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Amblyomma maculatum SECIS binding protein 2 and putative 
selenoprotein P are indispensable for pathogen replication and 
tick fecundity

Khemraj Budachetri, Gary Crispell, and Shahid Karim*

Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 
39406, USA

Abstract

Selenium, a vital trace element, is incorporated into selenoproteins to produce selenocysteine. Our 

previous studies have revealed an adaptive co-evolutionary process that has enabled the spotted 

fever-causing tick-borne pathogen Rickettsia parkeri to survive by manipulating an antioxidant 

defense system associated with selenium, which includes a full set of selenoproteins and other 

antioxidants in ticks. Here, we conducted a systemic investigation of SECIS binding protein 2 

(SBP2) and putative selenoprotein P (SELENOP) by transcript silencing in adult female Gulf-

coast ticks (Amblyomma maculatum). Knockdown of the SBP2 and SELENOP genes depleted the 

respective transcript levels of these tick selenogenes, and caused differential regulation of other 

antioxidants. Importantly, the selenium level in the immature and mature tick stages increased 

significantly after a blood meal, but the selenium level decreased in ticks after the SBP2 and 

SELENOP knockdowns. Moreover, the SBP2 knockdown significantly impaired both transovarial 

transmission of R. parkeri to tick eggs and egg hatching. Overall, our data offer new insight into 

the relationship between the SBP2 selenoprotein synthesis gene and the putative tick SELENOP 
gene. It also augments our understanding of selenoprotein synthesis, selenium maintenance and 

utilization, and bacterial colonization of a tick vector.
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1. Introduction

Tick blood feeding generates toxic levels of reactive oxygen species (ROS) that can damage 

lipids, proteins, and DNA, thus promoting mutation, cellular dysfunction, and cell death. 

Therefore, to successfully feed and survive, ticks must somehow prevent the detrimental and 

promote the beneficial aspects of ROS release, which suggests that precise regulatory 

strategies must exist for maintaining appropriate ROS levels both within the tick and 
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possibly at the tick—host interface. Our previous studies have revealed an adaptive co-

evolutionary process that enables the survival of the tick-borne pathogen Rickettsia parkeri 
by manipulating an antioxidant defense system associated with selenium, which includes a 

full set of selenoproteins and other antioxidants (Adamson et al., 2014, 2013; Budachetri et 

al., 2017; Budachetri and Karim, 2015; Crispell et al., 2016; Karim et al., 2011; Karim and 

Ribeiro, 2015; Kumar et al., 2016). ROS generation is one of the first lines of host defense 

against invading microbes (Ha et al., 2005). Selenoproteins exhibit diverse biological 

functions such as detoxification of peroxides, regeneration of reduced thioredoxin, and 

reduction of oxidized methionine residues by oxidation of the selenium (Se−) active site 

(Gromer et al., 2005; Reeves and Hoffmann, 2009). The number of selenoproteins present in 

an organism varies widely: 10–57 in algae, 30–37 in fish, and 23–25 in mammals (Lobanov 

et al., 2009; Mariotti et al., 2012). However, selenoproteins are reduced in number or lost 

altogether in most arthropods. Instead, some insect species possess cysteine-containing 

homologs or may lack selenoproteins altogether, despite them being essential in mammalian 

systems (Chapple and Guigó, 2008; Lobanov et al., 2008; Shchedrina et al., 2010a). Recent 

studies have shown that the selenocysteine incorporation machinery is absent in at least five 

insect species (Tribolium castaneum, Bombyx mori, Drosophila willistoni, Apis mellifera, 
and Nasonia vitripennis) (Hirosawa-Takamori et al., 2004; Shchedrina et al., 2011). Instead, 

they possess cysteine-containing homologs and, where it is present, the selenoproteome is 

reduced to only one to three selenoproteins, as is the case forD. melanogaster and Anopheles 
gambiae (Hirosawa-Takamori et al., 2004; Shchedrina et al., 2011). The evolutionary 

reduction of selenoprotein use may be linked to the significant changes that have occurred in 

insect antioxidant systems. Interestingly, the role of selenoproteins in Drosophila does not 

appear to be critical for either lifespan or oxidative stress defense (Hirosawa-Takamori et al., 

2004). In contrast, despite the lack of published research, there is evidence that the tick 

selenoproteome and antioxidant enzymes may play critical roles in detoxifying ROS and 

maintaining both vector microbiota and R. parkeri colonization (Adamson et al., 2013; 

Budachetri et al., 2017; Budachetri and Karim, 2015; Crispell et al., 2016; Kumar et al., 

2016).

Selenium is an essential trace element required for the proper functioning of organisms. It 

participates in protecting cells against excess H2O2, in heavy metal detoxification, and in 

regulating the immune and reproductive systems (Kieliszek and Błażejak, 2016). With its 

known biological activity, selenium is important for human and animal nutrition, and for 

health and immune system functioning (Kieliszek and Błażejak, 2013; Scott, 1973). 

Selenium deficiency causes the degeneration of many organs and tissues from changes in the 

biological processes in which it participates via decreased selenoprotein expression (Pedrero 

and Madrid, 2009). Moderate deficiencies may also increase the risk of infertility, prostate 

cancer, nephropathy, and neurological diseases (Kieliszek and Błażejak, 2016). Conversely, 

the chronic toxicity caused by excess selenium in living organisms leads to selenosis, as 

manifested by hair loss, infertility, fragility or other changes in the fingernails or hooves, 

gastrointestinal disturbances, skin rashes, an unpleasant garlic-like odor in exhaled air (from 

dimethylselenide), and nervous system disorders (Li et al., 2012; Nazemi et al., 2012). 

Selenium contributes to normal cell growth and plays an important role in modulating the 

action of transcription factors and cell signaling systems. The biological roles for selenium 
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include the prevention of infertility, diabetes, cancer, and cardiovascular diseases (Hendrickx 

et al., 2013).

The specific functions of selenoproteins involve thiol-based redox signaling, control of 

reduced cysteine (Cys) residues in cytosolic and mitochondrial proteins, removal of 

hydrogen peroxide, repair of oxidatively damaged proteins, control of cytoskeleton and actin 

assembly, selenoprotein synthesis, selenium transport, protein folding, and endoplasmic 

reticulum (ER)-asso-ciated degradation, among others (Labunskyy et al., 2014). 

Selenocysteine (Sec), the 21st naturally occurring amino acid, is inserted into nascent 

polypeptides at UGA codons. Incorporation of Sec instead of Cys often results in higher 

enzyme activity, providing a competitive advantage to the organisms that utilize it (Kim and 

Gladyshev, 2005). Sec incorporation requires the presence of complex machinery 

comprising Sec-tRNA elongation factor (eEF-sec), Sec insertion sequence (SECIS)-binding 

protein 2 (SBP2), selenophosphate synthetase 2, phosphoseryl-tRNA kinase, SECp43, Sec 

synthase, and a cis-acting stem-loop structure known as the SECIS element in the 3′-

untranslated region (Hatfield et al., 2006). At both the cellular and physiological levels, the 

functional role of selenium has yet to be investigated in blood-sucking arthropods such as 

ixodid ticks. Tick-borne pathogens manipulate the gene expression of their vector hosts to 

ensure their survival and replication and their onwards transmission (vector competence) to 

mammalian hosts. Very little is known about the relationship between redox balance and the 

growth and viability of intracellular bacteria. In mammals, invading bacterial pathogens 

infect neutrophils and professional phagocytes and stimulate the assembly of a nicotinamide 

adenine dinucleotide phosphate oxidase complex in the vacuole that destroys the bacteria 

(Hong et al., 1998; Rada and Leto, 2008). R. rickettsii, a close relative of R. parkeri, 
generates ROS as a means of pathogenesis in human endothelial cells (Hong et al., 1998). In 

contrast, Anaplasma phagocytophilum, another Rickettsiales member, scavenges ROS 

extracellularly by secreting SOD1 (Dumler et al., 2005). Studies using other vector-borne 

disease models have shown that the initial transmission stage of a pathogen by an arthropod 

vector is influenced by gene expression changes in both the vectors and the pathogens 

(Hovius et al., 2007).

The redox property of a selenoprotein depends on the selenium atom in the selenocysteine 

residue. Selenium is unable to form many pi bond types, but its ease of reducing organic and 

inorganic hydrogen peroxides without oxidative inactivation makes selenoproteins unique 

antioxidants (Reich and Hondal, 2016). Selenoprotein P (SELENOP) is a multiple 

selenocysteine (Sec, U)-containing selenoprotein, and most selenium (>50% of the body's 

total) in human plasma is associated with this protein. Plasma SELENOP acts as a selenium 

level indicator in the body and is considered to be involved in selenium storage and transport 

across the body (Richardson, 2005). In this study, we used RNAi to silence two important 

selenoprotein synthesis machinery genes, SBP2 and the putative tick SELENOP, and 

characterized their roles in tick physiology, selenium status, pathogen growth, and 

transovarial transmission.
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2. Experimental procedures

2.1. Ticks and tick tissue isolation

R. parkeri infected (Rp+) and R. parkeri free (Rp-) Gulf coast tick (A. maculatum) colonies 

were maintained at the University of Southern Mississippi (USA) according to established 

methods (Patrick and Hair, 1975). Ticks were kept at room temperature under approximately 

90% relative humidity and a photoperiod of 14 h light/10 h dark before infestation on sheep. 

Immature ticks were blood fed on hamsters, whereas adult ticks were blood fed on sheep. 

Immature and mature tick stages were allowed to replete or were removed 3–10 days post-

infestation (dpi) of their hosts, depending on the experimental protocol. The Institutional 

Animal Care and Use Committee at the University of Southern Mississippi approved all the 

protocols (#10042001 & 15101501) before the experiments commenced.

2.2. Bioinformatics analyses

The SBP2 (GenBank:MF115980) and SELENOP (GenBank: MF115978) coding sequences 

were obtained from the A. maculatum sialotranscriptome (Karim et al., 2011). Both 

nucleotide sequences were conceptually translated into their amino acid sequences and 

multiply aligned with their orthologous protein sequences using ClustalX2. For SBP2, the 

Homo sapiens, human (Q96T21), Equus caballus, horse (F6V110), Danio rerio, Zebra fish 

(F1R3N8) and Ixodes scapularis, blacklegged tick (B7Q610) sequences obtained from 

uniprot (www.uniprot.org) (Larkin et al., 2007; Thompson et al., 2002) were graphically 

represented in Jalview after multiple sequence alignment against tick SBP2 (Jones et al., 

1992). The phylogenetic tree was built using MEGA6 software (Tamura et al., 2013) using 

additional SBP2 sequences from Oryctolagus cuniculus, European rabbit (G1T4E3), Rattus 
norvegicus, rat (Q9QX72), Mus musculus, house mouse (NP_083555.1), Clupea harengus, 

Atlantic herring (XP_012670383.1), Poeciliopsis prolifica, blackstripe live-bearer fish 

(A0A0S7GUM1), I. scapularis, blacklegged tick (ISCW021662 or B7Q610) for 

phylogenetic insight.

Amblyomma maculatum SELENOP was aligned with SELENOP from I. scapularis 
(B7Q2F3), I. ricinus (V5GWR4), Rhipicephalus appendiculatus (hereafter referred to as Rh. 
appendiculatus) (A0A131YE48), Homo sapiens (P49908), R. norvegicus (P25236), and M. 
musculus (P70274), and with two sequences from Danio rerio (Q98SV1 and Q98SV0), after 

which they were visualized in Jalview and MEGA6 software was used to obtain their 

phylogenetic history (Tamura et al., 2013). The SELENOP-based sequence alignments of 

the aforementioned organisms were obtained using MEGA6 software after changing all the 

selenocysteine residues to cysteine (U to C). The sequences showed marked differences 

between the vertebrates and the ticks, with the three tick species (R. appendiculatus, 

A0A131YE48; I. scapularis, B7Q2F3; and I. ricinus, V5GWR4) grouping close together in 

the alignment, except for Danio rerio (Q98SV0), which was aligned separately from either 

group (Fig. S2).

2.3. RNAi assay for tick SBP2 and SELENOP

Double-stranded RNA (dsRNA) synthesis (for SBP2 and SELENOP) and tick manipulations 

were performed according to the methods described previously (Crispell et al., 2016). The 
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dsRNAs for SBP2, SELENOP and LacZ (irrelevant control) were diluted to each make a 

working concentration of 1 μg/μL Groups of 20–25 unfed adult female Rp (+) ticks were 

microinjected with SBP2, SELENOP or LacZ using a 27-guage needle. For sample 

collection, 12 partially fed control ticks were removed on days 5 and 7 post-tick infestation 

and the remaining ticks allowed to stay attached and blood feed until fully engorged. The 

feeding success of each female tick was evaluated by three parameters: attachment duration, 

repletion weight, and the ability to oviposit (Karim et al., 2012). Eggs (20 mg) from the 

dsRNA-injected ticks were collected from the control and treatment groups (dsLacZ, 

dsSBP2, and dsSELENOP), stored in RNAlater, and placed at −80 °C. The partially fed 

ticks removed from each group were dissected to obtain their midguts and salivary gland 

tissues. All experiments were repeated twice.

2.4. RNA preparation, cDNA synthesis, and quantitative reverse transcriptase PCR (qRT-
PCR)

The methods used for RNA extraction from tick tissues (time points, RNAi tissues and 

eggs), cDNA synthesis and qRT-PCR have been published previously (Bullard et al., 2016). 

Transcriptional gene expression was normalized against the glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) gene. All the genes used in this study were first amplified using 

gene-specific primers (Table S1), and their sequences were confirmed by sequencing before 

conducting double-stranded (ds) RNA synthesis or before starting the gene expression 

studies. iTaq™ Universal SYBR® Green Supermix (Bio-Rad Inc., Hercules, CA, USA), 25 

ng of cDNA, and 150 nM of gene-specific primers were used in each reaction mixture. The 

qRT-PCR mixtures were subjected to 10 min at 95 °C, followed by 35 cycles of 15 s at 

95 °C, 30 s at 60 °C, and 30 s at 72 °C using the CFX96 Real Time System (Bio-Rad Inc., 

Hercules, CA, USA).

2.5. Immunoblot analysis of tick SBP2 and SELENOP

Individual whole ticks from the no-treatment, dsLacZ, dsSBP2-or dsSELENOP-injected 

groups were separately processed for protein isolation followed by sonication. All the 

procedures for protein isolation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

and western blotting were those reported previously by Browning and Karim (2013) and 

Budachetri et al. (2014). Nitrocellulose membranes were incubated with mouse anti-

selenoprotein P (an anti-human mouse monoclonal antibody, 1:200) in iBind™ apparatus 

(ThermoFisher Scientific, Waltham, MA, USA) and anti-mouse HRP secondary IgG 

(1:2000). The same blots were stripped and re-probed with anti-SBP2 1: 750 (iBind™ 

apparatus), an anti-rat rabbit polyclonal antibody, and the secondary antibody was anti-rabbit 

HRP IgG (1:10,000). After successful imaging, each blot was re-probed with mAb (GA1R) 

HRP conjugate (1: 1200; ENZ-ABS276-0050, Enzo life Sciences, Inc., NY, USA). The 

antigen-antibody complexes were visualized with a horseradish peroxidase-conjugated 

secondary antibody and SuperSignal chemiluminescent substrate (ThermoFisher Scientific) 

using the ChemiHi sensitivity method with Chemidox XRS (Bio-Rad, USA).
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2.6. Quantifying Francisella-like endosymbionts (FLE), Candidatus Midichloria 
mitochondrii (CMM) endosymbionts, and R. parkeriloads in ticks

The R. parkeri load per tick was determined by quantifying the copy numbers of the 

rickettsial outer membrane protein B (ompB) and GAPDH using qRT-PCR, as described 

earlier (Budachetri et al., 2017; Jiang et al., 2012). The bacterial load in each tick tissue was 

estimated as described previously (Budachetri and Karim, 2015; Narasimhan et al., 2014). A 

slightly modified published protocol was used to estimate FLE (Dergousoff and Chilton, 

2012) and CMM numbers (Sassera et al., 2006). For each gene standard curves were 

constructed for quantifying the total bacterial load, the Rp load, the CMM load and the FLE 

load using the method of Budachetri et al. (2017). Similarly, tick GAPDH standard curves 

corresponding to each quantification protocol were prepared. The copy numbers were 

calculated using the respective standard curves and the loads represented the number of 

GAPDH copies per tick.

2.7. Lipid peroxidation estimation

The lipid peroxidation assay kit measures the malondialdehyde (MDA) levels formed after 

peroxidation of polyunsaturated lipids by reactive oxygen species, thereby providing the 

oxidative stress level in tissues (Crispell et al., 2016). With this kit, lipid peroxidation is 

determined by estimating the amount of MDA reaction product with thiobarbituric acid. The 

reaction is measured calorimetrically (wavelength of 532 nm), and peroxidation is 

proportional to the MDA level in the sample. All the procedures we used followed the 

manufacturer's recommendations (Sigma-Aldrich, St. Louis, MO, USA).

2.8. Analysis of selenium as a trace element in tick samples

Selenium levels were quantified in tick samples across all the developmental stages 

including the SBP2- and SELENOP-silenced tick samples. We utilized inductively coupled 

plasma-mass spectroscopy (ICP-MS) to estimate low selenium concentrations (<2 μg/ g) 

(Kasaikina et al., 2011a; Miksa et al., 2005). Approximately 0.1 g of sample was weighed 

and placed in a Teflon container with 1 mL ultrapure water and 1 mL ultrapure concentrated 

HNO3 (Seastar Baseline, Sidney, British Columbia, Canada). The container was sealed and 

heated at 110 °C for 8 h. After cooling, 8 mL of ultrapure 0.1% HNO3 containing 2 parts per 

billion was added to each sample. The samples were analyzed using a sector field ICP mass 

spectrometer (ThermoFisher Element XR) operated in high-resolution mode. Isotope 

scanning included 77Se, 78Se, 82Se, while 115In was used as an internal standard. 

Calibration was performed using external standards. Generally, no significant difference was 

noted for the results from the three isotopes. The relative standard deviation of the samples 

well away from the detection limit (0.005 μg-Se/g) was 14%.

2.9. Data analysis

All data are expressed as mean ± SEM unless otherwise mentioned. Statistical significance 

between the two experimental groups or their respective controls was determined by the 

Mann-Whitney rank sum test or t-test (P-value, 0.05). Transcriptional expression levels were 

determined by Bio-Rad software (Bio-Rad CFX MANAGER v.3.1), and expression values 

were considered significant when the p-value was = 0.05, when compared with the control.
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3. Results

3.1. Bioinformatic analyses

A. maculatum SBP2 shared 27–28% sequence identity with the vertebrate, E. caballus, and 

D. rerio sequences, and 42–45% with the sequences from the prostriate tick species (i.e., the 

ixodid ticks like I. scapularis and I. ricinus V5IFJ7 that have an anal groove in front of the 

anus). The grey highlight 96 amino acid residues stretch denotes the conserved domain 

between the vertebrates and tick SBP2 (Fig. S1). The amino acid identity scores in the 

conserved domains showed that A. maculatum shares 54–56% similarity with vertebrates 

and about 73.96% identity with I. scapularis. The SBP2 sequences from each taxonomic 

class formed their own clades (Fig. S3).

The putative A. maculatum SELENOP was found to share 27–28% sequence identity with 

vertebrate SELENOP from rat, mouse and humans, but less than both SELENOPs from 

zebrafish (23% identity) (Fig. S2), which is very low compared with the 72% identity scores 

for human, mouse, and rat. Despite the 92% sequence similarity scores between I. scapularis 
and I. ricinus SELENOPs, Amblyomma SELENOP shared only 36% sequence identity with 

both Ixodes SELENOPs. The SELENOP sequence from Rh. appendiculatus shares 67% 

identity with that from Amblyomma, but only 36–37% with the I. scapularis and I. ricinus 
sequences (Fig. S2).

The multiple sequence alignment for SELENOP is shown in Fig. S2. The sequences 

enclosed in blue boxes represent a signal peptide indicative of the secretory nature of 

SELENOP from vertebrates alone. The red boxes highlight the selenocysteine (U) residues, 

which are selenium-containing amino-acids specific to selenoproteins. On the N-terminal 

side, up to the poly histidine region of sequences represented by black borders with many 

histidine residues, only one selenocysteine residue was observed.

3.2. Blood meal and pathogen-induced tick gene expression

The transcriptional activity of SBP2 became depleted after a blood meal in midgut tissues 

and salivary glands, except for the midgut tissues at 8 days post infestation (dpi), which had 

a similar transcriptional level to that of the unfed stage (Fig. 1A). The tran-scriptional 

activities of SELENOP and selenophosphate synthetase (SEPHS2) diminished after the 

blood meal in the slow and fast feeding stages (Fig. 1B–C) whereas in the midgut tissues 

SELENOP was up regulated >3-fold in the slow feeding stage but diminished later (Fig. 

1B). Contrastingly, the transcriptional activity of SEPHS2 was up regulated >40 fold in the 

midgut tissues of the fast feeding stage (Fig. 1C). The transcriptional expression of SBP2, 

SELENOP and SEPHS2 were estimated in the R. parkeri-infected tick tissues to assess the 

tick response to pathogen infection (Fig. 1D). In both tissue types, SBP2 expression was 

upregulated significantly during the R. parkeri infections, with a 2-fold increase in the 

midgut tissues (p < 0.005) and a 5-fold increase in the salivary glands (P < 0.005). Similarly, 

the presence of a rickettsial infection increased SELENOP expression by 2- and 6-fold in the 

midgut and salivary gland tissues (P < 0.05), respectively, whereas the SEPHS2 transcript 

level increased ∼3-fold in the midgut tissues (Fig. 1D).
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3.3. Blood meal and pathogen induced selenium concentrations inticks

We did not observe significant differences in the selenium levels between the Rp+ and Rp-

ticks except in eggs (p = 0.009), whereas the selenium level increased significantly after a 

blood meal in all the tick developmental stages, irrespective of the presence of a pathogen 

infection (Fig. 2A–C). The selenium concentrations increased after the blood meal in both 

Rp- (about 3-fold) and Rp + larva (about 7-fold) (p = 0.016) (Fig. 2A). There were no unfed 

nymphal tick samples, but in adults after the blood meal both Rp-(2-fold) and Rp+ (1.3-fold) 

males showed increased selenium concentrations (Fig. 2B). The selenium levels in the 

blood-fed female ticks increased by 7-fold in the absence of R. parkeri (p = 0.0004), and 16-

fold when infected (p = 0.0004), compared with the unfed control (Fig. 2B). The maximum 

selenium concentration in ticks reached 0.3 μg per g in the adult female ticks. Selenium 

concentration changes were also observed in I. scapularis and A. americanum (Fig. 2C). 

Selenium concentrations in the partially fed I. scapularis ticks showed an approximate 7-fold 

increase, whereas A. americanum showed a 5-fold increase (Fig. 2C), compared with the 

unfed controls.

3.4. SBP2 and SELENOP silencing

3.4.1. Impact on the tick selenoproteome—A significant depletion of SBP2 transcript 

levels (93%) in midguts and salivary glands (90%) was achieved in the partially blood fed 

ticks (Fig. 3A). The SELENOP, SELENOS, SELENOK, thioredoxin reductase (TXNRD2), 

SELENON, SELENOT, and MSRB1 (SelX) transcript levels were depleted in the ticks 

when SBP2 was knocked down, while SEPHS2 and SELENOO transcripts were 

significantly upregulated, and eEFSec and SELENOM remained unaffected (Fig. 3A). 

Interestingly, catalase expression levels remained unchanged despite significant upregulation 

of superoxide dismutase (Cu/Zn-SOD) in the SBP2 knockdown tissues (Fig. 3A).

The SELENOP transcript levels were depleted by 96% and 97% in both tick midgut and 

salivary glands, respectively, upon gene silencing (Fig. 3B). A significant increase in 

SEPHS2, SBP2, and Cu/ Zn-SOD transcript levels was observed in the SELENOP-silenced 

midgut tissues (Fig. 3B). SELENOO and TXNRD2 were also significantly upregulated in 

tick salivary glands (Fig. 3B). SELENOS transcripts in both tick tissues, MRSB1 (SelX) in 

midguts, and catalase in salivary glands were all significantly depleted following SELENOP 
knockdown (Fig. 3B).

3.4.2. Immunodetection of SBP2 and SELENOP in the knockdowns—The 

SELENOP antibody cross-reacted with a tick protein of ≈30 KDa in both the non-treated 

and irrelevant dsRNA-LacZ-treated ticks, while no cross reactions occurred with the dsSBP2 

or dsSELENOP-treated ticks (Fig. 4B). The anti-SBP2 antibody, being polyclonal, did not 

yield single bands, but produced three bands of varying intensities from 58 to 100 KDa 

across the samples (Fig. 4C). The three intense bands from the no-treatment controls were 

fainter in the dsLacZ knockdown except for the 58 KDa one. Similarly, two other bands, 

except the one at 58 KDa, remained faint in the SBP2 and SELENOP knocked-down tick 

tissues (Fig. 4C). The GAPDH protein level across the tick tissues was lower in the dsSBP2-

and dsSELENOP-injected female ticks than in the no-treatment and dsLacZ-injected 

females (Fig. 4D).
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3.4.3. Impact on oxidative stress—Contrary to our expectations, we did not see an 

increase in lipid peroxidation for R. parkeri (p = 0.19). Likewise, no lipid peroxidation was 

detected after silencing tick SBP2 (p = 0.09) and SELENOP (p = 0.35) (Fig.S5).

3.4.4. Impact on selenium concentration—Decreased selenium levels were detected 

in the SBP2 and SELENOP gene-silenced ticks, but the result was only statistically 

significant for the SELELNOP knockdowns (p = 0.04) (Fig. 2D). The selenium level 

decreased in the SBP2- and SELENOP-silenced ticks to 0.073 μg/g and 0.053 mg/g, 

respectively, from 0.105 μg/g in the dsLacZ ticks (Fig. 2D).

3.4.5. Impact on tick microbiota colonization—The abundance of R. parkeri was 

unchanged in the gut tissues and salivary glands of the SBP2 and SELENOP knockdown 

ticks (Fig. 5A). The FLE load remained unchanged in the SBP2 knockdown ticks, but 

increased significantly in the SELNEOP-silenced gut tissues (p = 0.01), while the salivary 

gland load remained unchanged (p = 0.09) (Fig. 5B). The CMM load increased significantly 

in the SBP2-silenced gut tissues (p = 0.009) and the SELENOP-silenced gut tissues (p = 

0.01), but remained unchanged in the salivary glands (Fig. 5C). However, the overall 

bacterial load (estimated via 16S rRNA gene analysis) showed significantly increased levels 

in the SBP2- (p = 0.01) and SELENOP-silenced midguts (p = 0.02) (Fig. 5D). Intriguingly, 

the total bacterial load significantly increased in the SELENOP-silenced salivary glands (p = 

0.03) (Fig. 5D).

3.4.6. Impact on tick fecundity and transovarial R. parkeri transmission—We 

noticed that tick engorgement remained unaffected (p = 0.85), but that the egg conversion 

ratio was significantly impaired (p = 0.0004). Furthermore, the SBP2-silenced ticks laid 

non-hatch-able eggs (Fig. 6A–D, Table 1). R. parkeri transovarial transmission was 

estimated in the eggs collected post-oviposition (25 days after repletion). The results showed 

that R. parkeri transmission decreased significantly in the SBP2-silenced ticks (p = 0.033) 

compared with the control (Fig. 6E). Tick SELENOP silencing had no significant effect on 

the egg conversion ratio (Table 1), and had no significant impact on R. parkeri transovarial 

transmission (p = 0.78) (Fig. 6F).

4. Discussion

We functionally characterized tick SBP2 and SELENOP using a reverse genetics approach 

(RNAi) in A. maculatum, a known vector of R. parkeri. Functional characterization of SBP2, 

a gene that plays a critical role in selenoprotein synthesis, and SELENOP, a gene known to 

play role in selenium transport, yielded important information about their effects on tick 

fecundity, pathogen replication, trans-ovarial transmission, and the overall selenium 

concentration inside ticks.

Computationally, we showed the presence of sequence conservation in tick SBP2 and 

SELENOP and their respective homologs in vertebrates and invertebrates using multiple 

sequence alignments and the phylogenetic relationships among them (Figs S1–4). The 

conserved cysteine residues are represented in boxes with red borders; they are important for 

the binding capacity of the SECIS region to selenoprotein mRNAs (Bubenik et al., 2015). A 
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search of the National Center for Biotechnology Information (NCBI) conserved domains 

database (CDD) hit the binding domain of the ribosomal protein 7Ae/L30e/S12e/Gadd45 

family and the RNA binding domain in the overlapped region shaded grey in the alignment 

(Fig. S1) (Marchler-Bauer et al., 2015). The SBP2 domain structure and ribosomal binding 

studies showed that the SBP2–ribosome interaction occurs via 28S rRNA. The studies 

showed that RNA binding was a prerequisite for Sec insertion, and the importance of the 

glycine residue in RNA binding ability in the region between amino acids 517–777 in rat 

SBP2 (Copeland et al., 2001). The evolutionary linkage for SBP2 across the taxa revealed a 

separate clade for tick species, which differs from the other arthropods and invertebrates. 

SBP2 binds to the 3′ untranslated region (UTR) of selenoprotein mRNA, which has a 

specific stem loop structure like that seen in phospholipid hydroperoxide glutathione 

peroxidase, and direct cross linking and competition experiments have shown that SBP2 

binds to the UTR between nucleotides 82 and 104 (Copeland and Driscoll, 1999).

By not having signal peptide sequences that match the N-ter-minal selenocysteine residue in 

vertebrate SELENOPs, tick SELENOP is unique (Fig. S2). NCBI CDD databases searches 

identified the putative domain (SelP_N) in SELENOP from A. maculatum. SELE-NOPb 

from zebra fish contains only one selenocysteine (U) at its N-terminus (Fig. S2). The 

number of selenocysteine residues among vertebrate SELENOP molecules varies from 10 to 

17. Specifically, rat, mouse, and human SELENOP molecules contain 10 selenocysteine 

residues (one in the N-terminal and 9 in the C-terminus), whereas zebra fish (SELENOPa) 

contains 17 selenocysteine residues (one in the N-terminal and 16 in the C-terminus) (Fig. 

S2).

SBP2, SEPHS2 and SELENOP genes were transcriptionally active across the blood meal 

period (Fig. 1A–C), and were differentially expressed during the pathogen infection (Fig. 

1D). The increased SBP2 and SEPHS2 transcript levels in the 8-day fed gut tissues and the 

increased SELENOP transcript levels at 4 dpi showed their importance in blood meal 

processing, but they probably responded to the increased selenium level in ticks after the 

blood became imbibed (Fig. 1A–C and Fig. 2B–C). The transcriptional expression of SBP2 
and SELENOP increased significantly in the presence of the pathogen infections, suggesting 

that an increased antioxidant capacity is required in tick salivary glands when R. parkeri is 

present as this pathogen increases the overall oxidative stress (as was measured by lipid 

peroxidation) (Fig. S5).

The selenium level increased significantly upon blood meal consumption in all the tick 

species we tested, but it remained unchanged in the infected male A. maculatum ticks. Our 

results support the hypothesis that host blood is the source of selenium in the ticks, and that 

ticks utilize it for selenoprotein synthesis. Selenium is maintained in its inorganic form 

(selenite, selenate) through the action of glutathione reductase or thioredoxin reductase. 

Selenium is also maintained in its organic form (like selenomethionine and selenocysteine) 

via selenocysteine lysis activity or trans-selenation. These activities are required for selenide 

production, and selenium, which is a substrate for SEPHS2, is required for conversion into 

selenophosphate, a selenium donor in selenoprotein synthesis (Cardoso et al., 2015; Veres et 

al., 1994). The 40-fold plus upregulation of SEPHS2 at the fast feeding stage and 

significantly high selenium levels in blood-fed ticks suggest there is high sele-nophosphate 
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synthesis. This is supported by high expression of SELENOP, a vital selenoprotein that plays 

a role in selenium transport to different mammalian body tissues (Richardson, 2005). 

Selenium plays a maintenance role in the body; therefore, when SELENOP is expressed it 

indicates that an optimal nutritional intake of selenium is occurring in individuals (Hoeflich 

et al., 2010). Furthermore, in healthy euthyroid postmenopausal women, bone turnover and 

bone mineral density have been found to be independently related to selenium status (Hoeg 

et al., 2012).

To further elucidate the functional roles of SBP2 and SELENOP, their encoded genes were 

individually silenced in Rp + A. maculatum. Only SELENOO was significantly upregulated, 

and the transcript levels of the other selenoproteins remained unchanged or depleted in the 

SBP2-silenced ticks, suggesting that downstream selenoprotein synthesis was significantly 

impacted, as was reported in humans with SBP2 mutations (Schoenmakers et al., 2010). 

Unlike the SBP2 knockdown, SELENOP silencing resulted in upregulation of SEPHS2, 
SELENOO, TXNRD2 and Cu/Zn-SOD, which supports the hierarchical impact of selenium 

transportation to different selenoproteins reported previously (Reszka et al., 2012). In 

western blots, both SBP2 and SELENOP knockdown ticks showed depletion of SELENOP, 

and this correlated with the significant depletion of SELENOP and SBP2 and in the 

SELENOP-silenced ticks (Fig. 4B). The SELENOP epitope recognized in ticks further 

confirmed the presence of this protein in ticks, but we cannot rule out the possibility that the 

ticks may contain an incomplete sequence. Because of the polyclonal nature of the SBP2 

antibody, it is possible that we observed non-specific antibody binding or cross-reactivity as 

multiple bands of different molecular weights were observed. We witnessed greater band 

intensity in both dsRNA-SBP2 and dsRNA-SELENOP samples at the ∼45kD position as 

compared with the control samples, possibly via a tick compensatory mechanism activated 

in response to down-regulating these genes (Fig. 4C).

In both SBP2- and SELENOP-silenced tick tissues, SELENOO, which is an antioxidant and 

a putative mitochondrial kinase, remained highly expressed and probably compensated for 

the reduced oxidative balance in the mitochondria (Han et al., 2014). Tick Cu/Zn-SOD plays 

a role in detoxifying the superoxide radicals produced by ticks free of or infected with R. 
parkeri (Crispell et al., 2016). The action of Cu/Zn-SOD may also compensate for SBP2 or 

SELENOP depletion. The thioredoxin-like function of SELENOP (based on its Sec-X-X-C 

domain) means that the upregulated TXNRD2 gene probably compensates for the depletion 

of SELENOP (Mostert, 2000). The upregulation of Cu/Zn-SOD, but depletion of catalase, 

results in super-oxide radicals being generated The upregulation of Cu/Zn-SOD, but 

depletion of catalase, results in super-oxide radicals being generated following depletion of 

SELENOP (Burk et al., 2003). This could be the reason for the unchanged lipid peroxidation 

levels in the samples. The significant depletion of SELENOS from SELENOP-silencing 

probably induces stress on the ER, which impacts on its protein folding functions 

(Shchedrina et al., 2010b). The transcriptional expression levels of SELENOM, SELE-NOK, 
SELENON, SELENOT and eEFsec did not change after SELENOP silencing, which 

highlights the lower impact of this protein on the biosynthesis of these selenoproteins. A 

progressively higher demand for selenoproteins occurred in the tick gut tissues via increased 

expression levels of SEPHS2 and SBP2 after SELENOP depletion.
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The protective functions of SBP2 and SELENOP against oxidative and lipid peroxidation 

provides a redox balance in ticks (Burk et al., 2003; Copeland and Driscoll, 1999). Unlike 

the known anti-apoptotic function of SBP2 (Papp et al., 2010) and anti-peroxidation 

property of SELENOP (Rock and Moos, 2010), silencing of the tick SBP2 and SELENOP 
did not result in any peroxidation. The reduction of R. parkeri levels in SBP2- and 

SELENOP-deficient tick salivary glands was likely compensated for by higher level of 

symbionts such as CMM, FLE, and others, thus resulting in an increased bacterial load in 

the SBP2- and SELENOP-silenced tick salivary glands (Fig. 5).

Depletion of SBP2, SELENOP and selenium possibly caused the reduced egg laying we 

observed in the ticks (lower fecundity), a result similar to that reported for Drosophila 
feeding on a selenium-deficient diet (Martin-Romero et al., 2001). Embryonic lethality was 

shown by the SBP2-deficient tick laid eggs failing to hatch. Reduced selenoprotein 

expression in SBP2 knockout mice and humans with SBP2 mutations also result in 

embryonic lethality (Schoenmakers et al., 2010; Seeher et al., 2014). The depleted selenium 

levels in the SBP2- or SELENOP silenced ticks are consistent with the results from studies 

on knockout mice. The SELENOP knockout mice showed reduced transportation of 

selenium from hepatocytes to the peripheral tissues (Schoenmakers et al., 2010; Seeher et 

al., 2014). Conversely, the selenocysteines found in SELENOP were replaceable by 

cysteines (in some among 10 mice) if a selenium-deficient diet was provided (Hill et al., 

2012; Turanov et al., 2015). In knockout mice, depleted levels or reduced selenium 

utilization was also reported for Gpx1, another selenoprotein (Kasaikina et al., 2011b). An 

overall decrease in tick engorgement weight in the SELENOP-deficient ticks supports the 

potential role of SELENOP in tick hematophagy and oviposition. Reduced transovarial 

(vertical) transmission of R. parkeri by silencing SBP2 and SELENOP and an 

accompanying reduction in egg laying may provide a novel control strategy for tick-borne 

pathogens and their vectors. We propose that arthropods like ticks may be controlled using a 

conserved motif in SBP2 or SELENOP as a vaccine target.

In conclusion, our data provide important insights into the role of SBP2 in tick 

selenoproteome synthesis, tick fecundity, reproductive fitness (egg development), and 

transovarial transmission of R. parkeri. Likewise, tick SELENOP, along with tick SBP2, 

maintains tick selenium levels via their roles in selenoprotein synthesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Transcriptional expression of SECIS binding protein 2 (SBP2), selenoprotein P 
(SELENOP) and selenophosphate synthetase (SEPHS2) genes post-blood meal during Rickettsia 
parkeri infection in Amblyomma maculatum
Transcriptional gene expression for (A) SBP2, (B) SELENOP, and (C) SEPHS2 was 

estimated in unfed ticks, slow feeding (4-day) ticks, and fast feeding (8-day) ticks in adult 

female A. maculatum. The expression value for the unfed ticks was set to 1 for reference. 

(D) Tick SBP2, SELENOP and SEPHS2 genes were up-regulated in R. parkeri-infected tick 

midgut and salivary glands tissues. The transcriptional activities were normalized against 

tick glyceraldehyde 3-phosphate dehydrogenase.
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Fig. 2. Selenium levels in immature and mature ticks
Selenium levels across (A) embryonic and immature stages of blood fed and unfed (UF) 

ticks, (B) adult fed and UF male and female Amblyomma maculatum ticks with (+) or 

without (–) Rickettsia parkeri infection before and after a blood meal. (C) Selenium levels in 

UF and 8-day partially fed (pF) female Ixodes scapularis (IS) and Amblyomma americanum 
(AA) ticks. (D) Selenium concentrations in the control, and in the SBP2- and SELENOP-
silenced Amblyomma maculatum (AM) ticks. At least three biological replicates were used 

to estimate the selenium levels via the inductively coupled plasma mass spectrometry (ICP-

MS) technique.
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Fig. 3. SECIS binding protein 2 (SBP2) gene (A) and selenoprotein P (SELENOP) gene (B) 
knockdowns in Amblyomma maculatum
Transcriptional expression of the selenogenes was assessed in SBP2 and SELENOP 
knockdown tick tissues. Quantitative reverse transcriptase PCR was used to determine the 

transcriptional expression levels of the tick selenoproteins using tick GAPDH as the 

reference gene. The expression levels of the target genes in the control samples were set to 1.
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Fig. 4. Immune-blot analysis of SECIS binding protein 2 (SBP2) and selenoprotein P 
(SELENOP) proteins in Amblyomma maculatum
(A) SDS-PAGE gel (4–20%) stained with GelCode Blue; (B) the corresponding 

immunoblots showing cross reactivity to an anti-human SELENOP antibody; (C) 

immunoblot incubated with SBP2 antibodies and (D) immunoblot incubated with anti-

glyceraldehyde phosphate dehydrogenase monoclonal antibodies. M: Broad range molecular 

weight protein standard. Lanes 1 and 2 show the no-treatment ticks and the dsLacZ-injected 

A. maculatum female ticks, respectively. Lanes 3 and 4 show dsSBP2-and dsSELENOP-

injected A. maculatum female ticks, respectively. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Rickettsia parkeri and symbiont loads in tick SECIS binding protein 2 (SBP2) gene and 
selenoprotein P (SELENOP) gene knockdown tissues
(A) R. parkeri load in tick midguts (MG) and salivary glands (SG). (B) Francisella-like 

endosymbiont (FLE) load in dsRNA-injected tick tissues 5 days after the injections. (C) 

Candidatus Midichloria mitochondrii (CMM) load in dsRNA-injected tick tissues. (D) 

Bacterial load in midguts and salivary glands in the dsRNA-injected ticks, as determined by 

16S rRNA analysis.
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Fig. 6. Impact of the SECIS binding protein 2 (SBP2) on tick fecundity and transovarial 
transmission of Rickettsia parkeri from SBP2 and SELENOP gene knockdowns
Eggs from the control (dsLacZ-injected) (a, b) and dsSBP2 injected (c, d) ticks. (e, f) R. 
parkeri load in tick eggs after SBP2 and SELENOP silencing.
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