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Abstract 

Decomposition of plant matter is a key ecosystem process and considerable research has 

examined plant litter decay processes in freshwater habitats. Fungi are common inhabitants of 

the decomposer microbial community and representatives of all major fungal phyla have been 

identified within freshwater systems. Development and application of quantitative methods over 

the last several decades have firmly established that fungi are central players in the 

decomposition of plant litter in freshwaters and are important mediators of energy and nutrient 

transfer to higher trophic levels. Despite the critical roles that fungi play in carbon and nutrient 

cycling in freshwater ecosystems, there are notable differences in the types and adaptations of 

fungal communities between lotic and lentic habitats. These differences can be explained by the 

wide range of hydrologic, physical, chemical and biological conditions within freshwater 

systems, all of which can influence the presence, type, and activity of fungal decomposers and 

their impact on litter decomposition. This following seeks to provide a brief overview of the 

types, adaptations, and role of fungi within lotic and lentic freshwater ecosystems, with a 

particular emphasis on their importance to litter decomposition and the key environmental 

conditions that impact their growth and decay activities. This discussion will specifically focus 

on fungal dynamics occurring on plant litter in forested headwater streams and emergent 

freshwater marshes, since published data concerning their role in these systems is considerably 

more abundant in comparison to other freshwater habitats. 
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Introduction 

It is widely established that fungi are common inhabitants of the microbial community in 

freshwater ecosystems around the globe. Representatives of all major fungal groups 

(Chytridiomycota, Zygomycota, Ascomycota and Basidiomycota) and fungal-like organisms 

(Stramenopiles) have been identified in freshwater systems (Shearer, 1993; Tsui and Hyde, 2003; 

Nikolcheva and Bärlocher, 2004; Shearer et al., 2007; Wurzbacher et al., 2011; Duarte et al., 

2015), and their corresponding life styles are an integral component of nearly every trophic level. 

Although important as pathogens, parasites and symbionts, a major functional role of fungi in 

freshwater ecosystems is the breakdown and mineralization of both allochthonous and 

autochthonous organic matter. Compelling evidence has accumulated over the last several 

decades that point to fungi as being key players in the decomposition of plant litter in freshwaters 

(Gulis et al., 2006b; Gessner et al., 2007; Kuehn, 2008; Krauss et al., 2011; Gulis et al., 2009). 

Furthermore, it is now widely accepted that fungal growth and biomass accumulation within 

decaying plant litter also represents a critical food resource for detritus feeding consumers (e.g., 

Bärlocher, 1985; Suberkropp, 1992; Bärlocher and Sridhar, 2014). Thus, fungi also serve as 

important mediators in the processing and flow of carbon, nutrients (N & P), and essential 

biochemical compounds to higher trophic levels within aquatic food webs (e.g., Cross et al., 

2006; Arce-Funck et al., 2015). 

Freshwater ecosystems are intimately coupled to, and controlled by, the hydrological 

cycle. As precipitation falls on the terrestrial landscape, surface waters will follow a drainage or 

collection pathway that is dictated by physical characteristics of the surrounding watershed (i.e., 

geomorphology). Many lotic ecosystems begin as small streams in upper elevations of the 
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watershed (headwaters), where water begins its journey down slope in response to gravity. These 

headwater streams eventually connect with other streams that flow into catchment basins 

forming lentic freshwater ecosystems, such as ponds, lakes, and inland wetlands, or eventually 

coalesce further to form larger rivers that flow into coastal regions forming lakes (e.g., oxbows), 

floodplain habitats, and tidal marshes as freshwater transitions into the marine environment. 

Along this freshwater continuum, there are marked changes in hydrologic, physical, chemical, 

and biologic conditions, all of which forms a habitat templet (e.g., Townsend and Hildrew, 1994) 

that influences the presence, types, adaptations, and decay activities of fungal decomposers. 

Despite the critical roles that fungi play in carbon and nutrient cycling, there are notable 

differences in fungal communities between lotic and lentic freshwater habitats, which can be 

explained by the spatial and temporal heterogeneity in environmental conditions encountered 

within these systems. In streams and rivers, aquatic hyphomycetes are among the most well-

recognized and extensively studied fungal group. These fungi comprise an ecological assemblage 

of ~300-320 species (Shearer et al., 2007; Duarte et al., 2013b) that typically dominate the fungal 

communities associated with decaying plant litter (Nikolcheva et al., 2005; Seena et al., 2008; 

Duarte et al. 2015), much of which is leaf litter and wood derived from riparian vegetation. 

Aquatic hyphomycetes complete their entire life cycle under submerged or amphibious 

conditions and are uniquely adapted to life in the lotic environment, where they produce asexual 

reproductive spores (conidia, Fig 1) that are morphologically adapted for dispersal and 

attachment to litter substrata in flowing water (Webster and Descals, 1981; Descals, 2005). In 

contrast to stream systems, fungal communities in lentic freshwater ecosystems, such as lakes, 

ponds and wetlands, are much more diverse and may comprise a variety of terrestrial and aquatic 

fungi (e.g., chytridiomycetes, ascomycetes, and basidiomycetes) depending on the habitat 
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(pelagic vs. littoral) and specific environmental decay conditions present (e.g., submerged vs. 

aerial standing litter) (Fig 1) (Gessner and Van Ryckegem, 2003; Tsui and Hyde, 2003; 

Wurzbacher et al., 2011). These fungi may colonize a wide variety of plant litter substrata, 

ranging from phytoplankton to submerged, floating-leaf, and emergent macrophytes as well as 

inputs of terrestrial plant litter. 

 

Fungi and the decomposition process 

The breakdown and decomposition of plant litter in freshwater ecosystems encompasses 

a complex array of biotic and abiotic processes that result in the production of decomposer 

biomass (microbial and invertebrate), release of CO2 and nutrients (N and P) through organic 

matter mineralization, as well as the release of dissolved and fine particulate organic matter 

(Gessner et al., 1999; Kuehn, 2008). From a purely fungal perspective, the rates of these decay 

processes are strongly influenced by the response of fungal communities to the prevailing 

environmental decay conditions, the intrinsic quality of the detrital resources they are 

metabolizing, and the myriad of potential interactions that may occur within and between 

different decomposer groups within aquatic detrital food webs (Gulis et al., 2006b; Gessner et 

al., 2007; Kuehn, 2008; Gulis et al., 2009). For example, allochthonous or autochthonous plant 

litter entering freshwater environments may be quite diverse and vary in its chemical quality 

(e.g., C:N:P ratios, lignin content), physical characteristics, and the time when it becomes 

available to fungal decomposers. Likewise, plant litter in freshwater environments may be 

constantly submerged, intermittently flooded, or temporarily exposed to air, as in the case of 

standing emergent macrophyte litter within freshwater marshes and lake littoral zones. These 

types of hydrologic conditions as well as other environmental variables (e.g., temperature, pH, 
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oxygen availability) can significantly influence the colonization, growth, and decay activity of 

fungi on/within plant litter and the development and dispersal of their reproductive propagules. 

The following review article seeks to provide a brief overview of the types, adaptations, 

and quantitative role of fungi in lotic and lentic freshwater habitats, with a particular emphasis on 

their importance and the key environmental conditions that impact their growth and decay 

activities. This discussion will specifically focus on fungal dynamics occurring on plant litter in 

forested headwater streams and emergent freshwater marshes, since published data concerning 

their role in these systems is considerably more abundant in comparison to other freshwater 

habitats, such as ponds and lake pelagic habitats. Although much less studied, recent research 

and reviews by Wurzbacher and colleagues (Wurzbacher et al., 2010; 2011; 2014) provide an 

excellent synthesis of our current knowledge of fungi and fungal-like organisms in lake pelagic 

zones. 

 

Fungi in lotic ecosystems: headwater streams and aquatic hyphomycetes 

In forested headwater streams, allochthonous organic matter originating from riparian 

vegetation (leaves, twigs and branches) forms the major source of organic matter input to the 

stream environment and prior studies have estimated that these inputs can contribute up to 99% 

of the carbon and energy budget of a stream (Webster and Meyer 1997). Decomposition of this 

plant material is widely accepted as a key ecosystem process, and a vast amount of research over 

the last several decades has focused on the decomposition of this plant detritus and its links to 

higher trophic levels in stream food webs (Webster and Benfield, 1986; Wallace et al., 1997; 

1999; Gessner et al., 2010; Tank et al., 2010). This research has firmly established that fungal 
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decomposers and invertebrate consumers are critical players in the processing and decomposition 

of plant detritus in streams. 

As indicated earlier, aquatic hyphomycetes or “Ingoldian fungi” (Webster and Descals, 

1981; Descals, 2005) are arguably the best-known group of fungi associated with decaying plant 

litter in streams. These fungi are an ecologically well-defined but polyphylectic group, with 

nearly all members having phylogenetic affinities to different groups of ascomycetes (Shearer et 

al., 2007; Baschien et al., 2013; Duarte et al., 2013b). Although zoosporic fungi and 

stramenopiles have been identified from decaying plant litter in streams (Marano et al., 2011; 

Bärlocher et al., 2012), molecular-based analyses of natural litter samples from streams indicate 

that aquatic hyphomycetes typically dominate the litter-associated fungal communities 

(Nikolcheva et al., 2005; Seena et al., 2008; Duarte et al., 2015). At the global scale, many 

aquatic hyphomycete species are considered to be cosmopolitan (Wood-Eggenschwiler and 

Bärlocher, 1985; Bärlocher, 2009; Bärlocher and Marvanová, 2010; but see Duarte et al., 2012), 

however, the diversity appears to peak at temperate mid-latitudes and some taxa appear to be 

restricted to certain latitudes (Shearer et al., 2007; Jabiol et al., 2013).  

In temperate forested regions, organic matter inputs to headwater streams often enter as a 

pulse during autumn leaf fall, where it is rapidly colonized by aquatic hyphomycetes and other 

microbial assemblages. Attachment of reproductive conidia to litter substratea is a critical step 

for aquatic hyphomycete colonization and these fungi produce large, uniquely shaped conidia 

(tetraradiate, sigmoid or variously branched), which are considered an evolutionary adaptation 

for their dispersal and attachment to litter substrata in flowing water (Fig 1) (Webster, 1987). 

Conidial traits (i.e., size and morphology), water flow, and litter surface topography, can 

significantly influence the attachment and colonization success of aquatic hyphomycetes 
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(Harrison et al., 1988; Read et al., 1991; Dang et al., 2007; Ferreira and Graça, 2006; Kearns and 

Bärlocher, 2008), which together with other factors, such as litter chemical composition (e.g., 

Canhoto and Graça, 1999), may explain why some litter substrata support specific aquatic 

hyphomycete assemblages (Thomas et al., 1992; Gulis, 2001). 

Once attached to the litter substratum, conidial germination is initiated within a few hours 

via the production of one or more germ tubes that form appressoria, which ensure their 

attachment and colonization of the new litter substratum (Harrison et al., 1988; Read et al., 1991; 

Au et al., 1996). Fungal hyphae will then enter and grow pervasively within the litter matrix, 

where they produce and secrete an array of extracellular enzymes (e.g., cellulases, xylanases, 

pectinases) that allow the digestion and assimilation of plant litter structural polysaccharides 

(Suberkropp et al., 1983; Chamier, 1985; Zare-Maivan and Shearer, 1988). This fungal growth 

and enzymatic digestion results in the softening or maceration of leaf-litter tissue (Suberkropp 

and Klug, 1980; Chamier and Dixon, 1982) and the increased “microbial conditioning” of leaf 

detritus, which benefits invertebrate consumers. Certain aquatic hyphomycete species increase 

the palatability and nutritional quality of plant litter for leaf-feeding macroinvertebrate 

consumers (shredders) (Suberkropp, 1992; Jabiol and Chauvet, 2012; Bärlocher and Sridhar, 

2014; Gonçalves et al., 2014), which is critical for macroinvertebrate growth and development 

(Arsuffi and Suberkropp, 1986; Chung and Suberkropp, 2009). This fungal conditioning of leaf 

detritus and subsequent invertebrate feeding also contributes to the production and release of fine 

particulate organic matter (FPOM) (e.g., Tant et al., 2015), which has additional impacts on other 

stream dwelling consumers that utilize FPOM as a primary food resource (collector-gatherers, 

see Wallace and Webster, 1996). 
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Aquatic hyphomycetes: fungal biomass, production, and sporulation  

Once established, the biomass, growth, and secondary production of aquatic hyphomycetes in 

plant litter can been estimated using ergosterol-based methods (Gessner 2005, Suberkropp and 

Gessner, 2005). Since their development, these methods have been increasingly used within a 

variety of ecosystems, where they have been useful in allowing the quantitative assessment of 

fungal contributions to the cycling of carbon and nutrients. Application of these methods in 

stream ecosystems (Suberkropp and Weyers, 1996) has yielded a large body of evidence that 

aquatic hyphomycetes are quantitatively important members of the decomposer microbial 

community (Gulis et al. 2006b; Gessner et al., 2007; Gulis et al., 2009).  

Studies in natural streams and in controlled laboratory stream microcosms observed that 

litter-associated fungal biomass (ergosterol) increases rapidly following litter submergence, with 

peak fungal biomass typically being attained within 2-10 weeks (Fig 2), depending on the type of 

leaf litter, its intrinsic chemical characteristics (e.g., nutrients), and the external environmental 

decay conditions (Suberkropp et al., 1993; Gessner and Chauvet, 1994; 1997; Suberkropp 1995; 

Baldy and Gessner 1997; Weyers and Suberkropp, 1996; Suberkropp, 2001; Mathuriau and 

Chauvet, 2002; Ferreira et al., 2006b; Gulis et al., 2006a). During this time, the accrual of fungal 

biomass within decaying leaf litter can be significant, with peak biomass typically accounting for 

~10-20% of the total detrital weight (Table 1). Following this initial increase, fungal biomass 

usually declines during later stages of leaf decomposition (Fig 2) as losses in biomass occur due 

to the production of conidia, senescence and death of hyphae, and from the grazing activity of 

invertebrate detritivore consumers.  

The growth and production rates of fungi associated with decaying leaf litter, as 

determined from rates of 14C-acetate incorporation into ergosterol, follows a similar pattern with 
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peaks occurring soon after litter submergence (Fig 2) (e.g., Suberkropp, 1995; Baldy and 

Gessner, 1997; Weyers and Suberkropp, 1996; Suberkropp, 2001; Pascoal and Cássio, 2004). 

Estimates of fungal growth rates from decaying leaf litter range from <0.01 to 0.64 d-1 and 

typically peak when fungal biomass concentrations are still relatively low (Gessner and Chauvet, 

1997). Corresponding rates of fungal secondary production peak between 0.6 and 16 mg fungal 

C g-1 detrital C d-1 (Table 1). Data on fungal dynamics associated with submerged wood in 

streams is exceedingly scarce, but a few studies indicate that fungal biomass concentrations on 

small wood (<40 mm diameter) can be almost as high as that observed on leaves (Findlay et al., 

2002b, Gulis et al., 2008), while fungal growth and production rates are typically 5-10 times 

lower (Table 1, see Gulis et al., 2008).  

Although fungal growth rates are typically lower than bacterial growth rates, fungal 

production is often much higher than corresponding bacterial production when both groups have 

been examined simultaneously (Table 1) (Weyers and Suberkropp, 1996; Baldy et al., 2002; 

Pascoal and Cássio, 2004; Pascoal et al., 2005; Suberkropp et al., 2010; but see Baldy and 

Gessner, 1997). These findings result from the much higher fungal biomass concentrations 

usually observed in decaying leaf litter, which often accounts for greater than 90% of total 

microbial biomass. 

A notable life history feature of aquatic hyphomycetes is that initial hyphal growth within 

decaying litter is closely followed by the production of conidiophores, which protrude from the 

litter substratum and shed newly formed conidia into the flowing water column. Once released, 

these conidia are carried downstream to colonize new litter substrata, potentially captured by 

filter-feeding invertebrates (e.g., Bärlocher and Brendelberger, 2004), or become trapped in foam 

(neuston) at the air-water interface where they can survive for a short time (Sridhar and 
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Bärlocher, 1994). Sporulation of aquatic hyphomycetes often occurs in as little as 1-3 weeks 

following litter submergence, which typically peak before or during periods of increasing fungal 

biomass (Fig 2) (Suberkropp, 1991; 1995; Weyers and Suberkropp, 1996; Maharning and 

Bärlocher, 1996; Mathuriau and Chauvet, 2002; Ferreira et al., 2006a; Gulis et al, 2006a; 

Bärlocher, 2009). These observations reveal that aquatic hyphomycetes allocate considerable 

resources into early reproduction. Previous studies have estimated that these fungi can invest up 

to 46-80% of their biomass production in the formation of conidia (Suberkropp, 1991) and can 

convert up to ~7% of the initial plant litter carbon into spores (Suberkropp, 1991; Hieber and 

Gessner, 2002; Ferreira et al., 2006a). Because of their rapid and copious production, the 

concentration of aquatic hyphomycete conidia in many forested streams can reach 20,000 

spores/l-1 or greater during the autumn (Suberkropp, 1991; 1997; Bärlocher, 2000), which 

coincides with the seasonal timing of allochthonous leaf-litter inputs from riparian vegetation. In 

contrast, conidial concentrations during the summer season in temperate streams are low, as a 

result of diminishing detrital substratum availability. 

The rapid colonization, reproduction and dispersal of aquatic hyphomycete conidia appears 

to be a key life history strategy that distinguishes them from other fungal groups, which may 

tend to colonize, capture and retain acquired resources within mycelial biomass (Bärlocher,  

2009). Termed a “boom-bust cycle” by Bärlocher (2009), aquatic hyphomycetes appear to be 

ideally suited to life in the lotic environment where they can quickly respond to the seasonal 

cycle of ephemeral detrital inputs that are characteristic of many temperate forested streams. 

Interestingly, the life cycles and secondary production of many detritivorous invertebrates (e.g., 

shredders) are also timed to take advantage of these peaks in organic matter availability (Wallace 

et al., 1999; Cross et al., 2006; Walther and Whiles, 2011), most likely resulting from the 



	 12

increased palatability and nutritional quality of detrital resources via aquatic hyphomycete 

colonization (Arsuffi and Suberkropp, 1986; Chung and Suberkropp, 2009). Similar “boom-

bust” life history strategies may also prevail among stream fungi in subtropical and tropical 

regions, which, in contrast to temperate streams, may be more strongly influenced by the 

seasonal fluctuation in water availability (i.e., wet and dry season) versus the availability of 

detrital substrata (Bärlocher, 2009). 

 

Fungal contributions to litter decomposition in streams  

Fungal activity (e.g., peak biomass, sporulation) associated with leaf litter and wood in 

streams is positively correlated with the litter decay rates (e.g., Gessner and Chauvet, 1994, 

Gessner et al., 2007), which implies that a large fraction of the plant litter carbon is likely 

channeled into and through litter-inhabiting aquatic fungi. Investigations in laboratory stream 

microcosms using pure cultures of aquatic hyphomycetes and in natural stream systems have 

estimated that fungal assimilation (production + respiration) of plant litter substrata can account 

for 23-56% of plant carbon loss (Gessner and Chauvet, 1997; Gulis and Suberkropp, 2003a; 

2003b; Pascoal and Cássio, 2004; Ferreira and Chauvet, 2011a), depending on temperature and 

dissolved nutrient availability (see below). For example, Pascoal and Cássio (2004) quantified 

rates of microbial production (bacteria and fungi) during the decomposition of alder leaf litter in 

four Portugal streams that varied in the degree of anthropogenic pollution. Microbial production 

was dominated by fungi (>94%) and estimates of total fungal assimilation accounted for 29-39% 

of the observed losses in leaf litter carbon. In contrast, bacterial decomposers contributed only 

between 4 and 13%, lending support to the idea that bacteria assume a more important role in 

detrital processing when organic matter undergoes greater fragmentation (e.g., FPOM) or 
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becomes dissolved (Findlay et al., 2002b; Tant et al., 2013). Estimates of fungal contributions 

given above are likely conservative, since fungal-mediated losses of DOM and FPOM were not 

taken into account. When these losses are incorporated, fungal contributions to total leaf mass 

loss can often be significantly higher (see Baldy et al., 2007). 

The impact of aquatic hyphomycete diversity on fungal community performance (e.g., 

biomass and sporulation) and litter decomposition in streams has been the subject of 

considerable research in the last decade. Several studies have observed a positive relationship 

between fungal species richness and leaf decomposition (Bärlocher and Corkum, 2003; Duarte et 

al., 2006; Pascoal et al., 2010; Fernandes et al., 2011), whereas others have reported no clear 

diversity effect at all (Dang et al., 2005; Geraldes et al., 2012; Ferreira and Chauvet, 2012). 

However, it appears that the functional impacts of aquatic hyphomycete diversity is largely 

dependent on species identity, as certain aquatic hyphomycete species possess traits that have a 

greater influence on ecosystem processes than level of species diversity alone (Bärlocher and 

Corkum, 2003; Duarte et al., 2006; Geraldes et al., 2012). Furthermore, prior investigators have 

shown that environmental decay conditions (e.g., temperature, nutrients) can significantly alter 

the impacts of aquatic hyphomycete diversity on litter decomposition (Bärlocher and Corkum, 

2003; Dang et al., 2009; Ferreira and Chauvet, 2011a; 2011b; Fernandes et al., 2012; Duarte et 

al., 2013a; but see Geraldes et al., 2012). 

When integrated on an areal basis (m-2), the amount of fungal biomass and production 

associated with plant litter in streams is not trivial, and illustrates the quantitative importance of 

stream fungi when viewed at the ecosystem scale. In forested headwater streams, areal estimates 

of fungal biomass associated with leaf litter ranged from <1 to 23 g C m-2 and displayed a highly 

seasonal pattern due to the timing of leaf litter inputs (autumn) and the overall retentiveness of 
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the stream environment (Suberkropp, 1997; Methvin and Suberkropp, 2003; Carter and 

Suberkropp, 2004; Suberkropp et al., 2010). To date, only two published studies have estimated 

areal fungal biomass associated with wood in streams (Findlay et al., 2002b; Gulis et al., 2008). 

In contrast to leaf litter, Gulis et al. (2008) observed that fungal biomass associated with small 

wood (7-40 mm diameter) averaged 4-7 g C m-2 in two North Carolina streams with very little 

seasonal variation throughout the year. 

Rates of annual fungal production on an areal basis have also been quantified in a limited 

number of streams. Annual fungal production associated with leaf litter in five streams exhibiting 

low leaf litter retention ranged from 8 to 23 g C m-2 yr-1 (Suberkropp, 1997; Methvin and 

Suberkropp, 2003; Carter and Suberkropp, 2004). Assuming a fungal growth efficiency of 33% 

(see Suberkropp 1991; Gulis and Suberkropp, 2003b) and taking into account annual leaf litter 

input, annual fungal assimilation (production + respiration) in these streams accounted for 10-

29% of annual litter input. In contrast, annual fungal production reached 49-290 g C m-2 in two 

small highly retentive streams with high litter inputs (Suberkropp et al., 2010). In these streams, 

estimated fungal assimilation was significantly higher, ranging from 35% to >100% of the 

annual leaf litter input. Corresponding estimates of annual fungal production associated with 

small woody debris within these same two streams were much lower (13 - 17 g C m-2 yr-1), but 

still translated into a fungal assimilation of 45-57% of annual wood inputs to these streams 

(Gulis et al., 2008). 

 

Key factors affecting fungal activities and litter decomposition in streams 

A variety of factors can strongly influence fungal activities and plant litter decomposition 

in stream ecosystems, which may include, but are not limited to, the type and chemical quality of 



	 15

the litter substratum being metabolized, biotic interactions within the decomposer food web, and 

a wide range of external environmental conditions, such as water chemistry, temperature, water 

inundation and flow, and oxygen availability. The intrinsic chemical quality of the plant litter 

substratum, specifically the lignin and nutrient content of litter, has been widely documented as 

an important factor influencing fungal activity and litter decomposition in streams (Gessner and 

Chauvet, 1994; Stelzer et al., 2003; Ferreira et al., 2006b; Gessner et al., 2007). In general, 

fungal activities (sporulation, growth, biomass accrual) are negatively affected by high lignin 

contents and high C:nutrient ratios of plant litter substrata. Because of their organo-osmotrophic 

lifestyle, a central feature of fungal metabolism is their reliance on external digestion of complex 

organic matter (e.g., lignocellulose) by extracelluar enzymes, which facilitates the acquisition 

and assimilation of carbon and nutrients (N & P) from detrital substrata. The production and 

release of extracellular enzymes is a substantial energy cost for fungi and other osmotrophic 

microorganisms, such as bacteria. As a consequence, fungi and bacteria will regulate the 

production and release of extracellular enzymes in accordance with detrital resource 

availabilities (C, N, P), which serves to optimize their assimilatory return on investment 

(Sinsabaugh and Follstad-Shah, 2012; Sinsabaugh et al., 2014). Collectively, this regulation will 

strongly affect outcomes related to fungal community performance (Sinsabaugh et al., 2015) and 

hence the rates of plant litter decomposition. 

Because plant litter C:N and C:P ratios are considerably higher than C:nutrient ratios of 

fungal biomass (Danger and Chauvet, 2013; Grimmett et al., 2013), fungal activity is typically 

limited by the availability of nutrients. In streams, aquatic hyphomycetes can alleviate this 

substratum nutrient limitation by taking up dissolved N and P from the overlying surface waters. 

Prior experiments conducted in laboratory stream mesocosms and whole-stream nutrient addition 
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experiments under field conditions have shown that increases in dissolved nutrients can stimulate 

aquatic hyphomycete activities (growth, sporulation, biomass, respiration, cummulative 

production) and rates of plant litter decomposition (Suberkropp, 1995; 1998; Gratten and 

Suberkropp, 2001; Gulis and Suberkropp, 2003a; 2003b; 2003c; Gulis et al., 2004; Suberkropp et 

al., 2010; Ferreira and Chauvet, 2011b). Even small increases in exogenous nutrients stimulated 

fungal activities and were generally more pronounced for lower quality plant litter substrata (low 

N and P, high lignin), such as wood (Stelzer et al., 2003; Gulis et al., 2004; 2008; Ferreira et al., 

2006a). Collectively, these findings underscore that eutrophication can have profound effects on 

organic matter processing in stream ecosystems (Woodward et al., 2012; Rosemond et al., 2015), 

and a recent review by Ferreira et al. (2015) provides compelling evidence that stimulation of 

microbially-mediated litter decomposition by dissolved nutrients is a globally widespread 

phenomenon. Although, note that excessive nutrient pollution may also have a negative impact 

on fungal activity and litter decomposition (e.g., Pascoal and Cássio, 2004). 

In addition to dissolved nutrients, other chemical parameters of stream water, such as 

alkalinity, pH, and pollution, can also affect fungal activity and litter decomposition in streams 

Krauss et al., 2011; Ferreira et al., 2014). Aquatic hyphomycete diversity is typically higher in 

softwater streams (Bärlocher and Rosset, 1981, Wood-Eggenschwiler and Bärlocher, 1983). 

Despite this increased diversity, fungal activity and litter decomposition is usually greater in 

hardwater versus softwater streams (Jenkins and Suberkropp, 1995; Suberkropp and Chauvet, 

1995). This has been attributed to the greater production and activity of pectin lyase in 

hardwaters (higher pH, presence of Ca+ ions), which contributes to the softening and maceration 

of leaf litter (Suberkropp and Klug, 1980; Chamier and Dixon, 1982; Jenkins and Suberkropp, 

1995). While aquatic hyphomycetes do not appear to be overly sensitive to low pH (Krauss et al., 
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2011), the presence of acidic conditions in combination with other dissolved constituents, such 

as metal ions (e.g., Al, Zn), appear to have combined effects that inhibit the decay activities of 

fungi in streams. Anthropogenic acidification of headwater streams is well documented (e.g., 

Mullholland et al., 1987) and known to severely impact aquatic biota (e.g., shredders, fungi) and 

leaf litter processing through a reduction in pH, increases in stream water metal concentrations, 

and decrease in base cation availability (Niyogi et al., 2001; Dangles et al., 2004; Cornut et al., 

2012; Clivot et al., 2013; 2014). Increasing concentrations of Al are known to negatively alter 

aquatic hyphomycete activities on decaying leaf litter (Dangles et al., 2004; Clivot et al., 2014; 

Pacioglu et al., 2015). Furthermore, recent studies have provided evidence that elevated Al 

concentrations may also alter the phosphorus cycle in acidified streams, which could induce P 

limitation of microbial (fungal) decomposers and affect their litter decay activities (Clivot et al., 

2013; 2014). 

Temperature is widely accepted as an important parameter influencing the metabolic 

activities of organisms and consequently a considerable body of research has focused on 

examining the effects of temperature on aquatic hyphomycetes. This is particularly relevant as 

global climate change is predicted to alter the thermal regime of streams and rivers worldwide, 

with subsequent impacts on important ecological processes like litter decomposition (Ferreira 

and Chauvet, 2011a; 2011b; Ferreira et al., 2014). The response of aquatic hyphomycetes to 

temperature largely depends on the species in question, with many species exhibiting a relatively 

narrow range of optimal tempertures that are suitable for its growth and sporulation (Webster et 

al., 1976; Chauvet and Suberkropp, 1998; Duarte et al., 2013a). For example, some aquatic 

hyphomycete species exhibit much greater rates of growth and sporulation at lower temperatures 

(15˚C), whereas other species exhibit much greater rates of growth and sporulation at higher 
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temperatures (25˚C) (see Table 18.1 in Ferreira et al. 2014). This differential pattern in 

temperture optima among “cold- and warm-water” species (Ferreira et al., 2014) is an important 

factor influencing their geographic distribution and the seasonal pattern of aquatic hyphomycete 

reproduction in streams (Suberkropp, 1984; Wood-Eggebschwiler and Bärlocher, 1983; 1985; 

Nikolcheva and Bärlocher, 2005).   

Laboratory studies examining single or mixed species responses to temperature have 

shown that growth and sporulation rates are stimulated by increases in temperature up to a 

thermal optimum, whereas further temperature increases had either no effect or inhibited 

biomass production and/or sporulation rates (Chauvet and Suberkropp, 1998; Fernandes et al., 

2009; Geraldes et al., 2012; Duarte et al., 2013a). Observations of a thermal optimum threshold 

of ~12-15˚C for natural stream fungal communities (Bärlocher et al., 2013), suggest that the 

optimal temperature patterns for many species may be influenced by the presence of other 

species. Recent research has documented that temperature increases and/or oscillations in 

temperature can significantly alter the interspecific relationship among aquatic hyphomycete 

communities in regards to growth and sporulation (Dang et al., 2009; Fernandes et al., 2009; 

2012; Geraldes et al., 2012; Duarte et al., 2013a), which could alter successional patterns and 

lead to shifts in fungal species dominance (Dang et al., 2009; Ferreira and Chauvet, 2011a; 

2011b; Fernandes et al., 2012). The magnitude of temperature effects may also be complicated 

by additional factors, such as the quality of the litter substratum (Bärlocher et al., 2013), the 

availability of dissolved nutrients (Ferreira and Chauvet, 2011a), and the presence of metal 

contamination (Batista et al., 2012; Ferreira et al., 2012). Collectively, these findings underscore 

that elevated temperatures, as a result of global climate change, may have significant impacts on 
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aquatic hyphomycete communities and hence energy flow and nutrient cycling within stream 

detrital food-webs. 

Due to the hydrologic nature of lotic environments, many of the world’s small streams 

and some rivers are temporary and experience a periodic interruption in flow or at the extreme a 

complete drying of the stream channel (Larned et al., 2010). This flow intermittency has both a 

temporal and spatial dimension, resulting in an expansion, contraction and/or fragmentation of 

the stream environment in response to inundation and drying events. As a consequence, many 

temporary streams and rivers are a shifting mosaic of differing lotic, lentic and terrestrial 

habitats, which can influence biotic communities (e.g., fungi and detritivores) and rates of 

organic matter decomposition (Lanhans et al., 2008). Low water flow and dissolved oxygen 

conditions can significantly reduce the diversity, growth, and sporulation of aquatic 

hyphomycetes (Chergui and Pattee, 1988; Pascoal and Cássio, 2004; Medeiros et al., 2009), 

possibly favoring a shift to aero-aquatic hyphomycetes that are better adapted to slow-flowing 

stagnant conditions. In addition to low flow, drying of the stream channel can also significantly 

impact aquatic hyphomycete performance. For example, Bruder et al. (2011) observed that the 

intensity and timing of drying events had a significant influence on alder litter decomposition 

and litter associated biomass and sporulation of aquatic hyphomycetes in a 3rd order stream in 

Southwestern France. The highest sporulation rates were noted on alder litter that was 

continually submerged. Likewise, fungal biomass accrual was nearly three-fold higher in 

continually submerged leaf-litter compared to leaf-litter that experienced a single drying event 

(Bruder et al., 2011; but see Mehring et al., 2015). Earlier research by Langhans and Tockner 

(2006) demonstrated that the duration of drying events, but not the frequency, can be an 

important factor influencing aquatic hyphomycete activity and litter decomposition in streams. 



	 20

Their data suggested that if drying-rewetting cycles are short in duration, then alternating dry-

wet cycles may have only a small impact on fungal decomposers, since fungi can rapidly regain 

their decay activity once water becomes available and flow resumes. Similar rapid metabolic 

responses have also been observed for fungal decomposers in freshwater marshes (see below, 

Kuehn et al., 1998; Kuehn and Suberkropp, 1998b; Kuehn et al., 2004), which lends support to 

an expanded view of Bärlocher’s (2009) boom-bust cycle concept, where decomposer fungal 

activities (i.e., growth, respiration and/or sporulation) can rapidly respond when either detrital 

inputs and/or conducive environmental conditions become available. 

 

Fungi in lentic ecosystems: freshwater marshes and the diversity of fungi 

Freshwater marshes, including lake littoral zones, are considered important ecotones 

between terrestrial and aquatic ecosystems, which are know for their high biodiversity and 

extensive food webs (Mitsch and Gosselink, 2007). Emergent hydrophytic plants (Tiner, 1991), 

such as Typha, Juncus and Phragmites, are common within freshwater marshes where they often 

account for a large fraction of the plant biomass produced (Wetzel, 2006; Yu et al., 2010). These 

plants exhibit very prolific rates of growth and nutrient sequestration (e.g., nitrogen and 

phosphorus), with estimates of aboveground biomass production alone frequently exceeding 

1000 g dry mass/m-2/yr-1. As a consequence, these plants embody an important reservoir of 

carbon and nutrients, and are usually depicted as the primary carbon and nutrient pools in most 

marsh wetland elemental budgets (e.g., Hopkinson 1992). 

In freshwater marshes, most of this plant biomass enters the detrital pool, where 

microbial decomposers and detritus-feeding animals play an important role in its breakdown and 

mineralization. Despite the well-recognized occurrence and abundance of plant detritus in 



	 21

marshes (Mitsch and Gosselink, 2007), we still lack a full understanding of natural 

decomposition processes within these habitats and the associated role of fungal decomposers. To 

date, most studies examining emergent plant decomposition in freshwater marshes have focused 

on microbial decay processes occurring at or within the surface sediments (e.g., Rothman and 

Bouchard, 2007; Fennessy et al., 2008), which has resulted from, and continues contributing to, 

the false perception that emergent plant litter decomposition takes place solely at/within the 

marsh sediments by bacterial decomposers. As a result, fungal participation in wetland 

biogeochemical cycles has not yet gained wide recognition by most wetland researchers, and 

their contributions remain absent from nearly all extant conceptual and quantitative models 

describing wetland carbon and nutrient flow pathways (Mitsch and Gosselink, 2007; Reddy and 

Delaune, 2008; Kayranli et al., 2010; Batzer and Sharitz, 2014). 

Although frequently overlooked, a key phenologic detail to consider in emergent wetland 

plants is both the spatial and temporal conditions under which plant litter naturally decomposes 

(Kuehn, 2008). In most emergent plants, abscission and collapse of plant material to the 

sediments or overlying surface waters does not typically occur following shoot senescence and 

death. As a result, large amounts of standing-dead plant litter tend to accumulate in wetland 

marshes and lake littoral habitats (Asaeda et al., 2002; Christensen et al., 2009), where it 

undergoes initial stages of decomposition in an upright aerial position. Thus, the natural 

progression of plant decay in emergent marshes is a sequential process, which begins under 

aerial terrestrial-like conditions and eventually transitions to an aquatic or sediment environment 

following the collapse of standing litter. When studies have closely simulated these natural 

conditions, fungi have been found to be an important contributor to emergent plant 

decomposition (Gulis et al., 2006b; Gessner et al., 2007; Kuehn, 2008; Gulis et al., 2009). 
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A substantial body of evidence has accumulated for over a century (Saccardo 1898) that 

fungi pervasively colonize and reproduce on and within both standing and collapsed litter of 

emergent marsh plants (Pugh and Mulder, 1971; Apinis and Taligoola, 1974; Apinis et al., 1975; 

Farr et al., 1989; Poon and Hyde, 1998; Tsui and Hyde, 2003; Gessner and van Ryckegem, 2003; 

van Ryckegem and Verbeken, 2005a; 2005b; 2005c; van Ryckegem et al., 2007). In contrast to 

streams, fungal communities colonizing emergent plant litter typically comprise a more 

taxonomically diverse group of fungi (Fig 1). For example, Gessner and van Ryckegem (2003) 

reported that over 600 species of fungi have been recorded from the common reed (Phragmites 

australis). The most common taxa were members of the Ascomycota (94%, including 

anamorphic hyphomycetes 30% and coelomycetes 22%), with Basidiomycota (6%) being 

observed much less frequently. Several studies have reported distinct temporal changes in fungal 

assemblages during litter decomposition (Pugh and Mulder, 1971; Apinis and Taligoola, 1974; 

Van Ryckegem and Verbeken, 2005a; 2005b; Van Ryckegem et al., 2007). Terrestrial fungi are 

commonly observed during the initial standing phase of decomposition and are replaced by 

aquatic fungi when plant litter collapses to the marsh sediments or overlying surface waters. In 

addition to these temporal shifts, fungi colonizing standing-dead litter may also exhibit spatial 

distribution patterns within decaying plant litter (Apinis et al., 1975; Poon and Hyde, 1998; Van 

Ryckegem and Verbeken, 2005c; Van Ryckegem et al., 2007), where certain fungal taxa occupy 

specific plant parts, such as leaves, sheaths or culms. These temporal and spatial patterns in 

fungal colonization are most likely reflected in the intrinsic quality of the plant litter substratum 

as well as the diverse range of environmental conditions that decaying litter experiences 

throughout the decomposition process. 
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Currently, much of our knowledge of fungal biodiversity in freshwater marshes comes 

from traditional microscopic studies, where fungal reproductive structures (e.g., ascoma, 

basidioma) were detected and identified either directly from field collected plant litter or after 

employing various culture techniques within the laboratory. The advancement of molecular-

based methods promises to improve our ability to assess fungal diversity and processes in both 

lotic and lentic freshwater ecosystems (Duarte et al. 2013b); however, to date, very few 

published studies have applied these modern techniques to fungal decomposers in marshes 

(Neubert et al., 2006; Buesing et al., 2009).  

 

Freshwater marshes: fungal biomass and production 

Despite the well-documented evidence indicating fungal colonization of emergent plant 

litter, very few studies have examined the quantitative role of fungi in litter decay or their 

potential contribution to marsh ecosystem carbon and nutrient cycling. As a consequence, our 

understanding of fungal functional processes in freshwater marshes has lagged appreciably 

behind the body of data for other microbial groups, such as bacteria. However, as in stream 

ecosystems, application of ergosterol-based methods in both temperate and subtropical marshes 

has provided compelling evidence that fungi are an important microbial assemblage involved in 

plant litter decomposition, particularly during the initial standing decay phase (Gulis et al., 

2006b; Gessner et al., 2007; Kuehn, 2008; Gulis et al., 2009). Significant accumulation of fungal 

biomass has been reported in standing emergent plant litter, with peak values accounting for as 

much as 5-10% of the total detrital mass (Table 1) (Newell et al., 1995; Bärlocher and 

Biddiscombe, 1996; Kuehn and Suberkropp, 1998a; Kuehn et al., 1999; Gessner, 2001; Findlay 

et al., 2002a; Newell, 2003; Welsch and Yavitt, 2003; Ohsowski, 2008; Kuehn et al., 2011; Su 
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2014). For example, Kuehn et al. (2011) and Su (2014) documented significant increases in 

fungal biomass concentrations in decaying standing Typha angustifolia and T. domingensis 

leaves, which revealed the rapid colonization of Typha leaf litter by fungal decomposers 

following plant senescence (Fig 3A). Analogous to observed spatial patterns in fungal diversity, 

differences in fungal biomass have also been noted among specific plant parts (e.g., leaves vs. 

culms). Earlier, Kuehn et al. (1999) observed significantly higher fungal biomass concentrations 

in leaf versus culm litter of the emergent plant Erianthus giganteus (Fig 3B). These differences 

were consistent with the chemical quality of the litter substrate, where culm tissues had much 

lower concentrations of nutrients (higher C:N and C:P ratios) and were more recalcitrant (lignin) 

than corresponding leaf tissues.  

In addition to accumulating large quantities of biomass, fungal communities inhabiting 

standing litter can also exhibit appreciable rates of secondary production (Newell et al., 1995; 

Findlay et al., 2002a; Verma et al., 2003; Kuehn et al., 2011; Ohsowski, 2008; Su 2014). In the 

few studies conducted to date, fungal growth rates associated with both standing and collapsed 

emergent plant litter are typically lower than those reported in streams, ranging from ~0.01 to 

0.12 d-1. Corresponding rates of fungal secondary production are also lower and have been 

observed to peak at ~5.6 mg fungal C g-1 detrital C d-1 (Table 1). As noted with fungal biomass, 

rates of fungal production also differ among specific plant tissues, with higher rates of 

production being observed in leaf versus culm/stem litter (e.g., Komínková et al. 2000, 

Ohsowski, 2008). Thus, like fungal biomass, fungal activities (production and respiration) may 

also vary considerably depending on intrinsic quality of the plant litter substratum. 

Collapse of standing-dead litter to the sediments or overlying surface waters is often 

accompanied by a notable shift in the environmental decay conditions (e.g., increased water 
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availability), which lead to shifts in litter-associated fungal communities (see above) and 

concomitant changes in fungal biomass and activity. For example, Kuehn et al. (2000) observed 

a rapid decrease in litter associated ATP concentrations, fungal biomass (ergosterol), and 

production rates after the movement of standing Juncus effusus leaf litter to a submerged 

environment. This initial decline was followed by an increase in fungal biomass and production 

rates during later stages of submerged litter decomposition, which suggests a possible shift to 

fungal taxa better adapted for an aquatic or semi-aquatic existence (see also Komínková et al., 

2000; Van Ryckegem et al., 2007). Despite litter submergence and initial declines in fungal 

biomass and production, fungi continue to be a quantitatively important microbial group on and 

within decaying plant litter. Simultaneous estimates of fungal and bacterial biomass reveal that 

fungal decomposers often account for >90% of the total microbial biomass associated with 

submerged plant litter (Table 1) (Newell et al., 1995; Sinsabaugh and Findlay, 1995; Komínková 

et al., 2000; Kuehn et al., 2000; Findlay et al., 2002b; Su et al., 2007; Kuehn et al., 2014). 

Furthermore, studies have reported that rates of fungal production are often comparable to or 

exceed corresponding rates of bacterial production (Newell et al., 1995; Kuehn et al., 2000; 

Findlay et al., 2002a; Su et al., 2007; Ohsowski, 2008; Kuehn et al., 2014; but see Buesing and 

Gessner, 2006).  

 

Fungal contribution to litter decomposition in marshes  

Observations of appreciable fungal biomass accrual in both standing and collapsed 

emergent litter suggest that fungal decomposers are effective in enzymatically transforming and 

assimilating detrital C and nutrients (e.g., N and P) to support their pervasive growth. Similar to 

aquatic hyphomycetes, increases in litter-associated fungal biomass (ergosterol) are significantly 
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correlated with concomitant losses in standing leaf C mass (Gessner, 2001; Kuehn et al., 2011; 

Su et al., 2015), suggesting that a considerable fraction of the plant litter C is likely channeled 

into and through inhabitant fungal decomposers. Earlier, Kuehn et al. (2011) constructed a partial 

decay budget to assess the contribution of fungal decomposers to standing leaf litter mass loss in 

the emergent marsh plant, T. angustifolia. Estimated cumulative fungal production during Typha 

leaf decay totaled 123 mgCg-1 initial leaf C, indicating that 22% of the observed Typha leaf C 

lost was transformed and assimilated into fungal biomass (i.e., fungal yield) in the standing litter 

environment. Similar findings were also recently reported by Su et al. (2015), where estimated 

cumulative fungal production accounted for ~11% of the observed carbon loss during standing T. 

domingensis leaf decomposition. Furthermore, corresponding estimates of cumulative microbial 

respiration from decaying T. domingensis leaves totaled 133 mg Cg-1 initial detrital C, which 

concurs with other studies (Kuehn and Suberkropp, 1998b; Kuehn et al., 2004) that a significant 

fraction of standing dead plant litter is also mineralized by litter-associated microbial 

communities, most likely fungal decomposers. Fungal contributions to leaf litter mass loss can 

also be significant following the collapse of standing litter (Komínková et al., 2000; Kuehn et al., 

2000). For example, Kuehn et al. (2000) estimated that cumulative fungal production accounted 

for 68% of the observed litter mass loss during submerged J. effuses decomposition. In contrast, 

bacterial contributions to J. effuses decomposition accounted for only 11% of the observed mass 

loss. 

To date, only a few studies have attempted to estimate the ecosystem-scale contribution 

of fungi to carbon and nutrient cycling in freshwater marshes (Buesing and Gessner, 2006; 

Ohsowski, 2008; Su, 2014; Kuehn and Gessner, unpublished data). Despite this paucity of data, 

when estimates of fungal biomass and production per gram of detritus have been accompanied 
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by areal (m-2) estimates of plant litter standing crop, the importance of fungi at the ecosystem 

scale can be sizeable. Recently, Su (2014) estimated annual fungal biomass and production and 

microbial respiration associated with naturally-occurring standing-dead litter in a subtropical 

freshwater tidal marsh dominated by Cladium jamaicense. Fungal biomass per gram of plant 

litter remained fairly constant over the annual study period, averaging 30 mg Cg-1 detrital C. 

Because of appreciable accumulation of standing C. jamaicense litter in this marsh (annual mean 

643±103 gCm-2), corresponding standing stock estimates of fungal biomass were considerable, 

averaging 18 gCm-2 over the annual study period. 

In addition to accumulating large quantities of biomass in standing C. jamaicense litter, 

fungal decomposers also exhibited high rates of biomass production on an areal basis. When 

integrated over the study period, Su (2014) estimated that rates of fungal secondary production in 

and microbial respiration (CO2 evolution) from standing litter totaled 90 and 124 gCm-2yr-1, 

respectively, providing evidence that a sizeable fraction (~33%) of mean annual standing litter 

carbon pool flows into and potentially through litter-inhabiting fungal decomposers. Rates of 

microbial respiration were significantly correlated with litter-associated fungal biomass 

(ergosterol) and production, implying that a large portion of the observed respiratory flux from 

standing litter was likely due to fungal metabolic activities (see also Kuehn and Suberkropp, 

1998b, Kuehn et al., 2004). Similar findings from other freshwater marsh ecosystems (Ohsowski, 

2008; Kuehn and Gessner, unpublished data) highlight that fungal processes during standing 

litter decomposition are a significant pathway of ecosystem carbon flow before the collapse and 

subsequent decay of plant litter at the marsh sediments or overlying surface waters. 

Substantial rates of carbon flow can also occur through fungal communities colonizing 

benthic plant detritus (Buesing and Gessner, 2006; Ohsowski, 2008). For example, Buesing and 
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Gessner (2006) estimated annual production rates of both bacterial and fungal communities 

associated with submerged P. australis litter in a temperate lake littoral marsh. Annual fungal 

production totaled 93 gCm-2y-1, which equated to ~15% of the annual aboveground P. australis 

production (603 gCm-2y-1). However, in contrast to fungi, annual bacterial production was 

reported to be 7 times higher (661 gCm-2y-1), indicating that litter-associated bacterial 

decomposers may assume a more important role in carbon flow pathways once standing litter 

collapses to the marsh sediments (see also Ohsowski, 2008). Although, note that the very high 

bacterial production estimate reported earlier by Buesing and Gessner (2006) may well be an 

overestimate caused by leucine concentration used in their bacterial production assay (see Gillies 

et al., 2006). 

 

Key factors affecting fungal activities and litter decomposition in marshes 

As in stream ecosystems, fungal activities in marsh ecosystems are strongly influenced 

by a variety of physical and chemical conditions. These conditions differ markedly for fungal 

communities inhabiting standing versus collapsed plant litter, as changes in the litter decay 

environment (i.e., standing to aquatic) are often accompanied by major shifts in both physical 

and chemical conditions. As noted earlier, differences in litter associated fungal biomass and 

production have been observed among plant litter organs (leaves vs. culms). As a consequence, 

the intrinsic chemical quality of the plant litter substrate, specifically the nutrient content of litter, 

can have a significant influence on fungal activity and the resulting rate of litter decomposition. 

For example, both Kuehn et al. (2011) and Su et al. (2015) observed rapid increases in fungal 

biomass during standing leaf litter decomposition in T. angustifolia and T. domingensis, 

respectively (Fig 3A). Despite similar patterns of increase, peak fungal biomass accumulation in 
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standing T. angustifolia leaf litter (106±7 mg Cg-1 detrital C) was considerably higher than in T. 

domingensis leaf litter (37±4 mg Cg-1 detrital C). Furthermore, corresponding rates of fungal 

production (daily and cumulative) were also markedly higher in standing T. angustifolia litter 

(data not shown), which was consistent with the greater rate of mass loss observed in T. 

angustifolia (55%) versus T. domingensis (37%) leaf litter. The contrasting performance and 

contribution of fungal decomposers to Typha leaf decay in these studies may be reflected, in part, 

to the differing litter nutrient concentrations observed between these two Typha species. Kuehn 

et al. (2011) observed that C:N and C:P ratios in standing T. angustifolia leaf litter averaged 67 

and 2583, respectively, throughout the post-senescent stages of standing litter decomposition. In 

contrast, Su et al. (2015) observed much higher C:N and C:P ratios in standing T. domingensis 

leaf litter, which averaged 88 and 4352, respectively. Collectively, fungal biomass 

concentrations in both T. angustifolia and T. domingensis leaf litter were negatively correlated 

with litter C:N and C:P ratios, which implies that fungal communities inhabiting standing T. 

domingensis leaf litter may have been limited by N and P to a greater extent. Similar to aquatic 

hyphomycetes (above), this nutrient limitation significantly impacts the ability of fungi and other 

microbial decomposers (bacteria) to meet their stoichiometric demands for growth and 

reproduction, which can limit their overall participation and impact on the litter decomposition 

process (Sinsabaugh et al., 2014; 2015). 

As in most terrestrial ecosystems (Borken and Matzner, 2009), water availability has 

been identified as a critical factor influencing microbial activities in standing plant litter within 

freshwater marshes. A number of laboratory and field studies have established these microbial 

communities, particularly fungi, are well adapted to life in the aerial standing litter environment, 

where they can rapidly shift their metabolism from an inactive to fully active state when 
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sufficient water becomes available (Kuehn and Suberkropp, 1998b; Kuehn et al., 1998; Kuehn et 

al., 2004). For example, early laboratory studies by Kuehn et al. (1998) observed that rates of 

microbial respiration (CO2 evolution) from standing Juncus effuses litter increased rapidly 

following exposure to wetting conditions (from <5 to ~100 µg CO2-C g-1 AFDM hlr-1 within 5 

min), and continued at high rates until plant litter became dry. Under natural field conditions and 

in the absence of precipitation, rates of microbial respiration from standing J. effusus litter 

exhibited a distinct diel periodicity, with the highest rates occurring at night and in the early 

morning hours when water becomes available to litter inhabiting microorganisms via dew 

condensation (Fig 4A). In contrast, microbial respiration virtually ceases during the day as a 

result of increased daytime temperatures, decreased litter water potentials (i.e., water 

availability), and ensuing microbial desiccation stress (Fig 4B and 4D). Similar respiration 

patterns observed in other emergent marsh ecosystems (Kuehn et al., 2004) suggest that 

temperature-driven increases in nighttime relative humidity and dew condensation on standing 

litter surfaces is the primary mechanism underlying the cyclical increases in microbial water 

availability and hence their decay activities.  

This extreme metabolic plasticity may be a key physiological strategy for fungal growth 

and survival in the harsh standing litter environment, whereby fungal decomposers can rapidly 

take advantage of even short-term periods of moisture availability to exploit detrital resources 

(e.g., boom and bust cycle, Bärlocher, 2009). Because fungi and other microorganisms possess 

no active cross-membrane transport mechanism for water, they must raise their intracellular 

water potential relative to the external environment in order to meet the physiological demands 

for cellular maintenance and growth (Papendick and Mulla, 1986). In fungi, intracellular turgor 

pressure is a critical factor controlling the rate of hyphal extension and hence provides the key 
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driving force for pervasive mycelial growth within plant detritus (Money, 1994; 1995). In fungi, 

the degree of intracellular turgor pressure is controlled by a complex osmoregulatory system that 

closely regulates the internal cytoplasmic osmotic potential. This osmotic regulation is achieved 

by the uptake or export of inorganic ions across the cell membrane (K+, Na+), and by the 

biosynthesis or degradation of intracellular “compatible” solutes, such as sugar alcohols (i.e., 

polyols) and trehalose (Brown, 1990; Blomberg and Alder, 1992). Prior studies have shown that 

these compounds are important carbohydrate storage products in fungi (Jennings, 1995), as well 

as the dominant osmotic solutes produced in response to increased water stress (Brown, 1990). 

Fungal decomposers in standing litter also adjust their intracellular compatible solute 

concentrations in response to fluctuating water availability. Under natural field conditions, 

Kuehn et al. (1998) observed that concentrations of polyols and trehalose within standing J. 

effusus litter exhibited a contrasting diel pattern with rates of microbial respiration, with the 

highest concentrations occurring during periods of low water availability (Fig 4C). 

Concentrations of these osmotic solutes within plant litter were negatively correlated with both 

rates of carbon dioxide evolution and plant litter water potentials, suggesting that with 

fluctuations in water availability and microbial activity there is a concomitant regulation of the 

internal osmotic potential within fungal hyphae.  

In addition to regulating the osmotic potential of fungal hyphae, the presence of polyols 

and trehalose has also been shown to increase the physical stability of cellular structures to the 

adverse effects of dehydration and thermal denaturation. Polyols, trehalose and other sugars can 

interact and replace water around the polar groups of membrane phospholipids and proteins, 

which increases their stability during periods of thermal desiccation (Crowe et al., 1984; 1988). 

Additional studies have also documented the role of trehalose and polyols in stabilizing soluble 
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enzymes from both thermal and desiccation related denaturation (Carpenter and Crowe, 1988; 

Lozano et al., 1994). As a consequence, these compatible solutes may serve a dual role in both 

osmotic regulation and cellular protection of fungi. The ability of fungal decomposers to rapidly 

synthesize, accumulate, and degrade these solutes implies that fungal communities in standing 

litter are physiologically well tuned to the cyclic changes in temperature and dessication, which 

may be a key adaptive strategy that allows their survival and predominance in the standing litter 

habitat. 

In addition to facilitating microbial growth, cyclic episodes of water availability in 

standing litter may also be a key factor influencing the production and dissemination of fungal 

spores. Kuehn and Suberkropp (1998b) observed that airborne fungal spore concentrations above 

decomposing J. effuses litter followed a similar diel pattern as microbial respiratory activities, 

with the highest atmospheric concentrations occurring at night following dew formation on 

standing litter. In the absence of precipitation, airborne fungal spore concentrations above the J. 

effuses canopy were negatively correlated with light and temperature and positively correlated 

with relative humidity, indicating that fungal decomposers of J. effuses litter may require dark 

conditions and/or increases in nighttime moisture (i.e., dew formation) for the formation and 

optimal release of spores. Increasing water availability is known to influence spore release in a 

number of fungal species (Ingold, 1971). 

In addition to chemical and physical factors (above), fungal decay activities in freshwater 

marshes may also be influenced by the myriad of biotic interactions that can occur on and within 

decaying plant litter (Gessner et al., 1999; 2007). For example, plant litter submerged in 

freshwater marshes will often develop complex microbial biofilms (Battin et al., 2007), which 

can harbor diverse communities of both autotrophic (algae) and heterotrophic microorganisms 
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(bacteria, fungi and protists). The close spatial proximity of these diverse microbial groups 

on and within decaying litter suggests the potential for a wide range of biotic interactions 

among microbial inhabitants (Mille-Lindblom and Tranvik, 2003; Francoeur et al., 2006; 

Mille-Lindblom et al., 2006; Kuehn et al., 2014). For example, Kuehn and colleagues recently 

identified novel metabolic couplings between autotrophic and heterotrophic microbial 

assemblages associated with submerged wetland plant litter (Francoeur et al., 2006; Kuehn et 

al., 2014). In the presence of periphytic algae, both litter-associated bacterial and fungal 

production and extracellular degradative enzyme activities were rapidly stimulated by short-term 

exposure to UV-free light (400 µmol m-2 s-1 PAR), presumably in response to active algal 

photosynthesis. In addition, experimental incubations of decaying plant litter with 14C- and 13C-

bicarbonate demonstrated trophic-level transfer of carbon between litter-associated autotrophs 

and heterotrophs, thus establishing the potential for algal “priming” of heterotrophic microbial 

activities. First recognized in terrestrial soils (Blagodatsky et al., 2010; Kuzyakov, 2010), the 

priming effect describes a change, either positive or negative, in the decomposition of 

recalcitrant soil organic matter through the input of labile organic matter. These labile 

carbon inputs produce hotspots and hot moments of microbial activity, where microbial 

heterotrophs are provided energy-rich compounds that increase their metabolic capabilities to 

degrade and mineralize refractory organic matter. Similar observations in stream ecosystems 

(Rier et al., 2007; 2014; Danger et al., 2013; Hotchkiss et al., 2014) strengthen the contention 

that the priming effect phenomenon may be relevant within a wide range of aquatic ecosystems 

(Guenet et al., 2010). Collectively, these observations suggest that algal stimulation of microbial 

decomposers, especially fungi, is an important and largely unrecognized interaction within the 

detrital microbial landscape, which may transform our current conceptual understanding of 
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microbial-mediated litter decomposition in aquatic ecosystems. 

 

Conclusion and research outlook 

At the global scale, freshwater habitats are quite diverse and vary considerably in regards to their 

biotic (plants and consumers) and abiotic environmental conditions (e.g., hydrology, 

temperature, nutrient availability). In freshwater ecosystems, inputs of allochthonous or 

autochthonous plant litter provide critical basal resources in aquatic food webs, where microbial 

decomposers (fungi and bacteria) serve as important mediators in the flow of both carbon and 

nutrients (N & P) to higher trophic levels. The diversity of fungi in freshwaters is high, and 

representatives of all major fungal phyla have been identified from plant detritus.  The 

microscopic nature and intimate association of fungi with detrital substrata makes their detection, 

identification, and ecological impacts difficult to assess. However, development of biochemical 

and molecular techniques over the last several decades has greatly improved our ability to detect 

and assess fungal contributions to ecosystem carbon and nutrient cycling. In a few types of 

freshwater ecosystems, particularly streams and marshes discussed in this review, application of 

these methods has established that fungi are important decomposers of plant detritus and play 

key roles in detrital food webs. Although the role of fungi in plant litter decomposition is 

becoming more widely recognized, major gaps in our knowledge of freshwater fungi remain. 

These gaps include, but are not limited to: 

1. The need for wider application of modern biochemical and molecular techniques (i.e., 

omics) to identify and understand fungal involvement in litter decomposition (e.g., 

proteome analysis, see Schneider et al., 2010)  
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2. Our lack of data on how other microbial groups associated with plant detritus (algae, 

bacteria, and protists) potentially interact and impact fungal decay processes under 

natural conditions (e.g., priming effects, see Danger et al., 2013; Kuehn et al., 2014). 

3. Limited data on the effects of detrital resource stoichiometry and water chemistry on 

fungal stoichiometry and its resulting impacts on fungal community structure, fungal 

physiology and their litter decay activities (see Danger et al., this issue). 

4. Poor understanding of the contribution of chytrids to plant litter decomposition in 

freshwater environments. 

5. Our limited data concerning the relative importance of fungi and bacteria in the 

decomposition of submerged wood and wetland macrophytes. 

6. The paucity of data on freshwater fungi from polar and tropical regions. 

7. Our lack of data concerning the effects of chronic vs. pulse nutrient enrichment on fungi 

and fungi-driven processes. 

8. Our lack of large quantitative and modeling studies to understand the effects of global 

climate change (temperature, precipitation, sea-level rise) on fungi and fungi-driven 

processes. 
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Table 1.   Range of fungal and bacterial biomass and production rate estimates reported from decaying plant litter in streams and freshwater marsh 

ecosystems. 

                   

Plant species   Stream/Marsh Site     Microbial Biomass           Microbial Production           Source 

        (mg C/g C)                 (mg C/g C/d)        

   Fungi          Bacteria           Fungi            Bacteria        

                   

Freshwater Streams 

Liriodendron tulipifera Schultz (AL, USA) 20-207 a,d          -- 0.65-18.52 d       -- Suberkropp (1995a) 

 Cottingham (AL, USA) 19-165 a,d        -- 0.87-9.88 d       --   

 Sandy (AL, USA) 11-52 b,d        -- 0.96-7.26 d       --  

Mixed deciduous e Walker Branch (TN, USA) 51-102 a,d        -- 0.81-3.51 d       -- Suberkropp (1995b) 

L. tulipifera Schultz (AL, USA) 4-161 a,d  0.04-0.44 d 0.07-7.24 d 0.04-0.30 d Weyers and Suberkropp (1996) 

 Payne Creek (AL, USA) 3-44 b,d  0.04-0.80 d 0.01-0.59 d 0.01-0.04 d  

Alnus glutinosa Himmelreichbach 1-15  0.08-0.43 0.11-1.00 0.05-1.25 Baldy and Gessner (1997) 

 (Germany) 

L. tulipifera Hugh White (NC, USA) 19-149 a,d        -- 0.34-0.94 d       -- Suberkropp (2001) 

 Walker Branch (TN, USA) 41-113 a,d        -- 0.06-6.77 d       --   

Quercus alba Hugh White (NC, USA) 17-92 a,d        -- 0.09-1.01 d       --  

 Walker Branch (TN, USA) 40-123 a,d        -- 0.29-3.58 d       --   
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Table 1. continued. 

Populus gr. nigra Garonne River (France) 1-80  0.03-0.52 0.09-1.40 0.01-0.41 Baldy et al. (2002) 

Mixed deciduous e Basin Creek (AL, USA) 47-90 d        -- 1.13-6.94 d       -- Methvin and Suberkropp (2003) 

 Hendrick Mill (AL, USA) 53-115 d        -- 1.57-7.62 d       --  

Mixed deciduous e Payne Creek (AL, USA) 29-87 d        -- 0.72-11.35 d       -- Carter and Suberkropp (2003) 

 Hendrick Mill (AL, USA) 37-108 d        -- 0.53-9.29 d       --  

Alnus glutinosa Ave River (Portugal) 2-120        -- 1.40-7.60 0.03-0.28 Pascoal and Cássio (2004) 

Alnus glutinosa Ave River (Portugal) 2-73        -- 1.70-9.10 0.06-0.62 Pascoal et al. (2005) 

Mixed deciduous e Coweeta (NC, USA)     Gulis et al. (2008) 

 Catchment 53 (Ref.) 24-74        -- 0.24-2.17       --  

 Catchment 54 (Treat.) 25-86       -- 1.88-6.34       -- 

Mixed wood e Catchment 53 (Ref.) 19-21        -- 0.08-0.21       -- Gulis et al. (2008) 

(<40mm dia) Catchment 54 (Treat.) 22-28       -- 0.18-0.34       -- 

Mixed deciduous e Coweeta (NC, USA)     Suberkropp et al. (2010) 

 Catchment 53 (Ref.) 24-74 d 0.38-1.66 d 0.24-2.82 d 0.02-0.30 d  

 Catchment 54 (Treat.) 17-104 d 0.32-1.82 d 0.96-6.72 d 0.03-0.37 d 

Freshwater Marshes 

Mixed macrophytes e, f Hudson River (NY, USA)  

 Sediment plant litter 1-63 d 0.25-0.95 d 0.07-5.01 d 0.01-0.07 d Sinsabaugh and Findlay (1995) 

Carex walteriana Okefenokee (GA, USA)     Newell et al. (1995) 

 Standing-dead leaf litter 20-34 d 0.26-0.40 d 0.23-0.92 d <0.01-0.01 d 

 Sediment leaf litter 18-62 d 0.54-1.72 d 0.23-0.81 d <0.01-0.04 d 
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Table 1. continued. 

Phragmites australis Lake Neuchatel (Switzerland)    Kominkova et al. (2000) 

 Submerged leaf litter 50-84 0.46-5.66 0.37-1.23       --   

 Submerged culm litter 12-14 0.14-0.88 0.08-0.21       -- 

Juncus effuses TWE Wetland (AL, USA)     Kuehn et al. (2000) 

 Submerged leaf litter 8-50 d 0.12-0.45 d 0.15-5.67 d 0.01-0.06 d 

Typha angustifolia Hudson River (NY, USA)     Findlay et al. (2002) 

 Standing-dead leaf litter  11-16 c, d      -- 0.137 d <0.01 c 

 Sediment leaf litter 18-53 c, d <0.01-0.06 d 0.09-1.59 d <0.01 c 

P. australis Standing-dead culm litter  6-29 c, d <0.01 d 0.11-1.28 d <0.01 c 

 Sediment culm litter 16-77 c, d      -- 0.06-0.47 d <0.01 c 

Scirpus lacustris Pond 50 (Canada)     Verma et al. (2003) 

 Submerged leaf litter <1-12 d      -- <0.01-0.74 d      -- 

 Standing leaf litter <1-3 d      --   0.02-0.75 d      -- 

P. australis Lake Hallwill (Switzerland)     Buesing and Gessner (2006) 

 Submerged leaf litter 16-44 1.10-2.70 0.20-2.4 2.60-18.60 

T. angustifolia Lake Erie (MI, USA)     Su et al. (2007) 

 Sediment leaf litter 46-125 0.02-1.92 0.93-4.91 <0.01 

 Winous Point (MI, USA) 

 Submerged leaf litter 20-57 0.21-2.13 0.62-2.91 <0.01 

T. angustifolia Paint Creek (MI, USA)     Ohsowski (2008) 

 Standing leaf litter 56-103 0.01-0.11 0.13-1.93 <0.01-0.50 
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Table 1. continued. 

 Standing stem litter 11-25 0.01-0.11 0.02-0.51 <0.01-0.09 

 Sediment litter 44-78 1.20-2.11 0.95-2.70 1.85-3.93 

T. angustifolia Independence Lake (MI, USA)    Kuehn et al. (2011) 

 Standing leaf litter 6-106      -- 0.18-3.34       -- 

T. domingensis Weeks Bay (AL, USA)     Su et al. (2015) 

 Standing leaf litter 3-37      -- 0.02-0.42       -- 

Cladium jamaicense Weeks Bay (AL, USA)     Su (2014) 

 Standing leaf litter 25-31      -- 0.02-1.91       -- 

T. angustifolia Paint Creek (MI, USA)     Kuehn et al. (2014) 

 Submerged leaf litter 21-39 1.30-1.90 0.55-3.60 1.61-6.98 

Schoenoplectus acutus Paint Creek (MI, USA)     Kuehn et al. (2014) 

 Submerged leaf litter 37-49 1.00-1.20 0.72-1.92 7.25-9.94 

             

a Fungal biomass determined from reported litter ergosterol concetrations using a conversion factor of 5.5 µg ergosterol / mg fungal biomass. 

b Fungal biomass determined from reported litter ergosterol concetrations using a conversion factor of 10.9 µg ergosterol / mg fungal biomass. 

c Fungal biomass determined from reported litter ergosterol concetrations using a conversion factor of 5.0 µg ergosterol / mg fungal biomass. 

d Biomass and/or production values reported in the study converted to mgC/gC and mgC/gC/d, respectively, assuming 43% C in fungal dry mass, 

50% C in litter ash-free dry mass or 45% C in litter dry mass. 
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e Studies determined biomass and production rates associated with naturally occurring plant litter (unknown age). All other cited studies determined 

biomass and production rates associated with decaying plant matter as part of a timed litter mass loss decomposition experiment. 

f Only includes estimates from plant litter that was >1.0mm in size. 



Figure Legends 

Figure 1. Spores of the aquatic hyphomycetes, Flabellospora sp. (A), Alatospora acuminata (B), 

Anguillospora sp. (C), Unidentified conidium (D), and Condylospora sp. ( E). All spores were 

collected, filtered, and microscopically examined from a single sample from a stream in 

Alabama, USA. Micrographs taken and provided by Vladislav Gulis. Ascoma (F), ascospore (G), 

asci (H) and ascus (I) of Phaeosphaeria typharum (Desm.) L. Holm colonizing dead submerged 

Typha latifolia stems in Wisconsin, USA. Micrographs taken and provided by Carol Shearer.  

Basidiomata (J) of Panellus copelandii (Pat.) Burds. & Mill. colonizing standing-dead J. effuses 

leaves in west-central Alabama, USA. Micrograph taken by the author. This illustration is a 

modified version previously published in Gulis et al. (2009). 

 

Figure 2. Mass loss (A) of yellow poplar (Liriodendron tulipifera L.) leaf litter during natural 

leaf decomposition in a second order stream (Schultz) in west-central Alabama, USA.  

Corresponding dynamics of fungal biomass (B), aquatic hyphomycete sporulation rate (C), and 

production rate (D) of fungi during litter decomposition are also illustrated (data from 

Suberkropp 1995). Symbols indicate means ± 1 SE (n=3). Mass loss (E) of ash leaf discs 

(Fraxinus excelsior L.) in experimental stream microcosms inoculated with the aquatic 

hyphomycete, Articulospora tetracladia. Corresponding dynamics of biomass (F), sporulation 

rate (G), and production rate (H) of A. tetracladia during leaf-disc decomposition are also 

illustrated (data from Gessner and Chauvet 1997). Symbols indicate means ± 1 SE (n=3). 

 

Figure 3. Fungal biomass (A) associated with T. angustifolia (Michigan) and T. domingensis 

(Alabama) leaves during plant senescence and early standing litter decomposition (data from 
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Kuehn et al. 2011 and Su 2014). Symbols indicate means ± 1 SE (n=6). Dynamics of fungal 

biomass (B) associated with leaf and culm litter of Erianthus giganteus (Alabama) during plant 

senescence and early standing litter decomposition (data from Kuehn et al. 1999). Symbols 

indicate means ± 1 SE (n=3). 

 

Figure 4.  Diel changes in rates of microbial CO2 evolution (A) from standing Juncus effusus leaf 

litter during field studies conducted on September 7-8, 1994 in Alabama. Corresponding diel 

changes in (B) plant litter water potentials, (C) total polyol and trehalose concentrations 

extracted from J. effuses litter, and (D) air temperatures (°C) and relative humidity (%) above the 

J. effusus plant stand are also illustrated (data from Kuehn et al. 1998). Symbols indicate means 

± 1 SE (n=3) except for relative humidity, which are from a single measurement. 
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