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Benchmarking Deep Networks  
for Predicting Residue-Specific 
Quality of Individual Protein 
Models in CASP11
Tong Liu1,*, Yiheng Wang1,*, Jesse Eickholt2 & Zheng Wang1

Quality assessment of a protein model is to predict the absolute or relative quality of a protein model 
using computational methods before the native structure is available. Single-model methods only need 
one model as input and can predict the absolute residue-specific quality of an individual model. Here, 
we have developed four novel single-model methods (Wang_deep_1, Wang_deep_2, Wang_deep_3, 
and Wang_SVM) based on stacked denoising autoencoders (SdAs) and support vector machines 
(SVMs). We evaluated these four methods along with six other methods participating in CASP11 at the 
global and local levels using Pearson’s correlation coefficients and ROC analysis. As for residue-specific 
quality assessment, our four methods achieved better performance than most of the six other CASP11 
methods in distinguishing the reliably modeled residues from the unreliable measured by ROC analysis; 
and our SdA-based method Wang_deep_1 has achieved the highest accuracy, 0.77, compared to SVM-
based methods and our ensemble of an SVM and SdAs. However, we found that Wang_deep_2 and 
Wang_deep_3, both based on an ensemble of multiple SdAs and an SVM, performed slightly better 
than Wang_deep_1 in terms of ROC analysis, indicating that integrating an SVM with deep networks 
works well in terms of certain measurements.

Protein structures play an important role in determining protein functions and addressing various problems in 
biomedical research. Experimental methods for determining protein structures such as X-ray crystallography, 
however, are relatively costly and not applicable in some situations. Therefore, it is essential to develop computa-
tional software to predict protein tertiary structures (i.e., protein models) based on a protein’s primary amino acid 
sequence. Various computational tertiary structure prediction methods have been developed and subsequently 
a large number of models can be generated from these automated software pipelines. Before a model is used, its 
quality is usually assessed to confirm whether it is globally reliable or which portions of it are reliable (i.e., struc-
turally similar to the native structure)1. This process is known as quality assessment (QA) of protein models and 
can include evaluating the relative or absolute quality of one or more protein models or identifying segments with 
good quality. Quality assessment (QA) of protein models is a key topic in the field of protein structure prediction.

The a priori quality assessment of a single protein model was introduced into the Critical Assessment of 
Techniques for Protein Structure Prediction (CASP) experiment as an independent category in 20062. Since then, 
multiple QA methods have been developed and improved. In general, there are three major types of QA methods: 
clustering-based methods3–5, single-model methods5–7, and quasi-single methods8,9. With clustering-based meth-
ods, a set of protein models associated with the same protein sequence are taken as input and the relative quality 
score of each model can be computed through its pairwise structural alignment with other models. The scores 
generated in this way are usually termed relative quality scores. With single-model methods, only one model is 
needed as input and the output is usually the absolute quality score of the model or quality of every residue of the 
model. The quasi-single method is a hybrid of the first two methods. For example, a quasi-single method may first 
use a single-model method to predict the global quality score for each model in a pool, choose the top 5 models 
as reference models, and then uses a clustering-based method to predict the final global scores by superimposing 
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each model on each of the reference models8. Among these three approaches, clustering-based methods have usu-
ally performed better in the CASP experiments1,10. To be effective, however, the cluster-based approach needs a 
large pool of models as input (which is not a problem for competitions like CASP) and is based on an assumption 
that the highest-quality model is the model that shares the most structural similarity to the other models. This 
is problematic in practice since scientists may only have one or two models available and are usually interested 
in the absolute quality of the models. Moreover, in some cases, the quality range of input models varies widely, 
which may make the preceding assumption incorrect8,10. On the other hand, single-model methods do not have 
these limitations and can output absolute quality scores globally (i.e., one score for the entire model) and locally 
(i.e., one score for each residue). The local score usually indicates the deviation of the residue-specific prediction 
with the native structure of the model and can be used to distinguish which part of the protein model is reliable11.

Although single-model methods can predict residue-specific quality scores of a single model, which is useful 
for appropriate model usage and structural refinement, to date not many single-model tools have been devel-
oped. ProQ26 is a single-model method that uses support vector machines (SVMs) and inputs such as struc-
tural information, solvent accessibility surfaces, evolutionary information and profile weighting. SMOQ7 is also 
a SVM-based single-model predictor. Both methods can predict the absolute quality scores on a residue-specific 
basis and convert the local scores to a global score. DL-Pro12 is another method for protein quality assessment and 
uses deep learning to classify a protein model as good or bad (i.e., a binary classification). However, in many cases 
it is not enough to only provide a global score to assess the model of interest and residue-specific details should 
be given to evaluate the model. Our work presented here is partially similar to SMOQ. However, we developed 
three novel methods based on deep learning algorithms and used several new measures to assess our methods.

In this study, we present four novel single-model methods (Wang_deep_1, Wang_deep_2, Wang_deep_3, and 
Wang_SVM) to predict the absolute residue-specific quality of individual protein models. The first three use mul-
tiple stacked denoising autoencoders (SdAs) with various configurations in terms of the number of hidden layers 
and learning rates to predict residue-specific deviations for a single model. An autoencoder is a mathematical 
model that learns a representation of an input vector so that it can be used to reconstruct the input13 (i.e., an auto-
encoder learns to map the input to itself, often through a smaller dimensional space). Denoising autoencoders 
are used to reconstruct the inputs from corrupted versions and several can be stacked in series to create a Stacked 
Denoising Autoencoder (SdA)14,15. Specifically, Wang_deep_2 and Wang_deep_3 were developed based on a 
machine learning ensemble, integrating multiple SdAs with an SVM. Wang_deep_1 integrated 10 SdAs, whereas 
Wang_SVM was developed solely based on an SVM.

Results
Assessment of global quality predictions. For benchmarking global quality estimates, the global cor-
relation coefficients (stage_1 and stage_2, separately) between GDT_TSs and the corresponding predicted global 
scores were calculated and are shown in Table 1. There are two general approaches to predict the global score of a 
model: (1) derive the predicted global score from local estimates (e.g., Wang_deep_1; for details see methodology 
section); and (2) predict the global score directly (e.g., MULTICOM-CLUSTER trained an SVM model to predict 
the global score of a model). It is clear that MULTICOM-CLUSTER is the best performer in both stages. Wang_
deep_1 is the best of our four tools in stage_1, while Wang_SVM outperforms our other methods in stage_2. For 
the weighted mean of Pearson’s correlation per target (wmPMCC), the first eight methods in Table 1 performed 
almost equally well in stage_1, whereas all groups have a relatively lower value in stage_2. Table 1 also shows that 
the performance of each QA predictor in stage_1 is better than that in stage_2, indicating that the predictors can 
predict global model quality more accurately when the models of interest have evenly distributed quality.

We split the 55 CASP11 targets into three categories (alpha, beta or alpha-beta) based on their secondary 
structures. There were 3 proteins which only consisted of alpha helices, 3 proteins which only consisted of 
beta-sheets and 49 proteins containing both alpha helices and beta-sheets. This categorization was done to iden-
tify whether the performance of single-model methods is related to secondary structure variations. The global 
quality predictions of the three categories were evaluated separately. In Table 2, it is noticeable that the correlation 

Method

Stage_1 (selected 20 models) Stage_2 (best 150 models)

R R.target R R.target

Wang_deep_1* 0.76 0.67 0.64 0.28

Wang_deep_2* 0.72 0.69 0.61 0.28

Wang_deep_3* 0.74 0.68 0.62 0.28

Wang_SVM* 0.74 0.69 0.69 0.35

ProQ2-refine* 0.76 0.70 0.70 0.35

ProQ2* 0.76 0.68 0.70 0.34

MULTICOM-NOVEL# 0.75 0.67 0.71 0.37

MULTICOM-CLUSTER# 0.82 0.70 0.77 0.38

VoroMQA* 0.60 0.58 0.50 0.38

FUSION* − 0.04 0.06 0.14 0.08

Table 1.  Global evaluation—the overall correlation (R) by PMCC and the weighted mean of Pearson’s 
correlation (wmPMCC) per target (R.target) for both stage_1 and stage_2 in CASP11. *global score derived 
from local scores. #global score predicted independently.
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coefficients on alpha-beta proteins are usually larger than those on alpha and beta proteins, although the reason 
might be the smaller number of alpha and beta proteins. Almost all methods have a lower overall correlation score 
in stage_2 for beta proteins, indicating that single-model methods do not seem well suited at predicting global 
quality of beta protein models. This might be because of the long-range interaction of beta sheets that increases 
the prediction difficulty.

We also separated the CASP11 targets by the availability of a structural template and evaluated QA predictors 
on groups of models for which a template could or could not be detected. There are 37 template-based mode-
ling targets (i.e., TBM, templates are available) and seven free modeling targets (i.e., FM, no template available). 
Table 3 shows that all of the methods have better performance in terms of global score correlation coefficients for 
TBM proteins than for FM proteins, except for wmPMCC in stage_2.

Assessment of local quality predictions. Before benchmarking local estimates, we statistically analyzed 
the distributions of the predicted deviations of all structurally aligned residues whose observed deviations were 
in a certain range. For example, we at first selected the residues with observed deviations in the range 0–2.5 Å, and 
then computed the percentage of the residues whose predicted deviations are in the range of [0 Å, 2.5 Å), [2.5 Å, 
5 Å), [5 Å, 7.5 Å), [7.5 Å, 10 Å) and [10 Å, ∞), respectively. Ideally, the percentage associated with the range of  
[0, 2.5 Å) should be 100% and all the other ranges should be zero. Figure 1 shows that our three methods,  
Wang_deep_2, Wang_deep_3, and Wang_SVM, have relatively better performance when the observed deviation 
is larger than 5 Å, whereas nearly all predicted deviations from the other predictors are within 5 Å no matter 
whether the observed deviations are greater than 5 Å.

To assess local estimates, we first computed the Pearson’s correlation between predicted and observed devia-
tions of structurally aligned residues for all models for a target, and then transformed these Pearson’s correlation 
scores into a per-target value, the weighted mean of Pearson’s correlation (wmPMCC) as plotted in Fig. 2, show-
ing that the ProQ group (ProQ2-refine and ProQ2) achieved the best performance followed by our four tools in 
both stages. It is obvious that the performance for every predictor in stage_2 is better than that in stage_1, which 
means single-model methods can have relatively better performance in predicting residue-specific deviations for 
models with higher quality. For TBM and FM proteins, almost every wmPMCC of the TBM proteins is higher 

Method

Stage_1 (selected 20 models) Stage_2 (best 150 models)

R R.target R R.target

Wang_deep_1* 0.56/0.74/0.82 0.55/0.66/0.70 0.74/0.18/0.74 0.19/0.17/0.31

Wang_deep_2* 0.57/0.73/0.78 0.54/0.70/0.71 0.74/0.21/0.70 0.19/0.15/0.31

Wang_deep_3* 0.57/0.73/0.79 0.54/0.70/0.70 0.76/0.14/0.70 0.17/0.16/0.30

Wang_SVM* 0.51/0.68/0.77 0.55/0.68/0.72 0.61/0.22/0.73 0.35/0.23/0.37

ProQ2-refine* 0.71/0.62/0.82 0.54/0.71/0.73 0.65/0.24/0.79 0.35/0.25/0.36

ProQ2* 0.68/0.64/0.81 0.50/0.71/0.71 0.63/0.23/0.78 0.29/0.25/0.36

MULTICOM-NOVEL# 0.40/0.71/0.79 0.51/0.70/0.69 0.42/0.33/0.77 0.46/0.14/0.39

MULTICOM-CLUSTER# 0.61/0.66/0.85 0.46/0.67/0.73 0.53/0.21/0.82 0.31/0.05/0.42

VoroMQA* 0.62/0.57/0.64 0.47/0.67/0.60 0.32/0.48/0.59 0.24/0.28/0.41

FUSION* − 0.18/− 0.17/− 0.04 0.04/− 0.03/0.07 0.10/0.06/0.13 0.08/0.24/0.07

Table 2.  Global evaluation—the 55 target proteins were split into three categories based on their 
secondary structures: alpha, beta, and alpha-beta. The overall correlation (R) by PMCC and the wmPMCC 
per target (R.target) were computed in the alpha/beta/alpha-beta categories separately. *global score derived 
from local scores. #global score predicted independently.

Method

Stage_1 (selected 20 models) Stage_2 (best 150 models)

R R.target R R.target

Wang_deep_1* 0.77/0.43 0.76/0.56 0.56/0.55 0.27/0.47

Wang_deep_2* 0.76/0.35 0.77/0.58 0.54/0.47 0.27/0.50

Wang_deep_3* 0.76/0.39 0.76/0.59 0.54/0.51 0.27/0.49

Wang_SVM* 0.75/0.39 0.78/0.62 0.56/0.51 0.33/0.54

ProQ2-refine* 0.78/0.45 0.79/0.59 0.64/0.53 0.35/0.46

ProQ2* 0.77/0.47 0.76/0.59 0.63/0.53 0.34/0.46

MULTICOM-NOVEL# 0.76/0.30 0.75/0.57 0.64/0.40 0.37/0.48

MULTICOM-CLUSTER# 0.79/0.50 0.77/0.58 0.67/0.59 0.36/0.49

VoroMQA* 0.62/0.40 0.62/0.57 0.50/0.41 0.39/0.45

FUSION* 0.05/− 0.23 0.16/− 0.39 0.12/− 0.12 0.14/− 0.18

Table 3.  Global evaluation—the 55 target proteins were classified into two categories: 37 TBM and 
seven FM proteins. The overall correlation (R) by PMCC and the wmPMCC per target (R.target) were 
computed in the TBM/FM categories separately. *global score derived from local scores. #global score predicted 
independently.
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than the corresponding values for FM proteins, which is consistent with the result in assessing global quality 
predictions.

For assessing the ability to identify the reliable regions of an individual model, we used two measurements: 
MCC (Fig. 3) and ROC analysis (Fig. 4). Figure 3 shows that Wang_deep_1 achieved the highest scores in both 
stages followed by Wang_deep_3, Wang_deep_2, and Wang_SVM. Our four tools were also ranked above 
the other predictors in terms of ACC (Fig. 3(b)). As for ROC analysis, we only report the performance of all 
single-model predictors in stage_2, since the two stages yield similar results (data not shown); and with respect to 
this analysis, the ProQ group performs better than the other groups (Fig. 4(b)), followed by our methods.

An example of local quality predictions. We have visualized a successful example illustrating the pre-
dicted residue-specific deviations generated by Wang_deep_2 and the corresponding observed deviations from 
superimposing the experimental structure on a CASP11 model (Fig. 5). The Pearson’s correlation between the 
predicted deviations and the observed deviations is 0.90; and the average absolute difference between the pre-
dicted and observed distance deviation is 1.32 Å. The superimposed model is shown in Fig. 5(b).

Discussion
We have presented our four QA predictors using SVMs and deep learning algorithm SdAs and evaluated our four 
predictors and six other single-model methods participating in CASP11 at the global and local levels. This eval-
uation followed the official CASP assessment criteria by dividing the models for each target into two groups (i.e., 
selected 20 (stage_1) and best 150 (stage_2)) to identify whether the actual quality of a model is closely related to 
the performance of a method10.

Figure 1. Local evaluation—the percentage of residues whose predicted deviations are within five different 
sets when the observed deviations of target residues belong to a range of (a) [0 Å, 2.5 Å), (b) [2.5 Å, 5 Å),  
(c) [5 Å, 7.5 Å), and (d) [7.5 Å, 10 Å), respectively. 

Figure 2. Local evaluation—the residue-specific prediction assessment by weight mean PMCC of all 
models in the pool of targets of interest, TBM proteins, and FM proteins separately. 
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Figure 3. Local evaluation—the MCC and ACC when the threshold is set to 5 Å. An estimate is considered 
correct when both predicted and observed deviations are within 5 Å.

Figure 4. Local evaluation—the ROC analysis in stage_2 to assess the ability to identify reliable residues 
from unreliable residues. (a) The ROC curves for ten CASP11 QA tools and (b) the corresponding AUCs. 
Group names are sorted by their AUCs.

Figure 5. (a) an example illustrating the predicted deviations generated by Wang_deep_2 and the observed 
deviations from superimposing the experimental structure on the predicted model. The model in this example 
is “raghavagps-tsppred_TS3” for target T0819 in CASP11. (b) The visualization of the superimposition with the 
model in the color blue or red whereas red regions are the segments that have relatively larger real distances  
(>~3.5 Å) and blue for regions with relatively smaller real distances.
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At the global level, our methods perform relatively well in both stages, even though the global score we used 
is directly derived from residue-specific deviations whereas the best performer in this category applied an SVM 
model specifically trained for global quality predictions. We also found that the correlation coefficient in stage_1 
for every group is larger than its respective value in stage_2, indicating that single-model methods can predict 
global quality more reliably if the global quality of the evaluated models is evenly distributed. The weighted mean 
of Pearson’s correlation per target provides further evidence for this discovery.

At the local level, the distributions of the predicted deviations demonstrated that the other methods almost 
always predict local scores in the range of 0–5 Å even when the real deviation is above 5 Å, whereas our three 
methods (Wang_deep_2, Wang_deep_3, and Wang_SVM) can predict many more deviations in the range of 
> 5 Å when the real deviation is actually above 5 Å. Moreover, when the observed deviations are below 10 Å, 
Wang_deep_1 predicted many more residues with > 10 Å than the other tools, indicating that it could be 
improved in future work. We found that all the QA predictors have a better weighted mean of Pearson’s corre-
lation (wmPMCC) in stage_2 compared to stage_1. This may be caused by the fact that the observed deviations 
in stage_2 (i.e., best 150 models) are usually much lower than the ones in stage_1 (i.e., 20 selected models with 
evenly distributed quality) and most of the QA predictors have a bias towards making local predictions of less 
than 5 Å. As a result, models with better quality, that is, lower deviations, fit the bias of the QA predictors, causing 
a higher quality assessment in terms of accuracy. In terms of the ability to recognize reliable regions, our four 
methods performed better than the rest according to Matthew’s correlation coefficient, but slightly worse than the 
best predictor ProQ in terms of ROC analysis.

All in all, our methods, especially those based on SdAs, perform relatively well among the single-model meth-
ods participating in CASP11. The performance of Wang_deep_3 and Wang_deep_2 in distinguishing reliable res-
idues indicates that combining SdAs and an SVM is a feasible and promising way to predict the absolute quality 
of a model. Furthermore, the better performance of Wang_deep_3 over Wang_deep_2 indicates that combining 
both original features with values generated from SdA output nodes is better than only inputting SdA outputted 
values into an SVM when combining SdAs with an SVM.

Future work. In this version of the methods, we used the same amount of pre-training data for all the SdAs. It 
would be interesting to test different amounts of pre-training data and different parameters including pre-training 
epochs and number of hidden layers in order to benchmark the contribution of these parameters to the perfor-
mance. We also plan to integrate additional software for predicting secondary structure and residue-residue con-
tact as features as well as evaluate a larger sliding window size in order to capture non-local features.

Methodology
Test data set. To evaluate our methods, we selected 55 CASP11 targets excluding those without experimen-
tal structures or canceled by CASP11. Each of them has an experimental structure provided on the CASP website. 
Every QA predictor made predictions for two stages of models. In stage_1, 20 models evenly distributed in terms 
of model quality for each target were selected and presented to CASP11 participants for evaluation. In stage_2, 
the best 150 models per target were selected and presented for evaluation. In this way, the performance of QA 
predictors for diverse model quality could be found10.

In addition to our methods, we also evaluated six other single-model methods participating in CASP11, includ-
ing FUSION, MULTICOM-NOVEL, MULTICOM-CLUSTER, ProQ2, ProQ2-refine, VoroMQA. For predicting 
local quality scores, there are four methods based on SVMs: MULTICOM-NOVEL, MULTICOM-CLUSTER, 
ProQ2, and ProQ2-refine. VoroMQA made use of knowledge-based potentials over inter-atomic contact areas 
and solvent contact areas to get the local deviation estimates16. FUSION used a probabilistic graphical model to 
calculate the likelihood of the local structure, and then converted it to a local quality score16. To predict global 
quality, eight methods (i.e., our four methods along with, FUSION, ProQ2, ProQ2-refine and VoroMQA) inte-
grated their predicted local (residue-specific) scores into a global score16. MULTICOM-CLUSTER predicted 
global scores using an SVM model specifically trained to predict global scores and MULTICOM-NOVEL made 
a global quality prediction by combining global features of each model16. The QA predictions used in the evalu-
ation of these 10 methods were downloaded from CASP website and constitute the estimates submitted by these 
methods during the CASP11 experiment.

Measures of assessment. Sequence-dependent Local-Global Alignment (LGA)17 was used to superimpose 
a protein model with its experimental structure (i.e., native structure). After superimposition, LGA can generate a 
Global Distance Test Total Score (GDT_TS) and a set of C-α  atoms’ Euclidean distances between two structurally 
aligned residues. GDT_TS is selected as the observed (real) score for benchmarking global quality estimates, as 
it is officially used by CASP.

The Pearson product-moment correlation coefficient (PMCC) was used to compute correlation coeffi-
cients between two vectors of scores, one from LGA (GDT_TSs or observed deviations) and the other from 
single-model methods (predicted global scores or deviations)1. Since it does not follow a normal distribution, the 
correlation coefficients should be transformed into an additive quantity before calculating their average value2. 
Fisher’s transformation (equation (1)) was used:

=



+
−


 ( )

z r
r

1
2

ln 1
1 1

where r is Pearson’s correlation; z is the normally distributed variable transformed from r, having a standard error 
σ =

−z n
1

3
 with n being the sample size. We use z denoting the arithmetic mean score of a given set of z values. 
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Finally, z  is inversely transformed into the weighted mean of Pearson’s correlation coefficient (wmPMCC) r by 
using the inverse formula (equation (2))

=
−
+ ( )

−

−r e e
e e 2

z z

z z

The receiver operating characteristic (ROC) analysis18 was chosen as a measure to assess the ability of QA 
groups to distinguish reliably predicted regions from unreliable regions. We also computed Matthews’s correla-
tion coefficient (MCC)19 and Accuracy (ACC):

=
× − ×

( + )( + )( + )( + ) ( )

TP TN FP FN
TP FP TP FN TN FP TN FN

MCC
3

=
+
+ ( )

TP TN
P N

ACC 4

where P is the number of true positives (TP) plus false positives (FP), and N equals the number of true negatives 
(TN) plus false negatives (FN).

The predicted estimates from 10 CASP QA methods were evaluated at the global and local levels; and both 
levels were conducted for stage_1 and stage_2, separately. For benchmarking global predictions, we computed 
(1) the PMCC between predicted global scores and the corresponding real GDT_TSs of all models of all targets 
and (2) the wmPMCC in the units of each target’s PMCC using Fisher’s transformation as described above. Local 
assessments of residue-specific deviations were carried out in terms of the ability to identify reliable regions 
among all structurally aligned residues and whether the predicted deviations are closer to observed deviations. 
Specifically, the PMCC of residue-specific predicated deviations with observed deviations for each model was 
calculated and then all of the correlation coefficients were gathered to transform into a single value. Furthermore, 
the values of MCC and ACC for each group were computed. The threshold was set to 5 Å, which means if the 
observed distance and the corresponding predicted estimate are both below the threshold, it is considered a true 
positive. In the ROC analysis, we selected a set of thresholds: 1 Å up to 10 Å with an increment of 0.1 Å and each 
threshold is associated with a point on a ROC curve. The area under a ROC curve (AUC) indicates the classifier’s 
accuracy20.

Overview and Features for machine learning. We developed four methods to predict residue-specific 
deviations between a predicted protein structure (model) and its native structure (native): Wang_SVM, Wang_
deep_1, Wang_deep_2, and Wang_deep_3. All of the four methods used the same features as input:

(1) Amino acid sequence: 20 bits with one bit as 1 and the others are 0 were used to encode 20 types of amino 
acids;

(2) The difference of secondary structure as predicted from amino acid sequence by SSPRO21 compared to that 
parsed from the protein model by DSSP22. Specifically, if the predicted secondary structure is the same as the 
secondary structure parsed from model, it is labelled as a 1; otherwise, 0. In this way, every residue will be 
assigned either 0 or 1 for this feature;

(3) The difference of solvent accessibility between that predicted from sequence by SSPRO and the values from 
the model as parsed by DSSP. This is similar to the secondary structure feature;

(4) NNcon23 was used to predict the residue-residue contact probabilities based on amino acid sequence. This 
produced a probability for each pair of residues in the protein which indicated the likelihood of those resi-
dues having a Euclidean distance < =  8 Å in three-dimensional space. Based on the protein model, for each 
single residue, we selected all the other residues that have a sequential distance > =  6 residues away and with 
a Euclidean distance < =  8 Å in space. The probabilities of these pairs of residues as predicted by NNcon were 
averaged and used as a feature for the residue;

(5) PSI-BLAST profile generated by PSI-BLAST. A PSI-BLAST profile provides evolutionary information col-
lected from a family of similar protein sequences and can provide more information than the amino acid 
sequence. For each residue, the profiles for 20 amino acids were included as features;

(6) The SOV (segment overlap measurement) score between the predicted secondary structure and secondary 
structure parsed from the model by DSSP. This is a global feature with one SOV score being generated for the 
whole model and was used for every residue in the model.

A 15-residue sliding window was applied to predict the deviation of a single residue, with seven residues 
ahead and seven after. The first models for every predictor (each CASP tertiary structure predictor is allowed to 
submit five models to CASP, we used the first model only) in both CASP8 and CASP9 were used to generate a 
benchmarking data set. Because we are dealing with residue-specific predictions, this generates about 1.2 million 
examples. All of our four methods were trained using this data set and blindly benchmarked in CASP11.

Deep learning—Stacked Denoising Autoencoder. The deep learning architecture used in this study is a 
Stacked Denoising Autoencoder (SdA) based on Theano (http://deeplearning.net/software/theano/). An autoen-
coder is a mathematical model that learns a representation of an input vector so that it can be used to reconstruct 
the input13 (i.e., an autoencoder learns to map the input to itself, often through a smaller dimensional space). 
Denoising autoencoders are used to reconstruct the inputs from corrupted versions and several can be stacked 
in series to create a Stacked Denoising Autoencoder (SdA)14,15. The SdA training algorithm is composed of two 

http://deeplearning.net/software/theano/
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steps of learning: unsupervised pre-training and supervised fine-tuning14. The first step is carried out by layers of 
denoising autoencoders.

For each layer, the original input x-orig is first corrupted to get the corrupted version of data ∈ ,x [0 1]d; and 
we used a parameter called corruption level to control the level of corruption. Then, the corrupted input x is 
mapped to a hidden representation ∈ , ′y [0 1]d  where = ( + )y s Wx b  with W being the weighting matrix, b 
being the bias vector and the function ()s  is the sigmoid function. Finally, y is mapped back to learn a reconstruc-
tion z by = ( ′ + ′)z s W y b , in which ′W is the reconstruction weighting matrix, and ′b  is the reconstruction bias. 
The Denoising Autoencoder is parameterized by the weight matrixes and bias vectors which are adjusted during 
training to minimize the cross-entropy of the reconstruction (equation (5)):

∑( , ) = − + ( − ) ( − )
( )=

L x z x z x z[ log 1 log 1 ]
5H

k

d

k k k k
1

This step initiates the training process from the first layer, and then proceeds layer by layer. The (m + 1)th layer 
would be trained by taking as input the representation of the data outputted from the mth layer. When the unsu-
pervised pre-tuning part is finished, all stacked layers of the denoising autoencoders are trained.

The supervised fine-tuning step can be taken after the unsupervised pre-tuning. A logistic regression model is 
added on top of the layers of denoising autoencoders (equation (6)):

( = , , ) = ( + ) =
∑

,
( )

+

+
i x e

e
P Y W b softmax Wx b

6

W x b

j
W x bi
i i

j j

which calculates the probability of an input vector x belonging to the class i in the set of Y. W is the weighting 
matrix; b is the bias; and j can be any class in Y. After the probabilities of all available classes in Y have been calcu-
lated, an input vector x is predicted to the class having highest probability.

After adding the logistic regression layer, the entire learning structure (layers of denoising autoencoders plus 
logistic regression) is similar to an artificial neural network. However, its hidden layers share with the unsuper-
vised pre-training the same number of layers and neurons in each layer; and the parameters of weight matrixes 
and bias vectors in hidden layers are the same as the ones trained in the unsupervised learning step. Label value 
Y is used as the target value to train the entire network (layers of denoising autoencoders plus logistic regression) 
by a backpropagation algorithm with logistic function as activation function. In this way, the training process 
makes the entire learning architecture fine-tuned, which means the parameters (all the weighting matrix W and 
bias b) in each hidden layer of denoising autoencoders and logistic regression model are further refined based on 
the class label Y of a training set.

Design of machine learning architectures. We designed four learning architectures to be benchmarked 
in CASP11: Wang_SVM, Wang_deep_1, Wang_deep_2, and Wang_deep_3.

Wang_SVM uses a Support Vector Machine with RBF kernel trained using SVM-Light24.
Wang_deep_1 integrated 10 SdAs, each of which has 20 output classes that represent different ranges of devi-

ation. For example, class 1 represents that the deviation is between [0 Å, 0.25 Å), class 2 [0.25 Å, 0.5 Å), class 3 
[0.5 Å, 0.75 Å), class 4 [0.75 Å, 1 Å), class 5 [1 Å, 1.25 Å), class 6 [1.25 Å, 1.5 Å), class 7 [1.5 Å, 1.75 Å), class 8 
[1.75 Å, 2 Å), class 9 [2 Å, 2.5 Å), class 10 [2.5 Å, 3 Å), class 11 [3 Å, 4 Å), class 12 [4 Å, 5 Å) …, until class 18 [9 Å, 
10 Å), class 19 [10 Å, 15 Å), and class 20 [15 Å, + ∞). The ranges are not equally distributed, but more condensed 
for smaller values because most of the cases have deviations in the range of 1–5 Å. Figure 6 shows the architecture 
of an SdA.

The 10 SdAs each have a different number of hidden layers and different number of encoders in each layer. 
Each of these 10 SdAs was trained using 1/10 of our entire set of training examples. This fraction of training 
examples was further split into three sections: training (70%), validation (20%), and testing (10%). The training 

Figure 6. The architecture of stacked denoising autoencoders (SdAs). 
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examples were used for both unsupervised learning of the layers of denoising autoencoders (not using the Y or 
target values) and the fine-tuning after a logistic regression model was added on top of the stack of denoising 
autoencoders.

For each SdA, the output values in each of the 20 output neurons were treated as probabilities and were at first 
averaged as:

∑= ( _ )/
( )

_

=

_Avg SdA n m
7

class i

n

m
class i

1

where m equals to 10, which is the number of SdAs; and class_i is one of the 20 output classes. Based on the aver-
aged probabilities in each class, the class with the largest predicted probabilities was selected as:

= ( , , …, ) ( )_Avg argmax Avg Avg Avg 8class predicted class class class1 2 20

Then a final value is calculated based on the predicted probabilities of two neighboring classes. For example, if 
class 3 [0.5 Å, 0.75 Å) has the maximum predicted probability _Avg class 3, then the final predicted value is calcu-
lated as 0.5 +  (0.75 – 0.5) * _Avg class 2/( +_ _Avg Avgclass class2 4). In this way, a real number value is generated 
based on the two neighboring classes of the class with highest probability.

Wang_deep_2 uses nine SdAs with different configurations of hidden layers to make predictions first and 
then combines with an SVM. The nine SdAs take the same input data X, and each generates 20 probabilities. The  
20 * 9 =  180 predicted probabilities were then input into an SVM. Our total training data was equally separated 
into 10 folds, nine of which were used to train the nine SdAs, one for each; and the last fold was used to train the 
SVM.

Wang_deep_3 is similar to Wang_deep_2, but the same input data X was also input into the SVM, together 
with the 20 predicted probabilities generated from each of the nine SdAs (Fig. 7).

Design rationale. Many parameters of SdAs including the number of hidden layers, number of autoencod-
ers in each layer, and training and pre-training epochs can influence the performance of SdAs; and the optimal 
setup usually can only be found by rounds of trials with different parameters. Because of this nature of SdAs, 
we designed Wang_deep_1 that makes final predictions based on a simple average on multiple SdAs’ outputs.  
A support vector machine has been shown to be an efficient machine learning algorithm, therefore, we designed 
Wang_deep_2 and 3 to combine the popular traditional learning algorithm SVM with novel deep learning archi-
tecture SdAs. We think the output values from multiple SdAs that have different configurations can provide useful 
signatures for the SVM to make predictions. We also designed Wang_deep_3 that takes the original features as 
input besides the SdAs’ outputs. In this way, the SVM can be informed with both original features and SdAs’ 
output when making predictions. The design of our four methods includes an SVM only, SdAs only, SdAs plus an 
SVM with/without double-feeding of original features. In this way, we can have a comprehensive benchmarking 
between traditional learning algorithm, novel learning architecture, and different ways of combining these two, 
providing useful insights about how to use deep learning to the protein structure prediction community.

Global model quality score of prediction. In our methods, the predicted global model quality score 
(pMQS) for each model was derived from the residue-specific quality scores (i.e., the predicted residue-specific 
deviations). In particular, for our methods the pMQS for each model was computed as follows:

( )
∑=

+ ( )
=L

pMQS 1 1

1 9
i

L

d
c

1
2

i

where L is the number of residues in a protein of interest, di is a residue-specific deviation, and c is a constant set 
to 6.

Figure 7. The architecture of Wang_deep_3, in which the original input X was not only input into nine 
SdAs, but also the Support Vector Machine, together with the 20 predicted probabilities from each SdA. 
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