4± 7.4 79.2± 7.6

CSDCNN_Raw(29) 88.3± 3.4 89.8± 4.7 87.6± 6.4 87.0± 5.2

CSDCNN_Aug(29) 94.1± 2.1 93.2± 1.4 94.7± 3.6 93.5± 2.7

INV3_Raw 90.44 89.05 80.63 81.08

IRV2_Raw 89.11 88.45 86.07 71.42

IRV2_Aug 98.42 98.07 97.85 97.40

†
Bold fonts represent the best results among compared approaches with the same classifier.

which is much <0.05. This fact tells us that we can reject the
null hypothesis (that the prediction result is a random guess), and
accept the fact that our prediction is statistically significant and
not random.

Experimental Comparisons
This subsection will compare the experimental results of
classifying histopathological images of breast cancer using
the Inception_V3 and Inception_ResNet_V2 networks in
addition to a selection of methods from the available studies
carried by other research teams. The experimental results
will be compared in terms of ACC_IL and ACC_PL, because
the available studies only used these two evaluation criteria.
The binary and the multi-class classification experimental
results are displayed in Table 5. Here, INV3_Raw denotes
the results obtained by using Inception_V3 on original
dataset. IRV2_Raw and IRV2_Aug represent the results
produced by Inception_ResNet_V2 on the original and

extended datasets, respectively. The bold fonts denote the
best results.

The experimental results in Table 5 tell us that both the
evaluation criteria of ACC_IL and ACC_PL applied to the
results obtained from the Inception_ResNet_V2 network have
the best value among all of the available studies we found in
the literature concerning the classification of histopathological
images of breast cancer on the expanded datasets for both binary
and multi-class classification. The results on the raw datasets
produced by the Inception_ResNet_V2 network are better than
those produced by other networks. Therefore, the deep learning
network of Inception_ResNet_V2 with residual connections is
very suitable for classifying the histopathological images of
breast cancer. Also, using the expanded histopathological image
datasets of breast cancer can obtain better classification and
diagnosis results.

To judge whether or not our approaches are statistically
significant, we adopted the Friedman’s test (Borg et al., 2013)
to discover the significant difference between the compared
algorithms. If a significant difference has been detected by
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TABLE 6 | Results of Friedman’s test between our approaches and the compared algorithms atα = 0.05.

Binary classification Multi-class classification

χ
2 df p χ

2 df p

ACC_IL 14.6 4 0.0056 30.6667 8 0.0002

ACC_PL 18.1071 6 0.0060 30.8667 8 0.00015

Friedman’s test, then the multiple comparison test is used as
a post hoc test to detect the significant difference between
pairs of the compared algorithms. Friedman’s test is considered
preferable for comparing algorithms over several datasets
without any normal distribution assumption (Borg et al.,
2013). We conducted Friedman’s test at α = 0.05 using
the results of algorithms on all datasets in terms of ACC_IL
and ACC_PL for binary and multi-class classification shown
in Table 5. The Friedman’s test results are shown in Table 6.
Here, χ2 is chi-square, df is the degree of freedom, and
p is p-value.

The Friedman’s test results in Table 6 tell us that there is
a strong significant difference between our approaches and the
compared algorithms because any p in Table 6 supports p ≺
0.05. Therefore, we conduct a multiple comparison test between
each pair of algorithms at the confidence level of 0.95 and
show these statistical test results in Table 7. The mean rank
difference between algorithms is shown in the upper triangle of
the table. The statistical significance between pairs of algorithms
is displayed in the lower triangle using “∗.”

Themultiple comparison tests inTable 7 reveal that our breast
cancer diagnosis model which uses Inception_ResNet_V2 on
the augmented dataset is very powerful. It offers a statistically
significant improvement compared to the results from available
references that we can find.

This subsection will further compare the experimental
results of Inception_ResNet_V2 on histopathological images of
breast cancer to those of SVM and 1-NN classifiers with the
1,536-dimension features extracted by the Inception_ResNet_V2
network. Also, it will compare the experimental results of
the SVM and 1-NN classifiers with features extracted by
other networks.

The experimental results of binary classification of
histopathological images of breast cancer with features
extracted by Inception_ResNet_V2 are shown in Table S1

in terms of Se, Sp, PPV, DOR, ACC_IL, ACC_PL, F1, AUC and
Kappa. Table S2 shows the experimental results of multi-class
classification of histopathological images of breast cancer
with features extracted by Inception_ResNet_V2 in terms of
ACC_IL, ACC_PL, Macro-F1, Micro-F1, and Kappa. Table 8
compared the studies in (5) and ours in terms of ACC_PL, the
only evaluation criterion used in (5), when the experimental
results are all from SVM and 1-NN classifiers. The differences
between our methods and those in (5) are the features. We
adopted the Inception_ResNet_V2 network to extract features of
histopathological images of breast cancer while those in (5) used
other networks to extract features.

The results in the tables in the Supplementary Material

show that each classifier gets its best experimental results on
the extended datasets of histopathological images of breast
cancer, regardless of using binary or multi-class classification.
The experimental results of the Inception_ResNet_V2 network
on the expanded datasets of histopathological images of breast
cancer are the best ones among the results from all of the
listed classifiers in the tables in the Supplementary Material. The
experimental results of the SVM and 1-NN classifiers are not
better than that of the Softmax classifier, even though the features
are extracted by the Inception_ResNet_V2 network. Therefore, it
is very appropriate to use the Inception_ResNet_V2 network to
classify histopathological images of breast cancer.

The results in Table 8 reveal that even when using the same
classifiers, such as SVM or 1-NN, the experimental results are
different. The results based on the extracted features from the
Inception_ResNet_V2 network are much better than those in
(5) based on the features extracted by other networks. The
best results were also obtained using the extended datasets.
This analysis further demonstrates that the deep learning
network Inception_ResNet_V2 has a powerful ability to extract
informative features automatically.

Clustering Results
This subsection will describe the great advantages of
Inception_ResNet_V2 network when it is used for automatically
extracting informative features from histopathological images
of breast cancer. The 1,536-dimension features are extracted
by using Inception_ResNet_V2 to process histopathological
images of breast cancer, and the K-means clustering algorithm
is adopted to group these images into proper clusters. In
addition, a new AE (Autoencoder) network with a shape
of [1536, 500, 2] is constructed to perform a non-linear
transformation to the 1,536-dimension feature vectors produced
by Inception_ResNet_V2. In this way, the 2-dimension features
of the histopathological images of breast cancer can be obtained
for K-means in low dimensional space. Here, IRV2+Kmeans
represents the clustering results of K-means with the features
extracted by Inception_ResNet_V2, while IRV2+AE+Kmeans
represents the clustering results of K-means based on the features
transformed by our proposed AE using the features extracted by
Inception_ResNet_V2.

Experiments to Find the Number of Clusters in the

Dataset
To find the proper K for K-means, we adopt the internal criterion
SSE (Silhouette Score) to search for it. The SSE index combines
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TABLE 7 | Paired rank comparison of algorithms in ACC_IL and AII_PL for binary and multi-class classification.

ACC_IL for

binary

IRV2_Aug IRV2_Raw INV3_Raw CSDCNN_Raw(29) AlexNet_Raw(25)

IRV2_Aug 1.25 2.75 2.0 4.0

IRV2_Raw 1.5 0.75 2.75

INV3_Raw −0.75 1.25

CSDCNN_Raw(29) 2.0

AlexNet_Raw(25) *

ACC_PL for

binary

IRV2 _Aug IRV2 _Raw INV3 _Raw CSDCNN _Raw(29) AlexNet _Raw(25) PFTAS+SVM _Raw(5) PFTAS+QDA _Raw(5)

IRV2_Aug 2.75 2.0 2.0 4.0 5.0 5.25

IRV2_Raw −0.75 −0.75 1.25 2.25 2.5

INV3_Raw 0.0 2.0 3.0 3.25

CSDCNN_Raw(29) 2.0 3.0 3.25

AlexNet_Raw(25) 1.0 1.25

PFTAS+SVM_Raw(5) * 0.25

PFTAS+QDA_Raw(5) *

ACC_IL for

multi-class

IRV2 _Aug IRV2 _Raw INV3 _Raw CSDCNN

_Aug(29)

CSDCNN

_Raw(29)

AlexNet

_Aug(29)

AlexNet

_Raw(29)

LetNet

_Aug(29)

LeNet

_Raw(29)

IRV2_Aug 3.0 4.0 1.0 2.5 4.5 6.0 7.0 8.0

IRV2_Raw 1.0 −2.0 −0.5 1.5 3.0 4.0 5.0

INV3_Raw −3.0 −1.5 0.5 2.0 3.0 4.0

CSDCNN_Aug(29) 1.5 3.5 5.0 6.0 7.0

CSDCNN_Raw(29) 2.0 3.5 4.5 5.5

AlexNet_Aug(29) 1.5 2.5 3.5

AlexNet_Raw(29) 1.0 2.0

LeNet_Aug(29) * 1.0

LeNet_Raw(29) *

ACC_PL for

multi-class

IRV2

_Aug

IRV2

_Raw

INV3

_Raw

CSDCNN

_Aug(29)

CSDCNN

_Raw(29)

AlexNet

_Aug(29)

AlexNet

_Raw(29)

LetNet

_Aug(29)

LeNet

_Raw(29)

IRV2_Aug 3.75 3.0 1.0 2.5 4.75 6.0 7.0 8.0

IRV2_Raw −0.75 −2.75 −1.25 1.0 2.25 3.25 4.25

INV3_Raw −2.0 −0.5 1.75 3.0 4.0 5.0

CSDCNN_Aug(29) 1.5 3.75 5.0 6.0 7.0

CSDCNN_Raw(29) 2.25 3.5 4.5 5.5

AlexNet_Aug(29) 1.25 2.25 3.25

AlexNet_Raw(29) 1.0 2.0

LeNet_Aug(29) * 1.0

LeNet_Raw(29) *

†
The upper triangle shows the difference between algorithms. The lower triangle shows pairs with statistical significance. Asterisks indicate significant difference between the pairs of

algorithms in the table.

the degree of condensation and separation and can be used in
cases without any label information. The interval of SSE is [−1,
1]. Higher SSE values are associated with samples belonging to
the same cluster being closer together and samples belonging
to different groups being farther apart. SSE values closer to 1
indicate better clustering.

The SSE value of clustering of the histopathological images of
breast cancer is variable with the number of clusters. Figure 6
plots the curves of SSE with the number of clusters on the 40X
original dataset of histopathological images of breast cancer. The
SSE curves of other magnification factor datasets are similar to
those in Figure 6.
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TABLE 8 | Comparison between different networks extracting features for binary classification/%.

Criteria Methods Magnification factors

40X 100X 200X 400X

ACC_PL CLBP+SVM_Raw(5) 77.4± 3.8 76.4± 4.5 70.2± 3.6 72.8± 4.9

GLCM+SVM_Raw(5) 74.0± 1.3 78.6± 2.6 81.9± 4.9 81.1± 3.2

LBP+SVM_Raw(5) 74.2± 5.0 73.2± 3.5 71.3± 4.0 73.1± 5.7

LPQ+SVM_Raw(5) 73.7± 5.5 72.8± 5.0 73.0± 6.6 73.7± 5.7

ORB+SVM_Raw(5) 71.9± 2.3 69.4± 0.4 68.7± 0.8 67.3± 3.1

PFTAS+SVM_Raw(5) 81.6± 3.0 79.9± 5.4 85.1± 3.1 82.3± 3.8

IRV2+SVM_Raw 97.93 96.58 97.07 96.62

IRV2+SVM_Aug 99.27 98.97 98.90 98.74

CLBP+1-NN_Raw(5) 73.6± 2.5 71.0± 2.8 69.4± 1.5 70.1± 1.3

GLCM+1-NN_Raw(5) 74.7± 1.0 76.8± 2.1 83.4± 3.3 81.7± 3.3

LBP+1-NN_Raw(5) 75.6± 2.4 73.0± 2.4 72.9± 2.3 71.2± 3.6

LPQ+1-NN_Raw(5) 72.8± 4.9 71.1± 6.4 74.3± 6.3 71.4± 5.2

ORB+1-NN_Raw(5) 71.6± 2.0 69.3± 2.0 69.6± 3.0 66.1± 3.5

PFTAS+1-NN_Raw(5) 80.9± 2.0 80.7± 2.4 81.5± 2.7 79.4± 3.9

IRV2+1-NN_Raw 97.32 95.91 96.12 95.88

IRV2+1-NN_Aug 98.04 97.50 97.85 97.48

†
Bold fonts represent the best results among compared approaches with the same classifier.

FIGURE 6 | The silhouette score value with different numbers of clusters.

The results in Figure 6 show the best SSE score was achieved
when the number of clusters is 2, regardless of how the features
were extracted. This suggests that the histopathological images
of breast cancer should be grouped into 2 categories of benign
and malignant tumors, which is consistent with the real case.
The results in Figure 6 also reveal that the clustering results of
IRV2+AE+Kmeans are better than those from IRV2+Kmeans.
This means that the proposed AE network can transform the
features extracted by the Inception_ResNet_V2 network into
much more informative ones, such that a better clustering of
histopathological images of breast cancer can be detected.

Result Evaluation
This subsection will compare the clustering results of
IRV2+AE+Kmeans and IRV2+Kmeans in terms of external
criteria, including ACC, ARI, AMI, and the internal metric
SSE. Figure 7 displays the clustering results in terms of the
aforementioned four evaluation criteria on datasets with
different magnification factors.

The experimental results in Figure 7 reveal the following facts:
(1) the clustering results of IRV2+AE+Kmeans are better than
those of IRV2+Kmeans in terms of ARI, AMI, SSE, and ACC
on each dataset with different magnification factors. This means
that our proposed AE network can produce much more abstract
and expressive features by encoding the features extracted by
the Inception_ResNet_V2 network. (2) The values of ARI, AMI,
SSE, and ACC for the same clustering are ascending, regardless
of whether or not any transformation has been applied to
the features that were extracted by Inception_ResNet_V2. (3)
The best clustering accuracy (ACC) with features produced
by the Inception_ResNet_V2 network is 59.3% on the 40X
dataset, whereas the best ACC with features transformed by
the proposed AE network using extracted features from the
Inception_ResNet_V2 network is 76.4% on the 200X dataset.
In summary, the best ACC scores of IRV2+AE+Kmeans and
IRV2+Kmeans are 76.4 and 59.3%, respectively.

CONCLUSIONS AND FUTURE WORK

This paper proposed our methods for the analysis of
histopathological images of breast cancer based on the
deep convolutional neural networks of Inception_V3 and
Inception_ResNet_V2 trained with transfer learning techniques.
The aforementioned two networks are pre-trained on the large
image dataset of ImageNet. Then, their learned structure and
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FIGURE 7 | Clustering results in terms of ARI, AMI, SSE, and ACC for datasets with different magnification factors (A) 40X, (B) 100X, (C) 200X, (D) 400X.

parameters are frozen. The number of neurons in the last
fully-connected layer is set according to our specific task, and
the parameters of the fully-connected layer are re-trained. In
this way, the model can be used to perform binary or multi-class
classification of the histopathological images of breast cancer.
We demonstrate that our experimental results are superior to the
ones available in other studies that we have found, and that the
Inception_ResNet_V2 network is more suitable for performing
analysis of the histopathological images of breast cancer than the
Inception_V3 network.

Also, our experimental results from the augmented datasets
are much better than those from the original datasets. This is
especially true when doing multi-class classification with the
histopathological images of breast cancer that we used. Our
comparison of the experimental results demonstrates that the
Inception_ResNet_V2 network is able to extract much more
informative features than the other networks we referenced.

The clustering analysis of the histopathological images of
breast cancer using the typical clustering algorithm K-means
demonstrates that the proper K value for K-means can be
found by using the internal criterion SSE. The proposed AE
network can detect much more informative, low dimensional
features present in histopathological images of breast cancer.
Furthermore, the clustering results produced by K-means using
features extracted by Inception_ResNet_V2 and transformed by
the proposed AE are much better, in terms of ARI, AMI, SSE,
and ACC, than the results produced with features extracted only
by Inception_ResNet_V2.

All of the work in this paper demonstrates that the deep
convolutional neural network Inception_ResNet_V2 has the
advantage when it comes to extracting expressive features
from histopathological images of breast cancer. The clustering
accuracies of histopathological images of breast cancers are

not as good as classification accuracies because the latter used
label information.

Finding ways that we can improve the clustering accuracy will
require further study. In addition to this, finding the number
of clusters of histopathological images of breast cancer in both
cases of 8 classes and 2 classes is another task that needs
to be addressed.

Noise is a prevalent issue in medical imaging and can have
a significant effect on results. Some common sources of noise
include white patches on slides after deparaffinization, visible
patches on tissue after hydrating, and uneven staining. It was
reported that batch effects can lead to huge dissimilarities in
features extracted from images (Mathews et al., 2016). For
the histopathological images used in this paper, it is a fact
that the differences of the resolution, contrast and appearance
between images from same class are much more apparent than
those from different classes. The variance of the fine-grained
histopathological images of breast cancer results in difficulties
when trying to classify an image as benign, malignant, or another
specific category. How we can avoid or reduce the influence on
the analysis of histopathological images of breast cancer from
these issues will be the focus of our future work.
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