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Summary

Mast cells play pivotal roles in innate and adaptive immunities but are also culprits in allergy, 

autoimmunity and cardiovascular diseases. Mast cells respond environmental changes by initiating 

regulated exocytosis/secretion of various biologically active compounds called mediators (e.g., 

proteases, amines and cytokines). Many of these mediators are stored in granules/lysosomes and 

rely on an intricate degranulation process for release. Mast cell stabilizers (such as sodium 

cromoglicate) which prevent such degranulation process have therefore been clinically approved to 

treat asthma and allergic rhinitis. However, it has become increasingly clear that different mast cell 

diseases often involve multiple mediators, which seem to rely on overlapping but distinct 

mechanisms for release. This review highlights the evidence for diverse exocytic pathways and 

discusses strategies to identify unique molecular components in these pathways which could serve 

as new drug targets for more effective and specific treatments against mast cell-related diseases.
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Introduction

Mast cells are best known for their ability to release a diverse range of biologically active 

compounds (aka mediators) when the cell surface receptors bind to their specific ligands [1]. 

The eventual targets of signaling cascades include the transcriptional machinery (i.e., to 

produce cytokines etc.), the cytoskeleton network (i.e., to facilitate granule translocation) 

and the membrane fusion machinery (i.e., to promote vesicular/granular fusion) [2, 3]. Much 

progress has been made in understanding the upstream events in the intricate signaling 

cascades [4, 5]. This review, however, intends to draw readers’ attention to the interface 

between signaling and the exocytic fusion machinery, because different modes of activation 

at the cell surface are shown to generate different secretory profiles (Fig. 1) [6, 7]. This has 
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important implication to mast cell-related diseases that involve different mediators as well as 

different modes of activation.

Mast cell mediators in health and disease

Mast cell mediators can be divided into two groups, preformed (including histamine, 

tryptase and β-hexosaminidase, etc.) and newly synthesized (cytokines, chemokines, 

prostaglandin and leukotriens, etc.). Some (such as TNFα) belong to both categories. For 

detailed description of different mediators please consult recent reviews [8, 9]. It is 

important to note that the de novo synthesized cytokines and chemokines are thought to 

undergo constitutive secretion [10], which means their release is regulated at the 

transcription level, contrary to the preformed the mediators.

Native immunity

Mast cells from human and rodent sources have the capacity to directly respond to the 

challenge of pathogens and their products by releasing preformed mediators, newly 

synthesized mediators, or both [11]. For example, E.coli induces the secretion of mediators 

in both categories [12–15] but S.pneumonia only elicits the release of preformed mediators 

[16, 17]. Meanwhile, HIV [18, 19], Dengue virus [18, 19], and cholera toxin [18, 19] seem 

to exclusively impact the newly synthesized mediators. Thus far, it is not clear whether 

specific subsets of the mediators within either group are selectively released to combat 

against different pathogens.

Allergic inflammation

In respiratory disorders, mast cells are known for their accidental or mistaken activation via 

cross-linking of surface-bound IgE which leads to rapid degranulation, mediator release 

(e.g., histamine, PDT2, tryptase, Cys-LTs) and manifestation of an acute phase allergic 

reaction [20]. Apart from their pro-inflammatory actions, mast cells have an impressive 

capability to down-regulate immunological responses, by releasing the anti-inflammatory 

cytokine IL-10 [21]. Another anti-inflammatory action is through the release of mast cell 

granule proteases to degrade and neutralize key cytokines such as TNFα, IL-4, IL-13 and 

IL-33 [22, 23]. Thus, mast cells act as local immune modulators which coordinate the 

delicate balance between pro- and anti-inflammatory responses of the host.

Autoimmunity

Mast cells are associated with a variety of autoimmune diseases ranging from multiple 

sclerosis (MS), rheumatoid arthritis (RA), to bullous pemphigoid (BP) [24]. Studies of 

murine models of MS (EAE, or Experimental autoimmune encephalomyelitis), RA and BP 

have revealed common underlying mechanisms of mast cell influence on these diseases [25]. 

For instance, in primary progressive EAE, mast cell-derived TNFα and tryptase are 

intimately associated with disease onset and development [26–30]. Similarly in BP, the 

exocytosis of preformed mediators including tryptase, histamine, and TNFα from skin mast 

cells result in an accumulation of neutrophils and skin blistering [31–35]. In RA, the de novo 
synthesis of TNFα by mast cells results in IL-1β release from macrophages, and subsequent 

increase in inflammatory cell infiltration in synovial joints [36]. Synovial inflammation can 
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also be augmented by mast cell-derived tryptase that promotes synovial fibroblasts to 

express neutrophil-recruiting chemokines [37].

Mast cell activation in autoimmune diseases such as RA likely involves several pathways, 

including autoantibodies, Toll-Like Receptor ligands and cytokines, each via a distinct cell 

surface receptor [38]. These pathways are thought to cooperate to create the pro-

inflammatory environment which eventually results in tissue destruction. The development 

of biologic agents that target various immune mediators and their receptors has dramatically 

improved the patient prognosis. To date, established and approved therapies for rheumatoid 

arthritis are designed specifically to block cytokine responses toward TNFα and IL-6 [39].

Cardiovascular diseases

Cardiac mast cell activation/infiltration has been reported in a number of cardiac conditions 

including idiopathic cardiomyopathy [40], atherosclerosis [41], myocarditis [42] and 

ischemic heart disease [40]. The release of mast cell mediators (histamine, TNFα, IL-6, 

platelet activating factor and reactive oxygen species, etc.) leads to an inflammatory cascade 

that is detrimental to myocardial contractile function, tissue integrity and 

electrophysiological activity, and as expected, treatment with mast cell stabilizers has been 

shown to reduce the extent of cellular injury [43]. Interestingly, both cardiovascular disease 

risk factor endothelin-1[44] and cardioprotector adrenomedullin [45] were shown to induce 

cardiac mast cell degranulaiton [43]. Whether these two peptides impose opposite effects on 

cardiovascular diseases by eliciting distinct degranulation secretory pathways is currently 

not known.

Cancer

Mast cells promote tumorigenesis and tumor progression via a number of mechanisms. Mast 

cells may stimulate tumor expansion by releasing cytokines and growth factors (e.g., FGF-2, 

NGF, PDGF, IL-10 and IL-8) in the tumor stroma[46]. Mast cells also provide histamine, 

which induces tumor cell proliferation through H1 receptors while suppressing the immune 

system through H2 receptors [47]. Additionally, mast cell-derived angiogenic factors [48, 

49] and matrix metalloproteinases [50, 51] induce tumor vascularization and metastasis. 

Furthermore, mast cells cause immunosuppression through the release of IL-10 and TNFα 
[52, 53], which facilitates tumorigenesis and progression. By contrast, mast cells play 

inhibitory roles in tumor cell growth, apoptosis, and inflammation by releasing cytokines 

such as IL-1, IL-4, IL-6, MCP-3, MCP-4, TGF, and chymase [46]. Other anti-cancer 

mediators include chondroitin sulphate which inhibits tumor cell diffusion, and tryptase 

which causes tumor cell disruption [54]. To control the differential release of these pro- and 

anti- cancer mediators may become strategically important in the fight against cancer.

Fusion machinery underlying mast cell exocytosis

Like other eukaryotic fusion events along the secretory and endocytic pathways, mast cell 

exocytosis depends on the specific interaction of SNAREs that are conserved from yeast to 

human. Anchored to apposed membranes, cognate SNAREs form a fusogenic 4-helical 

bundle, the so-called trans-SNARE complex [55–57]. SNAREs can be sorted into the Q- and 
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R- classes, depending on whether they contribute a glutamyl (Q) or an arginyl (R) side chain 

at the center of the helical bundle [58, 59]. A functional/fusogenic trans-SNARE complex is 

typically formed by three Q-SNAREs (Qa, b, c) that are emanated from one membrane and 

one R-SNARE emanated from the other [55]. It is largely accepted a different set of 

SNAREs are required for distinct fusion events, and that the specificity of vesicular transport 

is in part encoded by the specific interaction of the cognate SNAREs.

In mast cells at least seven exocytic SNAREs have been identified [60–68], which include 

two Qa-SNAREs (syntaxin3, 4), one Qb,c-SNARE (SNAP23; contributing two helices), and 

four R-SNAREs (VAMP2, 3, 7, 8). Our lab has recently reported that these Q- and R- 

SNAREs could form 8 distinct fusogenic trans-SNARE complexes in reconstitution [69], 

suggesting that mast cells could exploit distinct exocytic fusion machineries to release its 

mediators.

Heterogeneity of exocytic fusion in mast cell - from a theoretical 

perspective

A close look at the different type of exocytic events in mast cell helps explain the 

requirement for different sets of SNAREs. Both constitutive and regulated secretions are 

known to occur in mast cells [10]. Constitutive secretion depends on Golgi-derived vesicles 

that fuse directly with the plasma membrane. Newly synthesized cytokines are thought to get 

released via this route, and probably require at least one unique set of SNAREs. Regulated 

secretion applies to cargos which are pre-stored in granules. In response to extracellular 

cues, mast cells may undergo signaling-dependent anaphylactic degranulation (AND) [70], 

in which granules fuse homotypically with each other and heterotypically to the plasma 

membrane. These two types of fusion may require different molecular machineries. In fact, 

localization studies of resting murine mast cells indicate that secretory granules are 

decorated with R-SNAREs VAMP2, 3, 7, 8 [61, 62, 67, 68, 71, 72] and Qa-SNARE 

syntaxin3 [62, 67, 68, 71], whereas the plasma membrane is enriched with Qa-SNARE 

syntaxin4 [68, 73] and Qb,c-SNARE SNAP23 [61, 68]. During mast cell compound 

degranulation, syntaxin3 relocates from the granules to the plasma membrane [64], whereas 

SNAP23 relocates from the plasma membrane to the secretory granules [68]. These 

observations implicate syntaxin3 in homotypic fusion and syntaxin4 in heterotypic fusion. In 

contrast to AND described above, piecemeal degranulation (PMD) has been observed via 

ultra-structural studies [74]. In PMD, granule-associated materials are packaged into small 

vesicles that subsequently travel to and fuse with cell surface. Interestingly, both AND and 

PMD could happen within the same mast cell [75].

What further confounds our understanding of the regulation of mast cell exocytosis is the 

existence of granule subpopulations. At the ultrastructural level, human mast cell granules 

display scrolls, crystalline arrays, particles, or variable mixtures of any combination of two 

or all of these patterns [76]. Mast cells with these granule substructural patterns can be 

found in any human tissue [77]. Other granule patterns occur much less frequently, which 

include completely homogeneously dense, finely granular and reticular/beaded granules [76, 

77]. Meanwhile, granules can also be classified into different groups based on their protein 
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contents and accessibility to different tracers [78]. Moon et al [10] recently proposed three 

types of secretory granules in mast cells: type I granules contain MHC class II, β-

hexosaminidase, LAMP-1, LAMP-2, and M6PR but not serotonin (resembling a classical 

lysosome); type II granules contain the same set as mentioned above plus serotonin (perhaps 

a late secretory lysosome); type III granules contain β-hexosaminidase and serotonin but not 

MHC class II. Although mast cell degranulation is a term often linked to type II granules, 

the extent of participation of the other two types of granules in mast cell exocytosis has not 

been resolved.

Finally, it is important to note that even in PMD, different types of vesicles might be formed, 

containing different cargo and SNAREs. These different types of vesicles may form and fuse 

in response to different regulatory signals. This could be yet another mechanism used in the 

differential release of mast cell mediators, a topic to be discussed in the next section.

Functional Evidence for distinct degranulation pathways

Distinct pathways for newly synthesized mediators

The traditional assumption which has over relied on the release of β-hexosaminidase (which 

is present in all three types of granules [10, 78, 79]) as the hallmark for degranulation [80], 

has delayed the comparative investigation of the selective discharge of key mediators. 

However, pioneering studies by Blank and colleagues using bone marrow-derived mast cells 

(BMMCs) isolated from VAMP8 null mice indicate that preformed mediators (e.g., 

histamine and β-hexosaminidase) and newly synthesized cytokines and chemokines (IL-6, 

MIP-1α) exploit distinct set of SNAREs for IgE/FcεRI-mediated release [62].

More recently, human mast cells (isolated from intestine) were used to examine the IgE/

FcεRI-dependent release of de novo synthesized chemokines (e.g., CXCL8, CCL2, CCL3, 

and CCL4) [81]. Partially permeabilized cells were incubated with antibodies to inhibit 

individual SNAREs before stimulation. While inhibition of syntaxin4 (Qa-SNARE) or 

VAMP8 (R-SNARE) resulted in a reduced release of CXCL8 (but not of CCL2, CCL3, or 

CCL4), inhibition of syntaxin6 (Qc-SNARE) attenuated the release of CXCL8 and CCL2, 

and inhibition of VAMP7 (R-SNARE) that of CCL3. In contrast, syntaxin3 (Qa-SNARE) 

and SNAP23 (Qbc-SNARE) are crucial for the release of all 4 chemokines, which suggests, 

in accordance with the 3Q: 1R rule, certain chemokines (e.g., CXCL8 and CCL2) involve at 

least 2 sets of SNAREs for release. How these 2 sets of SNAREs are differentially regulated 

in a signaling-dependent fashion is not well understood. Nevertheless, these observations are 

consistent with the finding that eosinophils – granulocytes related to mast cells – are capable 

of releasing different cytokines in a highly selective manner [82, 83].

Distinct pathways for preformed mediators

To-date there has been a lack of systematic effort to characterize the different degranulation 

pathways for preformed mediators. Published studies of human mast cells initially showed 

that histamine release requires syntaxin4 (Qa-SNARE), SNAP23 (Qbc-SNARE), and both 

VAMP7 (R-SNARE) and VAMP8 (R-SNARE) [65]. However, whether VAMP8 indeed 

plays a crucial role in histamine release from rodent cells has become controversial because 
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BMMCs isolated from VAMP8 knockout mice demonstrated modest reduction of histamine 

release in one study [62] while no reduction at all in another [72]. Furthermore, depletion of 

VAMP8 using siRNA, which inhibits β-hexosaminidase release, fails to affect histamine 

release from RBL-2H3 cells [60]. We favor a model which suggests that VAMP8 is required 

for the regulated release of serotonin rather than histamine because i) serotonin secretion is 

completely blocked in VAMP8 knockout mast cells [72]; ii) histamine and serotonin are 

enriched in distinct populations of granules (with only 20% overlap) [72]; and iii) regulated 

secretion of serotonin without comparable histamine release has been observed in rat mast 

cells [84, 85]. TNFα secretion on the other hand, is processed via a VAMP8-independent 

pathway [62, 72]. Based on the co-localization data [62] as well as functional studies of 

TNFα secretion from human synovial sarcoma cells [86], we propose the degranulation 

pathway for TNFα utilizes a distinctive set of SNAREs that includes VAMP3.

Differential regulation of distinct pathways

Addition fusion factors in exocytosis

Although SNAREs are at the core of exocytic fusion, exocytosis is an intricate process that 

required multiple factors to regulate three successive steps: 1) docking, 2) priming, and 3) 

merger of lipid bilayers [87–89]. Docking refers to the retention of transport vesicles to the 

target membrane (e.g., plasma membrane) [90], which is facilitated by membrane-tethering 

factor exocyst [91]. Exocyst is a multi-subunit protein complex that brings vesicles and 

target membranes into proximity by exploiting interactions with lipids and/or membrane-

anchored proteins (e.g., Rab GTPase) [92]. Priming renders docked vesicles competent for 

Ca2+-triggered exocytosis, through the activities of Munc13/CAPS and other factors 

including NSF [87, 93–95]. Priming results in partially assembled trans-SNARE complexes. 

In the final step of exocytosis, Ca2+ influx is thought to activate synaptotagmin, which 

relieves the inhibition imposed by complexin while cooperating with the trans-SNARE 

complex to merge the apposed lipid bilayers [96, 97]. The activities of all these factors could 

be modulated via signaling-dependent modification (e.g., reversible phosphorylation) to 

provide temporarily regulation for mediator release. However, emerging evidence suggests 

that the differential release of mast cell mediators is likely controlled by the different sets of 

SNAREs and through their interactions with Munc18 proteins [62, 65, 69, 72, 81].

Munc18 proteins act at various steps of exocytic fusion by exploiting different modes of 

association with the fusion machinery [98]. All three Munc18 isoforms specific for regulated 

exocytosis in mammals are implicated in mast cell degranulation, particularly Munc18b. 

Munc18b knockdown or overexpression in RBL-2H3 cells inhibited IgE/FceRI-mediated β-

hexosaminidase release [73, 99]. Co-immunoprecipitation and immunofluorescence studies 

showed that Munc18b associated with syntaxin3 on both granules and the plasma membrane 

[73, 99, 100]. Munc18c, on the other hand, appears to interact specifically with syntaxin4 on 

the plasma membrane [99], although the functional relevance of the interaction has yet to be 

established. Munc18a was thought to function mainly in neurotransmission, but has now 

been identified in non-neuronal tissues [101–103]. Recently, a double knockdown of 

Munc18a and Munc18b in RBL cells was found to eliminate β–hexosaminidase release, yet 

the phenotype was effectively rescued by reintroducing Munc18a alone [104]. Using 
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reconstitution, we and others have shown that Munc18a and Munc18c effectively and 

specifically promote VAMP2- and VAMP3- mediated fusion reactions [69, 105], but the 

cognate Munc18 proteins for VAMP7- or VAMP8- based reactions have yet to identified. We 

propose that either SNARE and/or Munc18 modification might be necessary to kick start 

VAMP7- and VAMP8- mediated exocytosis in activated mast cells.

SNARE phosphorylation in exocytosis

The importance of SNARE phosphorylation in exocytosis has been recognized for decades 

[106, 107]. Biochemically, these modifications either regulate SNARE interactions with 

their binding partners including cognate SNAREs or Munc18 proteins (Table 1). In mast 

cells, site-specific phosphorylation of exocytic SNAREs has been reported for VAMP8, 

SNAP23 and sytnaxin3. PKC-dependent phosphorylation of VAMP8 targets residues inside 

the SNARE domain, and appears to reduce both reconstituted fusion and the regulated 

release of β-hexosaminidase from RBL-2H3 cells [108]. IKK2-dependent phosphorylation 

of SNAP23 at Ser95 and Ser120 increases SNAP23 binding to syntaxin4 and VAMP2 in 
vitro, and is required for optimal degranulation in vivo [66]. On the other hand, CaMKII-

dependent phosphorylation of sytnaxin3 at Thr14 negatively regulates mast cell exocytosis, 

likely by inhibiting syntaxin3-Munc18b interaction [109]. Meanwhile, we have preliminary 

data suggesting that both VAMP7 and syntaxin4 are also phosphorylated in RBL-2H3 cells 

(Xu, unpublished). It is rather conceivable that these phosphorylation events play key roles 

in the differential regulation of mediator release.

Munc18 phosphorylation in exocytosis

Reversible phosphorylation of Munc18 has been widely exploited to connect signaling 

cascades with the fusion apparatus. In neurotransmission and chromaffin cell exocytosis, 

PKC-dependent phosphorylation of Munc18a at Ser306 and Ser313 reduces its affinity for 

syntaxin1 and changes the kinetics of transmitter/vesicle release [110, 111]. In contrast, 

Dyrk1A-dependent phosphorylation of Munc18a at Thr479 in embryonic kidney cells 

enhances Munc18a binding to syntaxin1 [112]. Polarized secretion in rabbit gastric parietal 

cells requires CDK5-dependent phosphorylation of Munc18b at Thr572 (Thr573 in rat), 

which promotes the assembly of the Munc18b/VAMP2/syntaxin3/SNAP25 tetracomplex 

[113]. For GLUT4 exocytosis in adipocytes and muscle cells, Insulin receptor-mediated 

Munc18c phosphorylation at Y521 appears to facilitate SNARE complex formation between 

VAMP2, syntaxin4, and SNAP23 [114]. Collectively, these studies indicate that i) signaling-

dependent Munc18 phosphorylation is a prevalent regulatory mechanism in exocytosis and 

ii) Munc18 phosphorylation drives conformational changes to modulate their affinity for 

binding partners. Besides these site-specific studies, proteomic discovery-mode mass 

spectrometry has uncovered scores of Munc18 phosphorylation sites from various tissues 

and cell lines (Fig. 2). However, the functional significance of these sites in mast cell 

exocytosis has yet to be clarified.

To-date there is no direct evidence connecting Munc18 phosphorylation to mast cell 

exocytosis. However, mast cell degranulation requires activated PKC pathways [115–118], 

which are shown to phosphorylate Munc18a [110, 111] and Munc18c [119–121] in a variety 

of secretory cells. In addition, cGMP-dependent protein kinase (PKG) has been found 
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critical for degranulation, targeting a number of fusion components including Munc18c 

[122]. We hypothesize that signaling-dependent phosphorylation of Munc18 proteins 

provide an important way to regulate the functions of these Munc18 isoforms in distinct 

exocytic fusion events in activated mast cells.

Future Perspective

Tremendous progress has been made over the decades in understanding the complexity of 

mast cell exocytosis, and the diverse roles of mast cell mediators in health and disease. The 

increasing appreciation of the differential release of mast cell mediators will likely lead to 

more focused investigation on the specific regulation of individual mediators, particularly at 

the interface between signaling and exocytic fusion. It may also lead to better integration of 

cell-based secretion assays with “omics” studies, which will generate global insights on the 

diverse secretory pathways in mast cells. We expect the combination of these approaches to 

accelerate the development of “smart” drugs to treat mast cell related diseases (e.g., 

inhibiting the release of pro-inflammatory mediators while promoting the release of anti-

inflammatory mediators) in the near future.
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Fig. 1. Differentiation regulation of mast cell exocytosis
Different modes of mast cell activation exploit distinct cell surface receptors which can be 

broadly categorized into three groups: i) FcRI receptors (including FcεRI and FcγRI, ii) 

IL-1/TLR/ST2 family of receptors and pathogen recognition receptors (including toll-like 

receptors, the IL-33 receptor, and NOD-like receptors), and iii) G protein coupled receptors 

(including adenosine receptors, Prostaglandin E2 receptors, and sphingosine1-phosphate 

receptors, C3A and chemokine receptors, neuropeptide receptors, and antimicrobial peptide 

receptors) [Gilfillan and Beaven (2011)]. Different receptors at mast cell surface seem to 

rely on distinct signaling transduction mechanisms (in red) to target exocytic fusion events. 

These different signaling transduction mechanisms may have overlapping signaling 

transducers.
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Fig. 2. Predicted or known phosphorylation sites in Munc18
Sites above each schematic representation of the domain structure of Munc18 were 

identified from various tissues/cells, by either proteomic discovery-mode mass spectrometry 

(www.phosphosite.org) or site-specific methods (in bold). In green are identified or 

predicted PKC sites (http://kinasephos2.mbc.nctu.edu.tw/). All sites underneath the domain 

structure are predicted PKC sites. Conserved or semi-conserved PKC sites are indicated by 

*, according to sequence alignment of rat Munc18 proteins using Clustal Omega. Note that 

Munc18 domain 2 is split by the insertion of domain 3.
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