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INTRODUCTION

Over the last century, sawfishes have faced vast
declines in both range and abundance, resulting in
an increased threat of their global extinction (Dulvy
et al. 2016). These declines are attributed to a combi-
nation of anthropogenic activities, such as bycatch in
fisheries and direct human use (Seitz & Poulakis
2006, Dulvy et al. 2016), as well as habitat degrada-
tion (Kyne et al. 2013). In the midst of these large
global declines, Australia is regarded as the last
stronghold for each of 3 Pristis sawfishes: the dwarf
sawfish P. clavata, green sawfish P. zijsron, and the
largetooth (or freshwater) sawfish P. pristis (Pogo -
noski et al. 2002, Phillips et al. 2011). Nevertheless,

there is evidence of recent population declines in
Pristis sawfishes in Australian waters. For example,
the historic distribution of P. zijsron extended from
Coral Bay on the west coast, across the north coast
and along the east coast as far south as Sydney, New
South Wales (Last & Stevens 2009). P. zijsron has
 suffered from a 30% range contraction in these
waters and has not been recorded off New South
Wales since the 1970s, the decline largely being
attributed to anthropogenic activities occurring over
the last century (White & Kyne 2010, Dulvy et al.
2014, 2016). P. zijsron is now considered extirpated
from New South Wales waters and rare on the east
coast of Queensland (Pogonoski et al. 2002, Dulvy et
al. 2014, 2016). Sawfish are especially vulnerable to
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ABSTRACT: Northern Australia has been identified as the last stronghold for the dwarf sawfish
Pristis clavata, green sawfish P. zijsron, and largetooth sawfish P. pristis, making these populations
key in global conservation efforts for each species. This research assesses the levels of genetic
diversity in these 3 sawfishes in Australian waters, testing for the presence of population bottle-
necks using data at microsatellite loci. Levels of observed heterozygosity in each species from the
west coast of Australia and the north-eastern Gulf of Carpentaria were generally high. M ratio
tests suggest that assemblages of P. zijsron and P. pristis on the west coast and P. clavata and P.
zijsron in the Gulf of Carpentaria may have experienced population bottlenecks. The bottlenecks
are especially pronounced in P. zijsron populations and in P. clavata from the Gulf of Carpentaria.
Demographic analyses, based on mtDNA data, indicate relatively recent (evolutionarily) range
expansions in Pristis sawfishes in northern Australian waters, which could account for the popula-
tion bottlenecks. A more recent range expansion in each of P. clavata and P. zijsron, as evidenced
by more recent population divergence and more recent/higher rates of historic maternal gene
flow, could account for the more pronounced bottlenecks in these species when compared to
P. pristis. Given that Pristis sawfishes in Australian waters have experienced population bottle-
necks, whether they be historic, contemporary or both, the preservation of remaining genetic
diversity should be a high conservation priority.
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such declines because they are long-lived, mature
late in life and have low fecundity, making popula-
tion recovery a slow process (Simpfendorfer 2000,
Peverell 2005, Thorburn et al. 2007).

While it is generally agreed that Pristis sawfishes
have suffered from declines in range and abundance
in Australian waters, the severity of these declines
and the impact on the health of extant populations is
largely unknown. This is because the evidence for
the declines is largely anecdotal, with limited reli-
able estimates of abundance or population trend data
(Kyne et al. 2013). Populations that have suffered
from severe declines or population bottlenecks are at
risk of having substantially reduced levels of genetic
diversity (Frankham 2005). The maintenance of
genetic diversity in sawfish populations is important
in their conservation because long-term recovery is
dependent upon populations being genetically di -
verse and large enough to adapt to changes in the
environment, resist disease, and avoid inbreeding
(Peery et al. 2012). Assemblages of each of P. clavata,
P. zijsron, and P. pristis on the west coast and Gulf of
Carpentaria in Australia have low to moderate levels
of genetic diversity, based on data from the mito-
chondrial (mtDNA) control region (Phillips et al.
2011). However, levels of genetic diversity in each of
P. clavata and P. zijsron in the Gulf of Carpentaria are
reduced when compared to those for the west coast
(Phillips et al. 2011). Whether or not the levels of
genetic diversity in Pristis sawfishes are a conse-
quence of population declines (whether contempo-
rary or historic) remains unresolved (Phillips et al.
2011). The current research, therefore, aims to assess
genetic diversity in Pristis sawfishes in Australian
waters using nuclear DNA (nDNA) markers (micro-
satellite loci), and to test whether these populations
have undergone population bottlenecks, thus pro -
viding valuable information on the genetic ‘health’ of
these sawfish populations.

MATERIALS AND METHODS

Sampling

Genetic data were generated from tissue biopsies
(preserved in 100% ethanol or 20% dimethyl sulf -
oxide saturated with NaCl) or skin taken from con-
temporary dry rostra from the dwarf sawfish Pristis
clavata, green sawfish P. zijsron, and largetooth saw-
fish P. pristis from sites across northern Australia, as
described by Phillips et al. (2011, 2017). Tissue sam-
ples were collected from sites on the west coast of

Australia for P. clavata (N = 40), P. zijsron (N = 26),
and P. pristis (N = 51) (Phillips et al. 2011, 2017). Sam-
ples were also collected from the Gulf of Carpentaria
for P. clavata (N = 25), P. zijsron (N = 18), and P. pristis
(N = 88) (Phillips et al. 2011, 2017). Since the number
of samples collected per site was generally small,
samples from a single geographic region were pooled
for analysis (Phillips et al. 2011, 2017). Microsatellite
data were not necessarily generated for all samples,
because statistical power was not substantially in-
creased by larger sample sizes once data were gener-
ated for 30 to 40 samples from a single geographic re-
gion (e.g. P. pristis from the Gulf of Carpentaria).

Genetic methods

A Masterpure™ DNA extraction kit (Epicentre
Technologies) was used to extract total genomic DNA
from approximately 5 mg of tissue, according to the
manufacturer’s protocol for preserved tissue and fol-
lowing the protocol of Phillips et al. (2009) for the ros-
tral tissue. PCR was used to amplify alleles at 6 micro-
satellite loci in P. pristis and 8 loci in each of P. clavata
and P. zijsron (Feldheim et al. 2010, Fields et al. 2015,
Phillips et al. 2017) (see Tables 1, 2 & 3). The primers,
PCR cycling conditions, and allele scoring were per-
formed according to the methods of Phillips et al.
(2017). Genetic data were generated for a 351−, 352−,
and 351−353 base pair (bp) portion of the mitochon-
drial control region in each of P. clavata, P. zijsron and
P. pristis, respectively, using the primers, PCR cycling
conditions and DNA sequencing methods of Phillips
et al. (2011).

Data analysis

Linkage disequilibrium and deviation from Hardy-
Weinberg equilibrium (HWE) were assessed for each
of P. clavata, P. zijsron, and P. pristis in GENEPOP
version 1.2, with a dememorization number of 10 000,
1000 batches, and 10 000 iterations per batch (see
Raymond & Rousset 1995) and a Bonferroni correction
for multiple tests (Rice 1989). Micro-Checker v.2.2.3
was also used to check for genotyping errors and null
alleles for all loci (van Oosterhout et al. 2004).

Genetic diversity

Levels of genetic diversity at microsatellite loci
were assessed via expected and observed hetero -
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zygosity and allelic richness using rarefaction to
account for uneven sample sizes, as calculated in
FSTAT (www2.unil.ch/popgen/ softwares/fstat.htm).

Demographic history

Heterozygosity excess, mode-shift, and M ratio
tests were used to test for genetic bottlenecks in each
of P. clavata, P. zijsron, and P. pristis. The hetero -
zygosity excess test uses the expectation that a
declining population will experience a greater reduc-
tion in the number of alleles (via loss of rare alleles)
than in heterozygosity, resulting in an excess of
hetero zygosity in bottlenecked populations (Nei et
al. 1975). The mode-shift test evaluates the allele
 frequency distribution at a locus and determines
whether there has been a shift of the mode from the
expected (L-shaped) distribution (Luikart et al. 1998).
Heterozygosity excess and mode-shift tests were
conducted in BOTTLENECK version 1.2.02 (Cornuet
& Luikart 1996) using the stepwise mutation model
(SMM) and the 2-phase model (TPM) with 10 000
simulations per locus. The TPM consisted of 90%
 single-step mutations and 10% multi-step mutations
with the variance for mutation size set to 12, as sug-
gested by Piry et al. (1999). The M ratio is the ratio of
the number of alleles observed in a population to the
range in allele size at each locus (Garza & Williamson
2001). In bottlenecked populations, M is predicted to
decrease because the number of alleles declines faster
than the range in allele sizes (Garza & Williamson
2001). M ratios were estimated at each locus and over
all loci for each population and species in M_P_Val
and the critical M values (MC) were determined in
Critical_M (Garza & Williamson 2001). The mean
percent of single-step mutations was set to 0.88 and
the mean size of larger mutations was set to 2.8
(Garza & Williamson 2001). Theta was estimated in
IMa2 (Hey & Nielsen 2007) using the methods de -
scribed below, although lower and higher theta val-
ues were also used to assess the impact, if any, on
values of M.

To explore the hypothesis that a population bottle-
neck is the result of a founder effect during historic
range expansions (e.g. 1000s of years ago; see Phil -
lips et al. 2011), historic gene flow was investigated
in each species. Migration-scaled divergence time (t )
was estimated for the west coast and Gulf of Carpen-
taria assemblages for each species in IMa2 using
mtDNA data for all samples collected (Hey & Nielsen
2007). When divergence of populations was sup-
ported, mutation-scaled migration (m) and timing of

migration events were estimated. Posterior probabil-
ity distributions of t were produced using the
Hasegawa-Kishino-Yano (HKY) model (Hasegawa et
al. 1985) and final runs had a minimum of 3 000 000
steps in the Markov chain Monte Carlo (MCMC)
chain with the first 1 000 000 steps discarded as burn-
in. Preliminary runs used a prior of 10 for m, and final
runs used the estimates from these preliminary runs
as priors. These priors produced consistent results
between 5 final runs with different seed numbers.
Estimates were left in mutation-scaled units due to
the lack of reliable mutation rates for sawfishes and
the potential for considerable error with the use of an
incorrect mutation rate (i.e. Henn et al. 2009).

RESULTS

At each locus, the numbers of homozygotes and
heterozygotes in each of the dwarf sawfish Pristis
clavata, green sawfish P. zijsron, and largetooth
sawfish P. pristis were similar to those expected
under HWE after a Bonferroni correction (Tables 1,
2 & 3). There was no evidence of null alleles or
errors in genotyping for any locus and there was no
evidence of linkage disequilibrium after a Bonfer-
roni correction.

Genetic diversity

Levels of observed heterozygosity in each of P. cla -
vata, P. zijsron, and P. pristis from the west coast and
Gulf of Carpentaria were generally high (Tables 1, 2
& 3). Allelic richness was similar in P. clavata
(10.316–11.576) and P. zijsron (10.161–10.235) and
slightly higher in P. pristis (14.073–14.399), likely due
to the large sample sizes of the latter (Tables 1, 2 &
33). There was no apparent pattern when comparing
heterozygosity and allelic richness in assemblages
from the west coast and Gulf of Carpentaria for any
species.

Demographic history

The heterozygosity excess and mode shift tests did
not provide evidence of a population bottleneck in
any species (Table 4). The M ratio tests suggest that
the west coast assemblages of P. zijsron and P. pristis
and the Gulf of Carpentaria assemblages of P. clavata
and P. zijsron are bottlenecked (Table 4). This is evi-
denced by M ratio values less than the M critical val-
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ues or M values that were ≤0.70, the
suggested threshold for bottleneck
detection; although non-bottle necked
populations are expected to have M >
0.820 (Garza & Williamson 2001). The
assemblage of P. pristis from the Gulf
of Carpentaria had an M ratio value
less than the M critical value; how-
ever, the M ratio was well above 0.70
(Table 4). The low values of M do not
appear to be driven by a single locus
for any species (see Table A1 in the
Appendix).

The results of the analysis of popu-
lation divergence, based on mtDNA
data, indicate that assemblages of
each of P. clavata, P. zijsron, and P.
pristis from the west coast and Gulf of
Carpentaria diverged in the relatively
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Region Ppe4 Ppe5 Ppe69 Ppe122 Ppe152 Ppe165 Ppe179 Ppe186 Average

WC N 34 34 34 34 29 26 31 31
k 14 19 10 9 16 16 13 11 13.50
A 12.443 14.643 7.600 8.126 13.888 14.285 11.474 10.150 11.576
He 0.915 0.925 0.795 0.793 0.928 0.933 0.879 0.880
Ho 1.000 0.912 0.853 0.824 0.897 1.000 0.871 0.871 0.904
p 0.983 0.873 0.658 0.423 0.112 0.439 0.504 0.969

GoC N 22 23 23 25 18 18 21 23
k 11 16 5 8 12 10 10 14 10.75
A 10.750 15.062 4.941 7.365 12.000 10.000 9.660 12.730 10.316
He 0.910 0.935 0.566 0.834 0.910 0.887 0.856 0.879
Ho 1.000 0.957 0.696 0.720 0.889 0.667 0.783 0.739 0.806
p 0.417 0.005 0.699 0.106 0.144 0.003 0.057 0.019

Table 1. Summary statistics for 8 microsatellite loci in Pristis clavata from the west coast (WC, N = 34) and the Gulf of Carpen-
taria (GoC, N = 25) in Australia. N: number of individuals, k: number of alleles, A: allelic richness, He: expected heterozygosity,
Ho: observed heterozygosity, p: outcome of tests for Hardy-Weinberg equilibrium. No values were statistically significant after 

a Bonferroni correction (p < 0.003)

Region Ppe4 Ppe88 Ppe152 Ppe165 Ppe172 Ppe179 Ppe180 Ppe186 Average

WC N 23 23 23 24 23 24 24 23
k 13 22 4 17 10 12 12 7 12.13
A 11.067 17.482 3.211 13.564 9.180 10.405 9.880 6.497 10.161
He 0.870 0.962 0.274 0.930 0.879 0.902 0.865 0.752
Ho 0.783 1.000 0.304 1.000 0.826 0.958 0.917 0.870 0.832
p 0.371 0.812 1.000 0.344 0.581 0.599 0.151 0.216

GoC N 14 15 18 15 15 15 16 16
k 8 17 4 13 12 10 12 9 10.63
A 8.000 16.326 3.725 12.660 11.533 9.798 11.225 8.611 10.235
He 0.831 0.949 0.303 0.924 0.885 0.892 0.879 0.853
Ho 0.929 0.933 0.333 0.867 0.867 1.000 0.813 0.875 0.827
p 0.903 0.341 1.000 0.126 0.535 0.510 0.225 0.629

Table 2. Summary statistics for 8 microsatellite loci in Pristis zijsron from the west coast (WC, N = 24) and the Gulf of Carpen-
taria (GoC, N = 18) in Australia. N: number of individuals, k: number of alleles, A: allelic richness, He: expected heterozygosity,
Ho: observed heterozygosity, p: outcome of tests for Hardy-Weinberg equilibrium. No values were statistically significant after 

a Bonferroni correction (p < 0.003)

Region Ppe4 Ppe5 Ppe122 Ppe172 Ppe180 Ppe186 Average

WC N 35 33 36 29 29 32
k 12 23 7 18 13 17 15.00
A 11.622 21.107 6.792 18.000 13.000 15.875 14.399
He 0.890 0.952 0.677 0.940 0.767 0.938
Ho 0.914 0.879 0.556 0.897 0.655 0.906 0.801
p 0.219 0.152 0.156 0.055 0.116 0.308

GoC N 67 65 68 66 63 63
k 13 31 7 21 18 19 18.17
A 11.396 20.197 5.815 17.505 13.823 15.700 14.073
He 0.864 0.957 0.706 0.926 0.842 0.918
Ho 0.836 0.969 0.765 0.908 0.794 0.905 0.863
p 0.581 0.298 0.272 0.062 0.032 0.108

Table 3. Summary statistics for 6 microsatellite loci in Pristis pristis from the
west coast (WC, N = 36) and the Gulf of Carpentaria (GoC, N = 68) in Aus-
tralia. N: number of individuals, k: number of alleles, A: allelic richness, He:
expected heterozygosity, Ho: observed heterozygosity, p: outcome of tests for
Hardy-Weinberg equilibrium. No values were statistically significant after a 

Bonferroni correction (p < 0.004)
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recent (evolutionary) past (Fig. 1). The time of diver-
gence of these assemblages for P. clavata and P. zijs-
ron probably occurred more re cently than that for
P. pristis (Fig. 1). The analysis of mutation-scaled
migration rates suggests that there was maternal
gene flow between populations and that the direc-
tion of gene flow in each spe cies was asymmetrical,
with mig ra tion occurring in an east to west direction

in each of P. clavata and P. zijsron, and in a west to
east direction in P. pristis (Fig. 2). In all species, this
maternal gene flow is historic, rather than contempo-
rary, because the distributions of migration events
over time have a low probability at time zero (Fig. 3).
It appears as though this historic gene flow was
higher and slightly more recent in each of P. clavata
and P. zijsron than in P. pristis (Figs. 2 & 3).

DISCUSSION

The present study provides evi-
dence that each of the Pristis saw-
fishes in northern Australian waters
has gone through a population bottle-
neck, although the geographic region
affected and the severity of the bottle-
neck differs between species. The
number of loci and sample sizes of
this study were moderate. Therefore,
there is a note of caution in that the
data underlying the interpretation are
limited and more extensive sampling
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Species Region He excess Mode M ratio MC

SMM TPM shift

P. clavata WC 0.770/0.445 0.320/0.424 Normal 0.885 0.841
GoC 0.473/0.576 0.320/0.307 Normal 0.744 0.821

P. zijsron WC 0.902/0.185 0.629/0.427 Normal 0.659 0.818
GoC 0.980/0.053 0.844/0.169 Normal 0.634 0.799

P. pristis WC 0.578/0.527 0.500/0.532 Normal 0.711 0.828
GoC 0.344/0.519 0.281/0.518 Normal 0.842 0.858

Table 4. Bottleneck tests for each of Pristis clavata, P. zijsron, and P. pristis
from the west coast (WC) and the Gulf of Carpentaria (GoC) in Australia.
 Expected heterozygosity (He) excess is presented as p-values from the
Wilcoxon/sign rank tests using the stepwise mutation model (SMM) and 

2-phase model (TPM). Mc are the critical M values

Fig. 1. Posterior probability distributions of mutation-scaled time since divergence (t), based on nucleotide sequence data from
the mtDNA control region, of assemblages from the west coast (WC) and the Gulf of Carpentaria (GoC) in (a) Pristis clavata, 

(b) P. zijsron, and (c) P. pristis

Fig. 2. Posterior probability distributions of estimates of mutation-scaled migration rates (m) of ‘genes’, based on nucleotide se-
quence data from the mtDNA control region, between assemblages from the west coast (WC) and the Gulf of Carpentaria 

(GoC) in (a) Pristis clavata, (b) P. zijsron, and (c) P. pristis
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and additional genetic markers are needed to con-
firm the proposed demographic histories of Pristis
sawfishes in Australian waters. It is possible, for
example, that the use of a microsatellite library de -
veloped for another species (the smalltooth sawfish P.
pectinata) has contributed to lower values of M,
although it seems unlikely to be the sole ex planation,
because the levels of polymorphism and genetic
diversity in each of the dwarf sawfish P. clavata,
green sawfish P. zijsron, and largetooth sawfish P.
pristis were similar to those for P. pectinata (see
Chapman et al. 2011). It is also possible that the low
values of M are due to a violation of the SMM muta-
tion model, although there is no evidence to sup port
this (see Guinand & Scribner 2003, Williamson-
 Natesan 2005). There are no reliable historic catch
records available for any of these species in Aus-
tralian waters to assess changes in population sizes
(Peverell 2005), so despite the limitations of the pres-
ent study, it provides novel information obtainable
only via genetic approaches.

Genetic diversity

Assemblages of each of P. clavata, P. zijsron, and P.
pristis on the west coast and the Gulf of Carpentaria
appear to have moderate to high levels of genetic
diversity at microsatellite loci that are within the
ranges reported for other elasmobranchs, including
sawfish (Chapman et al. 2011, Daly-Engel et al. 2012,
O’Leary et al. 2015), with no apparent spatial pattern
in genetic diversity. These results are in contrast to
the moderate to low levels of genetic diversity found
in the mtDNA control region for each species
(Phillips et al. 2011). Furthermore, both P. clavata and
P. zijsron had reduced levels of mtDNA diversity in
the Gulf of Carpentaria assemblage when compared

to values for the west coast, with P. clavata being
genetically depauperate in the Gulf of Carpentaria
(Phillips et al. 2011), a pattern not observed in the
microsatellite loci.

The pattern of lower levels of genetic diversity in
mtDNA markers compared to microsatellite loci
(nDNA) has been observed in other elasmobranchs
such as the bull shark Carcharhinus leucas and
lemon shark Negaprion brevirostris (Schultz et al.
2008, Karl et al. 2011). This discordance could be due
to the characteristics of mtDNA versus nDNA mark-
ers (microsatellite loci), changes in population size,
sex-biased dispersal and/or selection. Selection
alone is not thought to be driving the differences in
levels of genetic diversity at mtDNA and nDNA
markers given that similar selective forces would
have to be operating across Pristis sawfishes as well
as other species of sharks. It is difficult to hypothesize
a scenario where similar selective forces would be
operating across such different species in different
geographic regions (Schultz et al. 2008, Karl et al.
2011). Although the discordance in levels of genetic
diversity in mtDNA and nDNA markers in P. pristis
could be explained by sex-biased dispersal with
female philopatry to parturition sites, there is cur-
rently no evidence to support sex-biased dispersal in
either P. clavata or P. zijsron (Phillips et al. 2011,
2017, Feutry et al. 2015).

The lower levels of genetic diversity in mtDNA
markers, when compared to those in nDNA markers,
are most likely due to the characteristics of the mark-
ers combined with changes in population size. Levels
of genetic diversity in nDNA markers should, theo-
retically, be higher than those in mtDNA markers
simply due to differences in their modes of inheri-
tance and effective population sizes (Ballard & Whit-
lock 2004). Being maternally inherited, the mtDNA
has a 4-fold smaller effective population size when
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Fig. 3. Posterior probability distributions of estimates of the mutation-scaled timing of migration events, based on nucleotide
sequence data from the mtDNA control region, between assemblages from the west coast (WC) and the Gulf of Carpentaria 

(GoC) in (a) Pristis clavata, (b) P. zijsron, and (c) P. pristis
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compared to bi-parentally inherited nDNA (Ballard &
Whitlock 2004). These characteristics of the markers,
when combined with the evidence of changes in pop-
ulation size, could explain the lower levels of genetic
diversity in the mtDNA control. The smaller effective
population size of the mtDNA marker makes it highly
susceptible to long-term genetic erosion from bottle-
necks (Grant & Leslie 1993, Canino et al. 2010)
and given the slow rate of mutation in the mtDNA of
elasmo branchs (Martin et al. 1992, Martin 1995), the
recovery of genetic diversity at these markers would
be an (evolutionarily) slow process.

Demographic history

The discrepancies in the results of the M ratio tests
and the heterozygosity excess and mode shift tests
have been found in a number of other studies (e.g.
Hundertmark & Van Daele 2010, Nance et al. 2011,
O’Leary et al. 2015). M ratio tests are thought to be
more powerful at detecting bottlenecks in general,
compared to the heterozygosity excess or mode shift
tests (Peery et al. 2012). Typically, M ratio tests are
better at detecting slightly older bottlenecks (up to 50
generations) than very recent events (1 to 5 genera-
tions), which could account for the inability to detect
bottlenecks in some species with contemporary de -
clines (Peery et al. 2012). Heterozygosity excess
methods are less powerful in detecting bottlenecks
after approximately 10 generations have passed be -
cause mutation-drift equilibrium can be reached
quickly after a period of sudden growth (see Nei et
al. 1975, Hundertmark & Van Daele 2010, Peery et al.
2012). M ratios, by contrast, take longer to recover
post-bottleneck because new alleles arise slowly and
do not necessarily increase values of M (Peery et al.
2012).

Evidence from M ratio tests suggests that assem-
blages of P. zijsron and P. pristis on the west coast
and P. clavata and P. zijsron in the Gulf of Carpen-
taria may have experienced population bottlenecks.
Detection of genetic bottlenecks in endangered spe-
cies is often hindered by the combination of life
 history parameters (long-lived, overlapping genera-
tions) and low statistical power due to concomitant
small sample sizes and an insufficient number of
genetic markers (Peery et al. 2012). Mounting evi-
dence suggests that in order to detect bottlenecks in
such species, the bottleneck must be severe and of
sufficient duration, and the population should be
sampled many generations after the event (Peery et
al. 2012). Given the difficulty in detecting bottle-

necks in endangered species, the bottleneck that
occurred in Pristis sawfishes in Australian waters
must have been severe and have occurred some time
ago (see Peery et al. 2012). In comparison, genetic
bottlenecks were not detected in the remaining pop-
ulation of P. pectinata in southwest Florida, despite
this species experiencing a 95 to 99% decline in US
waters (Simpfendorfer 2000, Chapman et al. 2011).
The inability to detect a bottleneck in P. pectinata
was attributed to the longevity of the species, which
slows the process of genetic drift, or the southwest
Florida population never reaching severely low num-
bers for a sufficient duration to produce a bottleneck
(Chapman et al. 2011). Despite the apparent diffi-
culty in detecting bottlenecks in long-lived species
such as elasmobranchs, bottlenecks have also been
detected using M ratios in the scalloped hammer-
head Sphyrna lewini in the eastern Pacific Ocean
(Nance et al. 2011) and the white shark Carcharodon
carcharias in the northwest Atlantic (O’Leary et al.
2015). The values of M for S. lewini and C. carcharias
were comparable to those for Pristis sawfishes in
Australian waters (Nance et al. 2011, O’Leary et al.
2015). The bottleneck in S. lewini was attributed to
historic processes following the Last Glacial Maxi-
mum (~18 000 to 20 000 yr ago, Nance et al. 2011),
while that for C. carcharias was suggested to be the
result of population declines during the mid to late
20th century (O’Leary et al. 2015).

Population bottlenecks can result from contempo-
rary (i.e. 100 to 200 yr) declines in abundance or from
historical processes, such as founder effects during
range expansions over time scales of 1000s to 10 000s
of years (Hauser et al. 2002, Stow et al. 2006). mtDNA
control region data collectively suggest there has
been a relatively recent (evolutionarily) range ex -
pansion in each of the Pristis sawfishes in Australian
waters (Phillips et al. 2011). This is evidenced by sig-
nals of population growth in the mtDNA marker
(Phillips et al. 2011), the presence of historic (i.e. not
contemporary) maternal gene flow in each species
between the west coast and the Gulf of Carpentaria,
and the signature of population bottlenecks. The
population bottlenecks could indicate founder effects
occurring during the colonization of new habitats
during range expansions. A more evolutionarily re -
cent range expansion in each of P. clavata and P. zijs-
ron, as evidenced by more recent population di -
vergence and more recent/higher rates of historic
maternal gene flow, could account for the more pro-
nounced bottlenecks in these species. Range expan-
sions in coastal marine species are usually attributed
to changes in coastline morphology associated with
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fluctuating sea levels during the glacial cycling of the
Pleistocene (Lukoshek et al. 2007, Swatdipong et al.
2009). In northeastern Australia, the Pleistocene was
characterized by the repeated emergence of the Tor-
res Strait land bridge (in the area that is currently the
Gulf of Carpentaria) at low sea levels (Voris 2000).
The assemblages of P. clavata and P. zijsron in these
waters may have been subject to cycles of range
expansion and contraction as habitat availability
changed during this time period in the Gulf of Car-
pentaria (Phillips et al. 2011), contributing to the
more pronounced population bottlenecks in these
species. The range expansion in P. pristis, on the
other hand, occurred much earlier, perhaps allowing
more time for populations to recover from a founder
effect during range expansion. P. pristis may not
have been as adversely affected by the emergence of
the Torres Strait land bridge because they utilize
freshwater rivers as juveniles, and expansive rivers
remained in the Gulf of Carpentaria even at low sea
levels (Voris 2000, Phillips et al. 2011).

Demographic history provides a plausible explana-
tion for the observed levels of genetic diversity in
Pristis sawfishes in Australian waters. However, this
explanation does not exclude the possibility that con-
temporary bottlenecks have also occurred as a result
of anthropogenic activities (Cavanagh et al. 2003). In
the absence of historic records for Pristis sawfishes in
Australian waters, it is difficult to disentangle the re -
lative influence of contemporary versus historic fac-
tors on contemporary patterns of genetic diversity
(see Costello et al. 2003, Johansson et al. 2006). The
most direct way of resolving this uncertainty is to
compare levels of genetic diversity in historic and
contemporary populations, for example, of sawfishes
from approximately 100 yr ago and today, to deter-
mine if levels of genetic diversity have been fairly
stable for the past 100 yr (e.g. Ludwig et al. 2000,
Hoelzel et al. 2002, Larson et al. 2002, Leonard 2008).
While this is not a viable possibility for many species
of conservation concern, for sawfishes, historic dried
rostra readily available in public and private collec-
tions provide a means to generate genetic data for
historic sawfish populations (see Leonard 2008, Phil -
lips et al. 2009). Given that Pristis sawfishes in Aus-
tralian waters have experienced population bottle-
necks, whether they be historic, contemporary or
both, the preservation of remaining genetic diversity
should be a high conservation priority. This is espe-
cially true for the maternal lineages of each species,
as levels of mtDNA diversity were moderate to
severely low, and recovery of genetic diversity is a
slow, evolutionary process (Phillips et al. 2011).
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Species Locus WC GoC

P. clavata Ppe4 0.933 0.846
Ppe5 0.826 0.667
Ppe69 1.11 0.625
Ppe122 1.000 0.889
Ppe152 0.889 0.800
Ppe165 0.533 0.714
Ppe179 0.867 0.714
Ppe186 0.917 0.700

P. zijsron Ppe4 1.00 0.800
Ppe88 0.667 0.515
Ppe152 0.500 0.571
Ppe165 0.586 0.684
Ppe172 0.500 0.400
Ppe179 0.800 0.770
Ppe180 0.522 0.429
Ppe186 0.700 0.900

P. pristis Ppe4 0.923 1.000
Ppe5 0.920 1.148

Ppe122 0.700 0.700
Ppe172 0.692 0.741
Ppe180 0.325 0.462
Ppe186 0.708 1.00

Appendix

Table A1. M ratio tests at each microsatellite locus in each of
Pristis clavata, P. zijsron, and P. pristis from the west coast 

(WC) and the Gulf of Carpentaria (GoC) in Australia
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