
The University of Southern Mississippi The University of Southern Mississippi 

The Aquila Digital Community The Aquila Digital Community 

Dissertations 

Spring 5-1-2011 

Real-Time Riverine Particle Image Velocimetry Real-Time Riverine Particle Image Velocimetry 

David William Dobson 
University of Southern Mississippi 

Follow this and additional works at: https://aquila.usm.edu/dissertations 

Recommended Citation Recommended Citation 
Dobson, David William, "Real-Time Riverine Particle Image Velocimetry" (2011). Dissertations. 571. 
https://aquila.usm.edu/dissertations/571 

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted 
for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, 
please contact Joshua.Cromwell@usm.edu. 

https://aquila.usm.edu/
https://aquila.usm.edu/dissertations
https://aquila.usm.edu/dissertations?utm_source=aquila.usm.edu%2Fdissertations%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/dissertations/571?utm_source=aquila.usm.edu%2Fdissertations%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu


The University of Southern Mississippi

REAL-TIME RIVERINE PARTICLE IMAGE VELOCIMETRY

by

David William Dobson

Abstract of a Dissertation
Submitted to the Graduate School

of The University of Southern Mississippi
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

May 2011



ABSTRACT

REAL-TIME RIVERINE PARTICLE IMAGE VELOCIMETRY

by David William Dobson

May 2011

A modular particle image velocimetry program was developed and optimized to read

and process video of river surface flows from different sensor types. The program was

designed for long-term deployment with the ability to sample data continuously in real-

time and save the results in a compact format. The time needed to compute a velocity

measurement from video input was reduced by using concurrent processing techniques,

multi-threading, and a graphics hardware-based correlation algorithm. When used to process

field data on a low power Intel Atom based computer the PIV system was capable of

computing up to 64 velocity measurements at a rate of 7.5 frames per second. A more

powerful computer equipped with a discrete GPU was capable of computing 4800 velocity

measurements at a rate of 7.5 frames per second when using the same PIV data and settings.

Processing speed of the GPU correlation module was analyzed using a number of different

benchmarks. Results show that the GPU-based correlation algorithm has the potential to

improve the PIV processing speed of high-end workstations by as much as 2x and low-end

portable computers by 10-20x. Methods were also introduced to improve the quality of PIV

measurements on river currents. Processing video of river currents with the standard particle

image velocimetry technique produced a large number of inaccurate vectors. Most of these

inaccurate vectors were correctly identified and removed by using different confidence

scoring and filtering techniques. Results from three different experiments were compared to

the velocity measurements of other devices to verify the accuracy of the program. These

measurements agree to within 16% difference. These results show that accurate PIV

measurements of river surface velocity may be computed in real time even on low end and

portable computer hardware.
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Chapter 1

INTRODUCTION

Particle image velocimetry, PIV, is an optical and computational method used to determine
the instantaneous velocity field of a fluid. A typical PIV experiment involves a light source,
tracer particles, an imaging device, and a computer. The output of a PIV experiment is a
vector map that gives a field of velocity measurements as shown in Figure 1.1. PIV has been
successfully used in many different areas of study including fluid mechanics [1] and biology
[27]. PIV experiments traditionally take place in a laboratory setting where variables such
as particle distribution and lighting can be closely monitored and controlled.

Figure 1.1: Vector Field Generated from PIV.

The use of PIV outside the laboratory is often limited due to the difficulty involved in
generating high contrast images in varying lighting conditions, and due to the low density
of reflective particles and features in unseeded fluids. Even with these limitations, PIV
has been successfully used in a number field experiments to record and analyze the flow
of fluids in the natural environment. Surface flow structures in near shore oceanography
are analyzed using a video PIV method [13, 12]. PIV is used to collect measurements of
underwater turbulent flows in the coastal bottom boundary layer of the ocean [23]. PIV is
used to measure fluid flows within stream environments [3], and river discharge is measured
using a PIV method [11]. These PIV measurements systems are shown to be accurate, but
they are not capable of processing data at the same speed as it is collected from a video
sensor.
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1.1 Objectives

The ultimate goal of this project is to produce and test all the software components necessary
to develop a PIV system capable of being deployed in the field to process data in real-time
and over a long period of time. The system would process video from different sensors in
real time (currently 7.5 frames per second) and at specific intervals generate output that
could be stored to a hard drive or transmitted to a remote machine. Current PIV programs
require saving video to a hard drive and later processing it at speeds that are much slower
than the capture rate of the video sensor. Because video has to be collected and stored PIV
systems cannot be deployed for long periods of time. If the video were processed in real
time it would not need to be saved and the device could be deployed for an extended period
of time.

PIV software is typically slow due to the computational complexity of correlation. The
implementation of a fast GPU based correlation algorithm for PIV is another objective of
this work. The GPU algorithm would be combined with an efficient multi-threaded PIV
system that separates frame extraction, correlation, and output generation into separate
processes. The resulting high performance PIV system should be capable of processing
between 500 and 1000 PIV measurements at a rate of 7.5 frames per second.

A number of adjustments must be made to the current PIV methods in order to produce
accurate surface flow measurements. Current PIV software is not very good at removing
inaccurate vectors. Because features on the surface of a river are often sparse, a large
number of inaccurate vectors may be generated. One objective of this work is to develop
a method to remove inaccurate vectors by analyzing the correlation surface. In addition,
current PIV methods do not properly take advantage of the steady state nature of river flow.
Another objective of this work is to utilize many frames of video to produce a final velocity
measurement that is more accurate than a single measurement. Accuracy of the final velocity
measurements should be within 15 % difference of other accepted measurement techniques.

1.2 Outline

Included in this work is a general introduction to PIV terminology, methods for filtering
noisy vectors out during peak detection, a GPU method for spatially computing correlation,
a complete PIV program for computing and displaying velocity measurements in real time,
and results from three field experiments conducted at the Wolf River in Mississippi and
the Kootenai River in Idaho. Chapter 2 discusses the process used to compute PIV and
gives an overview of some of the state of the art PIV techniques. Chapter 3 presents an
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experiment designed to test the speed at which a number of different algorithms compute
PIV and determines what configurations could be used to support processing in real time.
Chapter 4 presents the results of two experiments designed to test the capability of methods
used to improve the quality of measurements obtained from PIV. Chapter 5 discusses the
results from three field experiments where the riverine PIV software was used to determine
the surface velocity of a river. Chapter 6 concludes this work by discussing the limitations
of the current riverine PIV implementation and possible future improvements.
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Chapter 2

BACKGROUND

2.1 Introduction

Particle image velocimetry or PIV is an optical and computational method used to determine
the instantaneous velocity field of a fluid. Digital PIV or DPIV refers to the PIV method
that uses digital images and computers. The PIV method discussed in this paper is based on
2D DPIV. The process used to compute 2D DPIV is discussed in this chapter. Section 2.2
introduces image collection and processing techniques required for large PIV experiments.
Section 2.3 discusses virtual sensors that are used to specify the location where a velocity
measurement should be taken. Section 2.4 introduces the terminology used to describe the
different correlation windows. Section 2.5 and 2.6 review the cross correlation and error
correlation methods. Section 2.7 discusses seed particles and how they may be used to
improve measurements. Finally section 2.8 reviews some of the methods commonly used to
improve the speed of PIV computations.

2.2 Image Collection and Processing

Multiple image single exposure methods used in digital particle image velocimetry involve
capturing one image at time t and another image at time t +δ t. An object in motion will
appear at different positions in each image. PIV uses the different position of these objects
along with the change in time, δ t to compute a velocity field. Multiple image methods are
the standard in current PIV technology due in part to inexpensive high resolution digital
cameras and in part to modern computers that are capable of storing and processing high
resolution images. The term digital particle image velocimetry (DPIV) describes a PIV
system that uses a digital camera to capture images and a computer to process them.

R =

m11 m21 m31
m12 m22 m32
m13 m23 m33

 (2.1)

Images collected from a camera need to be registered before PIV is able to use them to
produce useful results. Initially PIV methods produce a vector field that gives measurements
in pixels per second. In order to produce a measurement in standard units, a conversion from
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pixel space to world space must be known. The projection of 3D points onto a 2D surface
makes converting from the pixel space to world space difficult. One solution is to reverse the
problem and generate a mapping from world space to pixel space using the rotation matrix
of the camera [Equation 2.1]. A new image with a uniform conversion from pixel units to
world units may be generated from the world space to pixel space mapping.

Generating a mapping from world space to pixel space requires knowing the position,
orientation, and physical properties of a camera [13]. Orientation parameters are used in the
rotation matrix according to:

m11 = cos(a)cos(s)+ sin(a)cos(t)sin(s) (2.2)

m12 = −sin(a)cos(s)+ cos(a)cos(t)sin(s) (2.3)

m13 = sin(t)sin(s) (2.4)

m21 = −cos(a)sin(s)+ sin(a)cos(t)cos(s) (2.5)

m22 = sin(a)sin(s)+ cos(a)cos(t)cos(s) (2.6)

m23 = sin(t)cos(s) (2.7)

m31 = sin(a)sin(t) (2.8)

m32 = cos(a)sin(t) (2.9)

m33 = −cos(t) (2.10)

where a,s, t represent the azimuth, swing, and tilt of the camera respectively. The rotation
matrix describes the orientation of the camera and is used in conjunction with the world
location of the camera focal point and the angular field of view of the imaging device in the
mapping formula:

un = u0− c
m11(Xn−X0)+m12(Yn−Y0)+m13(Zn−Z0)

m31(Xn−X0)+m32(Yn−Y0)+m33(Zn−Z0)
(2.11)

vn = v0− c
m21(Xn−X0)+m22(Yn−Y0)+m23(Zn−Z0)

m31(Xn−X0)+m32(Yn−Y0)+m33(Zn−Z0)
(2.12)

where un,vn is a position in the original image coordinate system. Xn,Yn,Zn is a position
in world coordinates. X0,Y0,Z0 is the position of the camera in the target world coordinate
system, and u0,v0 is the location of the center pixel in the original image. The term c is a
constant scaling factor based on the camera lens angular field of view and is computed using
c = u0/tan( f ov/2) where u0 is the location of the center pixel along the horizontal plane of
the image and f ov is the angular field of view of the camera.

When a world coordinate is plugged into Equation 2.11 and 2.12 a number is produced
that gives the location of the world coordinate in the pixel coordinates. A registered image
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is generated by iterating through a uniform grid of world coordinates and computing the
associated pixel coordinates. These pixel coordinates are used to look-up the intensity value
in the original image and copy this value to the registered image. Often the position of the
pixel in the original image as computed by Equation 2.11 and 2.12 is not an integer value so
an interpolation method must be used to compute an intensity value. If the camera position
remains fixed, these calculations only have to be computed once. A mapping table generated
from the initial calculations may be used to remap all additional images from the same video
stream as long as the position and orientation of the camera do not change.

Figure 2.1: Original Image (Left) and Registered Image (Right).

Camera lens distortion should also be taken into account when computing the mapping
table. Camera lenses often contain small imperfections that distort the images they collect.
Intensity values computed for the remapped image could be incorrect if a significant amount
of distortion is present in the original image. Techniques for removing lens distortion are
discussed in [13] and [33].

PIV measurements are influenced by the quality of the images used for correlation. Both
lighting and image exposure settings play a roll in the accuracy of PIV measurements. An
ideal image for correlation would include a large number of features that clearly stand out
from the background. When collecting images, both lighting and imaging device exposure
should be optimized to produce images with many features.

Preprocessing images may also be helpful in some situations. If the contrast between
background and features is low, a threshold algorithm can be applied to the images. Thresh-
olding could result in the loss of some low intensity features. If the number of features is
already high this is often acceptable; however, if the number of features is low thresholding
may further reduce the number of features available to correlate. A lack of features in an
image can not be improved by preprocessing techniques, but may be addressed by adding
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seed particles to the fluid. Noise in the image is another problem that can be addressed to
some extent by applying a smoothing filter to the images. Like thresholding, applying a
smoothing filter to an image may reduce the number or quality of features.

2.3 Virtual Sensors

The PIV algorithm computes velocity measurements at a number of different points within
an image referred to as virtual sensors or sensors. Sensors are often placed in a grid pattern
but may also be placed at specific locations of interest. At every sensor location a velocity
measurement is generated using the PIV algorithm and displayed as one element in a vector
field. Sensors are independent and may be processed in parallel. A sensor point remains at
the same position throughout the processing stage and is the center for a number of windows
used in the correlation algorithms.

Figure 2.2: Virtual Sensors Placed in a Grid Pattern.

2.4 Correlation Windows

The window of pixels taken from the lag frame centered at the sensor is called a reference
window. The reference window represents a feature from the lag image that is to be located
in the lead image. The size of the reference window must be set manually and should
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generally be larger than 15 pixels. The reference window is compared to the lead image at
a number of different locations around the sensor. Each element in the correlation surface
represents one of these locations. The number of locations are manually set by specifying a
window around the sensor referred to as a correlation surface. A search window is made up
of a block of pixels taken from the lead image. The size of the search window is determined
from the size of the correlation surface and the size of the reference window according to

Xs = Xc +2∗ f loor(Xr/2) (2.13)

Ys = Yc +2∗ f loor(Yr/2) (2.14)

where Xr,Yr is the size of the reference window and Xc,Yc is the size of the correlation
surface. Each sensor is independent and may be computed separately from any others. Each
vector in the vector field is produced by a sensor so the density of the vector field produced
by PIV is determined by the number of sensors.

2.5 Cross Correlation

Finding the best match for a reference window in the search window requires using a
statistical technique called correlation. Correlation is an exhaustive search method that
generates a score for each possible position of the reference window within the image or
within a subset of the image. The best score in the correlation surface represents the best
match of the reference window to a sub window of the search window. The correlation
surface may be viewed as a height map or as a grayscale image 2.3. The highest peak within
the correlation surface is used to generate a velocity measurement for that specific sensor.
The most common method used to determine correlation in DPIV is called cross correlation.

Cross correlation is a technique that involves taking two different images, lag and lead,
of the flow field from the same camera at the same location but at a different point in time.
Cross correlation methods rely on knowing precisely the capture rate of the camera to
compute a δ t measurement. The amount of time allowed to pass between the lag and lead
images should be carefully considered because it affects both how much motion may be
detected and how large the correlation surface should be. If the separation between images
is too large the PIV calculations will be very expensive and inaccurate because a larger
correlation surface is needed. If the separation is too small the motion estimate will rely
heavily on sub-pixel interpolation which may result in phase locking.

Cross correlation between reference and search areas may be calculated by using methods
that include direct cross correlation and FFT cross correlation, and a number of other methods
that combine or extend these two methods [19].
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Figure 2.3: Grayscale Representation of a Correlation Surface.

Direct cross-correlation methods search the spatial domain for the best match between the
reference and search windows. A number of different correlation methods may be used to
determine how well a reference window matches an offset of the search window including
cross correlation, minimum quadratic difference, and normalized correlation coefficient.
The most simple cross correlation method involves multiplying the pixel intensity values in
the reference (r) and search (s) windows according to

∑
x,y

r(x,y)s(x−u,y− v). (2.15)

Normalized correlation coefficient (CCOEFF) is an extension of the cross correlation method
where the mean of the search window s̄ is subtracted from the search window s and the
mean of the reference window is subtracted from the reference window r̄ and normalized
using autocorrelation according to

∑x,y[r(x,y)− r̄][s(x−u,y− v)− s̄]

∑x,y[r(x,y)− r̄]2 ∑x,y[s(x−u,y− v)− s̄]2
. (2.16)

Removing the mean prevents changes in background intensity from affecting the correlation
score. It also improves contrast and removes static features. In PIV the most common
method to score correlation is based on normalized correlation coefficient but uses an FFT
based method instead of the exhaustive direct search. The FFT method is popular because of
its low computational cost with respect to the direct spatial search method. The FFT method
involves translating the two correlation surfaces into the frequency domain. Correlation
is calculated by multiplying the complex conjugate of the reference window’s FFT by the
FFT of the search window. The result of this multiplication is translated back to the spatial
domain by using an inverse FFT which produces a correlation surface. Normalizing the
result of the FFT approximation is computed in constant time using a method called image
integral [5].
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2.6 Error Correlation

A number of methods for pattern matching are based on error correlation instead of statistical
correlation. Error correlation and cross correlation use the same exhaustive search algorithm.
The difference between the two is the function used for scoring how well a reference window
matches a partition of the search window. A method called minimum absolute difference
(MAD) uses the difference between reference and search windows to score each window
alignment [8]. The MAD function is given as

∑
x,y
|r(x,y)− s(x−u,y− v)]|, (2.17)

where r(x,y) is the intensity value of the pixel (x,y) in the reference window and s(x−
u,y− v) is the intensity value of the pixel (x−u,y− v) in the search window at the offset
(u,v). MAD is typically normalized by taking the sum of the reference and search window
partition [10]. The MAD method currently does not have a fast implementation and must be
computed directly.

Another error correlation method that does have a fast implementation is called mini-
mum square difference (MSD) or minimum quadratic difference (MQD). MQD replaces
the absolute value term in 2.17 with a square term. The resulting equation has an FFT
approximation. MQD is typically normalized by dividing by the autocorrelation score.

2.7 Seed Particles

Seed particles, often called tracer or scattering particles, are used to create image features
when no features exist within a body of particles and are discussed in detail in [24]. In order
to compute PIV on a clear fluid, particles must be added that scatter light into the camera.
Without the reflective particles there would not be enough variation in pixel intensity to
track motion. Seed particles are selected so that they closely follow the flow of the carrier
fluid. Illuminating the seed particles enough to be detected by the camera often requires the
use of a laser. When used in conjunction with laser lighting the imaging device records the
scattered light from seed particles, and scattered light intensity is used as features for the
PIV computation. An experiment that uses laser lighting and seed particles correctly will
produce data with low amounts of noise which in turn will greatly increases the accuracy of
PIV calculations. Adding seed particles to a fluid may not always be possible. If this is the
case special care must be taken to ensure that a velocity vector is accurate and not being
computed from noise. As long as there is sufficient contrast between the particles and the
background, PIV computation may be possible without using laser light or seed particles.
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Figure 2.4: Natural particles in the Wolf River.

2.8 Processing Speed

The amount of time required to compute PIV depends on a number of different factors
including the method used for correlation and the window size of the interrogation area,
but in general PIV computation is expensive. When a direct method is used to compute
cross correlation, the computational cost of PIV is O(n4) where n is based on the size
of the reference and correlation surfaces. When an approximation method based on the
FFT is used to compute the correlation, the computational cost is reduced to O(n2log(n)).
The FFT method scales better than the direct method but also introduces a significant
computational overhead and may in fact be slower for problems that use a small reference
window or correlation surface. In some situations the FFT method may not always give a
good approximation of the correlation [20].

Summed area table is a technique that may be used to reduce the cost of computing the
denominator of the CCOEFF method [5]. To compute the summed area table, create an
array the same size as the image being processed. Each element in this array should be filled
with the sum of the corresponding pixel and all pixels before it.

S = ∑
x<X ,y<Y

I(x,y) (2.18)

where I is the intensity value of pixel x,y. Once computed the summed table may be used to
compute the mean of any sub-region in the image using

∑
x1<=x<x2,y1<=y<y2

I(x,y) = S(x2,y2)−S(x1,y2)−S(x2,y1)+S(x1,y1). (2.19)

The mean values in 2.16 may be computed using a summed table. The denominator may be
computed by generating a square table in the same method as the summed table is generated.
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Chapter 3

PROCESSING METHODS

3.1 Introduction

The most significant overhead involved in PIV computations comes from correlation. Corre-
lation when computed directly uses a brute force method that checks every possible offset of
the reference window within the search window to find the best match. The direct method
has a computation complexity of O(n4). An alternative FFT based method is commonly
used for simple cross correlation and has been extended to work for the correlation co-
efficient method [4]. The FFT method scales better with a complexity of O(n2) but has
significant overhead and does not always meet or exceed performance requirements for
real time systems. Specialized hardware has been proposed as a possible method to further
increase the performance of correlation. In this chapter the processing performance of a
GPU based direct correlation algorithm is compared to a CPU FFT algorithm and a CPU
direct algorithm. The purpose of this chapter is to determine if an efficient PIV software
program is capable of processing PIV in real time and what, if anything, would be gained by
using specialized hardware to compute correlation.

The remainder of this chapter is divided into four sections. Section 3.2 titled "Related
Work" reviews other implementations of correlation on alternative hardware. Section 3.3
titled "EPIV Implementation" discusses the implementation details of a software system
called extensible particle image velocimetry or EPIV that was designed to generate PIV
measurements of surface flow in real time. Section 3.4 titled "Benchmarks" gives processing
performance results for EPIV when used with a number of different settings. The final
section, 3.5, describes a mobile platform that could be used to capture video and host the
EPIV software.

3.2 Related Work

The FPGA platform has been suggested as a possible hardware solution to improve the
processing speed of PIV computations [32, 2]. Tests show that under ideal conditions these
FPGA systems are capable of of outperforming the CPU [32, 28]. The FPGA implementation
has some limitations with respect to PIV calculations. Multiplication on the FPGA takes
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up a large amount of hardware resources limiting the FPGA PIV implementation to direct
correlation methods that use maximum absolute difference (MAD). In addition, FPGA
programs are not very flexible and would only be able to provide a limited number of
adjustable parameters.

Another hardware platform that has been proposed as a possible solution to accelerate
PIV computations is the GPU. A modern GPU includes a large number of specialized
processors. In the Tesla C1060, for example, there are 240 processing elements. Direct
and FFT implementations of PIV on the GPU have been shown to outperform the CPU
[28, 22]. Unlike FPGA PIV implementations, GPU based methods are not limited to error
correlation. Cross correlation algorithms should process nearly as fast as error correlation
methods. More complex PIV techniques such as window deformation and multisampling
have also been successfully implemented on the GPU [25].

The work listed above shows that hardware may be used to improve the performance of
the correlation components of a PIV system. However, there are other significant sources
of computational overhead in PIV not related to correlation that could reduce the software
speed. In addition, advanced CPU PIV methods should also be used for speed comparisons
with specialized hardware to determine actual benefit. For this reason a complete system
using advanced CPU and GPU correlation techniques was developed and tested to measure
the speed of computing a large number of PIV measurements on actual data collected in
field experiments.

3.3 EPIV Version Three

All the measurements recorded in this section were made using EPIV. The initial version
of EPIV was designed to test the speed of PIV calculations when using different advanced
processing techniques with the goal of determining if real-time processing is feasible and
if any significant speedup is achieved by using specialized hardware. It was also designed
to support as many correlation methods and image processing techniques as possible to
study the accuracy of these method when applied to computing riverine PIV measurements.
EPIV was designed to efficiently utilize multi-core processor by supporting multithreaded
correlation calculations and dividing the PIV computation process into three independent
modules which may also run concurrently. The threading model and the three different
processing modules of EPIV are discussed in detail in the following section.
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3.3.1 Threading Model

EPIV is a multithreaded application capable of scaling to at least 16 CPU cores. Threads are
implemented using the pthreads library to run the individual modules and with OpenMP
within the PIV module. The EPIV program is broken down into five components, a graphical
configuration and control interface, a processing control module, an image processing
module, a PIV module, and an output module. PIV configuration settings are collected
and displayed in the GUI module. The control module creates threads that are used to run
the processing modules. The image processing module is responsible for decoding video
from a stream and processing the frames to produce a registered image. The PIV module is
responsible for computing the placement and correlation score of sensors within the image.
Results from the PIV computations are displayed and optionally written to a file in the
output module. Each of these modules runs on a different thread. All three modules are
executed in parallel and synchronized at the end of processing a single frame pair. Data
from the video is extracted, processed, and passed to the PIV modules which in turn passes
the results to the output module for display and writing. The output module displays the
result of the first frame set while the input module is reading the third frame set, and the
PIV module is processing the second frame set. A sleep lock is used to keep the threads
synchronized if they do not complete at the same time.

GUI
(Thread 0)

Live Display

Matlab Output

Video Output

Input Module
(Thread 2)

Output Module
(Thread 4)

Correlation Module
(Thread 3)

Video File

Control
(Thread 1)

Configuration
Commands

Configuration
and Image Pair

Configuration,
Image Pair,

Sensors,
Vectors

Configuration,
Image Pair,

Sensors,
Vectors

Mean Results

On
Stop

Optional GPU
Correlation

Figure 3.1: EPIV High Level Flowchart.

3.3.2 Graphical Configuration Interface

Riverine PIV requires a large number of configuration parameters. A graphical interface
helps to display these settings and allows for quick adjustments. The graphical interface in
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EPIV uses the GTK toolkit for the onscreen display and the glib key file methods for saving
and loading configuration settings from a text file. The graphical interface also controls
EPIV with start and stop operations that interface with the control module. All graphical
operations are run on a dedicated thread so the interface never locks up while waiting for
computations.

Figure 3.2: Graphical User Interface for EPIV.

3.3.3 Processing Control Module

The control module creates and controls the objects, data, and threads used in the three
processing modules whenever a PIV computation is started. Each of the three processing
modules requires the configuration object generated by the GUI and additional memory
objects used to save and access results. The control module is responsible for passing
the needed object references to each individual modules. Synchronization of the three
processing modules is also enforced in the control module by using pthread barriers.

3.3.4 Image Processing Module

The image processing module performs three tasks, extraction, mapping, and processing of
images. FFMPEG and OpenCV are used to extract images from a video stream recorded by
the color and near-infrared (NIR) devices. EPIV also supports direct input from a firewire
camera using the dc1394 library. For the forward looking infrared (FLIR) camera, video
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is stored in an uncompressed format called sfmov. The image processing module supports
reading FLIR video directly from the uncompressed source files. Typically extracting
images from video files is the most time intensive operation in the image processing module.
Once the video is extracted and converted to gray scale it is remapped to a specific area
in world coordinates. The remapping process involves looping through the desired world
coordinates and accessing a mapping table that gives the location of the world coordinate
in the original image. The mapping table is generated during initialization using camera
properties, position, and a number of control points to check for accuracy. The intensity
value is interpolated from the original image and stored to a new grayscale image that has a
direct mapping from pixel to world space. The final task for the image processing module is
to apply any optional preprocessing methods such as smoothing, threshold, and equalization.

3.3.5 PIV Module

The PIV module is responsible for sensor placement, correlation, and vector computation.
Sensors may be automatically placed at positions in a grid by specifying the starting point
and spacing. The PIV module also supports sensor placement at specific UTM points.
Sensors that are too close to the edge of the mapped image or not in the mapped image at all
are disabled by the PIV module. The remapped image may include a number of pixels that
do not map to the original image. These invalid pixels are marked by the image processing
module and passed to the PIV module which removes any sensors that appear in areas of
the remapped image that have no intensity information from the original image. All sensor
processing is done during an initialization phase of the PIV module.

Correlation is computed in the execution phase of PIV. At this point the sensors are
divided into groups that may be processed by different threads. Three different methods are
available for the correlation processing. The direct CPU method is a brute force correlation
process that checks pixel by pixel for the best possible match of the reference window
inside the search window. To simplify the processing within the inner most loop the arrays
search-offsets, search-corners, reference-offsets, and reference-corners are generated. Each
element in reference-corners points to the corner of a reference window for a specific sensor.
The reference-offset array includes one element for every pixel within the reference window
and when added to the reference-corner gives the position that pixel within the image.
Each element in the search-corners array gives the position of a search window corner for
a specific sensor. The search-offset array includes the same number of elements as the
correlation surface. When the search-corner and search-offset array are added together
they give the corner position used for one comparison of the search and reference windows.
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Within the inner most loop computing the location of the search and reference pixel requires
only one addition and two array access operations. A call to the direct PIV methods produces
a correlation array that contains a score for each element of the correlation surface.

Another option for correlation is the FFT method. The FFT method is implemented
using the template matching routines in OpenCV. For each sensor, the reference window
and search window are extracted from the image and passed into the template matching
routine. OpenCV’s template matching implementation supports FFT correlation using cross
correlation, coefficient correlation, and error correlation. For multiprocessor systems the
loop used to process each sensor is divided and computed on a number of different threads.
Sum tables are also used to help improve the processing speed of the FFT methods. The
FFT correlation method returns a correlation array with one score for each element in the
correlation surface.

A motion vector is generated by determining the location of the peak within the corre-
lation array. Every element in the correlation array is visited and the position and value
of the maximum correlation score is extracted. A linear interpolation method is used to
compute the sub pixel location of the actual peak. The sub pixel location of the peak is
passed through a scoring method that involves computing a confidence measurement of the
peak. The computed vector and peak score are stored and passed to the output module.

3.3.6 GPU Correlation Module

Direct correlation methods implemented in CUDA are available in the GPU correlation
module. The PIV module can optionally offload the correlation directly to the GPU. The
GPU implementation of direct correlation uses the same precomputed variables as does the
CPU method. These variables along with the lag and lead images and correlation parameters
are passed to the GPU correlation module which returns an array of correlation surfaces.
The array containing the correlation surfaces is processed by the CPU peak detection and
scoring algorithms.

Correlation on the GPU is separated into CUDA blocks and threads to exploit the parallel
nature of the GPU. A separate block is created for every sensor. Within the block the work
load is divided using threads that have access to a fast shared memory. Each thread processes
a number of iterations of the inner most loop. In order to utilize all of the GPU processing
power, the number of threads must be set correctly based on usage of shared memory and
registers. The default number of threads used in the GPU module is 256; at this setting the
GPU is fully utilized during the PIV computation.

A number of advanced GPU features are used to improve memory access patterns and
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increase performance. Reference windows are stored in GPU shared memory. The access
time for shared memory is four clock cycles while global memory is in excess of 100
clock cycles. Because pixels in the reference window are accessed many times during the
correlation computation this improves performance by a factor of 5-10x. A GPU feature
called constant memory is also used to increase the speed of access to index lookup tables.
Constant memory is a type of global memory access that is cached. A further speedup of
almost 2x was achieved by placing one of the lookup table in constant memory. Texture
memory access is another hardware accelerated memory access method available on the
GPU. A texture memory lookup uses a hardware cache in addition to alignment methods
to improve memory read performance. Using texture memory to access elements in the
search window improved performance of the correlation method an addition 2-5x. The final
algorithm produced a GPU utilization measurement of over 90%.

There are a number of size restrictions in the GPU implementation. The GPU has 32KB
of shared memory available for each block of threads. The reference window is stored in
shared memory and must not exceed 32KB in size. Each element in the reference window is
an unsigned char so the total number of elements must not exceed 32,000. Constant memory
is also limited. Current NVIDIA GPUs have 64KB of constant memory storage available.
The lookup table stored in constant memory must also not exceed 64KB. Each element in
the lookup table is an unsigned int so the lookup table must not exceed 16,000 elements.
Because the size of the lookup table is dependent on the size of the reference window, the
reference window must not exceed 16,000 elements in size.

3.3.7 Output Module

The output module shows the result of the PIV computation on a live display and also
optionally writes the results to a file or video. Vectors and sensors on the live display are
drawn on top of the remapped image. Sensors are represented by a circle and vectors by
a line. The length of the line represents the velocity measurement. The lines representing
vectors may also be colored according to the velocity measurement. Optionally vectors may
be drawn on top of the original unmapped image by using the image mapping function to
compute the location of the starting and stopping point of the vector in the original image. A
time average of the vectors is also computed and may be displayed in the live display. The
optional text output file includes the position of sensors and vectors for each frame and the
peak score, wscore. The text file is designed to be imported into Matlab for additional post
processing.
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Figure 3.3: Circular Flow Detected by EPIV and Displayed in Matlab.

The live output display records information about the maximum possible velocity and
vector color information. During initialization the output module searches for a position that
minimizes the amount of image overwritten to place reference vectors. Reference vectors
may appear in any corner of the live display. The set of reference vectors include five vectors
of different length and a number representing the velocity of the longest vector. The velocity
of each of the other vectors is approximately one-fifth smaller than the vector immediately
before it.

Once the processing is complete the output module generates a number of images and
result files. Two time average images are generated. One image shows the time average
vectors drawn on top of the last frame in the video sequence and the other image shows the
time average results drawn on an unmapped grayscale image taken of the last video frame.
For each of the mapped images an associated world file is written that contains mapping
information that may be used by Matlab to place the image on a world grid. Other files
saved by the output module include an image file that shows the computed location of the
control points in the original image, an image that shows the placement of sensors, and a
file that shows the registered image without any objects drawn on top of it. A video file is
also generated during the processing that records the live display output of EPIV.
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3.4 Benchmarks

Table 3.1: Benchmark System Specifications.

Operating System Red Hat Enterprise Linux 5.5, 64 bit
Processor Intel Xeon E5530 @ 2.40GHz
Memory 6GB DDR3 @ 1066 MHz
GPU Nvidia Tesla C1060
Bus PCI Express x16 Gen 2

Benchmarking EPIV involves setting a number of parameters that have a significant
impact on performance. The reference window size and correlation surface size should
have a big influence on the performance of any direct processing method because of the
O(n4) scaling. Methods that utilize the FFT to solve correlation will also see a lesser but
still significant decrease in performance as window size is increase. Performance is also
dependent on the number of sensors at which correlation is computed.

Time spent decoding the video file or displaying results may in some cases cause a
bottleneck to occur because the PIV threads must wait on the reader or writer threads. In
EPIV the most common bottleneck occurs in the input module while decoding video from
a compressed stream. The maximum video decode rate may be determined by running
EPIV with no configured sensors. The video reader is a bottleneck if the frame rate of
EPIV remains the same when sensors are added back to the configuration. To maximize the
decoder performance, an sfmov file was used as a video source for these tests. Sfmov files
are stored uncompressed and encoded at a lower resolution than video from the NIR and
color sensors.

Table 3.2: Default PIV Benchmark Settings.

Sensors 400
Reference Window 35x35
Correlation Surface 35x35
Correlation Method MSD
PIV Threads 16
Averaging Time 800 frames

All processing performance measurements used the same sfmov video file and EPIV
settings except where otherwise specified. In all tests the video file was loaded into cache
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memory before taking any performance measurements. Other PIV specific settings used
in the performance tests are listed in Table 3.2. EPIV was designed with the performance
goal of processing color and NIR video at 7.5 FPS and FLIR video at 15 FPS. The ultimate
goal of these performance measurements was to determine if EPIV is capable of processing
video in real time and what the limitations of real time processing are.

System specifications for the workstation test computer are given in Table 3.1. The Intel
Xeon E5530 is a quad core processor with 8MB of L3 cache running at 2.40GHz. The Tesla
C1060 is a CUDA compute capability 1.3 card with 240 processing elements. During all
measurements the system was idle except for the EPIV process. In all CPU experiments
the PIV module is configured to run 16 processing threads. EPIV sets the priority of the
input/output threads higher than the PIV threads. Setting the PIV module to use more
threads than CPU cores should not reduce performance significantly when an input or output
bottleneck exists, but should improve performance when one does not exist.

Benchmarks are separated into four subsections. Benchmark results generated from
changing the size of the reference and search window are given in the subsection titled
"Window Sizes." These results determine both the scalability of the different processing
methods and any possible significant overhead introduced from changing the size of the
correlation or reference window. The next section titled "Sensor Count" benchmarks the
performance effect introduced when the number of sensor are changed. Results from this
section are expected to show a linear decrease in performance as the number of sensors are
increased. The section titled "Methods" investigates the performance differences among the
three correlation methods, cross correlation, correlation coefficient, and minimum square
difference. A small difference in performance may be expected when computing the different
correlation methods directly, but very little difference in performance is expected when
using FFT approximation. The final section titled processor count looks at the performance
of EPIV as the number of processors is increased. All performance measurements were
taken directly from the average frames-per-second display of EPIV.

3.4.1 Window Sizes

Figure 3.4 shows the performance of the PIV computation using the parameters given in
Table 3.2. A number of different reference window sizes are given to show how each of the
correlation processing techniques scales. The GPU processor computes correlation faster
than the CPU in all these tests. With window sizes of 15x15 and 25x25 the performance of
the GPU was limited by the speed of the video reading thread. GPU correlation performance
begins to decline quickly with reference windows of size 35x35 and up.
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Figure 3.4: Performance of EPIV with different reference window sizes.

If the window sizes were increased beyond 55x55 the CPU FFT method would eventually
outperform the GPU. Even with a high end four core CPU, the direct CPU correlation
method does not give good performance numbers at any window size, and should only be
used if the FFT method is not acceptable and no GPU is available. For all window sizes
less than 55x55 both the FFT CPU method and GPU method are capable of processing the
sfmov in real time.

Figure 3.5: Performance of EPIV with different correlation surface sizes.

Figure 3.5 is similar to 3.4 but the size of the correlation surface is changed while
the size of the reference window remains constant. As expected the performance impact
of changing the size of the reference and correlation surfaces is almost identical. The
number of iterations the inner most loop must complete is equal to the size of the reference
window, but the number of times the inner most loop is executed is equal to the number
of elements in the correlation surface. There are some small performance differences in
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the FFT method because of different amounts of padding used. These differences are not,
however, significant. Because these two graphs are almost identical, approximations may be
made for combination of window sizes not tested. For example, the performance of a PIV
configuration with a reference and correlation surface of size 45x45 would be similar to the
performance of a PIV configuration with a reference window of size 35x35 and a correlation
surface of size 55x55.

3.4.2 Sensor Count

Figure 3.6: Performance of EPIV with different sensor density.

Figure 3.6 shows the performance of EPIV as the number of sensors are increased.
A linear relationship between the number of sensors and FPS is apparent in this figure.
If the number of sensors is doubled the FPS is roughly cut in half. At 400 sensors the
FFT CPU and GPU methods are capable of processing in real time. Once the number of
sensors is increased to 800, the GPU alone is still capable of processing at least 15 FPS. At
1600 sensors none of the methods are capable of processing at least 15 FPS. The GPU has
additional overhead as the number of sensors increases because the results computed on the
GPU have to be transferred back to the CPU. Figure 3.6 does not seem to indicate a scaling
problem with the GPU so any overhead incurred by the memory transfer must be minimal.

3.4.3 Correlation Methods

Figure 3.7 shows the performance of the three different correlation methods. As expected
the performance of the FFT CPU technique is about the same for all correlation methods.
Results from the GPU also change very little for the different methods despite performing
one additional operation in the inner loop for the correlation coefficient method.
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Figure 3.7: Performance of Different Correlation Methods.

Performance of the GPU is not suffering much from the additional operations because the
hardware has some free arithmetic logic units. These units are able to process the additional
operations while the GPU waits for memory accesses. Results from the direct CPU method
show a significant difference in performance among the three methods. Additional operations
required for the correlation coefficient method make it process at roughly two-thirds the
performance of the cross correlation method. Performance of the direct CPU method could
be improved by using the sum area table generated for the FFT method. Using a sum area
table should bring the performance of the CPU direct method for correlation coefficient up
to the performance level of cross correlation and minimum square difference.

3.4.4 Processor Count

Direct GPU Direct CPU FFT CPU
1 CPU 53 0.8 11

67 1.5 23
69 2.1 35
72 3 47

2 CPUs
3 CPUs
4 CPUs

Figure 3.8: CPU Scaling.
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EPIV CPU scalability is show in Figure 3.8. Both the FFT CPU method and the Direct
CPU method appear to scale linearly with the number of CPU cores as expected. Note
that the speed of the reader process does impose a hard limit to the scalability of EPIV.
Performance of the direct GPU method also improves as additional cores are added. While
the GPU itself does not change the ability of the CPU to feed the GPU data and wait on
results is affected by the number of available CPU cores. With a single core processor a
significant amount of time is spent reading in video and displaying output. The GPU may
finish quickly but be forced to sit idle while additional frames are read in and processed.
Notice that GPU performance only increases a small amount when the number of cores is
increased to four. With three processor cores, the system has ample resources to read, write,
and process results as fast as the GPU completes them.

The standard CUDA synchronization method involves a busy wait while the GPU
is processing data. A spin lock is not ideal for systems with limited CPU resources.
In EPIV the CUDA algorithm is configured to use a type of waiting mechanism called
cudaDeviceBlockingSync which employs a synchronization primitive to wait of the device
to finish. Using cudaDeviceBlockingSync could cause additional latency, but on systems
with limited processing resources, cudaDeviceBlockingSync improves performance. EPIV
performance increase is on the order of 20% when using cudaDiviceBlockingSync with one
CPU and did not noticeably decrease the performance when running with the full four cores.

3.5 Real-Time Measurements

EPIV processing speed was also measured on a mobile computer platform designed to collect
and process data in the field. The mobile platform was initially designed to collect video
from two sensors and save it uncompressed to a hard drive. Later this video is processed and
used for PIV measurements. Because of the significant size of the video the device cannot
operate for long periods of time even with the largest storage devices available. To address
the storage issue EPIV was extended to support reading video directly from firewire sensors
using the dc1394 library. Because processed PIV results take up much less storage than
video files, the mobile computer device is capable of much longer deployment.

The mobile computer system is based on the NVIDIA ION platform. The processor is
an Intel Atom with two hyper-threaded cores running at 1.6GHz. The GPU is a NVIDIA
ION stream processor with 16 cores and 256MB of memory. These and additional computer
components were mounted into the custom computer case shown in Figure 3.9. Fedora 14
was installed as the operating system and EPIV was copied and recompiled on the portable
system.
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Figure 3.9: Target Mobile Platform for EPIV.

Additional speed measurements were made using a reference window size of 39x39 and
a correlation surface size of 19x19. These measurements compare the real-time processing
capability of the Atom system with the Xeon system. Because the firewire camera used
in the experiments operate at 7.5 frames per second the mobile system must be capable of
processing at least 7.5 frames per second. Processing speed was tested by increasing the
number of sensors or measurement points until the processing rate fell below 7.5 frames
per second. On the mobile Atom system when using a CPU or GPU based correlation up
to about 64 measurement points may be computed in real time and on the Xeon system in
excess of 4800 measurement points may be processed in real time when using GPU based
correlation. When the size of the PIV windows are reduced by roughly half the Atom system
using the ION GPU is capable of processing about 1500 measurements in real time while
the Xeon system is capable of processing in excess of 47,000 measurements in real-time.

The low performance of the GPU on the Atom is caused by a number of factors. The
ION GPU only includes 16 cores while the Tesla GPU include 240 cores. In addition, the
ION GPU is a CUDA generation 1.1 device and contains less registers than the Tesla device.
The lack of registers caused the correlation algorithm to only utilize 67% of the GPU. The
ION architecture by itself is not very useful for real time PIV measurements but may be
improved by adding a discrete CUDA GPU. With the addition of a discrete GPU to the ION
platform should be capable of processing a much larger number of sensors in real-time.
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3.6 Conclusion

The performance overall of the GPU correlation module is impressive. There are a number
of reasons why direct correlation may be preferred over the FFT method [20] and the GPU
module is capable of computing direct correlation at speeds that rival and exceed the FFT
method for window sizes smaller than 45x45. Previously correlation methods, such as
absolute difference, that do not have an FFT approximation have been ignored because of
poor performance. The direct method is much more flexible and these methods could be
implemented by changing only a few lines of code. The GPU algorithm could also be used
for field projects where computational power is limited. Any system with a PCI Express bus
and a sufficient power supply could easily be converted into a real-time PIV platform.

When running PIV measurements on a high end computer system, the CPU alone is
capable of processing a large number of measurements in real time without the assistance of
a GPU, but even on these systems the GPU is capable of improving the processing speed by
2-4x. On portable system that do not include high performance processors the addition of a
GPU has the potential to increase the number of sensors that may be processed in real time
by as much as 10-20x.

A new version of EPIV was developed using what was learned from the proceeding
sections. The new version of EPIV defaults to the direct correlation method on the GPU
unless the reference window exceeds 16,000 pixels. If a GPU does not exist or if the reference
window size is too large, the CPU based FFT method is used to compute correlation. The
GUI included with EPIV was also changed to remove many of the options determined to
be ineffective. The new version of EPIV has a smaller memory footprint and is capable of
computing real-time PIV measurements directly from a video sensor.
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Chapter 4

CORRELATION CONFIDENCE

4.1 Introduction

PIV experiments typically use cross correlation to generate a velocity measurement for the
area around a virtual sensor. Cross correlation methods are well researched and numerous
techniques are available to improve both accuracy and processing speed [16, 4]. Cross
correlation does have a number of problems including a sensitivity to noise and changes
in uniformity. Some of these problems are difficult or slow to correct. For real-time PIV
systems the best method to address possible correlation problems is often to simply not
record velocity measurements where the results of cross correlation are in question. In
this chapter a number of different measurement confidence scores are developed. These
methods are designed to identify correlation surfaces that are not likely to produce an
accurate measurement of velocity.

A correlation surface may be presented graphically using a number of different methods
including height maps or as grayscale images. In a grayscale image representation of a
cross correlation surface the higher the value of the pixel the higher the correlation score.
A black pixel represents a low degree of correlation and a white pixel represents a high
degree of correlation. An ideal correlation surface contains very few pixels with a high
correlation (white) but a large number of pixels with a low degree of correlation (black).
Figure 4.1 shows the correlation surface produced from a strong and unique correlation. All
the correlation surfaces shown in this section are grayscale images generated by multiplying
each correlation score as computed by the normalized correlation coefficient method by 255.
All the correlation surface images were generated using the EPIV software discussed in
Chapter Three.

The remainder of this chapter is divided into four sections. Section 4.2 presents a number
of different common correlation problems and possible methods to correct them. Section
4.3 presents a number of different scoring methods and modifications used to identify
correlation surfaces that may produce incorrect measurements. Section 4.4 discusses image
preprocessing methods that have been useful in specific situations. Section 4.5 concludes
the chapter with general observations about the filtering and preprocessing methods.
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Figure 4.1: Correlation surface with a strong and unique peak.

4.2 Background

When used with video from field experiments, PIV often produces a large number of
erroneous vectors. These erroneous vectors may be caused by a number of different
problems but typically result in a correlation surface that contains no unique well defined
peak, or a correlation surface that contains many peaks [9, 21]. Erroneous vectors may also
be produced when fixed features such as reflections are present in the images. Fixed features
often cause a line of high correlation scores along the fixed feature. In both of these cases
the actual best peak may not produce an accurate velocity measurement. These and other
causes of correlation failure are discussed in below.

Figure 4.2: Correlation surface generated by introducing out of boundary motion.

Out of boundary particle motion occurs when features in the reference window at time
t move too far to still be inside the search window at time t +δ t. The correlation surface
produced from out of bounds motion is often similar to Figure 4.2. Out of bounds motion
may be eliminated by decreasing δ t or by increasing the size of the search area. Decreasing
δ t is the preferred method to fix out of bounds motion because increasing the size of the
search space also increases computation time and increases the probability of noise in the
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correlation surface. A good method for setting the size of the correlation surface involves
estimating the maximum amount of motion in each direction and using the formula

Sx = rx pδ t (4.1)

Sy = ry pδ t (4.2)

where Sx,Sy is the size of the correlation surface, rx,ry is the expected maximum velocity in
the x and y direction, p is a scaling ratio to convert pixels space to world space, and δ t is the
change in time between image captures.

Out of plane motion may cause features to disappear resulting in a weak correlation
peak. In 2D laboratory PIV experiments, a single plane is illuminated and only particles in
that plane are visible. Particles that pass through the plane may appear in one frame and
disappear in the next. Out of plane particles do not always cause correlation to fail. A small
number of particles with out of plane motion may reduce the peak height but not to the point
where noise begins to influence the result. Out of plane motion is reduced by increasing the
size of the light sheet.

Sometimes particles within a reference window do not move in a uniform direction
causing an in-plane velocity gradient [6]. A correlation failure may occur due to in-plane
velocity gradients because the layout of particles in the reference window has changed in
the search window. In-plane velocity gradients may be corrected for by reducing the size
of the reference window or by a technique called window deformation [14]. The window
deformation technique changes the shape of the reference window to correct for velocity
gradients. The performance overhead required to perform window deformation operations
would not be practical for a real-time system.

Figure 4.3: Correlation surface with no unique peak.

Peak locking is another cause of inaccuracies in PIV. Velocity is computed from the
location of the peak within the correlation surface. Without any interpolation, the peak will
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always be located exactly at a pixel position. The actual peak is almost never located exactly
at a pixel coordinate but is instead somewhere between pixel locations. One method to
address peak locking is to interpolate the location of the peak by using the correlation score
of elements around the peak. Interpolation improves the accuracy of the measurements
but does not completely solve the problem of peak locking [7]. Another method called
multisampling is often used to reduce the error introduced from peak locking in addition
to increasing spatial resolution. Multisampling computes correlation a number of times
using different correlation windows sizes to improve the accuracy and spatial resolution
of the peak location. Multisampling causes a significant performance loss and may not be
appropriate for real time measurements.

4.3 Related Work

A number of correlation based and post processing based methods have been proposed to
address erroneous vectors. One method uses a system to detect the number of particles and
expands the reference window size until it contains a significant number of particles [26].
Another method combines a number of nearby correlation surfaces to remove noise [9]. Post
processing methods that locate outlier measurements by looking at neighboring vectors have
also been successfully used to improve PIV accuracy [13].

4.4 Correlation Confidence Scoring Methods

Many of the methods used to improve the accuracy of laboratory PIV experiments are not
useful in riverine PIV because of low particle density. In PIV river experiments the most
common cause of a correlation error is due to a lack of unique features in the reference
window. The correlation surface shown in Figure 4.3 has many high peaks because the set
of features in the reference window is not unique within the search window. Sometimes
increasing the size of the reference window helps to produce a unique peak but at the cost
of a decrease in spatial resolution and an increase in computation time. When practical,
adding additional particles to the flow is helpful, but even with additional seed particles,
correlation will often fail to produce accurate results at some virtual sensor locations. A
number correlation confidence scoring methods are developed in this section. These methods
could be used to filter out vectors generated from possibly inaccurate correlation surfaces.

EPIV includes a number of methods for scoring the quality of the correlation surface.
The most simple method uses the height of the peak. A high peak indicates that there is a
high degree of correlation. A low peak height indicates that there could be a problem with
the correlation surface that may include out of boundary motion, out of plane motion, or a
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velocity gradient. The peak height method is not useful for identifying a correlation surface
where all the scores are very high. Such surfaces are common in PIV computations where
the number of particles in the fluid is limited.

Another method used in the Matlab PIV software called MPIV [18] and also implemented
in EPIV uses a peak uniqueness measurement to score a correlation surface. The peak
uniqueness method is referred to here as uscore. Uscore is based on the noise floor of the
correlation surface and how far above this the peak is. First the highest correlation score is
located by finding the maximum correlation in the correlation surface using a linear sub-pixel
interpolation method. Next the mean and standard deviation of the entire correlation surface
are computed. These calculations are combined using

uscore =
max(c)−mean(c)

stdev(c)
(4.3)

where max is the interpolated peak, mean is the mean of the correlation surface, stdev is the
standard deviation of the correlation surface, and c is the correlation surface. The uniqueness
score identifies a correlation surface produced when there is little or no particles in the lag
and lead images.

A high uscore does not indicate a high degree of correlation. Under some circumstances
a correlation surface may generate a very high uscore but contain a very weak correlation
peak. Uscore may be modified by combining it with the peak correlation score. When
the NCC method is used to compute the correlation surface the uniqueness score may be
weighted by the peak correlation score using the formula

wscore =
max(c)−mean(c)

stdev(c)
∗max(c) (4.4)

where c is the correlation surface. A good cutoff for wscore is typically in the range of
[2,3] but may be different depending on the application. Vectors produced from correlation
surfaces with scores lower than the cutoff could be discarded to remove possibly incorrect
measurements.

An additional modification of the wscore method was also found to be effective at
identifying inaccurate vectors generated from high intensity surfaces within the lag and lead
images. The modified method uses the wscore and computes an additional measurement
similar to the wscore but with the mean value replaced by standard deviation. The final
score of the correlation surface is taken as the minimum of the two scores. The code for this
method is given below.
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mean_score =
max(c)−mean(c)

mean(c)
∗max(c) (4.5)

con f idence_score = min(wscore,mean_score) (4.6)

A final modification to the wscore method adds an additional power component to the
difference between the max(c) and mean(c) components. The additional parameter may be
used to increase or decrease the correlation score depending on the level of contrast within
the correlation surface. By increasing the power of the difference between the peak and the
surface mean, correlation surfaces that include high contrast are given a higher score. The
power of the difference may also be decreased to decrease the score of correlation surfaces
with high contrast. If an image contains a number of different zones with different levels
of contrast, this method may be used to eliminate measurements for undesired zones. The
formula for the weighted difference score is given below.

dscore =
(max(c)−mean(c))n

stdev(c)
∗max(c) (4.7)

A filtering method based on a maximum velocity cutoff score was also useful in some
experiments. If a correlation surface produces a measurement that is known to be too large it
can be considered inaccurate and discarded. A simple modification of the maximum velocity
filter was found to be useful. If a correlation peak is determined to be located along the edge
of the correlation surface it is considered to be inaccurate. A correlation along the edge
may indicate that the actual peak is further from the edge as is the case with out of bounds
motion and therefore the velocity measurement is not correct.

In experiments where the flow is in a semi steady state a number of vector fields may be
averaged together to produce one velocity field representing a longer span of time. Taking
the time average will help to reduce the influence of noisy vectors but may also lead to lower
overall velocity measurements. If vectors considered to be erroneous are removed using one
of the methods above, taking the time average will help to produce a more complete vector
field without reducing the magnitude of velocity measurements.

The methods discussed above were used to determine how many incorrect vectors could
be effectively identified and removed. Approximately 143 virtual sensors were placed in
a specific part of a video where the direction of motion is known to be towards the south.
The images used for this measurement were extracted from the first 200 frames of a video
captured of the Wolf River on May 26, 2010 starting about 10:00AM. Averaging each sensor
over the 200 frames resulted in 127.634 or 89% of the sensors producing a measurement
in the south direction and 10.26 or 7.6% of the sensors producing a measurement in the



34

north direction. Enabling the maximum velocity filter and setting the wscore filter to 2.0
caused the number of south vectors to decrease to 101.317 and the number of north vectors
to decrease to 0.52. Setting the wscore filter to 3.0 caused the number of south vectors to
decrease to 91.0 and the number of north vectors to decrease to 0.322. Assuming the number
of incorrect vectors in the south direction is equal to the number of incorrect vectors in the
north direction, an estimate of the total number of incorrect vectors removed when wscore
is set to 2.0 is 2∗ (10.26−0.52) or 19.48, and an estimate of the total number of correct
vectors removed is 127.634−101.317−19.48 or 6.837.

Figure 4.4: Filtering by wscore Disabled (left) and Enabled (right).

4.5 Image Processing Methods

In some experiments image processing helped to improve the quality of the measurements
generate by PIV. One experiment contained video that included strong shadows in the
crossflow direction. The shadows caused the correlation surface to report a measurement
close to zero when there was clearly motion visible in the video. The methods discussed
below helped to produce accurate velocity measurements even with the shadows present
in the video. These methods also helped to correct measurements around other strong
stationary features such as fence posts.

The strength of the shadow or stationary feature within an image causes high correlation
scores in a peak range parallel to the feature. An image processing method was developed
to remove the common elements in the lag image and correlate the results. The processing



35

method takes the lag frame and subtracts the lead frame from it.

lag[x][y] = lag[x][y]− lead[x][y] (4.8)

Any part of the image that is the same in the lag and lead frames is removed and only the
parts that are unique to each image remain. The new image generated from the difference
between the lag and lead images is used provide intensity information for the reference
window. Normalized cross correlation is performed on the the difference image and the
original lead image. Because the strong stationary shadows and features are removed the
resulting correlation measurements are more accurate as long as there is sufficient motion in
the images. In sections without motion the modified lag image does not contain texture and
therefore cannot be used to produce correlation scores.

A modified version of the method discussed above was developed and may be more
accurate in specific experiments and especially in zones with small or no motion. The
modified methods takes the difference between the lag frame and half the lead frame using
the expression below

lag[x][y] = lag[x][y]− lead[x][y]/2 (4.9)

lead[x][y] = lead[x][y]− lag[x][y]/2 (4.10)

Removing half of the lead image from the lag images effectively reduces the intensity
of pixels common in both images. Zones with zero motion are correctly detected with
this method because intensity measurements common to both frames are reduced but not
eliminated. The same method may be applied to the lead image as shown in the equation
above. Additionally the value 2 could be increased or decreased to preserve more or less of
the common intensity measurements.

A third frame (called scout in the equations below) captured at double the δ t of the lead
and lag frames may be used in place of subtracting the lag frame.

lag[x][y] = lag[x][y]− lead[x][y]/2 (4.11)

lead[x][y] = lead[x][y]− scout[x][y]/2 (4.12)

Subtracting the lag frame from the lead frame may cause high correlation scores in the
opposite direction of the motion and may in some cases cause incorrect measurements. If the
motion is mostly steady taking a frame at a point in time after the lead frame may improve
the quality of the measurements.
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Figure 4.5: Difference (left) and Weighted Difference (right) Methods on the Image from
Figure 4.4

4.6 Conclusion

Assigning a level of confidence to a correlation surface helped to improve both the accuracy
of single and time average PIV measurements. The correlation confidence scoring methods
increased accuracy of standard PIV computations by successfully identifying and removing
most of the measurements that were know to be incorrect. Time average PIV calculations
were improved by the confidence score because random vectors generated by noise and
other factors that appear in each individual PIV calculation were rejected and not included
in the average velocity measurements.

There are a few outstanding issues with the filtering methods discussed in this section.
In some cases velocity measurements that are accurate have a low confidence score and are
removed by the filter. In other cases a measurement that is clearly inaccurate is given a high
correlation score. One situation occurs when the correlation surface has a small number
of well defined peaks. Scoring methods based on the difference between the peak and the
mean will give this a high measurement, but the peak may not be correct because there are a
number of close to equal alternatives that could also be correct. In addition to not always
being accurate these filtering methods require a large amount of manual adjustment and trial
and error to determine the best method and parameters.

Image processing techniques are effective at removing shadows and other objects com-
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mon to both the lag and lead frames. In videos where a shadow or other object is causing
problems for PIV these image processing m ethods have effectively turned inaccurate mea-
surements into accurate measurements. There are some problems with the image processing
methods. In images where there are no common objects that interfere with correlation better
results are usually obtained with unmodified images. Removing the stationary objects also
causes the PIV measurements to be incapable of generating a high correlation with zero
motion.
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Chapter 5

FIELD EXPERIMENTS

5.1 Introduction

Three experiments are discussed in this chapter and referred to respectively as Cable Bridge
Experiment, Hotel Experiment, and NPS Beach Experiment. The purpose of these field
experiments was to test methods for video collection and to measure the accuracy and
capability of the EPIV system discussed in Chapter Three. These results will be used to test
if EPIV is capable of taking accurate field measurements in real time. The remainder of this
chapter is divided into four sections. Section 5.2 titled "Related Work" reviews other work
that uses LSPIV or PIV to measure velocity using images collected in the field. Section 5.3
titled "Equipment" describes the equipment and methods used for the experiments. Section
5.4 gives the results for the experiment conducted at Cable Bridge. Section 5.5 gives the
results for the experiment conducted at the Hotel location. Finally section 5.6 gives the
results of the experiment conducted at NPS Beach.

5.2 Related Work

PIV methods have been successfully used in a number of field experiments related to ocean
flow measurements. One example is a system designed to calculate near shore ocean currents
[12]. Video is rectified to the ground plane using a photogrammetric camera model similar
to 2.11 and 2.12. Correlation is measured using a minimum difference scoring method
similar to MAD. Noisy vectors are detected using a post processing method that takes the
mean of eight neighbor vectors to look for outliers [21]. If an outlier vector is detected it
is replaced with a weighted mean value computed from the neighbor vectors. PIV results
were found to be consistent with current meters and different flow measurement methods.
PIV methods have also been applied to underwater ocean measurements. A method of using
laser illumination and standard PIV techniques is used to measure turbulent flows in the
costal bottom boundary layer of the ocean [23].

PIV methods have also been applied to measuring river surface flow. One example is
a system designed to measure river surface velocity using a video sensor with no artificial
lighting [11]. The system consists of a truck mounted camera set up for collecting images
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and a laptop PIV program to process the results. The rectification method uses a plane to
plane transformation technique [17]. Correlation is measured using a traditional CCOEFF
method. The flows are considered to be in a steady state so a time average is used to
improve the velocity measurements. Multiple partially overlapping images are combined to
increase the amount of area that may be measured by the PIV system. Results from the PIV
measurements are said to agree with other reference measurements. Measurements are only
computed once every two minutes.

Methods to seed large surface flows have been developed and successfully used in a
number of experiments. One such PIV experiment takes measurements of a large surface
flow using many of the techniques common in small laboratory experiments [29]. The
technique employs many of the tools used in a lab PIV experiment including seed particles
and constant lighting. A correlation filtering method called the peak ratio factor is used to
reject vectors that are likely incorrect. The method uses the difference between the highest
and lowest peak divided by the difference between the second highest and lowest peak.
Laser-Doppler-Velocimetry measurements were taken to verify the vectors generated by
PIV.

Similar work using infra red video devices and PIV is currently being conducted by the
COHSTREX group [15]. The COHSTREX group uses a barge equipped with a thermal
camera and a number of different sensors to study river flow structures. A thermal camera
mounted to an aircraft is also used to collect images of the river. Results from this group
show that coherent thermal structures do exist and that PIV may be used to measure these
structures.

5.3 Equipment

Equipment used in these experiments included a Dell Precision T7500 computer, a Point
Grey Research Grasshopper GRAS-14S5M-C near infrared sensor, a Point Grey Research
Grasshopper GRAS-20S4C-C color sensor, and a FLIR SC6700 thermal sensor. The near
infrared sensor was equipped with a 9mm Fujinon HF9HA-1 lens and a 9mm Opteka HD2
infrared filter. The color sensor was also equipped with a 9mm Fujinon HF9HA-1 lens.
Both the color and near infrared devices were equipped with a polarizing filter. The thermal
sensor was equipped with a 25mm lens. Camera settings including shutter, exposure, and
gain were adjusted manually to improve the quality of surface features recorded to video.
The video captured from these devices was later processed using the Dell Precision T7500
computer and an NVIDIA Tesla C1060 GPU.

To capture video in the field, a mobile computer system was designed and developed. The
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mobile computer system includes an Intel Atom processor and an on-board NVIDIA GPU.
Video sensors were connected to the mobile computer using FireWire. For experiments
where the video sensors must be placed a significant distance from the computer a FireWire
to Cat 5 converter was used. As video was collected it was stored directly to the hard drive
of the mobile device as uncompressed frames. Due to the size of the video files a number of
high capacity hard drives were connected to the mobile computer. These video files were
later compressed with H.264, stored to a file server, and processed by EPIV.

Table 5.1: Camera and PIV Experiment Parameters.

Cable Bridge (26) Hotel NPS Beach
Angular FOV 57.3 22.3 42.2

Azimuth -173.6 15.5 28.8
Tilt 55.8 76.8 81.8
Roll -3.6 0.5 -1.5

North 3374571.222 5393997.769 5394502.469
East 281669.1227 550995.343 555600.492

Elevation 16.248 545.784 543.982
Reference Window 1.2x1.2m 3.5x3.5m 3.5x3.5m
Correlation Surface 0.6x0.6m 3.0x2.5m 2.75x2.0m
Correlation Method CCOEFF CCOEFF CCOEFF

Pixel Resolution 0.030 m/p 0.10 m/p 0.10 m/p
Averaging Time 800 frames 800 frames 800 frames

All PIV measurements were computed using EPIV. EPIV requires input that includes
a video file, camera position parameters, camera orientation parameters, control points,
image registration area, reference window, correlation surface size, sensor location, and filter
settings. The position of the camera was determined by field survey equipment. Camera
orientation was computed by manually adjusting the orientation parameters until the points
correctly line up with associated image features. The image registration area was determined
by using satellite images to get a rough estimate of the ground location and then fine tuning
the results by manually adjusting the registration parameters. Reference window size was
initially set to a low starting value and increased until the visual observation of the surface
flow stopped improving. Correlation surface size was initially set to a high value and then
reduced until vector speed began to be affected. The location of sensors were configured
using a uniform grid that typically included enough space between sensors so that vectors do
not overlap on the display. Filter settings were adjusted manually by observing the number
of vectors that appear to be inaccurate and increasing the filter settings until these were
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removed. Final setting used in the three experiments are given in Table 5.1

5.4 Cable Bridge Experiment

Cable Bridge Experiment was conducted on the Wolf River in Mississippi. The Wolf River
is a small river located in South West Mississippi that originates in southern Lamar County
and flows in a south to southeast direction before emptying into the Bay of St. Louis. Both
the depth and discharge of the Wolf River very widely depending on rainfall conditions.
Video of the river flow was taken at a location just south of Cable Bridge Road near Landon
Mississippi.

Figure 5.1: Wolf River Experiment Location.

A Point Grey Research Grasshopper NIR camera equipped with a 7.5mm lens was
positioned on the bridge crossing the Wolf River. The approximate location of the camera is
given in UTM zone 16R coordinates in Table 5.1. The camera was secured to the bridge
using a camera mount and ratchet straps. A portable Intel Atom based system located off
the bridge was connected to the cameras using a FireWire to Cat 5 repeater. Video was
collected at various times during the morning and afternoon on May 24, 25, and 26 of 2010
and stored by the Atom system as uncompressed AVI files. The camera equipment was
removed at night and repositioned the next day according to markings made on the bridge.
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Processing was not done on the Atom system itself. Instead the video files were copied to
a file server and later processed by the system described in Chapter 3. Configurations and
Results are discussed in four subsections: Image Registration, PIV configuration, Results,
and Validation.

5.4.1 Image Capture and Registration

Images of the Wolf River were captured by a NIR video camera. The NIR device was
configured to collect one image every 7.5 seconds and store these images to an uncompressed
video stream on the hard drive of a nearby computer. The NIR camera was equipped with
a polarizer that was manually adjusted to remove some of the glare visible on the water
surface. Other external camera settings on the NIR device such as aperture and focus were
manually adjusted to maximize the number of features visible on the water surface. Internal
camera settings including shutter speed were set manually using camera control software.

A number of different objects were surveyed and used as control points for image
registration. The position of these control points in UTM were entered into the EPIV camera
configuration module. EPIV displays these world coordinate points as green dots in the
image space. Camera orientation numbers were adjusted until the green dots representing
the world coordinates of the control points matched closely with the position in the image
of the objects used as control points. Camera orientation parameters are given in Table 5.1
and the world control points projected to the image in Figure 5.2.

The registered image area used for the Wolf River experiment ranged from UTM 281656
E, 3374538 N to 281680 E, 3374564 N or approximately 650 square meters. Each pixel in
the remapped image represented approximately one-thirtieth of a meter for a total resolution
of 750x780 pixels or 25x26 meters. A single registered frame from video taken on May 25
and May 26 is shown in Figure 5.3. The same registration area that was used for the May 26
video was also used for the May 25 video.

5.4.2 PIV Configuration

For video captured on Aug. 26, PIV was configured to use a reference window of size
1.2x1.2m and a correlation surface of size 0.6x0.6m. These parameters were chosen mostly
by trial and error. In general the size of the reference window should be larger than the
correlation surface and the correlation surface should be large enough to find the maximum
expected amount of motion. The camera was set to capture 7.5 frames every second and the
image reader in EPIV was set to an offset of two frames making the effective frame rate of
the video for PIV 3.75 fps.
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Figure 5.2: Cable Bridge Control Points.

With a correlation array of 0.6x0.6m or 21x21 pixels (windows sizes are rounded to the
nearest odd integer), the maximum motion detectable in the x and y directions would be
f loor(21/2) ∗ 0.03 ∗ 3.75 or 1.125 m/s. The offset between the images used in EPIV is
typically set by starting out at one and increasing the value until jitter motion in the vectors
begins to stabilize.

Sensors were configured in a uniform grid arrangement with one sensor placed every
1.5 meters in the north to south direction and every 0.8 meters in the east to west direction.
Some sensors in this grid fall outside the imaged area (black pixels in Figure 5.3) and others
are too close to the edge of the image. These invalid sensors are automatically eliminated by
EPIV. After elimination, a total of 368 valid sensor locations were detected. The position of
these sensors is shown as green dots in Figure 5.3.

5.4.3 Results

Video of the Wolf River was collected on May 24, 25, and 26. Video collected on May 24
was not processed due to a problem with the camera settings that caused the recorded video
to not have a constant frame rate. Lighting was problematic in these measurements due to
shadows from trees and clouds. Glare from the water surface was also an issue for video
collected during the midday hours. Video collected during the morning hours tended to
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produce the best PIV results. Particle distribution was also not ideal in these experiments.
Parts of the water surface contain little or no particles to track, and some of these particles
are not always stable and sometimes merge or disappear. Even with these issues good time
average measurements were obtained on May 25 and 26.

Results from a time average of 800 frames collected in the morning of May 25 are
given in Figure 5.3. Time average measurements rely on the wscore technique to eliminate
inaccurate vectors. In these measurements the minimum acceptable wscore is set to 2.5.
Any vector that scores less than 2.5 are not included in the time average results. No vector
is reported for a sensor if it does not produce at least 20 vectors with wscore greater than
2.5. Each of the sensors with a red line extending from it produced at least 20 vectors that
scored at least 2.5 or better during the 800 frames processed. Results from May 25 show a
maximum surface velocity of about 60cm/s in the center east region of the river.

Results from computing the time average PIV of 800 frames collected in the morning
of May 26 are given in Figure 5.3. A maximum velocity of about 90cm/s is reported. The
increase in velocity from May 25 to May 26 is likely due to rainfall during the afternoon
hours of May 25 that increased the water level in the river by at least 10cm. Notice that
particle density and lighting were better on May 26 which resulted in more sensors reporting
a velocity measurement.

Processing 800 frames of video collected at the Wolf River location took approximately
40 seconds or 20 frames per second on a single core system with a GPU processing
correlation. Real time processing would have been possible with this experiment because the
video collection rate was set to 7.5 frames per second. The source video was not compressed
so no significant overhead from video decoding is introduced in the input module. The
system used for these real-time tests is the benchmark system described in Chapter 3 with
three of the processor cores disabled. Disabling all but one processor core simulates the
performance that could be expected on a low end portable computer.

5.4.4 Analysis

Velocity measurements were recorded by a mobile surface ADCP device called a RiverRay.
A number of transects were made using the RiverRay two of which overlap the area imaged
by the camera. The RiverRay device uses a GPS and ADCP unit to sample and record water
velocity and position. Positions sampled by the RiverRay in the two overlapping transects
were used as sensor positions in EPIV. PIV measurements were computed for each of these
sensors and the results were compared to the RiverRay measurements of the water current
25 cm below the water surface (Figure 5.4).
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Figure 5.3: Cable Bridge PIV Results For May 25 (left) and May 26 (right).

Average difference between the vectors produced by these two devices is 0.157 for the first
transect and 0.088 for the second transect. Inside the main channel the RiverRay produces
a lower speed reading than does PIV. The difference in speed measurements in the main
channel could be due to the difference in recording time. The RiverRay measurements and
PIV video were collected about two hours apart. Due to thunderstorms on May 25 and May
26 the condition of the river was likely to change somewhat during the time-span between
experiments. The difference between these measurements could also be caused by sampling
depth. PIV only support surface current sampling and the RiverRay only support subsurface
sampling at a minimum depth of 25 cm.

Figure 5.4: Cable Bridge PIV and RiverRay Vectors.



46

5.5 Kootenai Hotel Experiment

Hotel Experiment was based at the Kootenai Best Western Hotel that overlooks a section of
the Kootenai River just east of the US Highway 95 bridge in Bonner’s Ferry, Idaho. The
Kootenai river is a major North American River that originates in British Columbia and
flows south into Montana. In Montana, the river flow changes to a northwestern direction
and continues through Boundary County, Idaho and into British Columbia. The width of the
Kootenai River at the Hotel Experiment location is in excess of 200 meters and only about
100 meters of the river starting from the south bank is recorded onto video.

Cameras were positioned at the Kootenai Best Western Hotel in rooms 401 and 405.
Exact UTM coordinates for the camera location are given in Table 5.1. Video was collected
starting on Aug. 8 and ended on Aug. 18. Most recordings were set to collect 2 minutes
of video and stop. Additional longer recordings of 5-20 minutes were also collected. The
Kootenai River experiment used the same NIR camera used in the Wolf River experiment in
addition to a Point Gray Research Grasshopper color camera and a FLIR SC6700 thermal
camera. The NIR and color cameras were both equipped with a 9mm lens and polarizer
filters, and the FLIR camera was equipped with a 25mm lens. The NIR camera was also
equipped with a Near IR filter.

PIV results are similar on video collected from the different devices, and so only the
results from one device are shown at each location. Each of the devices has some advantages
and disadvantages. More surface texture is visible in the images collected by the FLIR but
the field of view and resolution is more limited. Images from the color and NIR devices
have to be collected during a time of the day when lighting is good. The FLIR device is
much less sensitive to changes in lighting and may collect images at night or during the day.
Results for the hotel experiment were computed using video from the FLIR device. The
sequence of video used to generate the PIV results was collected on Aug. 16. Other video
files from different times and different days all produce similar results indicating that the
condition of the river did not change much for the duration of the experiment.

The Hotel location is a section of river with a mostly uniform flow direction concentrated
in a main channel. The main channel is located between the southern bank of the river
and the sand bar seen in Figure 5.5. One non-uniform flow pattern is visible at the eastern
end of the central sand bar. From the edge of the sand bar, water appears to flow in a
southerly direction into the main channel where it changes to an easterly direction. No
significant concentration of surface particles are visible in this section of the river, but
surface disturbances in the water are numerous in the main channel.
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Figure 5.5: Hotel Experiment Location.

These surface disturbances seem to mirror the direction and speed of the water flow and are
stable enough to use as features for PIV.

Lighting is problematic for the color and NIR devices at the Hotel location. The Hotel
casts a shadow over the river during the morning hours that makes surface features in the
water nearly invisible. During the evening hours glare from the sun is intense, obscuring
many of the surface features. The best video recorded on the color and NIR devices was
captured during the hours when the sun was mostly overhead. Lighting does not seem to be
much of an issue for the FLIR device. FLIR video seems to record surface features during
almost all hours of the day and night.

Both the NIR and color devices record underwater features such as sand and debris along
the southern edge of the river. Where these underwater features are visible PIV tends to
report an incorrect velocity of zero. After registering the image, the amount of river where
underwater objects are visible is small but may still cause a number of vectors in the lower
part of the image to report zero velocity. Images from the FLIR device do not show the
underwater objects.

Overall the FLIR device did a better job at recording surface features and was chosen
as the source of video for PIV at the hotel location. While the difference in velocity
measurements between the FLIR, color, and NIR were limited, the FLIR does produce a
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more complete vector field. The choice to use the FLIR device to produce results for the
hotel location is primarily due to the underwater features present in the color and NIR video.

5.5.1 Image Registration

Figure 5.6: Control Points at Hotel.

Image collection using the FLIR device is a little different from collection using the
NIR camera. The FLIR device works with a special software packages that controls the
camera parameters. All these settings were initially left to the default values except for the
capture rate which was set to 6.0 Hz, 7.5 Hz, or 16.0 Hz depending on the video. The frame
rate setting was recorded in the file name and entered into EPIV. Some filter settings were
adjusted near the end of the experiment but these adjustments did not appear to improve the
results any.

Data collected by the FLIR camera is stored in the sfmov file using 14 bits of information
for each pixel. Each pixel must be converted to an 8 bit integer because the PIV and display
algorithms do not directly support 14 bit pixels. Currently the 14 bit number is converted
into 8 bits by dropping the 6 least significant bits. As an alternative to dropping the 6 bits
of information a manual range may be specified that maps all values in that range to the
avaliable 8 bits. An alternative method is under development that attempts to automatically
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determine a significant intensity range and map these values to 8 bits. The alternative method
would preserve addition information in some of the bits dropped by the current conversion
method.

Control features in the form of fence posts were used to determine the camera orientation
parameters and to register the images collected from the FLIR camera at the hotel location.
Fence posts were driven into a sand bar near the center of the river. Survey equipment was
used to determine the UTM position of each fence post. Camera orientation parameters
were adjusted manually until the projected position of the world coordinates of the fence
posts matched the image position of the fence posts. The final alignment used for the hotel
location experiment is shown in Figure 5.6, and the actual measurements are given in Table
5.1.

The registered image area for the hotel experiment ranged from UTM 551000 E, 5394040
N to 551060 E, 5394130 N, or a total of 5400 square meters. All points in the registered
image are mapped to the elevation of the water that was measured at 531.824 meters. Each
pixel in the registered image represents 8 meters for a total resolution of 480x720 pixels or
60x90 meters. Figure 5.7 shows the result of registering the video captured by the FLIR
camera at the hotel location.

5.5.2 PIV Configuration

PIV was configured using the parameters given in Table 5.1. The correlation surface is set
to 3.0x2.5 meters or 31x25 pixels. Video from the FLIR device was recorded at a rate of 16
frames per second and δ t for the PIV computation was 11 frames or 0.6875 seconds. The
maximum velocity that could be detected using these settings is 2.182 meters in the east
and west direction and 1.75 meters in the north and south directions. The reference window
is set to 35x35 pixels or 4.375x4.375 meters. Typically the window sizes are set by first
determining the maximum amount of motion in the east and north directions and choosing a
correlation surface size large enough to detect that amount of motion. The reference window
is then set to be larger than the correlation surface.

The frame offset of 11 was determined by trial and error. With lower frame offsets
the vector direction tends to oscillate a small amount to the north and south. As the offset
is increased these oscillation disappear. At really small frame offsets, the oscillation is
likely due to the sub-pixel interpolation. Train traffic near the hotel was heavy and causes
visible motion in some of the video files which could be a source of some of the oscillation.
Increasing the offset also eliminated some of the erroneous vectors.

Sensors were configured in a uniform grid pattern starting at 551000 E and 5394040
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N UTM with a spacing of two meters in the north and east directions. Grid spacing is
typically configured so that vectors do not overlap. In this experiment the maximum amount
of motion in the east and north directions is just over two meters so the spacing between
sensors is configured to be two meters. The total number of sensors after eliminating invalid
locations were 594.

5.5.3 Results

Figure 5.7: Hotel Experiment Results.

A number of video files were collected and processed during the time period from Aug.
8 to 18. The condition of the river remains mostly consistent during this period of time,
but lighting conditions vary widely. Velocity readings over this period of time also remain
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mostly consistent. Results from the time average of 800 frames collected at 16 frames per
second on the morning of Aug. 16, 2010 are given in Figure 5.7. The flow at this location is
mostly uniform in direction with velocity measurements of just over two meters per second
in the center of the channel and slower measurements of less than one meter per second
close to the southern shore and center sand bank. Video from the three the different capture
devices was analyzed using EPIV with the best results typically from data generated by the
FLIR device.

The FLIR device captures a lot of features in the water and produces a vector map that
requires very little filtering of noisy vectors. Results from the other devices show the same
velocity in most sections but the ground features visible in the color and NIR video cause a
slower velocity reading for the southern most part of the river. Video from the FLIR device
is more consistent and not as dependent on the lighting condition as the other two devices.
All the results tend to agree that the velocity in the main channel is on average just over two
meters per second.

The total time required to process 800 frames of video from at the hotel location took
46 seconds or 17.4 frames per second when using a single core processor with a GPU.
Capture rate for the FLIR camera was set to 16 frames per second and could have been
processed in real time with EPIV. Video recorded from this experiment was not compressed
so performance when using input directly from a camera should be similar.

5.6 NPS Beach Experiment

NPS Beach Experiment was also located on the Kootenai River but at a position upstream
from the Hotel Experiment. At this position the river is about 200 meters wide. The main
channel of water flow is located between the center of the river and the northern bank with a
slower channel between the center of the river and the southern bank. A small channel of
water separates from the main river just west of NPS Beach. The two flow channels become
separated by land for about 1.7km before rejoining. The flow of the river narrows and the
direction shifts slightly more toward the south as the water travels west from NPS beach.

Both the NIR and Color cameras were positioned on the southern bank of the river at
roughly 6 meters above the water level. Video from the NIR and Color devices was captured
on Aug. 12 between the hours of 2050 and 2224 (GMT). Thirty minutes of video was
recorded at a sampling rate of 7.5 frames per second for a total of 13500 frames. The FLIR
device was positioned further upstream. Video from the FLIR was recorded on Aug. 12
between 2050 and 2224 (GMT) and on Aug. 18 between 1848 and 2010 (GMT).
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Figure 5.8: NPS Beach Location.

On Aug. 12 the FLIR device was initially set to sample at a rate of 7.5 frames per second
but was later changed to sample at a rate of 6 frames per second. On Aug. 18 the FLIR
device was set to sample at a rate of 16 frames per second.

Lighting is an issue at the NPS beach location. On the video recorded from the FLIR
device a strong glare on the surface of the water limits the amount of usable pixels in the
video frames. The NIR device does not pick up many strong features in the water and
inconsistencies in the lighting cause vertical lines in the mapped image that tend to cause
correlation to fail in some regions. Lighting was most favorable for the color camera at
NPS beach. The color camera recorded a large number of strong features in the river that
were not affected by uneven lighting. None of the video collected at NPS beach records
any significant underwater features but the fence posts used for control points caused some
zones where PIV incorrectly reports a zero velocity.

5.6.1 Image Capture and Registration

The Color camera was configured using the same technique developed for the NIR device.
First the external camera settings such as focus and aperture were adjusted manually to
improve the number of features visible on the surface of the water. Next the polarizer was
adjusted to remove any glare from the sun.
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Figure 5.9: Control Points at NPS Beach.

Finally internal camera parameters such as shutter speed were adjusted to improve the image
quality. EPIV does not currently support computing PIV on each channel of a color image,
so images from the color camera are converted to grayscale before processing.

The technique used to generate a mapping from world to pixel space with the images
collected at NPS beach involved determining the camera placement and the location of two
control points. The color and NIR devices were placed on a tripod that was positioned
directly over a point that had previously been surveyed. Position was taken directly from the
survey point and the height of the cameras was computed from the height of the survey point
plus the height of the tripod and camera mount. Field of view measurements for each camera
were previously computed using video from the hotel location. The final three parameters,
azimuth, tilt, and roll were determined by manual alignment of the mapped position of the
control points to the first frame in each video. Control point alignment is shown in Figure
5.9. Green dots are used to show the position of the control points as computed by the
mapping from world space to pixel space. Final measurements for azimuth, tilt, and roll are
given in Table 5.1.

Image registration parameters for NPS beach location are given in Table 5.1. The color
camera used at NPS beach collected video frames at a resolution of 1600x1200. These
frames were registered to ground coordinates that ranged from 55600 to 555670 UTM East
and from 5394510 to 5394610 UTM North resulting in a surface area of 70x100 meters.



54

Pixel size of the registered image was set to 0.0833 meters per pixel to produce a registered
image of 840x1200 pixels. The registered image was generated at a height of 538.3552
NAVD88 meters which was the elevation of the water as measured at the NPS beach location.

5.6.2 PIV Configuration

PIV settings used for the NPS beach experiment are listed in Table 5.1. The correlation
surface size was set to 2.75x2.0 meters or 27x21 pixels while the reference window was set
to 3.5x3.5 meters. Video was recorded at 7.5 frames per second and the mapped conversion
from world to pixel space was 0.1 meters per pixel. With δ t set to 4 frames or 0.533 seconds
the total amount of motion that may be detected using these settings is roughly 2.44 meters
per second in the east or west direction and 1.875 meters per second in the north or south
direction.

Sensors were placed in a grid pattern starting at 555600 UTM East and 5394500 UTM
North and extending 120 meters in both directions. The spacing between sensors was set
to 2.0 meters in both the East and North directions. Sensors that are not within the image
or too close to an image edge are deactivated. The north most row of usable sensors were
located at 5394608 UTM North and the east most row of usable sensors were positioned at
555668 UTM East. The south most row of usable sensors were located at 5394520 UTM
North and the west most column of usable sensors were located at 555608 UTM East. A
total of 902 sensors were determined to be usable.

5.6.3 Results

Results are given in Figure 5.10 and show velocity measurements that range from near
0 m/s along the shore line to as high as 1.5 m/s in the main channel. Within the main
channel velocity measurements in the east part of the image tend to be slower than velocity
measurements in the west part. The increased velocity in the west direction could be due to
a narrowing of the main water channel. There are some regions of error in the vector field.
Velocity measurements taken by sensors near fence posts tend to be too slow or in the wrong
direction. Stable reflections visible on the water surface near to the shore may be causing
the velocity measurements to be too slow in this region. Overall the results for this section
of the river show a clear and mostly uniform flow pattern in a west direction that tends to
agree with visual observation of the video and of the river.

The time required to process 400 frames of color video from NPS beach was 29 seconds
or 13.8 frames per second on a single core processor and GPU.
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Figure 5.10: NPS Beach Results.

Video was captured at a rate of 7.5 frames per second so processing for this experiment
could have been computed in real-time. The large number of sensors and the additional
overhead from decoding color video make this experiment the most processor intensive.
Even with these settings a GPU assisted EPIV is easily capable of processing frames in
real-time.

5.6.4 Validation

Velocity measurements from an ADCP device were taken on a part of the river that was
recorded by the color video camera. Results from the ADCP device give the velocity in the
main channel to be from 1.3 to 1.5 m/s and in the slower regions to the south to be from 0.4
to 0.6 m/s. Measurements from the ADCP device agree with the PIV results that show a
general acceleration in the water as it moves to the west. PIV results were in general a little
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slow but mostly agree with the ADCP measurements in both direction and velocity.

5.7 Conclusion

Results from the three experiments discussed above show that the EPIV software is capable
of producing accurate PIV measurements quickly. EPIV was capable of processing data
from each of the experiments in real time with only a single core processor and a high end
GPU. Results also show that EPIV measurements agree with ADCP measurements to within
15% difference. These experiments also show that EPIV is capable of recording velocity
measurements based on different features. The Wolf River velocity measurements are based
on the speed and path of foam particle on the surface of the water, and velocity measurements
from the Kootenai river were based on the speed and path of surface disturbances. Velocity
of these two different types of surface features were correctly measured by EPIV.
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Chapter 6

DISCUSSION

A number of issues involving the processing performance and the accuracy of riverine PIV
experiments were addressed. Sources of correlation error were analyzed and new scoring
methods were developed and successfully used to remove many of the erroneous vectors
common when PIV is used on natural flows. The processing performance of the direct
and FFT methods to compute correlation were measured. A new GPU direct correlation
algorithm was developed and measured to be as fast or faster than the CPU FFT method.
Processing performance of different correlation methods was measured and the coefficient
method was found to be only slightly slower than the other more simple methods due to the
use of sum tables on the CPU and free processing resources on the GPU.

New PIV software called EPIV was developed specifically to process video of river
flows under non-ideal conditions in real time. EPIV was successfully used to process the
data collected by a color sensor, a NIR sensor, and an FLIR sensor. EPIV was able to run
on a portable computer and on a high end system equipped with a GPU. Real time video
processing was possible using EPIV with common PIV settings. Even a low end Intel Atom
based system was powerful enough to compute a number of PIV measurements in real-time.
The addition of a GPU to the Atom platform would provide a significant speed improvement
in the range of 10-20x.

Video recorded at the three three different locations was processed by the EPIV software.
For each experiment EPIV was used to generate a mapping from world space to image space
and then to generate a registered image. The registered images were processed using PIV
and a vector map was generated that showed the time average of the results. The Wolf River
in Southern Mississippi was shown to have a current of roughly 0.6 m/s in the main channel
during the day of Aug. 25, 2010 and roughly 0.9 m/s in the main channel during the day of
Aug. 26, 2010. The second experiment was conducted on the Kootenai River in Northern
Idaho and involved measurements taken over the course of a number of days at two different
locations. At the hotel location the velocity in the main channel was steady and ranged from
1.9 to 2.1 m/s. At the second location called NPS beach the velocity measurements in the
main channel ranged from 1.2 to 1.5 m/s. Results from each experiment compared favorably
to measurements taken from other devices. Measurements of processing speed show that
EPIV should be capable of producing PIV results in real time under most circumstances.
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Erroneous vectors produced when an insufficient number of features were present in
some of the data collected at these experiment locations was removed by a technique called
wscore and a number of additions and modifications to wscore. Performance was improved
to support real time processing by using a parallel software design and by offloading the
expensive correlation task to the GPU. A time average method for steady state experiments
that includes only vectors considered by wscore to be good was used to produce measure-
ments that are not greatly influenced by inaccurate vectors generated by noise. Using these
techniques, the measurements computed by EPIV tend to agree with measurements from
other devices that record surface velocity to within 16% difference. Results from these
experiments show that river surface velocity may be accurately measured in real time using
desktop class computer hardware.

A number of improvements could be made to EPIV to make it more accurate and
easy to use. A method could be developing to automate the generation of camera and
position parameters. The current method of manually aligning the control points in the
image is both slow and likely the source of some error. To further reduce mapping error, an
image distortion correction method should be added to EPIV. Using information about the
GPU, CPU, and problem size EPIV could be made to automatically determine the fastest
processing platform and switch from GPU to CPU as needed. For lower power computer
systems the CPU load could be further reduced by processing the correlation surfaces on the
GPU. Post-processing methods commonly used in PIV experiments could be added to EPIV
to further reduce the impact noisy vectors have on the final time average result.
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