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ABSTRACT 

GENE REGULATORY NETWORK ANALYSIS AND 

WEB-BASED APPLICATION DEVELOPMENT 

by Yi Yang 

December 2013 

Microarray data is a valuable source for gene regulatory network analysis. Using 

earthworm microarray data analysis as an example, this dissertation demonstrates that a 

bioinformatics-guided reverse engineering approach can be applied to analyze time-series 

data to uncover the underlying molecular mechanism. My network reconstruction results 

reinforce previous findings that certain neurotransmitter pathways are the target of two 

chemicals - carbaryl and RDX. This study also concludes that perturbations to these 

pathways by sublethal concentrations of these two chemicals were temporary, and 

earthworms were capable of fully recovering. Moreover, differential networks (DNs) 

analysis indicates that many pathways other than those related to synaptic and neuronal 

activities were altered during the exposure phase.  

A novel differential networks (DNs) approach is developed in this dissertation to 

connect pathway perturbation with toxicity threshold setting from Live Cell Array (LCA) 

data. Findings from this proof-of-concept study suggest that this DNs approach has a 

great potential to provide a novel and sensitive tool for threshold setting in chemical risk 

assessment. In addition, a web-based tool “Web-BLOM” was developed for the 

reconstruction of gene regulatory networks from time-series gene expression profiles 

including microarray and LCA data. This tool consists of several modular components: a  
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database, the gene network reconstruction model and a user interface. The Bayesian 

Learning and Optimization Model (BLOM), originally implemented in MATLAB, was 

adopted by Web-BLOM to provide an online reconstruction of large-scale gene 

regulation networks. Compared to other network reconstruction models, BLOM can infer 

larger networks with compatible accuracy, identify hub genes and is much more 

computationally efficient. 
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CHAPTER I 

INTRODUCTION 

Motivation 

The amount of genomic information available to researchers is increasing 

exponentially, e.g. microarray data, protein–protein interactions (PPIs) and metabolic 

reactions. This means that more effort is required to extract meanings from the data. A 

scientist can search literature and databases for information about genetic elements and 

their existing associations with other elements and then use this information to infer new 

associations with other elements. In addition, the research might involve finding 

interactions between elements both within and between lists. After forming hypotheses 

about likely candidates for study, the scientist takes them to the wet lab for validation. 

This investigation process requires downloading data from different data sources, 

matching identifiers between data lists such as gene lists, and manipulating lists to match 

elements (e.g. probe IDs) from one list with elements in other lists. Furthermore, results 

that contain scores can provide a measure of interaction strength, and they usually require 

constant string matching, ranking and custom sorting, a process which needs to be 

automated. A web-based approach enables the integration of these research routines. 

Meanwhile, for end users, web applications do not require a complex installation like 

their desktop counterparts or include deploy procedures as required for some open-source 

packages (Pavlopoulos, Wegener, & Schneider, 2008). Therefore, more and more web 

applications have become popular in handling biological data as shown in Chapter II.  

The limitations of many of the existing computational models to infer gene 

regulatory network are that they suffer from high computational complexity. Therefore, a 
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lot of web-based applications based on those models, such as miniTUBA (Xiang, Minter, 

Bi, Woolf, & He, 2007), which is based on Dynamic Bayesian Networks, either return 

the results to users by email after computation, or only handle a small network. The 

Bayesian Learning and Optimization Model (BLOM) is much more computationally 

efficient than other network reconstruction models such as DBN (Li, 2009), and can be 

used to reconstruct large-scale networks. Web-based applications require little or no disk 

space on the client and require no upgrade procedure since all new features are 

implemented on the server. Web-based tools that integrate large sets of microarrays have 

already helped biologists reveal novel correlations between responses. For example, the 

web application Genevestigator helped to uncover strong negative correlation between 

the expression response to salicylic acid and CO2 in plants (Laule, Hirsch-Hoffmann, 

Hruz, Gruissem, & Zimmermann, 2006). 

As a maturing genomics technology, microarray has been used successfully in 

discovering disease- or toxicity-related biomarker genes from gene expression profiling 

mostly at a single time point. However, like disease inception and progression, 

organismal response to toxicants is a complicated, dynamic process, whose underlying 

mechanism may be fully uncovered by capturing temporal changes in molecular 

interactions within perturbed pathways. Among dozens or hundreds of pathways of an 

organism, finding the ones of interest requires a universal standard to quantify pathway 

perturbation. Therefore, a novel approach involving differential networks has been 

developed in this dissertation to quantify pathway perturbation degrees and to help set 

thresholds in chemical risk assessment. This approach is applied to Live Cell Array (LCA) 

data in Chapter III and microarray data in Chapter IV.  
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Identification of Differentially Expressed Genes 

Differentially Expressed (DE) genes are often sought out in genomic studies as 

they are potential candidates of biomarkers (Huang, 2009). Differential expression 

studies focus on differences between expression levels of one gene in different samples 

instead of multiple genes within a sample. Various factors inhibit the comparison of 

expression levels among different genes. These factors include gene length, protein 

binding affinity, mRNA degradation rates, and biases introduced by experimental 

preparation. This dissertation investigates both steady-state microarray data (Chapter V) 

and time-series data (Chapter III and IV). However, time-series data is the focus of this 

dissertation. Time-series data has two types of DE genes: (1) active genes that display a 

differential expression within the same treatment across different time points over the 

entire course of an experiment (Type I DE genes), and (2) genes that exhibit significant 

changes in the average expression level across conditions at any given time point (Type II 

DE genes). 

In Chapter II, three statistical methods for detecting DE genes are summarized 

and compared. In Chapter III, I use a one-sample Gaussian Process (GP) regression 

method developed by (Kalaitzis & Lawrence, 2011) to identify the first type of DE genes 

(active genes) from Live Cell Array Data. In Chapter IV, we used two two-sample 

algorithms developed by (Tai & Speed, 2006) and (Stegle et al. 2010) to identify the 

second type of DE genes from earthworm microarray data.  
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Reconstruction of Gene Regulatory Networks (GRNs) 

Microarray experiments measure the relative amount of mRNA expressed in 

different experimental conditions because altered concentrations of a specific sequence of 

mRNA suggest a homeostatic response of the organism to the experimental conditions. 

Live cell array experiments, on the other hand, measure the fluorescence level of green 

fluorescent proteins (GFPs) from living bacteria cells (Melamed, Elad, & Belkin, 2012). 

Fluorescence levels detected by the sensors of a LCA system directly correlate with the 

expression level of proteins of interest. Both types of expression profiles can be used to 

infer regulatory relationships, also known as reverse engineering of regulatory networks. 

GRN reconstruction provides important insight into answering the two basic motivating 

questions in biological research: (1) what genes regulate what other genes; (2) what genes 

or groups of genes regulate a specific phenotype. 

Many computational approaches have been proposed to generate predictions 

corresponding with experimental observations, such as information theory (Steuer, 

Kurths, Daub, Weise, & Selbig, 2002), Boolean networks (Shmulevich, Dougherty, Kim, 

& Zhang, 2002), differential equations (de Jong, 2002), and Dynamic Bayesian Networks 

(Zou & Conzen, 2005). The Bayesian Learning and Optimization Model (BLOM) is a 

model developed by the Computational Biology and Bioinformatics Laboratory (CBBL) 

in School of Computing at the University of Southern Mississippi for gene network 

reconstruction (Li, 2009; Wu et al., 2011). Compared with other GRN reconstruction 

models, BLOM is much more computationally efficient. Additionally, the output of 

BLOM provides more information about gene-gene interactions including the types of 

regulation (inhibition or activation), regulation directions (e.g. gene A regulates gene B 
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or gene B regulates gene A) and strength of inferred interactions, which can be used as a 

parameter for ranking and belief management (Doderer, Yoon, & Robbins. 2010). 

In Chapter IV, BLOM is used to infer GRN from microarray data of earthworms. 

Coupled with DE gene selection, visualization techniques and pathway mapping, GRN 

reconstruction with BLOM is aimed to provide hypotheses and predictions to be tested 

experimentally, which might suggest new subjects for investigation in web labs that 

otherwise might not be considered in experimental protocol design. 

Live Cell Array 

Live Cell Array (LCA) is a new technology that quantitatively measures the real-

time gene expression in vivo. It is based on the molecular fusion of a reporter gene to 

gene promoters from select stress-response regulons. Alterations in biological pathways 

are a rich resource for setting toxical threshold, which may be more sensitive and 

mechanism-informed than traditional toxicity endpoints. A novel approach is developed 

in this dissertation to connect pathway perturbation with toxicity threshold setting. 

My approach consists of 6 steps: time-series gene expression data collection, 

altered gene identification, GRN reconstruction, differential edge inference, mapping of 

genes with high differential edges to pathways, and establishment of causal relationships 

between chemical concentration and perturbed pathways. A one-sample Gaussian Process 

model was used to identify the genes that exhibited significant profile changes across the 

entire time course. GRNs of different treatments were reconstructed using BLOM and 

then compared with each other to infer differential edges/interactions. The differentially 

expressed genes were then mapped to literature-curated biological pathways in EcoCyc, 

RegulonDB and KEGG databases. Some of these pathways were perturbed to a degree as 
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high as 70% even at the lowest exposure concentration, implying that the toxicity 

threshold for Naphthenic Acids (NAs) could be as low as 10 mg/L. Findings from the 

results of this study suggest that the differential networks (DNs) approach has a great 

potential in providing a novel tool for threshold setting in chemical risk assessment. 

Web-BLOM 

Web-BLOM is a web-based tool developed for reconstruction and analysis of 

GRNs from time-series gene expression data. The tool consists of several modular 

components: a database, GRN reconstruction model, and a user interface. The database is 

used to store user information, the data files uploaded to the server, and the results from 

the reconstruction model. It also provides several functions for gene expression data 

analysis. The BLOM model, originally implemented in MATLAB, was adopted by Web-

BLOM to provide an online reconstruction of large-scale gene regulatory networks. 

From the user interface, users can upload their time-series gene expression data to 

the server and manage all datasets. If the uploaded files pass an examination of the 

accepted size and file types, the users can then select a subset of genes. Next, the user 

interface remotely activates the BLOM code that runs on a dedicated server. After Web-

BLOM completes the submitted task, it generates a matrix of confidence values that can 

be used for ranking the interactions among pairs of the selected genes. If users are 

interested in prioritizing genes for functional screening, they can use Web-BLOM to 

return a list of interacting genes ranked by confidence values. Web-BLOM integrates 

feature selection, network reconstruction, and result analysis in an online network 

environment and it provides a new efficient and convenient software tool for 
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reconstruction and analysis of gene regulatory networks. Web-BLOM can be accessed 

through the following URL: http://tc1.cs.usm.edu:8080/blom2/ 

Contributions 

One important goal of GRN reconstruction is to discover novel biomarker genes 

and pathways. In this dissertation, I have made a number of contributions in identifying 

DE genes and significant pathways. Based on such information, GRNs of interested 

pathways were reconstructed using reverse engineering algorithms. 

In Chapter III, a novel differential networks (DNs) approach is developed to 

derive toxicity thresholds based on the perturbation degrees in the reconstructed GRNs. 

Our approach consists of DE gene identification, GRN reconstruction of the altered 

genes, differential edge identification, Differential Networks (DNs) construction, 

pathway mapping and pathway perturbation calculation. Using this approach, I make 

direct connections between treatment dosage and perturbed pathways. 

In Chapter IV, BLOM is used to reconstruct GRNs from microarray data of 

earthworms treated with two sublethal concentrations of chemicals. Type II DE genes are 

identified using two different two-sample algorithms and are mapped to pathways on 

Kyoto Encyclopedia for Genes and Genomes (KEGG) (Ogata et al., 1999). Genes of a 

neurotransmitter pathway are used to reconstruct GRNs of different conditions and two 

different stages of the experiment. Our network reconstruction results reinforce previous 

findings that cholinergic and GABAergic synapse pathways are the target of carbaryl and 

RDX, respectively. We also conclude that perturbations to these pathways by sublethal 

concentrations of two chemicals are temporary, and that earthworms are capable of fully 
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recovering. Moreover, this study indicates that many pathways other than those related to 

synaptic and neural activities were altered during the 6-day exposure phase.  

In Chapter V, Web-BLOM is designed in a three-tier architecture model and 

implemented in MATLAB and Java. Performance tests were done on different platforms 

showing that Web-BLOM can return the result for a 200-gene data set to different 

browsers in less than one minute. MATLAB Java Builder toolbox is employed to 

package BLOM code into Java archive classes. Rankprod (Hong et al., 2006) is used to 

identify DE genes from steady-state rice microarray data and mapped to RiceCyc 

(Jaiswal et al., 2006), a Pathway/Genome Database (PGDB) for Oryza sativa japonica 

(Rice) developed in BioCyc format (Karp et al., 2002). 

Dissertation Organization 

This dissertation is organized as follows: In Chapter I, the motivation and 

background of analyzing gene regulatory networks are introduced. Then in Chapter II, 

web-based applications for analyzing different types of biological networks are reviewed 

as well as three algorithms to identify differentially expressed genes. These algorithms 

are later used in Chapter III and Chapter IV.  

In Chapter III, a live-cell array data set of the prokaryotic model organism 

Escherichia coli is analyzed to identify differentially expressed genes. Differential edges 

of these genes in the networks of different dosages are compared in order to establish 

concentration-pathway perturbation causal relationships.  

In Chapter IV, a microarray data set from earthworm toxicity exposure 

experiment is analyzed using Bayesian Learning and Optimization Model (BLOM) to 

reconstruct GRNs under different treatments and different stages of the same treatment.  
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In Chapter V, the implementation of Web-BLOM is detailed, and a case study is 

presented to demonstrate the web-based data pre-processing and GRN analysis. 

The dissertation is concluded with Chapter VI by a summary and some proposed 

future research directions. 
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CHAPTER II 

LITERATURE REVIEW 

Microarray and Live Cell Array Data 

Microarray Data 

DNA microarray is a collection of microscopic DNA spots attached to a solid 

surface. Each DNA spot contains picomoles of a specific DNA sequence, which can be a 

short section of a gene or other DNA element that are used to hybridize a cDNA or an 

anti-sense RNA sample. Microarray data is a valuable source for gene regulatory network 

analysis. Microarray technology can be used in many areas such as gene expression 

profiling, comparative genomic hybridization, chromatin immuno-precipitation on Chip 

(ChIP), single nucleotide polymorphism (SNP) detection, alternative splicing detection 

and many more. Using earthworm microarray data analysis, as shown in Chapter IV, this 

dissertation demonstrates that a bioinformatics-guided reverse engineering approach can 

be applied to analysis of time-series data to uncover the perturbed pathways by certain 

chemicals.  

The result data set from a microarray experiment first needs to be preprocessed 

prior to the analysis and interpretation of the results, which includes taking the logarithm 

of the raw intensity values, flagging bad spots, and handling missing values. 

Preprocessing is a step that extracts or enhances meaningful data characteristics and 

prepares the dataset for the application of data analysis methods. Missing values are 

caused by those data cells that are flagged with physical damages to the array such as bad 

spots, dust, or scratches. They were omitted from the original data files. Typically less 

than 1% of spots are flagged. Those spots with aberrantly high or low intensity are also 
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removed from the data. If missing values are treated as intensity value of zero when 

calculated, it will certainly affect the accuracy and validity of analysis results. Therefore, 

methods for imputing missing data are used to minimize the effect of incomplete data sets. 

The “Data Preprocessing” section in Chapter IV introduces the preprocessing methods 

used in this dissertation. 

LCA Data 

Compared with oligonucleotide hybridization-based microarray technology 

(Ehrenreich, 2006), LCAs avoid complex protocols of pre-treatment and high-cost 

experimental materials, have less interference, and require less testing time (Elad, Lee, 

Belkin, & Gu, 2008). It involves the generation of a large number of strains that contain 

transcriptional fusions with fast-folding fluorescent proteins and monitoring their 

accumulation under some certain treatments (Aichaoui et al., 2012). An advantage of 

using bacteria as the organisms for LCAs is the facility by which they can be genetically 

engineered to respond by a dose-dependent signal to environmental stimuli (Melamed et 

al., 2012).  

Like microarray data, LCA data requires several steps of pre-processing to 

remove noise. For example, some certain types of bacteria such as Bacillus subtilis 

generate auto-fluorescence in the culture and this could become a background noise to 

the gene expression data. A software tool based on the discrete Kalman filter was 

developed by (Aichaoui et al., 2012) to provide standardized treatment to LCA data and 

generate reports on the quality of the data. If there is no auto-fluorescence (Fauto= 0), the 

promoter activity is directly related to the time derivative of the fluorescence divided by 
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OD600. Otherwise, a correction has to be performed and this can be done with the 

software BasyLiCA (Aichaoui et al., 2012). 

An LCA system was constructed from E. coli K12 strain MG1655, and contained 

a genome-wide library of modified green fluorescent protein (GFP) expressing promoter 

reporter vectors (Zaslaver et al., 2006). This genome-wide live cell reporter array has 

been used to study modes of actions of a wide variety of chemicals (Gou & Gu, 2011; Su 

et al., 2012). Nevertheless, current MOAs are mostly qualitative and focus on 

differentially expressed genes in canonical pathways. Although some efforts have been 

made to identify no-observed transcriptomic effect levels, e.g., Ludwig et al. (2011), little 

has been done to investigate gene interaction alterations in toxicity pathways (i.e. 

pathway perturbations) that are often inferred using reverse engineering techniques such 

as a state-space model with hidden variables (Wu et al., 2011). 

Identification of Differentially Expressed Genes 

Differentially Expressed Genes 

Differentially expressed (DE) genes are often sought in genomic studies as they 

are considered potential candidates of biomarkers (Abeel, Helleputte, Van de Peer, 

Dupont, & Saeys, 2010). Microarray and Live Cell Array data provide a snapshot of the 

dynamic gene expression in living organisms. A traditional way is to calculate the fold 

change and pick the genes with expression ratio significantly larger from 1 (e.g. 1.5 or 

2.0). The t-statistic is another frequently used method for identifying DE genes between 

two putative conditions. Let Xg1, Xg2, …, Xgi,…, XgN be a set of observed expression 

values or a set of averaged expression values of gene g in N conditions where g = 1,…,G 

(number of genes detected on microarrays) and i = 1 ,…, N. Suppose that these N 
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conditions have common effect +τ or -τ on the expression levels of gene g (Tan, 2010). It 

is also supposed that the expression noise for gene g is a random variable across all 

conditions. 

Gaussian Process Regression Models for Time Course Data 

There are many methods to identify the genes exhibiting the most significant 

variation, such as a fixed fold-change cut-off method, t-test, ANOVA, Mann-Whitney 

test, Z-score, and volcano plot. A Gaussian Process one-sample algorithm (Kalaitzis & 

Lawrence, 2011) was used in Chapter III. A Gaussian Process two-sample algorithm 

(GP2S) (Stegle et al. 2010) and a multivariate empirical Bayes algorithm (Tai & Speed, 

2006) are adopted in Chapter IV of this dissertation. Both methods are based on the 

Gaussian Process Regression model, which was established following Gaussian Process 

(y|x~GP(y; m(x), Ky(xi,xj))) and a Gaussian process is a collection of random variables, 

any finite number of which has a joint Gaussian distribution. The Lawrence method used 

in Chapter III applies the Gaussian process model to fit time-series data from microarray 

and establish a likelihood ratio test to rank differentially-expressed genes. In Chapter IV, 

two methods are used to rank genes. Time & Speed’s method uses Hotelling T
2 

statistic 

to rank genes while Stegle’s method computes log likelihood ratio of null hypothesis and 

alternative hypothesis to rank genes. 

Gene Regulatory Networks Analysis 

A gene regulatory network is an abstraction of indirect gene-gene interactions. It 

does not represent the physical interactions of genes like a protein-protein interaction 

network (PPI) does. In biological databases such as the ones listed in the next section, 



14 

 

 

 

GRNs are usually manually curated from the literature on a given organism and represent 

a distillation of the collective knowledge about a set of related biochemical reactions.  

Gene-gene interaction is highly dependent on TFs (Penfold & Wild, 2011). Figure 

1 is a schematic of a GRN that consists of four genes, three of which encode for TFs 

(genes 1, 3, and 4) and one of which encodes for a protein that catalyzes the production 

of metabolite 2 from metabolite 1. The edges between nodes are individual molecular 

reactions, protein-protein or protein-mRNA interactions. Through all of the edges, the 

products of one gene affect those of another. A series of edges indicates a hierarchy of 

such dependences. Circles to itself correspond to a feedback loop of a gene. It could be 

either a feedback inhibition or feedback activation. 

 

 
 

Figure 1. A schematic of a GRN (Brazhnik, de la Fuente, & Mendes, 2002). 
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One justification of using microarray data or Live Cell Array data to infer 

regulatory relationships is that the concentration of a transcription factor correlates with 

the rate at which TF’s corresponding mRNA is transcribed (Penfold & Wild, 2011). For 

instance, higher mRNA concentration of gene 1 (Figure 1) will have a correlated higher 

concentration of protein 1;  the higher or the lower the mRNA concentration of gene 2 

will depend on whether the regulation of gene 1 to gene 2 is enhancing or inhibiting. 

Therefore, many classification and clustering algorithms group genes based on the 

similarity of expression patterns, and genes within the same group have a higher 

possibility of regulating each other (Huang, 2009; Kaimal, Bardes, Tabar, Jegga, & 

Aronow, 2010). 

The physical interactions of components at the protein space (green) can be 

projected onto the gene space (dashed lines) to illustrate the GRN that we try to 

reconstruct. Therefore, a GRN is an abstraction of the system's chemical dynamics, 

describing the ways one gene indirectly affects all the genes that it is connected to. This 

is the reason why most existing GRN inference algorithms suffer low accuracy (Shermin 

& Orgun, 2009). Various mathematical methods and computational approaches have 

been proposed to reconstruct GRNs, including Boolean networks, information theory, 

differential equations and Dynamic Bayesian networks. In the next section, representative 

web-based applications to analyze or visualize GRNs, PPI networks and metabolic 

networks are summarized, among which BioCyc, KEGG, RegulonDB, PGDB are used in 

Chapter III and Chapter IV.  
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Web-based Applications for Biological Network Analysis  

Advantages of the Web-based Approach 

Web-based applications greatly facilitate analysis of gene lists and biological 

networks because they have several advantages over stand-alone tools. They operate 

through a web browser and are thus easily accessible on any operating system (Murali et 

al., 2011). Cross-platform capability relieves the application developer from having to 

worry about a client’s configuration. Also because they are accessed through browsers, 

the user does not need to download and install a copy of the developed software and with 

databases set up the users can access their uploaded data through different machines. 

Another advantage of the web approach is that a computationally expensive task can run 

on a powerful remote server and the user can get access to the results from any personal 

computer with a browser. 

The web approach also saves users the need to install any subsequent upgrades or 

bug fixes. Web-based applications are also good for collaborative efforts since they 

allows researchers at different locations to work together handling data or developing 

models using computational resources that provide more processor-intensive 

functionality at higher speeds through more robust servers. As a result, through user 

contribution, web-based applications usually form good repositories for experimental 

data such as BioCyc (Karp, Riley et al., 2002).  

However, web-based applications do suffer from a significant disadvantage in 

terms of speed of response when dealing with simultaneous user requests and large data 

transfers between server machines and client sides. Response is significantly slower than 

stand-alone tools. One possible solution to tackle this problem is to employ Ajax 
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(Asynchronous JavaScript and XML), which is a combination of several existing web 

technologies (JJ, 2008). Another disadvantage is that sometimes the users may 

experience incompatibility when the browser disables some certain element that the web-

based application requires, for example, JavaScript and ActiveX. 

Web-based Applications for Gene Regulatory Networks 

Unlike static graphs of pathways stored in databases such as KEGG or regulonDB 

(Salgado et al., 2013), both BioCyc and Reactome (Robertson, 2004) provide dynamic 

visualization of pathway graphs according to user-uploaded gene list. DAVID 

Bioinformatics tool (Huang da et al., 2007) and SideKick (Doderer et al., 2010) allow 

users to manually add or eliminate genes according to the user’s own biological 

knowledge after the gene list is uploaded. 

The customized network display feature facilitates the inspection of regulatory 

relationships among a smaller set of genes of interest. Take BioCyc as an example. After 

a gene list is uploaded, the first time the network image of the listed genes is requested, 

and the drawing is computed at query time via an auto-layout. But, the resulting drawing 

is cached on BioCyc server so that subsequent queries during the life span of the user 

session are retrieved from the cache. A user can also select a group of genes of interest 

for color-highlighting. For example, the user could select the genes with a specific Gene 

Ontology term (e.g., all genes involved in cell cycle) and display the GRN of this specific 

biological process. A user can also select the downstream genes that are directly or 

indirectly regulated by a list of genes. The set of highlighted genes can be redisplayed in 

a new page, using a layered or ellipse layout as shown in Figure 2.  
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Figure 2. The ellipse layout representing the regulatory networks of E.coli from the 

Ecocyc website. The inner ellipse is composed of transcriptional factors and sigma 

factors that only regulates but do not get regulated; the middle ellipse is composed with 

genes that both regulated; all regulated genes that are not regulators in the outer ellipse. 

Edges are omitted (Paley, Latendresse, & Karp, 2012). 

 

Some web applications utilize Java applets to implement the same functions 

described above. For example, PathCase (Elliott et al., 2008) integrates a dynamic (i.e. 

query-time) visualization applet named GraphViewer that allows users to request changes 

to a pathway via queries, or to revise the pathway at hand via editing operations, and the 

system can then visualize the revised pathway or fragment of a network of pathways on 

the spot.  

Both Reactome's SkyPainter (Robertson, 2004) and PathCase perform statistical 

ranking to find pathways or reactions most related to the user-defined gene list. Both 

BioCyc and PathCase provide a GO-based gene set enrichment tool and allow flexible 

setting of p-value for enrichment. The functionalities of a number of other web 

applications for analyzing GRNs are summarized in Table 1. 
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Table 1 

A Summary of Web-Based Gene Regulatory Network Analysis Tools Surveyed 

  

Name Functionality Key words 

ToppCluster (Kaimal 

et al., 2010) 

Human/mammalian genomes-centered web 

server application for comparative enrichment 

and network analysis of multiple gene lists.  

GRN; TF 

BioProfiling.de 

(Antonov, 2011) 

Interpretation of gene or protein lists using 

enrichment of statistical frameworks. 

PPI mapping;  

ConsensusPathDB 

(Kamburov et al., 

2011) 

PPIs, metabolic and signaling reactions and 

GRNs in a functional association network. 

GRN; TF 

COXPRESdb 

(Obayashi & 

Kinoshita, 2011) 

Co-expressed gene database for human and 

mouse and addition of different layers of omics 

data into the integrated network of genes. 

GRN; TF 

AGRIS(Arabidopsis 

Gene Regulatory 

Information Server) 

(Yilmaz et al., 2011) 

Three interlinked databases, AtTFDB, AtcisDB 

and AtRegNet; predicted and experimentally 

verified cis-regulatory elements (CREs) and 

their interactions, respectively. 

Promoter 

regions; 

GRN; TF 

DroID (Drosophila 

Interactions 

Database) (Murali et 

al., 2011) 

DroID contains genetic interactions and 

manually-curated PPIs detected from 

experiments, and predicted protein interactions 

based on experiments in other species.  

PPI mapping; 

systems 

integration; 

TF 

FANTOM(Functional 

Annotation Of the 

Mammalian 

Genome)(Kawaji et 

al., 2011) 

Database for GRNs of macrophage 

differentiation. Data comes from cap analysis 

of gene expression (CAGE), sequencing 

mRNA 5'-ends with a 2nd-generation 

sequencer to quantify promoter activities.  

Humans; 

macrophages; 

mice; TF  

GeneCAT (Mutwil, 

Obro, Willats, & 

Persson, 2008) 

Standard coexpression tools such as gene 

clustering and expression profiling; tools that 

combine co-expression analysis with BLAST. 

Arabidopsis & Barley are featured plants. 

Coexpression 
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Table 1 (continued). 

Name Functionality Key words 

GraphWeb 

(Reimand, Tooming, 

Peterson, Adler, & 

Vilo, 2008) 

A web server for biological network 

analysis and module design using a 

graphical interface. 

Cell cycle 

proteins; 

humans; PPI 

mapping 

HLungDB (Human 

lung cancer database) 

(Wang et al., 2010) 

Database of lung cancer-related genes, 

proteins and miRNAs with the 

experimental evidences through text 

mining. 

Amino acid 

motifs; genetic 

epigenesis; 

humans;  

MAGIA (miRNA 

and Genes Integrated 

Analysis) (Sales et 

al., 2010) 

Integrative analysis of target predictions, 

miRNA and gene expression data 

Gene expression 

profiling; 

humans; mRNA; 

microRNA; 

mirConnX (Huang, 

Athanassiou, & 

Benos, 2011) 

A web server for inferring mRNA and 

microRNA GRNs. mirConnX combines 

sequence information with gene expression 

data to create a disease specific, genome-

wide regulatory network.  

Gene expression 

profiling; 

humans; nucleic 

acid databases; 

 

Web-based Applications for Protein-protein Interaction Networks 

Protein-protein interaction (PPI) networks are usually obtained by two high-

throughput experimental techniques. They are yeast two-hybrid screening and mass 

spectrometry to discover protein complexes (Stark et al., 2011). Most websites for PPI 

networks act as databases storing manually curated literature evidence instead of web 

applications. However, some websites incorporate dynamic content generation apart from 

their databases.  

GeneMANIA (Warde-Farley et al., 2010) is a well-developed web application for 

analyzing PPI networks. For a user-uploaded set of genes or proteins, it matches the 

gene/protein list with its database which integrates data from many sources, including 
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physical interactions, pairs of protein-protein interactions, pairs of co-expressed genes, 

list of proteins with domain similarity, list of proteins in the same pathway or list of 

proteins located in the same subcellular component (co-localization), and then visualizes 

the possible molecular associations among the given proteins, thus allowing users to 

predict functions of uncharacterized proteins on the basis of functions of proteins 

associated with them. The functionalities of a number of other web applications for 

analyzing PPI networks are summarized in Table 2. 
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Table 2 

A Summary of Web-Based Protein-Protein Interaction Network Analysis Tools Surveyed 

Name Functionality Key words 

AS-ALPS (Shionyu, 

Yamaguchi, Shinoda, 

Takahashi, & Go, 2009) 

AS-ALPS (Alternative Splicing-

induced Alteration of Protein 

Structure) analyzes the effects of AS 

on PPI and network through 

alteration of protein structure. 

PPI Database; 

Protein Structure; 

Splicing. 

DIP (Xenarios et al., 

2002) 

The DIPTM database catalogs 

experimentally-determined 

interactions between proteins. 

PPI database 

GeneMANIA (Warde-

Farley et al., 2010) 

Use GeneMANIA to find new 

members of a pathway or complex, 

find additional genes you may have 

missed in your screen or find new 

genes with a specific function, such 

as protein kinases.  

Pathway; Factual 

databases; 

algorithms. 

IntAct (Kerrien et al., 

2012) 

Manually curated database and 

analysis tools for PPI data. Allow 

user submissions. 

PPI Database  

MINT (Molecular 

INTeraction database) 

(Cesareni, Chatr-

aryamontri, Licata, & 

Ceol, 2008) 

MINT focuses on experimentally 

verified protein-protein interactions 

mined from the scientific literature 

by expert curators 

PPI database 

STITCH (Kuhn et al., 

2012) 

Known and predicted interactions of 

chemicals and proteins 

Protein-chemical 

Interactions 

STRING (von Mering et 

al., 2007) 

Known and Predicted Protein-

Protein Interactions 

PPI database 
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Table 2 (continued). 

Name Functionality Key words 

GraphWeb 

(Reimand et al., 

2008)  

A web server for biological network analysis and 

module design using a graphical interface. 

Cell cycle 

proteins; 

humans; 

PPI 

mapping. 

NCG (Network of 

Cancer Genes) 

(Syed, D'Antonio, & 

Ciccarelli, 2010) 

Stores data on 736 human genes that are mutated 

in various types of cancer. For each gene, NCG 

provides information on duplicability, orthology, 

evolutionary appearance and topological 

properties of the encoded protein in a 

comprehensive version of the human PPI 

network.  

gene 

expression 

profiling; 

humans; 

mRNA; 

microRNA; 

Disease; 

Mice; TF. 

 

Web-based Applications for Analysis of Metabolic Networks 

Post-genomic research involves an extensive application of high-throughput, non-

linear approaches like transcriptomics, proteomics and metabolomics. Among these three 

"omics" areas, metabolomics is complicated in particular because metabolic networks can 

consist of multiple types of nodes including enzymes, ion channels, small molecule 

metabolites and co-factors, making computational prediction difficult. Metscape 

(Karnovsky et al., 2012) is a web application that generates metabolic networks based on 

information in KEGG. It predicts a metabolic network with user-uploaded data on 

enzyme expression levels or compound concentrations. MetaCyc (Karp, Riley, Paley, & 

Pellegrini-Toole, 2002) is a Pathway/Genome Database (PGDB) hosted on BioCyc 

website, inheriting BioCyc’s rich functionality. BioCyc hosts hundreds of PGDBs related 

to different diseases of human beings or different organisms, including RiceCyc, which is 
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used in Chapter V of this dissertation. The functionalities of a few other web applications 

for analyzing metabolic networks are summarized in Table 3. 

Table 3 

A Summary of Web-Based Metabolic Network Analysis Tools Surveyed 

Name Functionality Key words 

PathExpress 

(Goffard & 

Weiller, 2007) 

Interpret microarray data by identifying the 

most relevant metabolic pathways associated 

with a subset of genes (e.g. DE genes). 

Metabolomics 

ProdoNet (Klein 

et al., 2008) 

A visualization tool for regulatory networks 

from the PRODORIC bacterial database. It 

detects common regulators and metabolic 

pathways from a list of genes or proteins. 

Metabolic 

Network; 

Network Analysis 

METANNOGEN 

(Gille, Hubner, 

Hoppe, & 

Holzhutter, 

2011) 

METANNOGEN stores biochemical reactions 

needed for the reconstruction of metabolic 

networks 

Metabolic 

Network; 

Network Analysis 

NeAT (Brohée et 

al., 2008) 

A suite of tools for the analysis of metabolic 

networks, clusters, classes and pathways.  

cluster analysis; 

metabolic 

networks; protein 

interaction 

mapping;  

KaPPA-View 

(Tokimatsu et al., 

2005) 

Overlays gene-to-gene and/or metabolite-to-

metabolite relationships as curves on a 

metabolic pathway map, or on a combination 

of up to four maps. Pathway maps of KEGG 

and maps generated from their gene 

classifications are available. 

KEGG; humans; 

metabolic 

networks and 

pathways; 

metabolome  
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CHAPTER III 

DIFFERENTIAL RECONSTRUCTED TRANSCRIPTION NETWORKS 

Pathway alterations reflected as changes in gene expression regulation and gene 

interaction can result from cellular exposure to toxicants. Such information is often used 

to elucidate toxicological modes of action. Alterations in biological pathways are a rich 

resource for setting toxicant threshold, which may be more sensitive and mechanism-

informed than traditional toxicity endpoints. This study developed a differential network 

(DN) approach to connect pathway perturbation with toxicity threshold setting. 

The DNs approach consists of six steps: time-series gene expression data 

collection, altered gene identification, GRN reconstruction, differential edge inference, 

mapping of genes with high differential edges to pathways, and establishment of causal 

relationships between chemical concentration and perturbed pathways. A one-sample 

Gaussian Process model was used to identify the genes that exhibited significant profile 

changes across the entire time course. GRNs with respect to different concentrations of 

chemical treatment were reconstructed using a state-space model and then compared to 

infer differential edges/interactions which were then mapped to biological pathways in 

EcoCyc, RegulonDB and KEGG databases. Some of these pathways were perturbed to a 

degree as high as 70% even at the lowest exposure concentration, implying that the 

toxicity threshold for Naphthenic Acids (NAs) could be as low as 10 mg/L. Findings 

from the results in this chapter suggest that our approach has a great potential in 

providing a novel tool for threshold setting in chemical risk assessment. In future work, 

the pathway alteration-derived thresholds will be compared with those derived from 

apical endpoints such as cell growth rate. 
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Background  

Recent advancements in molecular biology technologies, systems biology, and 

computational toxicology are poised to transform a primarily in vivo animal toxicity 

testing paradigm into a new one dominated by in vitro assays (Bhattacharya, Zhang, 

Carmichael, Boekelheide, & Andersen, 2011; Collins, Gray, & Bucher, 2008; Krewski et 

al., 2010; National Research Council (U.S.). Committee on Toxicity Testing and 

Assessment of Environmental Agents, 2007). This new paradigm makes predictions and 

cross-species extrapolation based on modes or mechanisms of action (MOAs). However, 

a lot of challenges remain before this transformation becomes a reality, including: how to 

incorporate toxicity mechanism information into the next generation risk assessment 

framework, how to obtain quantitative dose-response and time-course data on the 

perturbed biological processes or pathways, and how to differentiate transient adaptive 

perturbations from permanent alterations (Bhattacharya et al., 2011; Cote et al., 2012; 

Edwards & Preston, 2008; Tannenbaum, 2012). Current MOA approaches mostly focus 

on identifying differentially expressed genes in canonical pathways. Although some 

efforts have been made to infer non-observable transcriptomic effect levels (e.g., (Ludwig 

et al., 2011)) or transcriptional benchmark dose values, little has been done to investigate 

gene interaction alterations in toxicity pathways (i.e. pathway perturbations) that are 

often inferred from time series gene expression profiling data using reverse engineering 

techniques such as a state-space model with hidden variables (Li, 2009; Li, Shaw, 

Yedwabnick, & Chan, 2006; Rangel et al., 2004; Wu et al., 2011). 

To address some of the aforementioned challenges, we conducted a proof-of-

concept study using a simple and convenient prokaryotic model organism, Escherichia 
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coli, in order to make a direct connection between MOAs and quantitative risk 

assessment such as toxicity threshold setting (Ben-Israel, Ben-Israel, & Ulitzur, 1998; 

Currie, 2012). In this study, E. coli was exposed to a chemical stressor of three 

concentrations, and we hypothesized that in stress response: (1) the bacterium had to 

reassemble biological pathways that differed from their canonical counterparts, and (2) 

the degree of pathway perturbation was dependent on the exposed concentration. We 

chose E. coli as the test organism also because a microbial live cell reporter array system 

was constructed recently from its K12 strain MG1655 (Zaslaver et al., 2006). This system 

contained a genome-wide library of modified green fluorescent protein (GFP) expressing 

promoter reporter vectors. Live Cell Array (LCA) is a novel technology that enables the 

acquisition of high-resolution time-series profiles of bacterial gene expression by 

measuring the fluorescence level in living cells carrying fused fluorescent protein (Elad et 

al., 2008; Melamed et al., 2012). This genome-wide E. coli LCA was used to study 

MOAs of a wide variety of chemicals (Gou & Gu, 2011; Su et al., 2012) and to collect 

time-course gene expression data. Zhang et al., (2011) provided the data to our lab for 

reconstructing differential networks in this dissertation. Here, we report a novel 

differential networks (DNs) approach we developed to derive toxicity threshold based on 

the degree of perturbations in reconstructed GRNs. Our approach consists of the 

following six steps: (1) collect time-series gene expression data of test organisms that 

received different treatments, (2) identify significantly changed genes involved in normal 

cellular growth and stress response from the gene expression dataset, (3) reconstruct 

GRNs of the altered genes under the control and perturbed/treated conditions using 

reverse engineering techniques, (4) infer differential edges, i.e., interactions gained or lost 



28 

 

 

 

from the control to the treated, to construct DNs, (5) annotate and map the genes in the 

DNs to biological pathways and functions, and (6) establish causal relationships between 

concentration and pathway perturbation. Using this approach we made direct connections 

between treatment dosage and perturbed pathways. 

Live Cell Array Data Set 

LCA is a new technology that quantitatively measures the real-time gene 

expression. It is based on the molecular fusion of a reporting gene system to gene 

promoters from select stress response regulons. Compared with oligonucleotide 

hybridization-based microarray technology (Ehrenreich, 2006), LCAs avoid complex 

protocols of pre-treatment and high-cost experimental materials, have less interference, 

and require less testing time (Elad et al., 2008). It involves the generation of a large 

number of strains that contain transcriptional fusions with fast-folding Green Fluorescent 

Proteins (GFPs) and monitoring their accumulation under some certain treatments 

(Aichaoui et al., 2012). An advantage of using bacteria as the organisms for LCAs is that 

they can be genetically engineered to respond by a dose-dependent signal to 

environmental stimuli (Melamed et al., 2012). The promoter activity profiles of 96 

individual GFP fusions can be obtained at a very high resolution in a microtiter plate 

format by determining the difference in fluorescence levels at successive time points after 

the chemical is administered. Promoter activation or suppression can be easily detected 

by an increase or a decrease in the fluorescence accumulation rate. Figure 3 demonstrates 

a basic workflow of a typical LCA system. 
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Figure 3. Microbial genome wide live cell reporter system (Melamed et al., 2012). 

A time-series data set of dynamic gene expression profiling used in this study was 

collected in a previous study (Zhang et al., 2011) using the genome-wide E. coli LCA 

made up of twenty-one 96-well plates. Among these 2016 wells, 1870 wells were 

occupied by 1820 GFP strains with promoter genes (some genes having replicates), 

another 40 wells were filled with strains with two promoterless genes, and the remaining 

106 wells were empty. The standard deviations of the expression values of two 

promoterless genes were later used to correct for background noise in data normalization 

steps (Zhang et al., 2011). There was one empty well on each of the first 20 plates and 86 

empty wells on the last plate. These empty wells were used to set the cut-offs in the 

active gene selection step (see below section “Identification of differentially expressed 

genes”). Optical density (OD) values were measured before treatment. Then the E. coli 

cells received four treatments of a technical mixture of naphthenic acids (NAs, Sigma 

Aldrich, St. Louis, MO, USA), i.e., 0 (control), 10, 100, or 1000 mg/L of NAs. The 

fluorescence levels of all 2016 wells were measured every 10 min for three hours, 

resulting in a dataset of 18 time points. The entire experiment was performed once 

without any repeat. 
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Data Preprocessing 

The direct estimation of promoter activities from the time-series profile of the 

fluorescence level change contains high levels of noise (Aichaoui et al., 2012). Therefore, 

a series of pre-processing procedures need to be done to remove noise. First, raw GFP 

readings were divided by the OD values measured before treatment. OD values reflected 

the population density of E. coli cells in a well before initiation of a treatment. Because 

the number of cells in each well might be different due to cell growth, by dividing GFP 

with OD, we got a preliminary value that reflected the activity of our target genes. Then, 

the result matrix was smoothed by calculating the moving average of every neighboring 

three time points. A possible low level of auto-fluorescence of E. coli might bring some 

background noise. To eliminate this type of background noise, the GFP expression 

produced by the eight promoterless plasmid values were averaged (two promoterless 

plasmids at four treatments) and subtracted from the values of each gene at the 

corresponding time point in both experimental and control tests. 

Because the promoter activity of each gene might be different at the onset of the 

experiment, the values of the same gene at time point one in four treatments were 

averaged, and the differences between the averages and each of the 4 values were 

calculated. Then, the differences were subtracted from the values of each gene at all of 

the subsequent time points to eliminate the internal measurement noise. In order to filter 

the system noise, any value was set to zero if it was less than twice the amount of the 

standard deviation of the aforementioned processed promoterless values. 
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If (GFP-GFP(promoter-less average)) > 2 x STDEV then  

GFPgene = (GFP-GFP(promoter-less average));  

If (GFP-GFP(promoter-less average)) ≤2 x STDEV then  

GFPgene = 0;  

Where STDEV is the standard deviation of GFP readings of the background (cells with 2 

promotorless plasmids). 

Identification of Differentially Expressed Genes 

DE genes are often sought in genomic studies as they are potential candidates of 

biomarkers. Different from studies where gene expression is measured at a single time 

point, time-series experiments have two types of DE genes: Type I: active genes that 

display a differential expression within the same treatment across different time points 

over the entire course of an experiment, and Type II: DE genes whose expression vary 

significantly between different treatments at any given time point. In this study, we 

identified the first type of DE genes (active genes) using a one-sample Gaussian Process 

(GP) regression method developed by (Kalaitzis & Lawrence, 2011). In the GP 

regression model, the continuous trajectory estimation of a gene expression was treated 

as an interpolation problem on functions of one dimension, given the observations (gene 

expression time-series). Subsequently, the differential expression of the gene’s profile 

was assigned a marginal log-likelihood ratio by which it was ranked. In the ranking list, 

the wells with no E. coli cells (empty wells) served as cut-off points. Those genes that 

ranked higher than the highest ranked empty wells in any of the four treatments were 

included in the active gene list. 
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The second type of DE genes were identified in the previous study (Zhang et al., 

2011) by applying a linear regression model and a cutoff of 1.5-fold change in gene 

expression at one or more time points between the control and at least one of the three 

concentrations. These two types of DE genes were pooled together to form the final list 

of DE genes. 

Reconstruction of GRNs 

The Bayesian Learning and Optimization Model (BLOM) is used to reconstruct a 

network of interactions between the identified DE genes for each of the four treatments. 

BLOM is based on the state space model with hidden variables and an expectation-

maximization algorithm to estimate model parameters (Li, 2009; Wu et al., 2011). Pre-

processed expression profiles of the identified DE genes were used as the input for 

BLOM. Like other reverse engineering models such as Dynamic Bayesian Network 

(DBN) (Zou & Conzen, 2005) and Probabilistic Boolean Network (PBN) (Dorigo, 1994), 

the outcome of BLOM-reconstructed networks is an N × N matrix with N being the 

number of nodes/genes. Each entry of the matrix represents an edge (interaction) between 

two genes. The connectivity is expressed as confidence level in the form of direction 

(inward, outward and self-to-self), action type (stimulatory if a positive confidence level 

value, or inhibitive if a negative confidence level value) and strength (absolute 

confidence value). The reconstructed networks were visualized using Cytoscape v.2.8.3 

(Smoot, Ono, Ruscheinski, Wang, & Ideker, 2011). 

Inference of Differential Edges to Build Differential Networks 

The reconstructed GRNs of all three chemical treatments (low, mid and high 

concentrations of NAs) were compared pair-wise with that of the control to derive 
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differential edges, i.e., edges lost or gained from the control to the chemically treated. 

From the comparison, the following statistics were obtained for each DE gene: total 

number of edges in each of the four networks, number of gained or lost edges in the 

treatment networks, and the percentage of edges changed in the treatment networks. Lost 

edges are those present in the control network but absent in the low, mid, or high 

concentration network, whereas gained edges are those absent in the control network but 

present in the chemical treatment network. The following formula was used to calculate 

the percentage of edges changed as a result of chemical exposure: (number of gained 

edges + number of lost edges) / (total number of edges in both the control and the 

exposure networks). The changed edges (lost or gained) of all involved DE genes were 

used to construct differential networks for the three chemical treatments.  

Functional Annotation and Pathway Mapping of Altered Genes 

Gene Ontology (GO) terms provide information on molecular function, biological 

processes and cellular component of a gene product. One gene may have multiple GO 

terms associated with it. The GO tool at www.ecogene.org was used to assign GO terms 

to the genes of interest (e.g., altered genes). For pathway mapping, we searched the 

EcoCyc (Karp, Riley et al., 2002), KEGG pathway (Altman, Travers, Kothari, Caspi, & 

Karp, 2013) and RegulonDB (Salgado et al., 2013) databases. The Pathway Tools 

software v.15.5 (Karp, Paley, & Romero, 2002) was used to extract pathway mapping 

information from the Ecocyc database. 

The EcoCyc database is one of the two tier-1 databases of BioCyc project (Paley 

et al., 2012). It stores literature-based curation of approximately 4490 E. coli genes and of 

E. coli transcriptional regulation, transporters, and over 360 metabolic pathways (Paley et 
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al., 2012). EcoCyc provides several web-based visualization tools to aid the analysis of 

omics data. One of its web-based tools, “Cellular Overview”, was used to map active 

genes onto the full pathway map of E. coli stored in EcoCyc. Figure 4 shows the sub-

network that was extracted by Pathway Tools after the selection of 43 genes based on my 

DE gene list. 

Figure 4. A sub-network of the global regulatory network extracted by Pathway Tools 

using the layered layout. This sub-network was obtained by uploading a list of 176 genes 

identified as active genes. The top row is the transcriptional factors that regulates other 

genes but are not regulated by any genes. The bottom row is those genes that do not 

regulate any genes. The middle two rows are the genes that are both regulators and 

regulatees. 

The software package “Pathway Tools” was also developed by EcoCyc team. It 

provides capabilities that go well beyond the web version of EcoCyc. As of May 2013, a 

global GRN with over 3600 genes and over 8500 regulation relationships is stored in 

“Pathway Tools” and is still being actively updated by researchers from all over the 

world. Using Pathway Tools, a sub-network that contains our active genes was extracted 

from this global GRN (Figure 4).  

The above sub-network was later employed as a benchmark network with which 

the reconstructed GRNs by BLOM are compared. The reason why there are only 43 
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genes in the extracted network is that many of our 176 active genes have records in 

EcoCyc but do not exist in the global GRN in Pathway Tools, which means the regulation 

relationships of these remaining genes are still waiting to be uncovered.  

DE Genes Identified 

Each gene was assigned a log likelihood score by the Gaussian Process one-

sample algorithm by which the genes are ranked. The 106 wells with no E. coli cells 

(empty wells) in the ranked list were used to set the cut-off level at the highest ranked 

empty well. As a result, 47, 11, 45, and 101 genes were found with assigned scores 

higher than the cut-off point and therefore identified as active genes (Type I DE genes) 

under the control, low, mid, and high concentrations of NAs exposure, respectively, - a 

total of 111 unique genes. These 111 genes were further pooled together with a group of 

85 genes identified by applying linear regression filtering and larger than a 1.5 fold 

change of the values in the experimental condition versus the values of the same gene in 

the control condition (Zhang et al., 2011). This resulted in a final list of 176 unique DE 

genes, with 20 genes appearing in both Type I and Type II DE gene lists.  

Among our 176 active genes, 128 genes were found in the 3655-gene global 

network in the EcoCyc database (Paley et al., 2012), among which 43 genes are non-

standalone genes which have 58 edges with each other. This GRN is visualized in 

Cytoscape as shown in Figure 5. From their annotation information, two genes, GadW 

and GadX, which were significantly altered in all 3 treatments, are related to acid 

resistance. The change of their expression potentially triggered the acid response 

mechanism of the bacteria after their exposure to NAs. 
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Figure 5. The GRN of the overlap of the 176 active genes and the gene list of the EcoCyc 

global network. 

Pathway Mapping 

As of June 2013, 995 genes out of 4490 E. coli genes have pathway information 

in EcoCyc (Paley et al., 2012). Therefore, only 37 out of our 176 genes were successfully 

mapped to the global pathway map as shown in Figure 6. Because a single gene can 

appear in multiple pathways, 78 pathways were mapped. Each node in the map represents 

a metabolite which participates in the reaction and each edge represents the enzyme that 

catalyzes this reaction. Therefore, most of our genes were mapped onto the edges because 

the protein products of these genes act as enzymes of the mapped metabolic reactions. 

The protein products of some of our genes were mapped to nodes because they act as 

reactants in metabolic reactions. Those genes that are located on the border of the map 

participate in the trans-membrane activities. The right side of the map shows standalone 

reactions that do not belong to any pathways and 19 of the 176 active genes that belong 

to no pathway were mapped to them. 
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Figure 6. Genes that are mapped to the overall pathway map provided by EcoCyc 

database. Each node is a reactant and each edge is an enzyme. The shaded chains on the 

left of the map are metabolic pathways while the rest chains are standalone biochemical 

reactions. A total of thirty-seven genes among the 176 active genes are mapped to 

pathways while another nineteen genes among the 176 active gens are mapped to 

standalone reactions. 

Reconstructed GRNs of DE Genes 

Four GRNs of 176 nodes (DE genes) were reconstructed using BLOM, one for 

each treatment. Each network had 30976 (176 × 176) edges, which were ranked by their 

strength (i.e., absolute value of confidence level). Obviously, the ~31K edges are not 

equally important and should not be treated equally. The higher an edge ranks, the more 

likely it actually exists.  

In selecting edges for further analysis, a cut-off level can be set for either the total 

number of top edges per network or the lowest edge strength allowable in a network. The 

latest release of EcoCyc database (v. 17.1 as of June 2013) curated 2232 reactions 

catalyzed by 1500 enzymes that are encoded by 4509 E. coli transcription units (genes), 
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suggesting that the average number of interactions per gene might be very low. We have 

also observed that the total number of edges in a real-world GRN (e.g., KEGG pathways) 

generally does not exceed four times the total number of its nodes (genes). Furthermore, 

we plotted four histograms to show edge strength against edge rank (Figure 7).  

 

 

Figure 7. Histograms of edge strength (absolute values of BLOM-inferred confidence 

level) distribution for 30976 edges (gene connectivity) in four 176-node networks. All 

edges in each network are sorted by their strength and shown on the X-axis in a 

descending order. Also shown is the strength of the 704th and the lowest ranked edges. 

In the four reconstructed networks, the top ranked 704 edges (4 × 176, or 2% of 

all possible edges) accounted for ~30% of the total strength of all ~31K edges, and the 

edge strength declined by 94% from the first ranked edge to the 704th edge (Table 4). 

Therefore, we selected the top 704 edges per network for further differential edges 

inference and differential network construction. 
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Table 4 

Percentage of the Strength of Select Edge over That of the Top Edge in the Reconstructed 

GRN of High Concentration 

 Edge strength Percentage of select edges over top edge 

Top edge 0.5878 100% 

704th edge 0.0228 3.9% 

2000th edge 0.0109 1.9% 

6000th edge 0.0042 0.7% 

 

Differential Edges and Differential Networks 

As a result of GRN reconstruction in BLOM, both the four 704-edge 

reconstructed networks and the three differential networks are presented in Figure 8. The 

four reconstructed networks have 96 (control), 87 (low), 82 (mid), and 99 (high) 

interconnected nodes/genes, with a total of 117 non-redundant DE genes appearing in 

these networks. The differential networks were made up of differential edges, i.e., lost 

and gained edges from the control to a chemical treatment. The number of lost or gained 

edges were 246 (35% of 704 edges), 299 (42%), and 365 (52%) for the low, mid and high 

concentration networks, respectively, suggesting a dose-dependence for differential edges. 

By applying an arbitrary cut-off of 4 differential edges per gene in any one of the 

differential networks, we removed 37 additional genes and kept the 80 remaining genes 

for further downstream analysis. 
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Figure 8. Differential networks (DNs) obtained by comparing pair-wise the networks 

reconstructed for three chemical treatments with those for the control treatment. 
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Each of the four reconstructed networks contains 704 edges. In the DNs, red lines 

represent gained edges (edges absent in the control network but present in the chemical 

treatment network), whereas blue lines represent lost edges (edges present in the control 

network but absent in the chemical treatment network). 

Linking Pathway Alteration to Toxicity Threshold 

The 80 genes possessing a significant number of differential edges were mapped 

to biological pathways curated in KEGG and EcoCyc databases as well as to GO terms. 

All but 38 genes were mapped to 35 KEGG pathways. To link pathway alterations to 

toxicity thresholds, we defined the pathway perturbation degree as the average percentage 

of edge change per gene for all DE genes involved in any particular KEGG pathway at 

each exposure concentration (Table 5). 

The limited number of concentrations that E. coli cells were exposed to and the 

lack of independent treatment replications in the current study prevented a statistical 

approach to deriving toxicity thresholds from pathway perturbation degrees. Therefore, 

for purposes of proof of concept, we turned to establish a simplified causal relationship 

between concentration and pathway perturbation, which was defined as the perturbation 

degree at the high concentration being higher than that at both the mid and the low 

concentrations. Twenty-two perturbed pathways met this definition (Table 5).  
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Table 5 

The degree of pathway perturbation as related to the exposure concentration of 

naphthenic acids (NAs). Twenty-two KEGG pathways were identified as being altered in 

a concentration-dependent manner by exposure to NAs (low = 10 mg/l, mid = 100 mg/l, 

high = 1000 mg/l). The perturbation degree was defined as the average percentage edge 

change per gene for all genes involved in a particular pathway, and concentration-

dependence was defined as high > mid and high > low in perturbation degree. The 

perturbation degree is expressed in decimals instead of percentages. 

KEGG pathway name (entry) low mid high 
Involved genes (total 

number) 

Ribosome (eco03010) 0.32 0.40 0.45 rplN, rplY, rpmB, rpsB, 

rpsJ, rpsL, rpsM, rpsO, 

rpsP, rpsT, rpsU, rrnA, 

rrnB, rrnC, rrnD, rrnH (16) 

Metabolic pathways (eco01100) 0.45 0.42 0.69 aceB, acnB, aspA, gatY, 

ilvC, lpxC, manX, ribB, 

rpiA, serC (10) 

Microbial metabolism in diverse 

environments (eco01120) 
0.59 0.45 0.78 aceB, acnB, manX, rpiA, 

serC (5) 

Biosynthesis of amino acids 

(eco01230) 
0.55 0.38 0.95 acnB, ilvC, rpiA, serC (4) 

Biosynthesis of secondary metabolites 

(eco01110) 
0.55 0.63 0.95 acnB, ilvC, rpiA, yfbE (4) 

Amino sugar and nucleotide sugar 

metabolism (eco00520) 
0.61 0.52 0.79 manX, ptsG, yfbE (3) 

2-Oxocarboxylic acid metabolism 

(eco01210) 
0.10 0.25 1.00 acnB, ilvC (2) 

Aminoacyl-tRNA biosynthesis 

(eco00970) 
0.71 0.67 1.00 ileX, tyrS (2) 

Glycerophospholipid metabolism 

(eco00564) 
0.39 0.37 0.76 glpA, glpD (2) 

Glyoxylate and dicarboxylate 

metabolism (eco00630) 
0.30 0.49 0.79 aceB, acnB (2) 

Nitrogen metabolism (eco00910) 0.68 0.73 0.80 aspA, yadF (2) 

Phosphotransferase system (PTS) 

(eco02060) 
0.41 0.37 0.62 ptsG, treB (2) 

ABC transporters (eco02010) 0.48 0.50 0.67 oppA (1) 
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Table 5 (continued). 

KEGG pathway name (entry) low mid high 

Involved 

genes (total 

number) 

Citrate cycle (TCA cycle) (eco00020) 0.20 0.50 1.00 acnB (1) 

Fructose and mannose metabolism (eco00051) 0.33 0.24 0.52 manX (1) 

Glycolysis / Gluconeogenesis (eco00010) 0.50 0.33 0.83 ptsG (1) 

Lipopolysaccharide biosynthesis (eco00540) 0.17 0.38 0.73 lpxC (1) 

Oxidative phosphorylation (eco00190) 0.00 0.00 1.00 ppa (1) 

Pantothenate and CoA biosynthesis (eco00770) 0.00 0.00 1.00 ilvC (1) 

Propanoate metabolism (eco00640) 0.20 0.50 1.00 acnB (1) 

Pyruvate metabolism (eco00620) 0.41 0.49 0.59 aceB (1) 

Valine, leucine & isoleucine biosynthesis (eco00290) 0.00 0.00 1.00 ilvC (1) 

 

These pathways varied substantially in the number of identified DE genes, from 

one gene in pyruvate metabolism pathway to 16 genes in ribosome pathway (Figure 9). 

The perturbation degree varied from 0 (i.e., no edge change of the DE genes at all, such 

as oxidative phosphorylation at both low and mid concentrations) to 1 (i.e., all edges of 

the DE genes have changed, such as propanoate metabolism at the highest concentration).  
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Figure 9. The KEGG pathway with the largest number of perturbed genes– Ribosome 

pathway. Sixteen genes were perturbed (marked in red) in this pathway. Perturbation 

degree was determined as the average percentage edge change per gene for all genes 

involved in a particular pathway as shown in Table 5. (Source from 

http://www.genome.jp/kegg-bin/show_pathway?ko03010). 
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Even at the low NAs concentration, some of the pathways were altered to a 

degree of 50% to 70%, including biosynthesis of amino acids, secondary metabolites, and 

aminoacyl-tRNA, as well as nitrogen, amino sugar and nucleotide sugar metabolism 

(Table 5).  

While compensatory responses in metabolism or biosynthesis may occur at low 

chemical concentrations, this suggests that pathway perturbations can be a sensitive 

endpoint for toxicity if additional evidence links the perturbed pathways to adverse 

outcomes at the physiological, organismal or population level. A more refined toxicity 

threshold could be derived using regression approaches such as a benchmark dose 

method if more concentrations were tested in addition to more replications per treatment. 
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CHAPTER IV 

GRN RECONSTRUCTION FROM MICROARRAY DATA 

The etiology of chemically-induced neurotoxicity like seizures is currently not 

very well understood. Using reversible neurotoxicity induced by two neurotoxicants 

(carbaryl and RDX) as an example, this study applies the DN approach introduced in 

Chapter III to analyze time-series microarray gene expression data and uncover the 

underlying molecular mechanism. The DN approach used in this chapter is more complex 

because earthworm, unlike E.coli, is not a model organism and therefore could not be 

mapped directly to KEGG pathways. RefNetBuilder was thus employed to map 

earthworm genes to their counterparts on reference KEGG pathways (Li, Gong, Perkins, 

Zhang, & Wang, 2011). The results from this study reinforce previous findings that 

cholinergic and GABAergic synapse pathways are the target of carbaryl and RDX, 

respectively. We also conclude that perturbations to these pathways by sublethal 

concentrations of RDX and carbaryl were temporary, and earthworms showed certain 

restoration of regulation relationships in the GRNs of the 7-day recovery phase. In 

addition, our study indicates that many pathways other than those related to synaptic and 

neuronal activities were altered during the 6-day exposure phase. 

Background 

As a maturing genomics technology, microarray has been used successfully in 

discovering disease- or toxicity-related biomarker genes from gene expression profiling 

mostly at a single time point. However, like disease inception and progression, 

organismal response to toxicants is a complicated, dynamic process, whose underlying 

mechanism may be fully uncovered by capturing temporal changes in molecular 
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interactions within perturbed pathways. Using a case study as an example, this chapter 

demonstrates that pathway perturbations can be inferred using reverse engineering 

techniques from time-series gene expression data.  

In the case study, a microarray gene expression data set was collected at 31 time 

points from earthworms (Eisenia fetida) which received three different treatments 

(control, RDX - an explosives compound named hexahydro-1,3,5-trinitro-1,3,5-triazine, 

and carbaryl - a carbamate pesticide) and such previous studies have shown that exposure 

to sublethal concentrations of RDX or carbaryl led to reversible neurotoxicity in the 

earthworm (Gong, Inouye, & Perkins, 2007). The objective of the current study is to 

identify the mechanism of chemical-induced reversible neurotoxicity through 

reconstruction of perturbed KEGG (Kyoto Encyclopedia of Genes and Genomes) 

pathways. 

Earthworm Microarray Data Set 

A species-specific microarray developed for Eisenia fetida (Gong, Pirooznia, 

Guan, & Perkins, 2010) was used. For the convenience of data processing and result 

analysis, some details of this experiment are introduced in this section. This oligo array 

contains 43,803 non-redundant 60-mer probes. A synchronized earthworm culture 

(starting from cocoons) was created and mature worms bearing clitellum and weighing 

0.4~0.6 g were chosen for this experiment. Each worm was transferred from artificial 

soil-based bedding (culture) and housed in an individual glass vial (115 mL in volume). 

These worms were exposed to carbaryl (20 ng/cm
2
), RDX (2 µg/cm

2
) or acetone (solvent 

control, evaporated overnight) on moistened filter paper lined up inside the vial. These 

chemical concentrations were selected because they did not cause lethality in preliminary 
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tests. The entire experiment was divided into three phases: acclimation (4 days), exposure 

(6 days), and recovery (7 days). The acclimation (A) phase was necessary for the worms 

to adapt from soil culture to filter paper, and four samplings were taken to establish the 

“background” baseline under the control condition. Worms were sampled at 13 and 14 

time points for all three treatments (control, RDX and carbaryl) during the exposure (E) 

phase and the recovery (R) phase, respectively. 

Sampled worms were measured for conduction velocity of the medial giant nerve 

fiber (MGF) before being sacrificed by snap-freezing in liquid nitrogen. All yet-to-be-

sampled worms were transferred to new vials at the beginning of the next phase. For 

instance, at the end of exposure phase, all remaining worms were transferred from 

exposure vials (containing spiked filter paper) to recovery vials (containing non-spiked 

clean filter paper). Sampled worms were fixed in RNAlater-ICE to preserve RNA 

integrity at -80°C. 

Total RNA were extracted from at least 5 worms per time point per treatment. 

RNA samples were hybridized to the custom-designed 44K-oligo array (one sample per 

array) using Agilent’s one-color Low RNA Input Linear Amplification Kit. The array 

design was submitted as GPL16366 in Gene Expression Omnibus (GEO). After 

hybridization and scanning, gene expression data was acquired using Agilent’s Feature 

Extraction Software (v.9.1.3). A total of 437 good quality arrays were used. 

Data Preprocessing 

The result data set from a microarray experiment needs to be preprocessed prior 

to the analysis and interpretation of the results, which includes taking the logarithm of the 

raw intensity values, flagging bad spots, and handling missing values. Preprocessing is a 
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step that extracts or enhances meaningful data characteristics and prepares the dataset for 

the application of data analysis methods. In this study, the following data pre-treatment 

steps were applied prior to further statistical and computational analyses: (1) feature 

filtering: flag out spots with signal intensity outside the linear range as well as non-

uniform spots; (2) conversion: convert signal intensity into relative RNA concentration 

based on the linear standard curve of spike-in RNAs; (3) normalization: normalize the 

relative RNA concentration to the median value on each array; and (4) gene filtering: 

filter out genes appearing in less than 50% of arrays (i.e., present on at least 219 arrays). 

There were more than 43,000 genes remaining after this procedure. Figure 10 shows the 

expression profile and the 95% confidence intervals of an example gene after 

preprocessing. 
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Figure 10. Expression profiles of the earthworm gene “TA1-181564” across 31 time 

points in both control (black) and RDX (green). The vertical bar stands for the confidence 

interval of the expression values at the corresponding time point. 

Statistical Inference of Differentially Expressed Genes 

DE genes at each time point were identified using the “Class Comparison 

Between Groups of Arrays Tool” in BRB-ArrayTools v.3.8 software package. The 

collated earthworm array data set was imported without any further normalization or 

transformation. The tool runs a random variance version of the t-test separately for each 

gene. It performs random permutations of the class labels and computes the proportion of 

the random permutations that give as many genes significant at the level set by the user as 

found in comparing the true class labels. The following two comparisons were conducted 

to infer genes differentially expressed in response to carbaryl or RDX: controls vs. 

carbaryl and controls vs. RDX. The following settings were employed: a univariate test 



51 

 

 

 

random variance model, multivariate permutation tests with 10,000 random permutations, 

a confidence level of false discovery rate assessment at 90%, and a maximum allowed 

number of false-positive genes = 10. 

Active genes that exhibited altered longitudinal expression profiles by chemical 

treatment over the time course were ranked using two algorithms, a multivariate 

empirical Bayes model implemented in the R software package named “Timecourse” 

(Tai & Speed, 2006) and a Gaussian Process based two-sample (GP2S) test (Stegle et al., 

2010). Because this algorithm requires a universal number of replicates and the 

earthworm data set contains different number of replicates at different time points, a 

certain number of replicates were removed to keep 5 replicates across all time points. 

After correlation of replicates were calculated, the replicate or replicates with the lowest 

correlation coefficient were removed from the data set. The collated earthworm array 

dataset was used as the input for both Timecourse and GP2S algorithms. 

A cut-off rank equal to twice the number of DE genes was set (Windram et al., 

2012). The top ranked genes above the cut-off rank by the two algorithms was intersected. 

Then the intersection gene list was combined with the DE genes generating the final gene 

list for downstream analysis. 

Comparison of DE Gene Identification Algorithms 

Both Stegle’s GP2S algorithm and Lawrence’s method (used in Chapter III) are 

based on the Gaussian Process Regression model. This model was established following 

Gaussian Process (y|x~GP(y; m(x), Ky(xi,xj))) and a Gaussian process is a collection of 

random variables, any finite number of which has a joint Gaussian distribution. The 

Lawrence method used the Gaussian process model to fit time-series data from 
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microarray and establish a likelihood ratio test to rank differentially-expressed genes. 

Linear regression model is the easiest and the most widely used regression model, which 

is normally the foundation of other types of models. We begin with linear regression 

model by giving the definition 

(x) x w   y (x)Tf f     

Where x is the input vector (for our time series data, x is the vector of time), w is 

a vector of parameters of the model, f is the function value and y is the observed target 

value (gene expression value in our case). By assuming the noise follows Gaussian 

distribution with zero mean and variance 
2

n  and parameters follows Gaussian 

distribution with zero mean and variance 
2

w , we have  

2~ (0, )nN 
 

2~ (0, )ww N 
 

The marginal likelihood function can be derived. Since it is jointly Gaussian, we 

have 

(y|x) ~ (0, )yp N K
 

where Ky is the variance (covariance) matrix. Then we have: 

1

1

2 2
y

1 1
(y | x) exp( (y ) (y )),

2
(2 ) | |

or   y|x  ~  (y; ( ), ( , ))
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p m K m

K
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where the mean function and covariance function are 

( ) ( ) ,

( , ) ( ( ) ( ))( ( ) ( ))f i j i i j j

m x f x

K x x f x m x f x m x
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This assumption can be derived when the model is a linear model. The Bayesian 

linear model assumes that the noise and parameters follow Gaussian distribution and the 

parameters are seen as the prior. Then based on Bayes’ rule, marginal likelihood function 

can be derived. 

Next step, the model chooses an appropriate covariance matrix Ky. No matter 

what covariance matrix is used, it must meet two requirements - Kolmogorov consistency 

and exchangeability. Kolmogorov consistency is the technical restriction on covariance 

function which means it must be positive semi-definite, that is, y y 0T K  . It also needs to 

satisfy Stationary Gaussian Process, that is, 1 1
( ,..., ) ( ,..., )

k kX t t X t tF x x F x x   
. The 

function    remains the same when the input vector has a shift. 

The Lawrence method choses to use the most commonly-used kernel function, 

Squared-exponential kernel (SE), to calculate the variance/covariance matrix Ky. Log-

marginal likelihood ln p(y|x, θ) can be derived as below. 

2

2 2

2

( )
( , ) exp( )

2

i j

y i j f n ij

x x
K x x

l
  


  

 

Where 
2

f
 is the signal variance, 

2l  is the characteristic length-scale and ij is the 

Kronecker delta function. These three parameters are also called hyperparameters. Based 

on all the derivations above, we can obtain a log-marginal likelihood. 

1

y y

1 1
ln (y | x, ) y y- ln | | ln 2

2 2 2

T n
p K K   

 

The analysis of one-sample data which only involves one sequence uses a simpler 

approach rather than the full Bayes factor to rank the differentially expressed genes. 

2

1
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ln( )

(y | x,
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In the above log-ratio of marginal likelihood function, 1  and 2  

(
2 2 2( , , )T

f nl   ) are two hyperparameters based on two different hypotheses H1 and H2. 

On hypothesis H1, Lawrence method assumes that there is no underlying signal of the 

gene profile, which means the gene profile is purely noise. Based on this assumption, 

hyperparameters can be determined with 1 ( ,0,var(y))T   . 

2l   indicates that the gene expression values of any two time points are 

irrelevant. Since all the gene expression are treated as noise, signal variance 
2 0f   and 

noise variance 
2

n  can be decided by the gene profile, that is 
2 var(y)f  . While on 

hypothesis H2, Lawrence assumes that there is an underlying signal in the gene profile 

with no noise. Hyperparameter 2  can be initialized with 
2

2 ( , var(y),0)Tl   , in which 

2l  can be fixed with any reasonable value to represent any two relevant time point 

distance, 
2

f  is the variance of one gene expression profile and 
2 0n   since there is no 

noise.  

Alternatively, in Stegle’s method, the log-marginal likelihood is c tln (y , y | x, )p  , 

where yc is the gene expression value of the control sequence and yt is the gene 

expression value of treatment sequence. The log-marginal likelihood thus can be divided 

into two sequences: 

c t c tln (y , y | x, ) ln (y | x, ) ln (y | x, )c tp p p     

where c  and t  represent the hyperparameters for the two profiles of the input data, 

respectively. And c and t are short for “control” and “treatment”, respectively. 
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Stegle’s method deals with two hypotheses: null hypothesis and alternative 

hypothesis, namely  H0 and H1. H0 means no difference between control and treatment 

gene expression value; H1 means the profile differentially expressed on treatment group.  

When the model is under the hypothesis H0,  c t  . If the model is under H1, 

there is no requirement about theta; they can be the same or different. Therefore, the 

likelihood ratio reflects how likely the profile could be differentially expressed.  

Mapping DE or Active Genes to KEGG Pathways 

The combined DE and active genes were annotated using Blast2GO to remove 

genes with an E-value > 10
-3

 (Götz et al., 2008). The Blast2GO-filtered genes were then 

mapped to KEGG pathways using RefNetBuilder previously developed by our lab (Li et 

al., 2011). The mapped KEGG pathways were ranked by the enrichment rate as 

determined by the percentage of the carbaryl- or RDX-affected GOIs in the total number 

of KEGG genes for each specific mapped pathway. Figure 11 shows GABAergic synapse 

pathways, one of the top 50 KEGG pathways enriched with carbaryl- or RDX-affected 

genes. Sixteen KOIDs were mapped to 15 nodes on the pathway. Multiple earthworm 

genes might be mapped to the same KEGG node. For instance, four or five earthworm 

genes were mapped to the KEGG gene “Gi/o” in the GRNs in Figure 16.  
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Figure 11. Mapped genes on GABAergic synapse pathway on KEGG. 

Bayesian Learning and Optimization Model 

The temporal expression data of genes mapped to 10 selected KEGG pathways 

were collated and used to reconstruct GRNs using the Bayesian Learning and 

Optimization model developed by the Computational Biology and Bioinformatics 

Laboratory (CBBL) at the University of Southern Mississippi for reconstruction and 

analysis of gene regulatory networks from time series gene expression data (Wu et al., 

2011). Kalman Filter and Kalman Smoother were employed by BLOM to calculate gene 

interaction matrix. 

Using the mapped DE or active genes from the above section as the input for 

BLOM, the reconstructed networks of all three treatments were then compared with the 

mapped KEGG pathway to infer differential networks (Yang, Maxwell et al., 2013). 
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Directed graphs were generated to show differential networks using open-source 

visualization tools Cytoscape and NodeXL (http://nodexl.codeplex.com). The perturbed 

gene interactions can be identified from the differential reconstructed gene networks. 

Identification of Pathway Perturbations 

Reversible neurotoxicity as measured by electrophysiological recording 

No mortality occurred throughout the whole experiment. Conduction velocity of 

MGF suggests significant alteration during exposure to both RDX and carbaryl (Figure 

12). At the end of the recovery phase, MGF’s function was fully restored in all treatments. 

These results indicate the chosen concentration of both chemicals caused reversible 

neurotoxicity in earthworms. 

Identification of significantly altered genes and pathways 

The numbers of significantly altered genes at 27 time points for 2 treatments, as 

shown in Figure 13, suggest a reversible toxicity response of exposed earthworm to both 

chemicals. These results are in good agreement with the physiological response measured 

by MGF conduction velocity (Figure 12). 
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Figure 12. Effect of carbaryl or RDX exposure and recovery on earthworm MGF 

conduction velocity at 31 sampling time points over the course of 17 days. (Yang, 

Maxwell et al., 2013). 
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Figure 13. Number of DE genes identified at each individual sampling time point and the 

sum for the exposure (E01-13) and recovery (R01-14) phases. 

None of the genes are differentially expressed at more than four time points in 

RDX-treated earthworms or more than two time points in carbaryl-treated earthworms 

(Figure 14). There were 1810 DE genes commonly affected by both chemical treatments. 

The intersections of top active genes ranked by Timecourse and GP2S are 737 and 4015 

genes for carbaryl exposure and RDX exposure, respectively. There were no overlapping 

top-ranked active genes for carbaryl recovery and RDX recovery. The DE genes are 

combined with the overlap of top-ranked active genes to produce a list of genes of 

interest (GOIs) that amounted to 10715 unique genes (14099 with redundancy). 
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Figure 14. The frequency of differential expression of identified differentially expressed 

(DE) genes across 27 time points of exposure and recovery phases. 

Blast2GO annotation of the 43803 probe-targeted transcripts reveals that 7423 

(17%) have meaningful putative biological functions. Among these annotated transcripts, 

2169 belong to GOIs (20% of 10715) with 734 genes being carbaryl-affected and 1941 

RDX-affected. RefNetBuilder (Li et al., 2011) further mapped the 7423 annotated genes 

to 2529 KEGG genes in 224 pathways. Multiple earthworm genes might be mapped to 

the same KEGG node. For instance, four or five earthworm genes were mapped to the 

KEGG gene “Gi/o” shown in Figure 16. Among the mapped pathways, 169 were affected 

by carbaryl and 203 affected by RDX. The top 50 GOIs-enriched pathways (Figure 15) 

contain 8~27% and 19~47% KEGG genes mapped by carbaryl- and RDX-affected GOIs, 

respectively.  
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Figure 15. The top 50 KEGG pathways enriched with carbaryl- or RDX-affected genes.  
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A wide range of pathways have been affected by the two chemicals. They vary 

from olfactory transduction and Parkinson’s disease to oocyte meiosis and axon guidance. 

Of the 10 nervous system-related pathways (koID: ko04720 to ko04730), long-term 

depression, dopaminergic synapse and glutaminergic synapse appear in the list of top 50 

GOIs-enriched pathways affected by carbaryl, neurotrophin signaling is one of the top 50 

pathways affected by RDX, and long-term potentiation is among the top 50 pathways 

affected by both RDX and carbaryl.  

Differential reconstructed network to infer pathway perturbation 

Expression data of earthworm genes mapped to the top GOI-enriched 

neurological pathways were used to reconstruct GRNs using BLOM model for three 

treatments and two phases. The number of edges in each of the six reconstructed 

networks was set to be the number of interactions between mapped genes existing in the 

canonical KEGG pathway. Using the DN approach detailed in Chapter III, differential 

edges, i.e., edges lost or gained from the control to the treated, were inferred from 

reconstructed networks and were used to construct differential networks. 
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Figure 16. Differential networks (DNs) of the GABAergic synapse pathway consisting of 

differential edges inferred from pair-wise comparison of reconstructed GRNs between the 

control and RDX- or carbaryl-exposed earthworms. In the DNs, solid lines represent 

gained edges (edges absent in the control networks but present in carbaryl or RDX 

networks), whereas dashed lines represent lost edges (edges present in the control 

network but absent in carbaryl or RDX networks). Arrows indicate direction of gene 

regulation, while stars indicate identified GOIs. VGCC: voltage-dependent calcium 

channel, Gi/o: guanine nucleotide-binding protein, AC: adenylate cyclase, GABARAP: 

GABAA receptor-associated protein. 

A set of four differential networks derived for the GABAergic synapse pathway 

(Figure 16) show what gene interactions were altered by chemical treatments during the 

exposure phase and how some of the edges were later restored in the recovery phase 

(when the chemical was removed from the earthworms). 

Pathway Perturbations  

Although DE genes identified at a single time point are good candidates of 

biomarkers, they provide little interactive and dynamic information about multiple genes 
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involved in a pathway that are required to jointly carry out biological functions. A 

plausible solution is to collect temporal gene expression profiles, reconstruct GRNs from 

the time-series data, and infer differential gene interactions for select pathways by 

comparing reconstructed networks between the control and the treated. 

Using a bioinformatics-guided reverse engineering approach, we have inferred 

differential GRNs that provide a close-up look of what interactions in an affected 

pathway might be perturbed. This study reinforces previous findings that cholinergic and 

GABAergic synapse pathways are the targets of carbaryl and RDX, respectively. RDX 

has been shown binding to the GABAA receptor convulsant site, and blocking GABAA 

receptor-mediated currents and causing seizures (Williams et al., 2011); carbaryl causes 

hyperstimulation of cholinergic receptors and an increase in excitatory neurotransmission 

(Jett, 2012). Several probes designed to target earthworm transcripts that putatively code 

for GABA receptors and cholinesterase were identified as GOIs (Yang, Li et al., 2013). 

However, cholinergic and GABAergic synapse pathways ranked in the 80s by enrichment 

analysis for both RDX and carbaryl, suggesting the existence of other targets. 

Our results also indicate that perturbations to various pathways by sublethal 

concentrations of two neurotoxic chemicals were transient and recoverable. Many 

pathways other than the cholinergic and GABAergic synapse were altered during the 

exposure phase. Olfactory transduction and ECM-receptor interaction are the top two 

potential targets affected by RDX and carbaryl. They both warrant further in-depth 

investigations. 

With the low meaningful annotation rates of the earthworm array (20%) and 

affected genes (17%), what we have discovered in the current study might have just been 
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the tip of an iceberg. A completely sequenced and annotated earthworm genome can 

empower the approach pursued in this study and will also aid future research. 
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CHAPTER V 

DEVELOPMENT OF WEB-BLOM 

Due to the complexity of mathematical models for GRN reconstruction, and the 

complexity of parameter setting and running commands involved in this process, it is 

time consuming and impractical for biologists to install the software packages on their 

local machines to use the models. Therefore, user-friendly web-based applications that 

can be accessed remotely by users facilitate GRN analysis. Web-BLOM is such a web-

based software tool developed in this dissertation for reconstruction and analysis of gene 

regulatory networks from time-series gene expression data.  

Workflow 

The web site consists of several modular components: a database, GRN 

reconstruction model and a user interface. Figure 17 shows the workflow of this web site. 

The database is used to store user information, the data files uploaded by the users, and 

the results from the reconstruction model. The Bayesian Learning and Optimization 

Model (BLOM) is a model developed by the Computational Biology and Bioinformatics 

Laboratory (CBBL) in School of Computing for gene regulatory network reconstruction 

(Li, 2009; Wu et al., 2011). The BLOM, originally implemented in MATLAB, was 

adopted by the current version of Web-BLOM to provide online reconstruction of large-

scale gene regulatory networks. Compared to other network reconstruction models, 

BLOM is much more computationally efficient.  

Web-BLOM is designed in a three-tier architecture model (Figure 18) and 

implemented in MATLAB and Java. MATLAB Java Builder toolbox can package 

BLOM code into Java archive classes. Since MATLAB functions are wrapped into Java 
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classes and can be used within Java servlets, Web-BLOM is platform independent and 

can run on any standard computer. From the user interface, users can upload their time-

series gene expression data to the server and manage all datasets. If the uploaded files 

pass an examination of the accepted size and file types, the users can search gene names 

in the uploaded file and then select a subset of genes. Then, the user interface remotely 

activates the BLOM that runs on a dedicated server. After Web-BLOM completes the 

submitted tasks, it generates a matrix of confidence values that can be used for inferring 

the interactions among selected genes.  

 

Figure 17. Workflow of Web-BLOM. 

If users are interested in prioritizing genes for functional screening, they can use 

Web-BLOM to return a list of interacting genes ranked by confidence values. Web-

BLOM integrates feature selection, network reconstruction, and result analysis in an 
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online network environment and it provides a new efficient and convenient software tool 

for reconstruction and analysis of gene regulatory networks. 

Advantages of BLOM for a Web-Based Application 

The limitations of many of the existing computational models to infer gene 

regulatory network lie in that they suffer from high computational complexity. Therefore, 

a lot of web-based applications based on those models, such as miniTUBA (Xiang et al., 

2007), which is based on Dynamic Bayesian Networks, either return the results to users 

by email after computation, or only handle a small network. Compared with other GRN 

reconstruction models such as DBN, BLOM is much more computationally efficient (Li, 

2009). Additionally, the output of BLOM provides more information about gene-gene 

interactions including the types of regulation (inhibition or activation), regulation 

directions (e.g. gene A regulates gene B or gene B regulates gene A) and strength of 

inferred interactions, which can be used as a parameter for ranking and belief 

management. In addition, BLOM can be used to reconstruct large-scale networks (Wu et 

al., 2011). My tests on different platforms showed that Web-BLOM can return the result 

for a 200-gene data set to different browsers in less than one minute (see details in the 

“Performance Test” section of Chapter V). 

System Architecture 

Traditionally, web-based applications have adopted a three-tier architecture where 

three independent layers or tiers, i.e. presentation, logic and data tiers, are configured 

(Kohl, Lotspiech, & Kaplan, 1997). The graphical user interface (GUI) and any other 

component in which a user interacts with the application are handled by the presentation 

tier, while the data tier manages the internal and external storage of application-related 
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data and provides access to it. The logic tier acts as a connector between the other two 

layers, handling their communication and performing any logical processing and analysis 

of data using various computational resources. The three-tier structure is dependent on 

the connectivity existing between all tiers to pass parameters. Web-BLOM adopts this 

traditional three-tier architecture. 

BLOM was originally implemented in MATLAB, which provides a Java Builder 

toolbox to package MATLAB functions into a Jar file. The MATLAB functions wrapped 

in Java classes can be called by Java applications. Java servlet is chosen as the middle tier 

for Web-BLOM (Figure 18). Compared with an older technology, CGI (Common 

Gateway Interface) scripts, Java servlets are much more secure. CGI scripts can 

potentially impose some security issues (Kou & Springsteel, 1997). For example, 

Simultaneous CGI requests cause the script to be copied and loaded into memory as 

many times as there are requests. However, with Java servlets, there is the same amount 

of threads as requests, but there will only be one copy of the servlet class created in 

memory that persists between requests. Only a single instance answers all requests 

concurrently. This reduces memory usage and makes the management of persistent data 

easy (Pursnani, 2001).  
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Figure 18. Three-tier architecture of Web-BLOM. 

Aside from security issues, traditional CGI scripts written in Java, Perl or R have 

a number of disadvantages when it comes to performance. When an HTTP request is 

made, a new process is created for each call of the CGI script. This overhead of process 

creation can be very system-intensive, especially when the script does relatively fast 

operations. Thus, process creation will take more time than CGI script execution. Java 

servlets solve this, as a servlet is not a separate process. Each request to be handled by a 

servlet is handled by a separate Java thread within the Web server process, omitting 

separate process forking by the HTTP daemon. 

A JavaScript library Cytoscape Web (Lopes et al., 2010) is used to visualize the 

gene interaction matrix into a GRN. Cytoscape Web was implemented in Flex and 

ActionScript. Figure 19 shows its architecture which has the advantage of using the Flash 

platform to implement complex and interactive vector images that behave consistently 
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across major browsers, but without requiring the web site to be entirely built with this 

technology. 

 

Figure 19. Architecture of the JavaScript library, Cytoscape Web, which was used by 

Web-BLOM (Lopes, 2010). 

Implementation 

Implementation Environment 

The web-BLOM site was built on two virtual machines created by VMware 

Hypervisor ESXi 4.0 on a Dell PowerEdge M905 physical server in School of Computing 

of the University of Southern Mississippi. The database of Web-BLOM is installed on the 

virtual server - bluefin, for which 2G of memory is allocated. MySQL 5.0.77 is installed 

on bluefin as the database management system. The database is used to store user data, 

uploaded data and curated links to other network analysis tools. The user interface and 

servlets are stored on the other virtual server, “tc1”, for which 64G of memory is 
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allocated. Apache Tomcat Server 6.0 (http://tomcat.apache.org) is installed on “tc1” as 

the container for the servlets as well as JSP and HTML pages. 

The Dell PowerEdge M905 physical server consists of 4 quad-core AMD 

processors, 72GB of RAM and 10Gbit Ethernet interconnects. CentOS release 5.7 is the 

operating system installed on the server. CentOS is an Enterprise-class Linux Distribution 

derived from sources freely provided to the public by an Upstream OS Provider (UOP).  

Implementation of Servlets 

MATLAB Java Builder (www.mathworks.com/products/ avabuilder/ ) is an add-

on toolbox to MATLAB that allows conversion of M-code into a JAR archive. We use 

MATLAB R2010b JA Builder to generate the jar file. It contains BLOM-related classes 

converted from BLOM’s MATLAB code, an MCR factory class generated by MATLAB 

Compiler Runtime and a manifest file, which is a metadata file that contains name-value 

pairs specifying the main class of the application. Building a JAR file from MATLAB .m 

files involves the following steps: (1) MATLAB-> File -> New -> deployment project; (2) 

rename the pro ect to “blom.pr ”; (3) set the directory you want to store the generated  ar 

file; (4) select target as “Java Package”; (5) open deployment tool window (MATLAB-> 

desktop -> deployment tool) and click “add class” to create a new class “blom_class”; (6) 

build. After project building is finished (it takes a few minutes), a jar file is generated in 

the directory we set in the first step. 

After the BLOM code was wrapped by MATLAB Javabuilder in the previous step, 

the servlet can now call the functions in the class files inside the jar archive. The 

following line of Java code shows how the servlet calls a MATLAB function. 
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The outputArray returned by this function call is an MWArray variable. 

MWArray is a thin wrapper around a MATLAB array and can be converted into a 2-D 

array in Java for output. During the initialization stage of the Servlet life cycle, the web 

container initializes the servlet instance by calling the init() method as shown in Figure 

20. The container passes an object implementing the ServletConfig interface via the init() 

method. This configuration object allows the servlet to access name-value initialization 

parameters from the web application. 

After initialization, the servlet can service client requests. Each request is serviced 

in its own separate thread. The web container tomcat calls the service() method of the 

servlet for every request. The service() method determines the kind of request being made 

and dispatches it to an appropriate method to handle the request. The developer of the 

servlet must provide an implementation for these methods. If a request for a method that 

is not implemented by the servlet is made, the method of the parent class is called, 

typically resulting in an error being returned to the requester. Finally, the web container 

calls the destroy() method that takes the servlet out of service (Figure 20). The destroy() 

method, like init(), is called only once in the lifecycle of a servlet. 
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Figure 20. Workflow of a servlet in Apache Tomcat. 

POI (Poor Obfuscation Implementation) is an apache API which provides 

methods for the servlet to read and process Microsoft Excel files. After downloading POI 

package from the apache website (http://poi.apache.org/), the 5  ar files in POI’s home 

directory need to be copied to both Tomcat’s lib directory and  ava JRE’s extended 

library directory (.../jre/lib/ext) for compiling the servlet code later on. MATLAB’s 

javabuilder.jar also needs to be copied to these two directories. Alternatively, we can add 

the location of these jar files into the classpath when we compile the servlet. For example, 

we can compile the servlet with the following command: 

javac -classpath "./WEB-INF/lib/blom.jar" BlomVarArgServlet.java 

To successfully compile the servlet on a Linux server, we need to set the path and 

classpath by adding the following three variables into the ~/.bashrc file: 

JAVA_HOME=/usr/local/jdk, PATH= $JAVA_HOME/bin:$PATH, CLASSPATH= 

$JAVA_HOME/jre/lib/blom.jar. After compilation, three class files are generated and 
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they need to be moved to Tomcat’s application classes directory 

(tomcat/webapps/blom2/WEB-INF/classes/) to be recognized as servlets by Tomcat. 

A Case Study of Web-Based Rankprod 

Rankprod is an R bioconductor package for detecting DE genes in meta-analysis 

(http://www.bioconductor.org/packages/2.12/bioc/html/RankProd.html). It is based on 

the statistical assumption that under the null hypothesis that the order of all items is 

random, the probability of finding a specific item among the top r of n items in a list is 

RP=r/n (Hong et al., 2006). The smaller the RP value, the smaller the probability that the 

observed placement of the item at the top of the lists is due to chance.  

Web-based Rankprod is developed using a Perl script to call the original R 

package of Rankprod stored on the same server as the Perl script. A microarray data set 

containing 55,515 probes (Walia et al., 2005) is used in web-based Rankprod to explore 

the transcriptome of the salt-tolerant and salt-sensitive rice genotypes in this study. The 

data set was downloaded from NCBI Gene Express Omnibus (Source: 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3053).  

The experiment that resulted in this data set was conducted by under control and 

salinity-stressed conditions during vegetative growth. Two rice genotypes, FL478, a 

recombinant inbred line derived from a population developed for salinity tolerance 

studies, and IR29, the sensitive parent of the population, were selected for this study. I 

applied Rankprod to this data set to compare their transcriptional profiles to identify DE 

genes. DE genes in salt-tolerant mutant type FL478 compared to its salt-sensitive wild 

type IR29 under salinity-stressed conditions. RiceCyc database (Source: 

http://www.gramene.org/pathway/) is a sub-database of BioCyc that stores manually-
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curated rice metabolic pathways (Liang et al., 2008). RiceCyc can be downloaded from 

GRAMENE’s ftp (ftp://ftp.gramene.org/pub/gramene/).  

Using BioCyc’s web application “Omics Viewer”, 31 DE genes in wild type rice 

and 20 genes in mutant type rice were mapped to the cellular metabolism overview of 

RiceCyc. Meanwhile, the log value expression data are overlaid to the map. Pathway 

Tools calculates the fold change of the treatment to the control and displays a color 

gradient for the fold change, as shown in Figure 21 and Figure 22. The DE genes are 

mapped to 18 and 10 rice metabolic pathways (one gene can be present on multiple 

different pathways) in wild type rice and mutant type rice, respectively. In the IR29 

genotype, DE genes are mapped to those pathways related to biosynthesis of plant 

hormones, cellular structural components and secondary metabolites. Each node in the 

map represents a metabolite which participates in the reaction and each edge represents 

the enzyme that catalyzes this reaction. Therefore, most of the DE genes were mapped 

onto the edges because the protein products of these genes act as enzymes of the mapped 

metabolic reactions. Some of the genes’ protein products actually participate in the 

metabolic reactions themselves. Those genes that are located on the border of the map 

participate in the trans-membrane activities. The right side of the map shows standalone 

reactions that do not belong to any pathways. Pathways are defined as a chain of 

reactions (Schuster, Fell, & Dandekar, 2000).  
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Figure 21. Differently-expressed genes of wild-type rice on global pathway diagram in 

Omics Viewer.  
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Figure 22. Differently-expressed genes of salt-enduring rice on global pathway diagram 

in Omics Viewer. 

The global maps from Omics viewer (Figure 21 and Figure 22) showed that the 

DE genes identified by Rankprod are involved in energy recycling pathways in rice such 

as tri-carboxylic acid cycle (TCA cycle), pentose phosphate pathway, and ribose pathway 

in salinity-stressed FL478 genotype. Multiple peroxidase proteins are among the DE 
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genes in IR29, but not in FL478, which is consistent with the original discovery by the 

author of the data set (Walia et al., 2005). 

A Case Study of Web-BLOM 

User interface 

Figure 23 shows the user interface of Web-BLOM. On this page, users can upload 

the data set to the server. The data set for uploading need to follow a specific format: 

each row is one gene and each column is a time point. Optionally users can then upload a 

list of genes of interest as an input file for web-BLOM to select a subset of data from the 

data file that the user uploaded under the condition that the first column of the uploaded 

data set contains the same identifiers as the gene list. This subset of data is then used for 

GRN reconstruction.

 

Figure 23. Web-BLOM page for uploading sorted gene expression data. 
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After uploading, four possible occasions might occur. (1) File uploaded successful 

and go to the parameter selection page. (2) If the file type is not xls or xlsx, the page will 

display the message: invalid file type. (3) If the file size exceeds 20MB, the page will 

display the message: the file exceeds the 20MB size limit. (4) If the name of the file is the 

same as an existing file in /data/ directory, then the embedded JavaScript on this page 

will append a time stamp at the end of the file name and the user will then be re-directed 

to the parameter selection page. Then users can select a subset from the full data set by 

determining the row numbers of the starting and ending genes as shown in Figure 24.  
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Figure 24. Web-BLOM page for users to select input parameters. 
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It might take a few minutes before a result matrix of confidence numbers are 

displayed, depending on the size of the input data (see section 5.6.4 for performance 

testing results). The user might click the “submit” button again or even refresh the page 

while the servlet is still performing the algorithm. Either refreshing or multiple clicks of 

“submit” might lead to failure to displaying the result. Therefore, JavaScript code is 

embedded in this page to forbid refreshing.  

Output 

After the servlet completes the submitted tasks, it generates a matrix of 

confidence values (range from -1 to 1) that indicates the interactions among selected 

genes. The result page also returns a matrix of the input data from the genes and time 

points the user selected in the query page, for the user to verify the correctness of their 

data selection. A sample output page is shown in Figure 25. The earthworm microarray 

data set used in Figure 25 is the same data set used in Chapter IV and a random set of 5 

genes is selected from this 43803-gene data set for demonstration. The positive values 

indicate enhancing regulations while negative values indicate inhibitory regulations. If 

users are interested in prioritizing genes for functional screening, they can select pairs of 

genes with highest absolute confidence values because the possibility of regulation 

relationships is higher among these pairs of genes. See Chapter IV for cut-off value 

selection techniques. Figure 26 shows the visualized network using the JavaScript library 

Cytoscape Web (Lopes et al., 2010). 
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Figure 25. Web-BLOM result page that returns both the input matrix from the genes and 

time points that the user selected, and an output matrix of confidence values. 
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Figure 26. Visualization using a JavaScript library, Cytoscape Web. 

Performance testing 

Web-BLOM works best with small to medium-sized networks, generally with up 

to a few hundred genes. Larger networks can be calculated, but the user interaction can 

become sluggish around 300 genes (nodes or edges). A second factor is the size of the 

original uploaded data file. When the file size is as large as 100MB, then it might take a 

few minutes to perform the algorithm. Two test cases of a few hundred genes with 13 and 

31 time points from a 20MB excel file were performed and the runtime that Web-BLOM 

took to generate the result matrices on different browsers is shown in Table 6.  
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Table 6 

Time in seconds for web-BLOM to return the results for two different large-sized 

networks from a 20MB excel file on three different browsers, tested on a ThinkPad laptop 

with 2 GHz dual core CPU and 2 GB RAM. 

Browsers # of time points   100    200 300 

Firefox 4.0 13 2.5 29.5 80.0 

31 2.5 38.0 302.0 

Chrome 10 13 2.5 29.0 79.0 

31 2.5 37.5 303.5 

Internet Explorer 8 13 4.5 30.5 81.0 

31 4.5 42.0 305.0 
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CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

Conclusions 

The proof-of concept study on LCA in this dissertation proposed a DNs approach 

to analyzing time-series gene expression datasets and connected pathway perturbation 

with toxicity threshold setting. The DNs approach proposed in this dissertation differs 

significantly from the existing DE genes-based approaches such as the Gene Set 

Enrichment Analysis (GSEA) method (Subramanian et al., 2005) and the benchmark 

dose method in at least three aspects: (1) this approach is based on reverse engineering 

techniques including BLOM, PBN and DBN; (2) significantly altered pathways are 

identified through analysis of DNs instead of enrichment of DE genes mapped to 

canonical pathways; and (3) this approach is particularly suitable for analyzing time-

series gene expression datasets whereas existing approaches like GSEA are suitable for 

static datasets that are often collected at a single time point. Gene expression data at one 

single time point have limited power in both deciphering MOAs and quantitative risk 

assessment because the snapshot of gene expression profiling misses the dynamic and 

interactive nature of cellular gene expression. As the costs of acquiring genome-wide 

gene expression technologies steadily decrease, it has become more feasible and 

affordable to perform time-series gene expression studies. In order to take advantages of 

technological advancements in high throughput microarray, DNA sequencing and LCA, 

novel experimental and computational approaches are needed to transform conventional 

toxicology to predictive toxicity in order to meet the requirements of more rapidly 

assessing toxicity of chemicals and other materials to humans and animals in the 21st 
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century risk assessment (Bhattacharya et al., 2011; Collins et al., 2008; Cote et al., 2012; 

Currie, 2012; Krewski et al., 2010; Tannenbaum, 2012). 

A distinction has to be made between edges in the graphical representation of a 

literature curated biological pathway (e.g., a KEGG pathway) and those derived in silico 

from time-course data. The former are experimentally validated interactions, whereas the 

latter represent potential gene-gene interactions. It was not our intention to estimate the 

accuracy of our BLOM-inferred edges by comparing them with those gene-gene 

interactions curated in KEGG pathways or EcoCyc databases, but rather to use the 

inferred edges to provide an estimate of the overall degree of alteration in a gene’s 

interaction/connectivity with other genes.  

It has also to be noted that in the current study there exist the following four 

limitations. (1) No chemistry work was carried out to confirm the concentration and/or 

biotransformation of NAs throughout the 3-hr exposure. Many xenobiotic toxicants such 

as polycyclic aromatic hydrocarbons, aryl and heterocyclic amines require metabolic 

activation by cytochrome P450s metabolism (Shimada et al., 2013). Chemical analysis, in 

parallel to bioassays, can provide useful information about the chemical(s) of concern for 

toxicity threshold derivation. (2) The absence of treatment replication in addition to the 

low treatment number made pathway perturbation degrees (Table 2) practically 

inadequate to statistically determine a point of departure or toxicity threshold for each 

perturbed pathway. Apparently, this limitation can only be ameliorated by collecting 

time-course datasets with more treatments and treatment replications. (3) No apical 

endpoints such as cytotoxicity, physiology or biochemistry assays were measured, 

making the derived lowest observable pathway perturbation concentrations one step 
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shorter from being correlated to toxicity thresholds derived from apical endpoints and 

hence applicable to chemical risk assessment (Thomas et al., 2012; Thomas et al., 2013). 

(4) Despite the aforesaid advantages, the E. coli LCA system is not free from limitations. 

For instance, less than 50% of known transcriptional genes have a promoter that can be 

fused with a GFP (Zaslaver et al., 2006), leading to an incomplete genome coverage. 

Alternative high-throughput technologies such as DNA microarray and next-generation 

sequencing can be used to generate genome-wide time-series gene expression datasets. 

Findings from this study suggest that our approach has a great potential in 

providing a novel and sensitive tool for threshold setting in chemical risk assessment. In 

future work, we plan to analyze more time-series datasets with a full spectrum of 

concentrations and sufficient replications per treatment, and eventually extrapolate our 

approach from prokaryotic systems to eukaryotes. The pathway alteration-derived 

thresholds will also be compared with those derived from apical toxicology, biochemistry, 

and physiology endpoints such as cell growth rate. 

This DNs approach was later modified in Chapter IV to satisfy the need of 

studying earthworm pathways. Using a bioinformatics-guided reverse engineering 

approach, we have inferred from earthworm microarray data differential GRNs that 

provide a close-up look of what interactions in an affected pathway might be perturbed. 

This study reinforces previous findings that cholinergic and GABAergic synapse 

pathways are the targets of carbaryl and RDX, respectively. RDX has been shown 

binding to the GABAA receptor convulsant site, and blocking GABAA receptor-mediated 

currents and causing seizures (Williams et al., 2011); carbaryl causes hyperstimulation of 

cholinergic receptors and an increase in excitatory neurotransmission (Jett, 2012). Several 
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probes designed to target earthworm transcripts that putatively code for GABA receptors 

and cholinesterase were identified as GOIs. However, cholinergic and GABAergic 

synapse pathways ranked in the 80s by enrichment analysis for both RDX and carbaryl, 

suggesting the existence of other targets. The results also indicate that perturbations to 

various pathways by sub-lethal concentrations of two neurotoxic chemicals were transient 

and recoverable. Many pathways other than the cholinergic and GABAergic synapse 

were altered during the exposure phase. Olfactory transduction and ECM-receptor 

interaction are the top two potential targets affected by RDX and carbaryl. They both 

warrant further in-depth investigations. With the low meaningful annotation rates of the 

earthworm array (20%) and affected genes (17%), what we have discovered in the current 

study might have just been the tip of an iceberg. A completely sequenced and annotated 

earthworm genome can empower the approach pursued in this study and will also aid in 

future discovery journey. 

The tests on different platforms showed that Web-BLOM can return the result for 

a 200-gene data set to different browsers in less than one minute. Web-BLOM is 

designed in a three-tier architecture model and implemented in MATLAB and Java. 

MATLAB Java Builder toolbox can package BLOM codes into Java archive classes. 

Since MATLAB functions are wrapped into Java classes and can be called by Java 

servlets, Web-BLOM is platform independent and can run on any standard computer. It 

generates a matrix of confidence values that can be used for inferring the interactions 

among selected genes. If users are interested in prioritizing genes for functional screening, 

they can use Web-BLOM to return a list of interacting genes ranked by confidence values. 

Web-BLOM integrates feature selection, network reconstruction, and result analysis in an 
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online network environment and it provides a new efficient and convenient software tool 

for reconstruction and analysis of gene regulatory networks. 

Future Directions 

The use of live cell arrays allows for reagentless, non-destructive real-time 

monitoring of the biological effects of chemicals. However, data pre-processing is very 

important in handling LCA data. When time-series OD600 data is available from a Live 

Cell Array, it will further facilitate noise filtering. Recently, a software tool based on the 

discrete Kalman filter was developed by (Aichaoui et al., 2012) to provide standardized 

treatment to LCA data and generate reports on the quality of the data. For example, some 

certain types of bacteria such as Bacillus subtilis generate auto-fluorescence in the culture 

and this could become a background noise to the gene expression data. If there is no auto-

fluorescence (Fauto= 0), the promoter activity is directly related to the time derivative of 

the fluorescence divided by OD600. Otherwise, a correction has to be performed and this 

can be done in the software BasyLiCA. 

When biological replicates in LCA data are available, two sample algorithms to 

identify DE genes such as GP2S algorithm (Stegle et al., 2009) or Hotelling T
2
 test (Tai 

& Speed, 2006) can be applied and the results can be compared with that from the current 

one-sample method. 

After reconstructing biological pathways from time-course gene expression data 

using reverse engineering techniques, the chosen network inference techniques can be 

tested for accuracy in edge/interaction calling using non-exposed wild type and mutants; 

perturbed pathways for different compounds, and concentrations can be inferred and 

contrasted against their canonical counterparts. 
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To derive toxicity thresholds based on concentration-pathway alteration 

relationships using an attractor-based modeling method (Choi et al, 2012), knockout 

mutants can be used to verify chemical challenge results; pathway-based toxicity 

thresholds can be compared with thresholds derived from cell growth. 

If we can demonstrate a proof-of-concept that pathway alteration is a reliable 

toxicity endpoint as sensitive as, or more sensitive, than traditional apical or biochemical 

endpoints, the natural next step would be to demonstrate in vitro and in vivo the causal 

relationship (dose-dependent pathway perturbation) in more sophisticated eukaryotes 

ranging from nematodes to zebrafish, mouse, and ultimately humans. These results would 

allow risk assessors to better incorporate mode of action information, and enable 

mechanistic toxicology to play a bigger role in next generation risk assessment. 

Prior knowledge is available before we reconstruct GRNs of E.coli, as TFs of 

E.coli are listed in RegulonDB. TFs are usually hub genes because they act as 

regulators. If prior knowledge can be incorporated into BLOM, the accuracy can be 

greatly improved. 
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