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Abstract
Background: Staphylococcus aureus is an important pathogen that forms biofilms. The global
regulator sarA is essential for biofilm formation. Since the modulator of sarA (msa) is required for
full expression of sarA and regulates several virulence factors, we examined the capacity of the msa
mutant to form biofilm.

Results: We found that mutation of msa results in reduced expression of sarA in biofilm and that
the msa mutant formed a weak and unstable biofilm. The msa mutant is able to adhere to surfaces
and begins to form biofilm but fails to mature indicating that the defect of the msa mutant biofilm
is in the accumulation stage but not in primary adhesion.

Conclusion: The msa gene plays an important role in biofilm development which is likely due to
its role in modulating the expression of sarA. This finding is significant because it identifies a new
gene that plays a role in the development of biofilm.

Background
Staphylococcus aureus is a gram-positive pathogen that
causes potentially life threatening nosocomial- and com-
munity-acquired infections, such as osteomyelitis and
endocarditis. An important characteristic of S. aureus is its
ability to form a biofilm, a characteristic associated with
several diseases [1]. Bacteria in biofilms are encased in a
polysaccharide glycocalyx [2], which provides them with
protection against host defenses and antimicrobial drugs
[2]. Staphylococcal biofilms form in two distinct stages:
(1) primary adhesion to surfaces by means of adhesins or
cell wall components, and (2) accumulation of multilay-
ered clusters of cells via the production of a polysaccha-

ride [3]. Cells are also able to detach from the biofilm and
disperse to distant sites for colonization or infection.

The staphylococcal accessory regulator sarA is a major
global regulator that is essential for biofilm formation
both in vitro and in vivo [4-6]. Additionally, O'Neill et
al.[7] showed that sarA is essential for biofilm forma-
tion in both MRSA and MSSA. However the mechanism
of sarA regulation of biofilm is not yet understood. Pre-
viously we identified the msa gene as a positive modu-
lator of sarA [8]. We also showed that mutation of msa
resulted in differential expression of several virulence
factors [8]. These findings prompted the present study,
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focused on the role of msa in biofilm formation. We
show here that msa indeed modulates the accumulation
of biofilm in S. aureus.

Results and discussion
The msa mutant has a weak biofilm defect
Prior studies have shown that the modulator of SarA gene
(msa) is required for full expression of SarA, which in turn
is essential for biofilm formation [4,6,8]. To examine the
role of msa in biofilm formation, we generated an msa
mutant in the methicillin resistant S. aureus (MRSA) strain
COL. S. aureus COL was chosen for study because it forms
a biofilm in vitro and is virulent in animal models of endo-
carditis [9,10]. We confirmed the msa mutation, and its
effect on sarA, by measuring transcription levels of msa
and sarA in the wild-type COL strain, the msa mutant, and
the complemented msa mutant by real-time quantitative
PCR (RT-qPCR). As expected, the msa mutant showed no
detectable expression of msa in planktonic cultures or bio-
film (Table 1). Additionally, transcription of sarA was
reduced at least five-fold in these cultures in both plank-
tonic cultures and biofilm (Table 1). These results are con-
sistent with finding from our previous study [8] and show
that msa is a positive modulator of sarA during planktonic
growth as well as biofilm in strain COL.

The biofilm forming capacity of the wild-type COL strain,
the msa mutant, and the complemented msa mutant were
examined by microtiter plate assay. Biofilm formation
was observed in at 6, 12, and 24 h post-inoculation in the
wild-type COL strain and the complemented msa mutant
microtiter plates (Fig. 1). Conversely, there was no evi-
dence of biofilm formation for the msa mutant at 6 or 12
h post-inoculation. At 24 hours post-inoculation, the msa
mutant formed a biofilm that appeared similar to that of
the wild-type COL strain (Fig. 1). These results were repro-
duced at least three times and were confirmed in subse-
quent experiments, suggesting that the msa mutant has a
defect in biofilm growth under steady-state conditions.

To further examine this phenotype, we used flow cells to
test the ability of the msa mutant to form biofilm under

shear forces. Three flow cells coated with human plasma
were each inoculated with the wild-type COL strain, the
msa mutant, and the complemented msa mutant, and
then monitored continuously for biofilm formation while
media flowed through the chamber. Wild-type COL strain
and the complemented msa mutant formed robust and
mature biofilms by 12 hours post-inoculation (Fig. 2).
The msa mutant, however, failed to form a robust and uni-
form biofilm within the flow cell in the first 12 hours (Fig.
2). The gross morphology of the partial biofilm formed by
the msa mutant was similar to those formed by the wild
type strain and the complemented mutant (Fig. 2). How-
ever, while the biofilms formed by the wild-type and the
complemented msa mutant persisted for up to 36 h before
sloughing off, the biofilm formed by the msa mutant rap-
idly disintegrated (Fig. 2). These results were confirmed in
three independent experiments, indicating that the msa
mutant is defective in its ability to form mature biofilms.

Since expression of sarA is essential to biofilm formation,
we wanted to examine the expression of sarA in cells form-
ing a biofilm. We harvested biofilm from flow cells inoc-
ulated with msa mutant and wild-type COL at 24 h post-
inoculation and measured the expression of sarA by RT-
qPCR. We found that sarA expression levels were signifi-
cantly reduced in the msa mutant, suggesting that msa is
required for full expression of sarA in biofilm (Table 1). It
is possible that the weak biofilm formation phenotype of
the msa mutant could be due to a reduction in sarA expres-
sion.

Biofilm formation is a complex process that generally
involves three stages: (1) primary adhesion to surfaces,
(2) accumulation of multilayered clusters of cells, and (3)
detachment. We carried out experiments to determine
which stage of biofilm formation is disrupted in the msa
mutant. Using two different adherence assays, we meas-
ured the ability of cells to attach to surfaces in the presence
of host proteins by coating with human plasma and in
their absence by not coating with plasma (Fig. 3). We
found that the msa mutant had no defect in initial adher-
ence to surfaces. In fact, the msa mutant adhered to sur-

Table 1: Relative expression of msa and sarA in the msa mutant.

Biofilm Planktonic

msa vs. COL Compl. vs. COL msa vs. COL Compl. vs. COL

Gene Function mature (12 hrs) mid late post mid late post

msa modulator of sarA 0.002 1.15 < 0.001 < 0.001 < 0.001 0.95 0.57 0.88
sarA staphylococcal accessory regulator 0.30 0.77 0.22 0.21 0.12 0.76 0.78 0.48

Gene expression of msa and sarA in the msa mutant or the complemented mutant (Compl.) relative to wild-type (COL). Values represent the mean 
ratio of three independent experiments. Expression measurements were done in biofilm and three planktonic growth phases (mid-exponential, late-
exponential and post-exponential).
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faces significantly better than the wild-type COL strain
especially in the catheter assay where no plasma was used
(Fig. 3A). The complemented msa mutant showed a level
of adhesion to surfaces that was similar to wild-type (Fig.
3). These results indicated that primary binding to sur-
faces was not responsible for the biofilm formation defect
in the msa mutant. It was important to test initial adher-
ence to surfaces with or without plasma coating because
binding of host proteins is a major contributor to primary
adhesion. In this case, however, we found that it does not
play a role in the biofilm phenotype of the msa mutant.

A recent study by O'Neill et al. [11] showed that in addi-
tion to primary adherence, fibronectin binding contrib-
utes to intercellular accumulation in biofilm. We
examined the ability of the msa mutant to bind the immo-
bilized ligands by coating microtitre wells with fibronec-
tin or fibrinogen and compared the capacity of the wild
type COL strain, the msa mutant and the complemented
mutant to bind these host proteins. We found that the
wild type strain and the complemented mutant bind both
fibronectin and fibrinogen, however, the msa mutant
binds fibronectin but not fibrinogen (data not shown). In
an effort to explain these results, we examined the expres-

sion of fibronectin-binding protein A (fnbA) and clump-
ing factor (clfA) in biofilm (Table 2). Consistent with the
binding assays, there was no significant difference in
expression levels of fnbA between the three strains, while
the expression of clfA in the msa mutant was significantly
reduced in biofilm. This indicated that the lack of fibrino-
gen binding by the msa mutant is primarily due to lack of
expression of ClfA.

There are many other genes known to be involved in bio-
film formation. The major autolysin, atl, has been shown
to promote adherence of bacterial cells to solid surfaces
[12,13]. The Atl homolog of S. epidermidis, AtlE, has also
been shown to play an important role in primary attach-
ment to polystyrene surfaces [14]. Gene expression stud-
ies using RT-qPCR in the msa mutant revealed that atl
levels were significantly reduced in biofilm (Table 2).
Therefore, our studies with S. aureus strain COL msa
mutant have demonstrated that primary adhesion to sur-
faces with or without a plasma coat does not require full
expression of the major autolysin Atl. This is consistent
with previous findings in which enhanced biofilm forma-
tion occurred in the absence of the major autolysin Atl
[15]. Collectively, these results suggest that the strain COL

Biofilm formation in the msa mutant in microtiter platesFigure 1
Biofilm formation in the msa mutant in microtiter plates. The wild type strain COL, the msa mutant and the comple-
mented msa mutant were grown in TSB supplemented with NaCl and glucose. Cultures were incubated for 6, 12 and 24 hours 
in the wells of microtiter plates with pre-coating with plasma proteins. Biofilm was quantitated by staining with crystal violet 
and elution with ethanol as described in text. All values have been normalized to wild type levels which were arbitrarily set as 
100%.
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msa mutant is not defective in primary adhesion to sur-
faces, but that the defect manifests in the accumulation
stage of biofilm formation.

msa mutant is defective in the accumulation stage of 
biofilm formation
We investigated the possibility that mutation of the msa
gene causes a growth defect that could explain a weak bio-
film. We measured growth rates of the wild-type strain,
the msa mutant, and the complemented msa mutant in
planktonic cultures in TSB and found no significant differ-
ence between the msa mutant and the wild-type strain
(data not shown). This was important to verify in order to
eliminate the possibility of a growth defect caused by
mutation of msa. We then measured the rate of accumula-
tion of cells within the flow cell system for wild-type and
msa mutant strains. In order to monitor cell deposition,
we introduced into our strains plasmid pSB2019 (a kind
gift from Dr. Phillip J. Hill; [16], which carries the consti-
tutively expressed Gfp3), and used confocal microscopy
to monitor biofilm formation at regular intervals. Consist-
ent with our previous observations, there was no signifi-
cant difference in initial adherence to the surface or

formation of microcolonies between the msa mutant and
the wild-type. However, the wild-type strain formed a
thick biofilm as early as four hours after inoculation,
while the msa mutant failed to develop a multilayered bio-
film in the first six hours (Fig. 4). We observed a specific
absence of biofilm "towers" in the msa mutant biofilms,
as compared to the wild-type biofilms, further suggesting
that the defect in biofilm formation in the msa mutant
occurs in the accumulation stage.

To further characterize the biofilm formation defect in
cells lacking msa, we used RT-qPCR to analyze the expres-
sion of icaA (ica operon), arcA (arginine deiminase), tcaR
(transcription regulator), atlA (autolysin), alsS (alpha-ace-
tolactate synthase), spxA (transcriptional regulator), genes
that are reported to be involved in biofilm development
(Table 2). Some of these selected loci are regulated by sarA
(alsS, atlA, and icaA); the others are not directly associated
with the sarA regulon (arcA, spx, and tcaR). Expression lev-
els of these genes were analyzed in biofilm using the wild-
type strain COL, the msa mutant, and the complemented
msa mutant (Table 2). A change in expression level of two-
fold or higher was considered significant (Table 2).

Biofilm formation in the msa mutant in flow cellsFigure 2
Biofilm formation in the msa mutant in flow cells. The wild type strain COL, the msa mutant and the complemented 
msa mutant were used to inoculate flow cells. TSB supplemented with NaCl and glucose was provided at a flow rate of 0.5 ml/
minute. Biofilm formation was monitored for 36 hours. Arrow indicates the direction of flow of medium.



BMC Microbiology 2008, 8:221 http://www.biomedcentral.com/1471-2180/8/221

Page 5 of 9
(page number not for citation purposes)

Mutation of msa resulted in a significant increase in alsS
expression in biofilm. The alsSD operon encodes acetolac-
tate synthase and an acetolactate decarboxylase. Previous
studies have reported that mutation of the alsSD operon
in S. aureus resulted in a biofilm defect [17,18]. The bio-
film defect of the alsSD mutant was attributed to the role
of this operon in the production of acetoin from pyruvate
[18,19]. Acetoin production is necessary for acid tolerance
within biofilms [5,20]. The effect of over-expression of the
alsSD operon as observed in the msa S. aureus mutant on
biofilm formation is not clear. One might speculate that
premature build up acetoin in the medium could signal
exhaustion of glucose and lead to detachment of cells
from biofilm. Further studies are needed to explore this
possibility.

Mutation of msa resulted in a significant decrease in
expression of arcA in biofilm (Table 2). The arcA gene
encodes arginine deiminase which is a member of the
arginine deaminase (ADI) pathway. This pathway is used
to generate energy using arginine under anaerobic condi-
tions, [21-23]. The results of several studies point to the
importance of the ADI pathway in biofilm formation and
pathogenesis. Some oral bacteria have been shown gener-
ate ammonia via the ADI pathway to maintain pH home-
ostasis in biofilms [24]. Other studies have shown that the
ADI pathway was induced during biofilm formation [5].
Additionally, bacteria in biofilm selectively utilize six
amino acids, including arginine [25], further demonstrat-
ing the importance of the ADI pathway in biofilm forma-
tion and pathogenesis and may explain the msa mutant

Initial adherence assaysFigure 3
Initial adherence assays. A. Catheter adherence assay. Standardized overnight cultures of the wild type strain COL, the msa 
mutant and the complemented msa mutant were incubated with catheters at 37°C for 30 minutes. Results represent the mean 
± SEM of three independent experiments. Student's paired t test was used to compare the msa mutant and the complemented 
msa mutant to the wild type strain (*denotes statistical significance of P < 0.05). B. Standardized overnight cultures of the wild 
type strain COL, the msa mutant and the complemented msa mutant were incubated for 1 hour at 37°C in plasma-coated 
microtitre wells. Adherent cells were then fixed with ethanol and then stained with Crystal Violet. Ethanol was then used to 
elute the wells and absorbance was measured. Results represent the mean ± SEM from three independent experiments.
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Table 2: Relative expression of biofilm-related genes.

Biofilm

Gene Function msa vs. COL compl. vs. COL

fnbA fibronectin-binding protein 0.79 0.83
clfA clumping factor A 0.16 0.68
atl bifunctional autolysin 0.35 0.88
alsS α-acetolactate synthase 9.77 1.51
arcA arginine deiminase < 0.001 0.56
icaA intercellular adhesin 0.72 2.06
spxA transcriptional-regulator 0.72 1.16
tcaR transcription regulator 1.12 0.76

Relative expression of several biofilm-related genes in the msa mutant or the complemented mutant (compl.) relative to wild-type (COL) during 
biofilm growth. Values represent the mean ratio of three independent experiments. Genes with significant changes (twofold or higher) in 
expression are highlighted.

Confocal microscopy images of biofilmFigure 4
Confocal microscopy images of biofilm. The msa mutant and the wild type strain COL were imaged 6 hours post inocu-
lation of flow cells. The panels on the left are an overlay of multiple slices, and the side frames of the panels on the right show 
the z-stack showing the thickness and the architecture of the biofilm. The line in the z-stack indicates the level at which the 
photograph of the x-y plane was taken. Photographs were taken at a magnification of ×600.
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biofilm phenotype. However, when arcD was disrupted in
the S. aureus strain UAMS-1, the mutant formed effective
biofilms and were as virulent as wild-type in a catheter
infection mouse model despite the fact that PIA was sig-
nificantly reduced [25]. These discrepant results may be
due to differences in strains, growth conditions, or infec-
tion model but they clearly indicated the need for more
studies in the role of arginine metabolism in biofilm
development and pathogenesis.

Biofilm accumulation relies on cell-cell adhesion medi-
ated by the polysaccharide intercellular adhesin (PIA),
which is produced by the icaADBC operon, and was
shown to play a major role in biofilm accumulation [26].
Recent studies, however, have indicated that the icaADBC
operon is not essential for biofilm formation in some
strains [5,15,27,28]. We studied the expression levels of
genes encoded by this operon and found that the msa
mutation reduced the expression of icaA in the post-expo-
nential growth phase of planktonic cultures only (data
not shown). In biofilm, however, the expression of icaA in
the mutant was not significantly different from wild-type
(Table 2). The ica-dependent pathway is primarily regu-
lated by the icaR repressor [29]. When IcaR becomes acti-
vated by Spx, PIA levels are reduced [30,31]. We found
that there was no significant difference in expression of
icaR or spx in the msa mutant compared to the wild-type
(data not shown). This is consistent with findings by Tu
Quoc et al. [32] that some biofilm-defective mutants did
not show altered PIA levels. Additionally, O'Neill et al. [7],
recently showed that glucose-induced biofilm formation
in MRSA strains is ica-independent. This is relevant to our
data, since the COL strain is a MRSA strain and glucose
was added to the culture media to induce biofilm in this
study suggesting that msa is involved in biofilm formation
using an ica-independent mechanism as was previously
described in some strains [5,33,34]. Another important
locus, sasG, which is similar to accumulation- associated
protein in S. epidermidis has been shown to play a role in
cell-cell adhesion and accumulation of biofilm [35,36],
however, there was no change in expression of sasG
between the msa mutant and wild type grown in plank-
tonic cultures as determined by DNA microarray experi-
ments in our lab (data not shown).

Conclusion
In summary, mutation of the msa gene in strain COL of S.
aureus results in a weak biofilm at the accumulation stage
resulting in an immature biofilm. This defect is likely
mediated by the reduced expression of sarA in the msa
mutant. Our results suggested that the weak/unstable bio-
film defect in the msa mutant is an intermediate pheno-
type between the sarA mutant and wild-type. However, we
cannot rule out the contribution of other loci that fall
under the influence of msa in a sarA-independent manner

(e.g. arcA). Our findings emphasize the complex nature of
biofilms and indicated that several independent regula-
tors and environmental stimuli contribute to the estab-
lishment of sessile communities of S. aureus. The
intermediate phenotype of the biofilm formed by the msa
mutant is a helpful clue in deciphering the sarA-mediated
mechanism of biofilm formation, which is still unclear.
Sequence analysis shows that Msa is a putative membrane
protein [8,37] suggesting that it may play a role in envi-
ronmental sensing that feeds into the sarA regulon to con-
tribute to biofilm formation.

Methods
Bacteria and growth conditions
The S. aureus biofilm-forming strain COL was used in this
study. Strains were grown on tryptic soy agar (TSA) or in
tryptic soy broth (TSB) at 37°C under constant aeration,
supplemented with antibiotics where appropriate. Gener-
alized transduction with phage Φ11 was used to generate
an msa mutant and a complemented msa mutant in the
COL strain, as described previously [8]. The media used in
flow cells and microtitre plate assays was TSB supple-
mented with 3% sodium chloride and 0.5% glucose.

Biofilm assays
Biofilm assays were performed in microtitre plates and
flow cells, as described previously [4,5]. Briefly, flow cells
(Stovall Life Science, Greensboro, NC) were pre-coated
with human plasma. A suspension of bacteria from an
overnight culture were then introduced into the flow cells
by injection and allowed to incubate at 37°C for one
hour. Media was then pumped through the flow cells at a
flow rate of 0.5 ml/min. Flow cells were observed and
photographed periodically. No antibiotic selection was
used when growing the complemented msa mutant in
biofilm.

Binding assays
Host proteins binding assays were performed as we
described previously [5]. These assays were used to com-
pare the capacity of the msa mutant to bind fibrinogen
and fibronectin.

Initial adherence assay
We used two assays to measure the capacity of the msa
mutant to bind surfaces with or without pre-coating with
plasma. The first one was performed by modifying the
microtitre biofim assay described previously [4]. Briefly,
overnight cultures of S. aureus test strains were diluted to
an OD560 of 0.1 in fresh TSB, and 200 μl was added to each
well (polystyrene pre-coated with human plasma) in trip-
licate. Following a 1 hour incubation at 37°C, the micro-
titre wells were washed three times with 1× PBS. Adherent
cells were then fixed with 200 μl of 100% ethanol for 10
min. Ethanol was removed and the wells were air dried for
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2 min. Adherent cells were stained for 2 minutes with 200
μl of 0.41% Crystal Violet (w/v in 12% ethanol), then
washed three times with 1× PBS. Wells were allowed to
dry, and then ethanol was used to elute the wells. Absorb-
ance readings were taken at 595 nm using a Synergy2™
Multi-Mode Microplate Reader (BioTek Instruments, Inc.
Winooski, Vermont). Data shown is the average of three
independent experiments. The second assay measures
adherence to a catheter without pre-coating with plasma.
This assay was performed as previously described [38].
Briefly, staphylococcal strains were grown overnight in
TSB and cultures were standardized to an OD650 of 0.1.
Catheters (PE10; Becton Dickinson and Co., Sparks, MD.)
were cut to a length of 0.5 cm and placed into appropriate
cultures. After incubating the cultures at 37°C for 30 min,
the catheters were removed using sterile forceps and
washed five times in sterile PBS. After washing, the cathe-
ters were placed in 1% proteose peptone (Difco, Ann
Arbor, MI.) and continuously vortexed for two minutes to
release bacterial cells from the catheter. For bacterial enu-
meration, serial dilutions were plated onto TSA plates.
The mean and standard errors were calculated for the
adherence of each strain.

Confocal microscopy
Confocal scanning laser microscopy was performed using
a Carl-Zeiss LSM 510 META with excitation at 488 nm and
emission collected at 500 to 530 nm (green channel).
Image stacks of biofilms were taken from at least three dis-
tinct regions on the flow cell and were analyzed using the
provided software (Carl-Zeiss, Inc., Peabody, Mass.).
Thickness of the biofilm was measured starting from the
z-section at the flow-cell/biofilm interface to the z-section
at the top of the biofilm surface containing < 5% of total
biomass.

RNA isolation
Total RNA was isolated from S. aureus planktonic cultures
using Qiagen RNeasy Maxi column (Qiagen) as previ-
ously described [8], based on a method developed by
Lindsay and Foster [39]. S. aureus cultures were grown
without antibiotic selection and under low-aeration con-
ditions (150 r.p.m. at a media volume:flask volume ratio
of 0.5). Cells were harvested at optical densities (OD560)
of 0.3, 1.5 and 4.0, which correspond to the mid-expo-
nential, late-exponential, and post-exponential growth
phases, respectively. RNA from biofilms was accom-
plished by harvesting cells from flow cells as previously
described [5] and using using Qiagen RNeasy Maxi col-
umn. The data shown is from three independent experi-
ments.

Real-time quantitative PCR
Gene expression analysis by real-time quantitative PCR
(RT-qPCR) was performed as described previously [8],

with all reactions done in triplicate. The constitutively
expressed gyrase gene (gyr) was used as an endogenous
control, as described previously [40]. Primer specificity
and efficiency was measured as described previously [8].
Expression analysis for each gene was based on at least
two independent experiments. Two-fold or higher
changes in gene expression were considered significant.
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