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Is selenoprotein K required for Borrelia 
burgdorferi infection within the tick vector 
Ixodes scapularis?
Deepak Kumar1, Monica Embers2, Thomas N. Mather3 and Shahid Karim1*

Abstract 

Background: Tick selenoproteins are involved in regulating oxidative and endoplasmic reticulum stress during pro-
longed tick feeding on mammalian hosts. How selenoproteins are activated upon tick-borne pathogen infection is yet 
to be defined.

Methods: To examine the functional role of selenoprotein K in Borrelia burgdorferi infection within the tick host Ixodes 
scapularis, RNA interference (RNAi)-based gene silencing was performed.

Results: Selenoprotein K is an endoplasmic reticulum (ER)-resident protein and a component of the ERAD complex 
involved in ER homeostasis. A qRT-PCR assay revealed the significant upregulation of selenogene K (selenoK) expres-
sion in B. burgdorferi-infected tick tissues. Silencing of the selenoK transcript significantly depleted B. burgdorferi copies 
within the infected tick tissues. Upon selenoK knockdown, another component of the ERAD complex, selenoprotein 
S (selenoS), was significantly upregulated, suggesting a compensatory mechanism to maintain ER homeostasis within 
the tick tissues. Knockdown of selenoK also upregulated ER stress-related unfolded protein response (UPR) pathway 
components, ATF6 and EIF2.

Conclusions: The exact mechanisms that contribute to depletion of B. burgdorferi upon selenoK knockdown is yet to 
be determined, but this study suggests that selenoK may play a vital role in the survival of B. burgdorferi within the tick 
host.
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Background
In the USA, reported vector-borne diseases are predomi-
nantly tick-borne; for example, there are approximately 
329,000 cases of Lyme disease annually in the USA. A 
recent CDC study based upon vector-borne disease cases 
reported to the National Notifiable Disease Surveillance 
System from 2004 to 2016 revealed 491,671 cases of tick-
borne infectious diseases (76.5% of all vector-borne dis-
eases) (http://ww.cdc.gov/mmwr) [1]. In the USA, Lyme 
disease-causing B. burgdorferi spirochetes are primarily 
harbored by the blacklegged tick I. scapularis [2].

Tick blood-feeding also generates toxic levels of reac-
tive oxygen species (ROS) that could damage lipids, 
proteins and DNA, and promote mutation, cellular dys-
function and cell death. To successfully feed and survive, 
ticks must somehow prevent these detrimental effects 
and promote the beneficial aspects of ROS, which sug-
gests that there are precise regulatory strategies for main-
taining appropriate ROS levels both within the tick and 
possibly at the tick-host interface. Our previously pub-
lished studies have shown an adaptive coevolutionary 
process that has enabled tick-borne pathogen survival by 
manipulating an antioxidant defense system associated 
with selenium including a full set of selenoproteins and 
other antioxidants [3–12]. Generation of ROS is among 
the first lines of host defense against invading microbes 
[13, 14].
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Selenoproteins exhibit diverse biological functions 
such as detoxification of peroxides, regeneration of 
reduced thioredoxin and reduction of oxidized methio-
nine residues by oxidation of the selenium  (Se−) active 
site [15–17]. In the last decade, significant progress has 
been made in clarifying the functions and physiologi-
cal roles of vertebrate selenoproteins; new selenoprotein 
families have been identified, and new functions have 
been assigned to previously characterized selenoproteins. 
Some of the newer specific functions of selenoproteins 
involve removal of hydrogen peroxide, repair of oxida-
tively damaged proteins, control of cytoskeleton/actin 
assembly, protein folding and mitigating ER stress as part 
of the endoplasmic reticulum associated degradation 
(ERAD) complex [17], among others. Tick selenoproteins 
have been shown to play an important role in mitigating 
oxidative stress [3–12], pathogen colonization [5, 7–9, 11, 
18–20] and microbiota maintenance [9, 10, 12].

A study using a tick-pathogen model has shown that the 
initial stage of transmission of a pathogen by an arthro-
pod vector is influenced by gene expression changes in 
both vectors and pathogens [21]. However, there is a lack 
of knowledge on how gene expression within the vec-
tor is altered by the presence of the vector-borne path-
ogen. Therefore, the present study was designed to test 
the hypothesis that B. burgdorferi infection activates 
upregulation of selenogene K expression in order to sur-
vive within the tick host, I. scapularis, before transmis-
sion to the mammalian host. To test this hypothesis, a 
qRT-PCR assay was used to determine the expression 
of selenoK in B. burgdorferi-infected I. scapularis tissues 
over the course of a feeding period. An RNA interference 
approach also was used to silence selenogene K expres-
sion in B. burgdorferi-infected ticks to examine pathogen 
survival within the tick vector.

Methods
Materials
All common laboratory supplies and chemicals were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA), Fisher 
Scientific (Grand Island, NY, USA) or Bio-Rad (Hercules, 
CA, USA) unless otherwise specified.

Bioinformatics analysis of selenoprotein K
The full-length gene sequence of I. scapularis sele-
noK (GenBank: XM_002403043.1) was obtained from 
the NCBI database. Corresponding protein sequences 
for I. scapularis selenoK (NCBI Accession number: 
XP_002403087.1) were aligned with selenoK protein 
sequences from other organisms such as Amblyomma 
maculatum, A. americanum, Gallus gallus, Rattus nor-
vegicus, Mus musculus, Equus caballus, Homo sapiens, 
Macaca mulatta, Pan troglodytes and Pongo abelii by 

using Clustal Omega [22] for multiple sequence align-
ment. selenoK protein sequences aligned by Clustal 
Omega were refined by eye and presented by Jalview v.2.7 
[23]. Additionally, the freely available online tool SECIS-
search3 (http://sebla stian .crg.es/) was used for the pre-
diction of the SECIS (Selenocysteine Insertion Sequence) 
element in the tick selenoK nucleotide sequence, required 
for amino acid selenocysteine (Sec) insertion during 
translation [24]. Subcellular localization of tick selenoK 
was also predicted by using the freely available online 
algorithm DeepLoc-1.0 (http://www.cbs.dtu.dk/servi ces/
DeepL oc/index .php) which predicts the subcellular local-
ization of eukaryotic proteins [25].

Ticks and tissue dissections
Ticks were purchased from the Oklahoma State Univer-
sity Tick Rearing Facility. Adult male and female I. scapu-
laris were kept according to standard practices [26] and 
maintained in the laboratory as described in our previ-
ously published work [12]. Unfed female adult I. scapu-
laris were infected with laboratory grown B. burgdorferi 
strain B31.5A19 using the capillary feeding method at 
Tulane National Primate Research Center [27]. Naturally 
B. burgdorferi-infected adult I. scapularis were collected 
from field (Kingston, Rhode Island) and maintained in 
the laboratory using standard procedures [28]. Rabbit 
was used as host for tick blood-feeding. The blood-fed 
adult female I. scapularis were dissected within 60 min of 
removal and collection from the rabbit. Tick tissues were 
dissected and washed in M-199 buffer as described previ-
ously [12]. Salivary glands and midguts from individual 
I. scapularis were stored in RNAlater (Life Technologies, 
Carlsbad, CA, USA) at − 80 °C until used.

Total RNA isolation, cDNA synthesis, dsRNA preparation 
and transcriptional expression
The methods to extract total RNA, cDNA synthesis, dou-
ble-stranded RNA for selenoK, irrelevant gene LacZ, and 
qRT-PCR assays were performed as described previously 
[9, 12]. RNA was extracted from individually-dissected 
tick tissues (salivary gland, midgut), and cDNA was syn-
thesized from each of them to check whether they were 
infected or not. Only tissues which were found infected 
were pursued for further work. The concentration of 
dsRNA used was 1000  ng/µl. One microliter of dsRNA 
was injected into the tick hemocoel. To investigate the 
role of selenoK in tick feeding success and pathogen sur-
vival, 45 unfed adult female capillary-fed (B. burgdorferi 
culture) ticks were injected with 1000 ng of selenoK-
dsRNA into the hemocoel using a Hamilton syringe fit-
ted with a 33-gauge needle [29]. As a control, a total of 
45 unfed adult capillary-fed (B. burgdorferi culture) ticks 
were injected with 1000 ng of lacZ-dsRNA (an irrelevant 
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control dsRNA). After the injection of dsRNA, ticks were 
kept at 37  °C overnight under high humidity to confirm 
tick survival. Ixodes scapularis ticks were then placed on 
rabbit ears [30]. Ixodes scapularis naturally infected with 
B. burgdorferi were collected from Rhode Island to deter-
mine the role of selenoK silencing on pathogen infection. 
A total of 90 female adult ticks were divided into two 
groups: one group of 45 female unfed ticks was injected 
with irrelevant dsRNA-lacZ; the second with selenoK 
dsRNA followed by tick infestation on rabbit ears as 
described earlier.

PCR‑based detection of B. burgdorferi
Borrelia burgdorferi was detected in the tick tissues 
using the flaB gene in a PCR assay [31]. The flaB gene 
and other primers used in the experiments are provided 
in Additional file  1: Table  S1. The PCR conditions were 
followed from a previous study with slight modification 
[31]: 1 cycle of 94 °C for 5 min; 50 cycles of 94 °C for 30 
s, 50 °C for 30 s and 68 °C for 1 min; and 1 cycle of 72 °C 
for 8 min.

Quantification of B. burgdorferi in I. scapularis tissues
The principle of quantification of B. burgdorferi load was 
followed from our studies established to quantify the load 
of the spotted fever group rickettsia, Rickettsia parkeri, in 
tick tissues [9]. Borrelia burgdorferi load in I. scapularis 
tissues were estimated by quantifying the number of cop-
ies of B. burgdorferi flagellin gene, flaB [32] present per 
copy of housekeeping gene Rps4 [30]. A list of all primers 
used is provided in Additional file 1: Table S1. The gene 
flaB from B. burgdorferi and Rps4 from I. scapularis were 
amplified, purified, sequenced and verified prior to fur-
ther assays. Their standard curves were determined by 
qRT-PCR based on serially-diluted PCR products. qRT-
PCR conditions were as follows: 50 °C for 3 min, 95 °C for 

10 min; followed by 40 cycles of 95 °C for 15 s, 60 °C for 
30 s and 72 °C for 30 s.

Statistical analysis
All data were expressed as mean values ± standard error 
of the mean (SEM) unless otherwise indicated. Statistical 
significance between two experimental groups or their 
respective controls was determined by a t-test (P-value, 
< 0.05). P < 0.05 was considered statistically significant. 
Comparative differences among multiple experimen-
tal groups were determined by analysis of variance 
with P-values < 0.05 considered statistically significant 
(GraphPad Prism 6.05; GraphPad Software, La Jolla, CA, 
USA). Transcriptional expression levels were determined 
using Bio-Rad CFX MANAGER v.3.1, and the gene 
expression values obtained were considered statistically 
significant if a P-value of 0.05 was obtained when com-
pared with the control.

Results and discussion
Bioinformatics analysis
Selenoprotein K is a small (~ 10  kDa) and single span-
ning transmembrane protein localized on the ER mem-
brane [33]. It contains the selenocysteine residue near 
the c-terminus in the cytosolic region, which remains 
in a highly disordered state [34]. Ixodes scapularis, 
Amblyomma maculatum, and A. americanum selenoK 
sequences (Fig.  1) demonstrate 77% amino acid iden-
tity with each other but share only 38–40% amino acid 
identity with Homo sapiens. Interestingly, many of the 
assembled transcripts in our unpublished RNA-Seq data 
are novel and not found in the I. scapularis annotation. 
This is not surprising, since the genome of I. scapularis 
has 50% coverage. Based on bioinformatics analysis, I. 
scapularis contains most of the selenogenes which have 
already been characterized in A. maculatum [5–7, 9, 
10]. Interestingly, I. scapularis selenoK has 77% amino 

Fig. 1 Multiple sequence alignment of selenoK. Tick selenoK sequences (as shown above, I. scapularis, A. maculatum and A. americanum) 
demonstrate 77% amino acid identity with each other but share only 38–40% amino acid identity with Homo sapiens 
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acid identity with that of A. maculatum suggesting con-
served functions. In this work, the selenocysteine inser-
tion element (SECIS) of tick selenoK was also predicted 
by algorithm SECISSearch3 [24]. The SECIS element is a 
hairpin loop structure required in a selenoprotein tran-
script for incorporation of selenocysteine (Sec) residue 
during translation. SECISSearch3 algorithm has been 
developed to detect SECIS elements in prospective sele-
nogene sequences by using different parameters [24]. 
SECISSearch3 prediction is the combined output of three 
sources: infernal, used by the program cmsearch, SECIS 
model, used by the program Covels and the third source 
is the original program SECISSearch [35, 36]. Submission 
of I. scapularis selenoK sequence to the SECISSearch3 
algorithm resulted into output data (Additional file  2: 
Figure S1). Generally, vertebrates have an infernal score 
of > 20 and a Covel score of > 15; in other species these 
scores are generally lower. The Covel score provides a 
quantitative measure of how better fit is the prediction to 
the SECIS model. An RNAfold algorithm is run to calcu-
late the minimum free energy of SECIS structures among 
those suggested. Start to end positions of the SECIS ele-
ment, and the strands on which it is located, is also given 
in the output data. The marker for SECIS element predic-
tion quality is based on the experience of manual analysis 
of thousands of SECIS elements, and is graded as A, B or 
C in decreasing order of prediction quality. In our out-
put data, infernal and Covel scores of the selenoK SECIS 
element were 19.62 and 21.35, respectively (Additional 
file 2: Figure S1). In our data, the grade provided by the 
algorithm to tick selenoK prediction was A, indicating 
the most trustworthy prediction possible under the algo-
rithm parameters.

In the present work, subcellular localization of tick sele-
noK was predicted by DeepLoc-v.1.0 server which uses 
neural network algorithms based on the experimental 
localization of Uniprot proteins [25]. To include the pro-
tein sorting pathways into the algorithm, a hierarchical 
tree with multiple nodes was also designed. Each node of 
the tree represents a binary attempt to assign the protein 
right pathway from high to low in a hierarchical classifi-
cation. As shown in Additional file 3: Figure S2, the prob-
ability score of tick selenoK is much higher at the ER/
Golgi node than other organelles. Thus, our data suggest 
that the localization of tick selenoK is in the endoplasmic 
reticulum ER/Golgi membrane (Additional file 3: Figure 
S2). A previous study on Drosophila has also reported 
selenoK integration into both of these cell organelles [37]. 
Attention plot (Alpha) in Additional file 3: Figure S2 indi-
cated that the specific interspersed region of the seleno-
protein K (residue number ~ 20–40 from the N-terminal) 
contributes in binding to ER/Golgi membrane.

It has been suggested that all of the characterized sele-
noproteins can reduce ROS levels in the cell. However, 
at the physiological level, their specific roles are yet to 
be discovered in arthropod vectors like ticks. selenoK 
lacks the defined redox motif C-X-X-Sec (X = any amino 
acid) found in other known selenoproteins. Thus, at this 
time, it cannot be firmly stated that selenoK has an anti-
oxidant role in vivo. It could be speculated that selenoK 
is part of the protein complex, which demonstrates its 
antioxidant property (Additional file  3: Figure S2). The 
exact cellular localization and function of tick selenopro-
tein in hematophagy and pathogen infection has yet to be 
determined.

Temporal expression during ingestion of the blood meal
Our recently published work showed the pathogen-
induced expression of several tick selenoproteins [7, 9]. 
Several studies implicated the involvement of selenoK in 
mitigating endoplasmic reticulum (ER) stress generated 
upon microbial infection and elevated oxidative stress 
[38–40]. These and bioinformatics results prompted 
us to determine the the functional role of selenoK in B. 
burgdorferi infection of the tick vector. The B. burgdor-
feri infection level of capillary-fed and naturally-infected 
I. scapularis was determined using flaB (flagellin) gene 
PCR. The B. burgdorferi infection level in capillary-fed 
ticks and field-collected ticks ranged between 10–20%. 
Borrelia burgdorferi multiplies in midgut tissues before 
trafficking to the salivary glands. Therefore, the time-
dependent expression of ER-resident selenoK, selenoS 
and UPR pathway genes ATF6 and EIF2 were examined 
in B. burgdorferi-infected midgut tissues. Transcrip-
tional expression of selenoK significantly increased from 
2- to 20-fold in tick tissues from day 2 to day 8 of blood-
feeding (2 days, t = 4.627, P = 0.0098; 4 days, t = 10.94, 
P = 0.0004; 6 days, t = 24.8, P < 0.0001; 8 days, t = 3.525, 
P = 0.0243) (Fig. 2) supporting its critical role in B. burg-
dorferi colonization of tick tissues. Other upregulated 
ER-stress related genes during blood-feeding are selenoS 
(8 days, t = 3.462, P = 0.0258), ATF6 (2 days, t = 3.404, 
P = 0.0272; 6 days, t = 7.505, P = 0.0017; 8 days, t = 3.142, 
P = 0.0348), EIF2 (4 days, t = 2.812, P = 0.0482). selenoK 
is an ER-resident selenoprotein and one of the constitu-
ents of the ERAD complex which has a role in mitigating 
ER stress [41, 42]. Previous studies have also revealed that 
ER stress increases during pathogen infection and ele-
vated oxidative stress [38–40]. According to one estimate, 
70–80% of oxidative stress in the cell is due to mitochon-
dria and mitochondrial ROS, and pathogen infection can 
disturb the ER homeostasis by disrupting protein folding 
and ER calcium ion balance which may result in elevated 
ER stress levels [43]. A previous study has already shown 
a physical and biochemical interaction between the ER 
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and mitochondria [43, 44]. Since selenoK is an ER-resi-
dent selenoprotein and is one of the constituents of the 
ERAD complex which has a role in mitigating ER stress 
[41, 42], the significant upregulation of selenoK provided 
the basis  of suggesting a functional role of selenoK in  

B. burgdorferi colonization within the tick. Other ER-
stress related genes considered in this study during 
blood-feeding were SelS, ATF6 and EIF2. Unfolded pro-
tein response (UPR) sensor related genes ATF6 and EIF2 
also demonstrated upregulation during blood-feeding.

SelenoK knockdown and B. burgdorferi infection
Injection of selenoK-dsRNA into I. scapularis female 
ticks resulted in an 80–90% reduction in corresponding 
transcript levels in the salivary gland (SG) and midgut 
(MG) tissues (Fig. 3a). One of the limitations of this study 
was that the B. burgdorferi infection rate was 10–20%, 
hence it was necessary to check every tick for infection 
and to quantify the infection level. In capillary-fed ticks, 
the infection level varied from tick to tick, whereas natu-
rally-infected ticks had a more uniform level of infection. 
Interestingly, selenoK silencing significantly upregulated 
the expression of selenoS, suggesting a compensatory 
mechanism in this tick species, also shown in a recent 
study from our laboratory [9].

It has been reported that two cellular functions exist for 
selenoK, including ER stress mitigation by participation in 
the ER-associated protein degradation (ERAD) pathway, 
and regulation of Ca2+ flux from the ER [34]. Its specu-
lative role in ERAD is based on the evidence that its tran-
scripts were upregulated during ER stress [33], and later 
an ER stress response element (ERSE) was identified in 
the promoter of human selenoK [33]. Studies have dem-
onstrated that selenoK is bound within the ERAD com-
plex along with selenoS, p97 (VCP; valosin-containing 

Fig. 2 Temporal expression of ER-stress related genes in Borrelia 
burgdorferi-infected ticks. ATF6 and EIF2 are unfolded protein 
response related sensor genes while selenoK and selenoS are 
components of the ERAD complex involved in ER stress mitigation 
through the ERAD pathway. Gene expression of the mentioned 
genes was normalized with that of clean tick midgut gene expression 
(indicated as 1 on the y-axis). Statistically significant gene expression 
values (P < 0.05) are indicated with * (asterisk). Rps4 was used as a 
housekeeping gene. Abbreviations: ATF6, activating transcription 
factor 6; EIF2, eukaryotic initiation factor 2 (eIF2)

Fig. 3 Effect of selenoK knockdown on Borrelia burgdorferi infection (capillary-fed induced infection). a Compensatory expression of ER stress genes 
when selenoK is knocked down in B. burgdorferi-infected tick tissues. selenoS, ATF6 and EIF2 demonstrate compensatory expression. selenoS and 
selenoK localized on ER membrane and are components of the ERAD, selenoS demonstrates compensation for selenoK in both tissues (SG, MG). b, 
c Impact of selenoK knockdown on B. burgdorferi infection in SG (b) and MG (c) tissues. Statistically significant gene expression values (P < 0.05) are 
indicated with * (asterisk). Rps4 was used as a housekeeping gene. Abbreviations: ATF6, activating transcription factor 6; EIF2, eukaryotic initiation 
factor 2; IRE1, inositol-requiring enzyme; Rps4, ribosomal protein S4; SG, salivary gland; MG, midgut
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protein) and the Derlins [33, 45]. In the present study, 
upregulation of ATF6 and EIF2 indicated an elevation 
in ER stress (Fig. 3a, for EIF2, t = 3.099, P = 0.0363), and 
upregulation of selenoS (~ 2 folds) in both SG and MG 
(Fig. 3a; for MG tissue, t = 3.143, P = 0.0347; for SG tis-
sue, t = 3.055, P = 0.0379) indicate a partial compensatory 
mechanism (Fig. 3a). Borrelia burgdorferi load was signif-
icantly altered in selenoK knockdown salivary gland and 
midgut tissues (Fig. 3b, c; F(3,8) = 158.7, P < 0.0001). One-
way ANOVA using multiple comparison was used with 
Tukeyʼs test. SelenoS also is one of the components of the 
ERAD complex required to mitigate ER stress. Previous 
studies have shown that selenoK knockout mice appeared 
healthy, fertile and without any ER stress [33], probably 
because of redundancy or compensation [34]. Silencing 
of selenoK showed significant reduction in B. burgdor-
feri copies in both SG and MG tissues (Fig. 3b, c; for SG, 
t = 11.32, P = 0.0003; for MG, t = 4.508, P = 0.0108). The 
uneven infection level of B. burgdorferi in capillary-fed 
ticks prompted us to use naturally infected ticks to con-
firm these results (Fig. 4a, b). Upon selenoK knockdown 
in ticks, naturally infected I. scapularis ticks also demon-
strated reduction in B. burgdorferi load (Fig. 4a, selenoK 
knockdown, t = 15.68, P < 0.0001; Fig.  4b, bacterial load 
reduction, t = 15.82, P < 0.0001).

Conclusions
This proof-of-concept study suggests a role for the ER 
stress machinery in B. burgdorferi colonization and sur-
vival inside ticks. Our data provide a deeper insight into 
the possible role of selenoK in the pathogen colonization 

of tick vectors. The nymphal ticks play an epidemiologi-
cally important role in the infection of humans with B. 
burgdorferi and a detailed mechanistic study to investi-
gate the role of ER-resident selenoproteins in pathogen 
infection and transmission is still needed.

Additional files

Additional file 1: Table S1. Gene-specific PCR and qRT-PCR primers used 
in this study.

Additional file 2: Figure S1. SECIS prediction for Ixodes scapularis selenoK 
(XM_002403043.1) by SECISsearch3 algorithm. SECISsearch3 predicts the 
potential SECIS (selenocysteine insertion sequences) element for eukary-
otes required for translation of selenoprotein from its mRNA.

Additional file 3: Figure S2. Prediction of subcellular localization of 
tick selenoprotein K (XP_002403087.1) by DeepLoc-1.0 algorithm which 
predicts its localization in the ER/Golgi membrane.
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