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Preferential binding effects on protein structure and dynamics
revealed by coarse-grained Monte Carlo simulation
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(Received 29 January 2017; accepted 26 April 2017; published online 19 May 2017)

The effect of preferential binding of solute molecules within an aqueous solution on the structure and
dynamics of the histone H3.1 protein is examined by a coarse-grained Monte Carlo simulation. The
knowledge-based residue-residue and hydropathy-index-based residue-solvent interactions are used
as input to analyze a number of local and global physical quantities as a function of the residue-solvent
interaction strength (f ). Results from simulations that treat the aqueous solution as a homogeneous
effective solvent medium are compared to when positional fluctuations of the solute molecules are
explicitly considered. While the radius of gyration (Rg) of the protein exhibits a non-monotonic
dependence on solvent interaction over a wide range of f within an effective medium, an abrupt
collapse in Rg occurs in a narrow range of f when solute molecules rapidly bind to a preferential set of
sites on the protein. The structure factor S(q) of the protein with wave vector (q) becomes oscillatory
in the collapsed state, which reflects segmental correlations caused by spatial fluctuations in solute-
protein binding. Spatial fluctuations in solute binding also modify the effective dimension (D) of the
protein in fibrous (D∼ 1.3), random-coil (D∼ 1.75), and globular (D∼ 3) conformational ensembles as
the interaction strength increases, which differ from an effective medium with respect to the magnitude
of D and the length scale. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4983222]

I. INTRODUCTION

Within aqueous cellular environments, living organisms
exquisitely maintain suitable levels of composition of solute
molecules for proteins to function properly.1 The composi-
tion of ions, osmolytes, and/or other crowding agents within
a cell is important to the conformational dynamics of a pro-
tein and how it functions.2 In simpler in vitro scenarios, the
dynamics and stability of proteins are sensitive to the type
and concentration of solute in single component aqueous solu-
tions.3–5 Despite heterogeneity in protein polymers and the
large chemical space of possible solute molecules, thermody-
namic descriptions of preferential binding6 provide a simple
explanation for why solute molecules favorably interact with
specific protein sites, while having a tendency to avoid certain
segmental regions. Unfortunately, structural details of pref-
erential binding are not adequately addressed within thermo-
dynamic models. Although more detailed statistical mechan-
ics treatments are available, such as Kirkward-Buff theory,7,8

these approaches are also limited by the need to have an accu-
rate ensemble of protein conformations. Therefore, molecular
simulation is necessary to generate thermodynamic ensembles,
and to investigate how the characteristics of protein structure
and dynamics depend on the nature of the interaction of the
solute molecules with the protein.

Experimentally, concentration is a natural control variable
for a one component aqueous solution. Furthermore, there are

many types of solute molecules that can be considered, classi-
fied broadly as denaturants or as stabilizers.6 Computationally,
the nature of the solute molecule at a fixed concentration of
solute can be continuously adjusted. Many molecular dynamic
models are available to investigate how residue-solvent inter-
action affects the structure and dynamics of a protein. In par-
ticular, solvent can be explicitly9–12 or implicitly13–19 modeled
as the dynamics of a protein are simulated as well as various
levels of coarse graining can be employed. The GROMACS
package20 is an example of a software suite that provides many
different options for users to run molecular dynamics at var-
ious accuracy levels of description. Explicit solvent models
track all solvent degrees of freedom, whereas implicit sol-
vent models embed a protein into a continuum medium where
the strength of protein-solvent interaction is adjusted through
an effective force field (or interaction energy). The choice of
model and method to employ depends largely on the questions
being asked. Here, we are interested in the salient features of
how structure and the long-time dynamics of proteins depend
on the role of preferential binding.

While conformational ensembles of proteins derived from
simulations employing explicit or implicit solvent models
agree on general trends,20 the resulting free energy landscapes
will differ.21 However, differences also result due to differ-
ent force fields within explicit solvent models.22 Improvement
of force fields with explicit and implicit solvent models con-
tinues to be an active area of research. Moreover, extensive
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conformational sampling is required to extract thermodynamic
properties and functional mechanisms, regardless of the under-
lying molecular mechanics model. To reduce computational
costs, multiscale modeling is often employed to improve con-
formational sampling,23,24 including replica exchange meth-
ods that merge implicit and explicit models together.21 Other
methods account for cosolvents in aqueous solutions by re-
weighting conformations that are generated in explicit water
simulations.25

Implicit solvent models have been successful in uncov-
ering conformational pathways critical to the function of a
protein26 and the formation of protein complexes.27 Unfor-
tunately, with an all-atom description of a protein, implicit
solvent models often do not substantially improve perfor-
mance over explicit solvent models.28 As such, coarse-grained
bead models remain popular.12,29 Similarly, a bond fluctua-
tion Monte Carlo method that was originally developed to
simulate polymer melts30 provides an alternative approach
for proteins. To that end, a novel coarse-grained implicit
solvent model was recently developed for globular proteins
that efficiently explores protein conformations31 and extracts
long-time dynamics and thermodynamic properties. Clearly it
would be computationally desirable to model aqueous solu-
tions implicitly due to the substantial reduction in degrees of
freedom that occurs. This approach is formally working with
a potential of mean force where the configuration of solvent
molecules and cosolvent molecules is integrated out for a spec-
ified set of coordinates for the protein, usually called solute.
All implicit models rely on this concept of potential of mean
force, and they assume that the effective interaction between
pairs of particles is transferable. When the solvent has a large
number of degrees of freedom, such as water being a large
component in the system, this approach works well and forms
the basis of all implicit models, which have been proven to
work well, albeit an approximate theory.13–19

Although modeling solvent implicitly provides a large
reduction of degrees of freedom, there is a key difference
between water and solute molecules in terms of molar con-
centrations. The mean-field approach of using an effective-
medium for pure water is justified because water is the
dominant component (i.e., the solvent) at about 55.5 molar
(M). Working at lower concentrations of solute is likely to pro-
duce correlated spatial fluctuations that may have direct impact
on how the protein structure and dynamics are modified by the
solute molecules. That is, different protein segments will have
a varying number of bound solute molecules (if any). In addi-
tion, the excluded volume effects from these solute molecules
are likely to be significant since they will generally be of a
larger size than water molecules.

In recent years, we have examined the structure and
dynamics of a protein (H3.1: 1M 2A 3R . . . 136A) in an effective
solvent medium.32 Herein, we re-examine the same protein,
but model solute molecules explicitly to address the role of
spatial fluctuations due to preferential binding. The solute con-
centration is fixed as the protein-solute interaction strength is
varied. This setup provides a means to compare results from
an effective solvent medium to a semi-implicit water solvent
model where all solute molecules are explicitly modeled. A
similar type of setup has been employed previously for the

study of RNA and DNA.33 Here, we will compare the diffu-
sive and sub-diffusive regimes of protein dynamics34,35 while
employing an effective medium following our previous work
to the new case considered here where solute molecules are
modeled explicitly. Differences in the results will inform on the
effect of using an effective medium to account for the quality
of an aqueous solvent. Insights from this comparison will help
better understand the spatial fluctuations in preferential bind-
ing of solute molecules as a protein unfolds or partially unfolds
in a cellular environment or within a liquid formulation.36,37

The histone H3.1 is an intrinsically disordered protein
(IDP)38–42 that does not have a well-defined tertiary struc-
ture in pure water, meaning that it is completely intrinsically
disordered. In general, IDPs exhibit a diverse-range of char-
acteristics such as partial unfolding in intrinsically disorder
regions, and the degree of disorder can be sensitive to solvent
conditions. For example, adding a high salt concentration to
water drives histone H3.1 to favor a native fold,38 while in a
cellular environment its tails are flexible and intrinsically dis-
ordered, which is believed to be a key element for it to function.
Experimentally exhibiting the full range of disorder character-
istics due to changes in solvent conditions, histone H3.1 serves
as a model protein because partially unfolded regions are more
susceptible to solvent-protein interactions and a greater hetero-
geneity in the conformational ensemble is sampled. In contrast,
a protein with a well-defined native fold and solvent accessible
surface will preferentially bias where cosolutes bind, in part,
due to steric constraints. Said another way, if an implicit sol-
vent model holds up well for an IDP, the concerns about the
role of fluctuations in solute concentration will be lessened,
suggesting a model with an effective medium is likely suffi-
cient. If the fluctuations in solute concentrations are shown to
be important, the consequences are applicable to proteins with
their native structures disrupted due to the onset of solvent
penetration, which is certain to happen if the cosolvent is a
denaturant.

Complex biological systems often exhibit self-assembly
and aggregation. To model such effects is challenging because
of the required computer resources to simulate long-time
scales of large systems. The bond fluctuation model is well
suited to meet these challenges because it requires far less
computer resources than methods that solve dynamical equa-
tions of motion. In addition, solvent-solute interactions are
parameterized differently from most implicit solvent mod-
els (see below) making it straightforward to include solute
constituents explicitly while accounting for excluded volume
effects. This approach enables conformational ensembles in
thermodynamic equilibrium to be explored for different sce-
narios where solute-water and solute-residue interactions are
altered to control self-assembly properties as well as changing
the solute composition, concentration, and temperature. It is
worth pointing out that explicitly modeling solute molecules
expand phase space considerably, which is a major motivat-
ing factor for our on-going efforts to generalize the bond
fluctuation method. Hence, the significance of explicitly mod-
eling solute in aqueous solution on the structure and dynamics
of a single protein will be important for all models/methods
involving implicit solvent, including the Langevin dynamics
approach.43 After describing the model in Sec. II, results and
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discussions are given on a series of simulations, followed by
conclusions.

II. METHOD

The bond fluctuation method simulates conformations of
a protein chain of nodes on a periodic cubic lattice. Each
node occupies a cubic cell of 8 lattice sites. A node repre-
sents a residue and captures its specificity via an interaction
matrix32,44,45 involving pairs of nodes that fall within a cutoff
distance. Consecutive nodes along the protein chain are con-
nected by allowed distances that vary between 2 and

√
(10) in

units of the lattice constant. The allowed discrete distance sets
define backbone flexibility. Despite being confined to a cubic
lattice, it has been shown that there is ample phase space cov-
erage so that results from the bond fluctuation model recover
continuous space simulations markedly well.30,31 Since the
histone H3.1 protein has 136 residues, it takes 136 nodes to
define its conformation on the cubic lattice. When modeling
solute explicitly, a node can also represent a solute molecule.
There is no difference in how solute molecules and protein
residues are treated as far as the bond fluctuation model is
concerned, except no chain of solute molecules is contigu-
ously constrained as peptides. It is worth noting that a solute
molecule in the form of a peptide would be straightforward to
model using this approach. As an initial condition, the protein
chain is first placed on the cubic lattice in a random confor-
mation. Next, the explicit solute molecules are placed on the
lattice one at a time by uniformly randomly selecting among
all remaining unoccupied lattice sites.

Each residue and solute molecule interacts with nearby
residues and solute molecules within a range (rc) with a
generalized Lennard-Jones potential,

Uij =


���εij

���

(
σ

rij

)12

+ εij

(
σ

rij

)6
, rij < rc, (1)

where rij is the distance between the residues at site i and j
or between the residue at site i and solute molecule at site j;
rc =

√
8 and σ = 1 in units of lattice constant. Note that the

range of interaction includes ample number of lattice sites that
can be occupied by solute molecules or residues of the pro-
tein. The degrees of freedom can be enhanced dramatically
if needed with a fine-grain representation of each residue.32

We use a knowledge-based interaction matrix31,44,45 for the
residue-residue pair interaction (εij), which is derived from
an ensemble of a large number of protein structures from the
protein data bank (PDB). The strength εij of the potential
is unique for each interaction pair with appropriate positive
(repulsive) and negative (attractive) values.31,32,44,45 We have
used the classic Miyazawa-Jernigan (MJ)44 interaction matrix
for most of the data presented here. The Betancourt and Thiru-
malai (BT)45 interaction matrix is also used to verify the
trend in data. Both the MJ and BT interactions take water
as the solvent, and all possible pairs of residues are param-
eterized. For an implicit solvent model for pure water, only
effective interactions between residue pairs need to be con-
sidered in the simulation. However, generalizing to aqueous
solutions, all pair interactions between a solute molecule and

each residue type, and between pairs of solute molecules must
be parameterized.

In general, 21 parameters are needed to model a solute
molecule in a single component aqueous solution, i.e., solute-
solute interaction and solute-residue interactions to capture
its specificity. For purpose of demonstration and to simplify
the problem of parameterization, only polar solute molecules
are considered here. This means that the solute molecule will
interact with different residues in a similar way water inter-
acts, except the magnitude of the strength will be modulated.
Parameterization for the interaction between a solute molecule
(at site i) and a residue (at a site j) is based on the hydropathy
index32 of each residue, εij = f εrAh/p/e. Furthermore, interac-
tion between pairs of solute molecules will be ignored (εij = 0)
apart from their excluded volume effect. The hydropathy index
defines whether the interaction between the solute molecule
and a residue (εr) will be attractive or repulsive. The residue-
solute interaction is repulsive (εr = 0.1) for all hydrophobic
(H) residues, attractive (εr = �0.2) for all polar (P) residues,
and is even more attractive (εr = �0.3) to all electrostatic (E)
residues. Notice that the hydropathy index is binned into three
groups (H, P, E) for simplicity. The weight Ah/p/e of a residue
varies within each group (H, P, E) according to its relative
hydropathy index22 (see Table I). For example, the interac-
tion εij of a solute molecule with a hydrophobic residue, say
Cysteine Ah/p/e = H5, εij = f (�0.1)H5. Similarly for a polar
residue such as tryptophan, Ah/p/e = P3, εij = f (�0.2)P3 and
for Arginine, Ah/p/e = P3, εij = f (�0.3)E4 (see Table I). Thus,
the interactions among different types of residues and solvent
constituents are unique. The empirical parameter f introduced
above modulates solvent quality. It was suggested previously32

that changes in f could be attributed to changes in pH. How-
ever, the interpretation of changing f is considered here to test
different types of potential polar solutes with a continuously
varying strength. In essence, we are exploring a 21 dimensional

TABLE I. Hydropathy H-index and corresponding weights.

Residue H-index Weight (Ah /p/e)

Ile 4.5 H1 = 1.000
Val 4.2 H2 = 0.933
Leu 3.8 H3 = 0.844
Phe 2.8 H4 = 0.622
Cys 2.5 H5 = 0.556
Met 1.9 H6 = 0.422
Ala 1.8 H7 = 0.400
Gly �0.4 H8 = 0.089
Thr �0.7 P1 = 0.200
Ser �0.8 P2 = 0.229
Trp �0.9 P3 = 0.257
Tyr �1.3 P4 = 0.371
Pro �1.6 P5 = 0.457
His �3.2 P6 = 0.914
Gln �3.5 P7 = 1.000
Asn �3.5 P8 = 1.000
Asp �3.5 E1 = 0.778
Glu �3.5 E2 = 0.778
Lys �3.9 E3 = 0.867
Arg �4.5 E4 = 1.000
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FIG. 1. An initial setup of the protein (H3.1) chain in the simulation box with
solvent particles (spheres). The box size is 643 and the volume fraction of
solute molecules is 0.02.

parameter space using a parametric line with f ≥ 0, restricting
the aqueous solution to polar solutes only. Note that f = 0 corre-
sponds to a solute molecule with identical interaction strength
as that of water.

The number of solute molecules is fixed throughout the
simulation (see Figure 1). Each residue and solute molecule
executes stochastic motion using the Metropolis algorithm
within the constraints of excluded volume and the allowed
discrete set of states for backbone flexibility in the protein.
Simulations are carried out for sufficiently long time to gener-
ate conformational ensembles in thermodynamic equilibrium,
which typically reach five million time steps. Such simulations
are run for each solute interaction strength f for a few different
temperatures at two different solute concentrations. At each
condition, 10-50 independent simulations are performed for
statistical averaging for a variety of local and global properties.
Different lattice sizes are used to verify no finite size effect on
any qualitative trends. The presented results are for a lattice of
643 sites, which gives ample sampling at long-time scales with-
out using excessive computer resources. Temperature, time
step, and spatial length scales are reported in natural units for
the simulation since our focus is on changes in physical quan-
tities in response to changing the solute interaction strength
(f ) affecting preferential binding. To match with experimental

conditions, the simulated temperature range in reduced units
from 0.010 to 0.030 corresponds to 150 to 450 K. A volume
fraction of 0.01 or 0.02 (1 solute molecule for every 100 or
50 sites) corresponds to roughly 2.2 mM or 4.4 mM of solute,
respectively, and 55.5M of water solvent.

III. RESULTS AND DISCUSSION

A set of typical snapshots of the protein conformation and
solute at positions that are within the range of interaction of
any residue are presented in Figure 2 for different interaction
strengths (f ) at the temperature T = 0.030. At this tempera-
ture, the conformation of the H3.1 protein assumes a random
coil.31 Previously, we observed a non-monotonic response of
the radius of gyration (Rg) with the solvent interaction in an
effective solvent medium32 at this temperature. The open pro-
tein conformation provides the greatest cross section for solute
molecules to interact with any residue. Therefore, changes in
structure due to the presence of solute will be quantified as
a deviation from a random coil conformation. These snap-
shots provide visual indication for preferential affinity of solute
molecules to specific residues together with an overall spread
around the protein structure. Figure 2 shows that an increase in
solute interaction (e.g., at f = 3.3, 3.4) leads to pinning down
some of the residues selectively in configurations that form
clusters of local segmental structures.

To quantify the solvation profile of the protein, the aver-
age number of solute molecules interacting with each residue is
calculated. Figure 3 shows the solvent profile of the protein for
f = 3.1 and 3.4 at the temperature T = 0.030 with the volume
fraction of solute at 0.01 and 0.02. We see that solute con-
stituents are drawn toward specific residues and as the volume
fraction is increased the clustering effect of localized structures
also increases. Particularly, most of the residues in the middle
segment of the contour (range 35G–85F) attract an increasingly
large fraction of solute along with the onset of accumulation
towards the end segment (129R-136A) at a higher interaction
strength. For example, some of the electrostatic residues (R,
K) (41R, 43R, 50R, 51E, 53R, 54R, 56Q, 57K, 64R, 70R, 73R, 80K,
82D, 84R, 116K, 123K, 129R, 130R, 132R, 134E, 135R) become
pinned down in the formation of a clustered structure because
these electrostatic residues are prone to interact with the highly
polar solute. Most solvated segments include 35G – 45G, 50R
– 60E, 70R – 75I, 77Q – 86Q, 129R-135R. With the locations of
these electrostatic residues constrained by protein sequence,

FIG. 2. Snapshots of protein in pres-
ence of explicit solvent (spheres) after
5× 106 time steps on a 643 lattice at
the volume fraction of 0.01 for solute
molecules. The interaction parameter is
varied as f = 3.1, 3.2, 3.3, 3.4 shown
from left to right. Only solute molecules
that are within the range of interaction
of any residue are shown for clarity.
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FIG. 3. Average number of solute molecules around each residue at the dif-
ferent solute concentrations with the volume fraction (Vf) set at 0.01 and 0.02.
Data are generated on a 643 lattice with 50 independent samples for averaging,
each for 5 × 106 time steps with MJ interaction.

together with the solute propensity to form proximal bridge
interactions that effectively cross link the protein conforma-
tion, it is clear that solute molecules orchestrate both local and
global structures of the H3.1 protein. This result suggests that
the folding pathway to either a collapsed molten globular state
or a well-defined native state will be dramatically modified as
the starting conformation of the protein is preset by a structured
clustering effect. Moreover, it is likely that a folding pathway
cannot be achieved in the presence of a large concentration of
solute molecules that interact favorably with polar residues,
and hence protein denaturation can be expected at lower tem-
peratures. Essentially the preferential binding between a polar
solute and the electrostatic residues in a protein in particu-
lar can completely reshape the free energy landscape of the
protein.

The mobility profile of the H3.1 protein is shown in
Figure 4. The mobility of a residue is quantified as the prob-
ability of its successful attempts to hop per Monte Carlo step

FIG. 4. Average mobility of each residue at a 0.01 volume fraction of solute.
Data are generated on a 643 lattice with 50 independent samples for averaging,
each for 5 × 106 time steps with MJ interaction.

time. We see that all residues increase in mobility as the sol-
vent interaction is weakened (f = 3.1) and also at a lower solute
concentration. Following intuition, Figure 4 is complementary
to Figure 3 because the mobility in a residue comparatively
decreases as the solute interaction increases (f = 3.4) and as its
local surrounding becomes dominated by solute. The mobility
profile of the protein with explicit solute (Figure 4) is differ-
ent from that obtained using an effective solvent.32 Modeling
the dynamics of solute explicitly with a physical presence or
not (versus employing an effective omnipresence solvent envi-
ronment) produces spatial fluctuations that are observed to be
critical to the formation of local structured clusters that affect
the radius of gyration.

The global dynamics of the protein and solute molecules
is analyzed by the variations of the root mean square dis-
placements Rp and Rs, respectively. Examples are presented
in Figure 5 with a 0.01 volume fraction of solute. By exam-
ining the power-law dependence (i.e., R∼ tυ), we characterize
the global dynamics as diffusive with υ = 1/2 or as sub-
diffusive with υ < 1/2. We see that the nature of the protein
dynamics is diffusive before saturation takes place for weak
polar solute-residue interaction (i.e., f = 3.1 and 3.2). As
the polar solute-residue interaction increases, sub-diffusive
dynamics appears before saturation takes place (f = 3.4). Inter-
estingly, a sharp transition occurs involving a critical slowing
down as the polar solute-residue interaction further increases
(f = 3.4). Increasing the polar solute-residue interaction
beyond this value simply allows the protein to reach saturation
more rapidly.

The dynamics of the solute molecules exhibit the same
general trend regardless of the polar solute-residue interac-
tion strength, at least over the entire range that is otherwise
extremely sensitive for protein dynamics. In particular, there is
a sub-diffusive dynamics for the solute to reach target residues
for about a million time steps (see the inset in Figure 5 for mean
squared displacement). The sub-diffusive dynamics is not

FIG. 5. Variation of the root mean square displacement (R) of the protein
chain with a 0.01 volume fraction of solute molecules, T = 0.030, and for a
narrow range of polar solute interaction strength (f = 3.1–3.4) with the MJ
interaction matrix. Fit of the data points in the asymptotic time regime is
included. The inset shows the variation of the mean square displacement (R2)
of the center of mass of the solute constituents with the time step. Slopes of
the data for the pre-asymptotic and asymptotic regimes with f = 3.1 are also
included.
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surprising because as solute molecules diffuse toward target
binding sites, the protein conformation itself together with
solute molecules that have already preferentially landed on
high affinity protein sites makes it more difficult for solute
molecules to diffuse through the obstructions. Eventually all
polar solute molecules are absorbed by the protein and become
localized (υ ∼ 0), for the regime of high interaction strength,
despite the high temperature. This effect is also intuitive
because the electrostatic residues are essentially absorbing
sites, which are maximally exposed at high temperature. The
cross linking that occurs reduces the openness of the protein
conformation, but as more solute molecules diffuse into the
protein to interact at a preferential site, the protein confor-
mation can adjust to further maximize these favorable inter-
actions. Not caused by electrostatic steering, this clustering
effect will wash out at this high temperature when the polar
solute-residue interaction is too low.

Variation of the radius of gyration (Rg) with the solvent
interaction strength is presented in Figure 6 at the temperature
T = 0.030. The radius of gyration at saturation undergoes a
sharp transition as a function of solvent interaction strength. At
weak polar solute-residue interaction strength (f ∼ 1.0 – 2.5),
it is seen that Rg ∼ 20. This result indicates that the polar
solute molecules are behaving energetically too similar to the
way water interacts with the protein, such that the structural
properties of the protein are not disturbed. Conversely, the
strong attractive interaction (f ≥ 3.5) between the polar solute
molecules with electrostatic residues (especially) causes the
extended conformations to become compact with Rg ∼ 10�12.
This dramatic change from an extended to compact globu-
lar form occurs within a narrow range of interaction strength
(f ∼ 3.0–3.5). We can understand this transition thermodynam-
ically. The weak attraction of polar solute molecules cannot
overcome the entropy of mixing of solute molecules diffusing
throughout the solution. At some point, increasing favorable
polar interactions can overcome mixing entropy.

FIG. 6. Variation of the radius of gyration (Rg) as a function of polar solute
interaction strength (f ) at the temperature T = 0.030. Simulations are per-
formed using the knowledge-based residue-residue interactions with MJ and
BT interaction matrices at 0.01 volume fraction of solute molecules. A 0.02
volume fraction of solute molecules is also used with the MJ interactions. The
inset figure shows the corresponding variation of Rg for the protein. In this
case, every empty site represents solvent. Over the dataset, 10-50 independent
samples on a 643 lattice are considered.

This sharp transition can also be understood dynamically.
The solute molecules execute their stochastic motion rather
fast at T = 0.030. As a result, they quickly reach their tar-
gets, which are mainly the electrostatic residues. The sticking
probability of the solvent particles around the target residues
depends on their interaction strength, which competes with
thermal noise. The solute molecules are unable to stick around
the target sites with weak interactions (f ∼ 1.0–2.5) for a
long period of time. With increased interaction strength, solute
molecules stay around the target sites for most of the time
and pin down sites that subsequently act as seeds for pro-
tein segments to collapse in a globular form. It is worth
noting that the compact structure that forms is not a normal
folded state, because the structure comprises penetrating solute
molecules that are well positioned to maintain the stability of
the structure. This mechanism of increasing stability by bind-
ing partners occurs in the tails in the histone protein. They are
intrinsically disordered until stabilized by interactions with
DNA, which allows the compaction of DNA to occur. Both
binding partners play a critical role in stabilizing the complex
as conformational flexibility is reduced. In this system, the
stabilization is derived from binding to cosolvent, which sup-
presses conformational flexibility at cross-linking locations.
The reduction in mobility is evident in Figure 4 as well as
dynamical slowing down in the compact state and the onset of
the compact state quantified by sub-diffusion in Figure 5.

The radius of gyration as a function of solute interaction
is very different between explicit and implicit solvent mod-
els. From the effective solvent model,32 the inset in Figure 6
shows that Rg has a non-monotonic dependence on the inter-
action strength. Only at f = 0 for the case of pure water, both
solvent models are in agreement, showing that Rg ∼ 20. For the
implicit solvent model, Rg initially increases as polar interac-
tion strength increases, until Rg peaks at (f ∼ 15), followed by a
slow continuous decay that dips below Rg ∼ 20, where Rg ∼ 15
at f = 30. It is worth mentioning that the range of interaction
strength over which the changes in radius of gyration occur is
much larger than that in presence of explicit solute molecules at
the same temperature. In our previous work,32 no attempt was
made to identify the interaction strength parameter f to solute
concentration. Therefore, our prior result over-emphasizes the
changes that occur in the protein structure and dynamics due to
the effective media. However, it is clear that the explicit model-
ing of solute molecules causes much more dramatic differences
because of the preferential sites that the solute molecules tend
to associate with, and causing partial unfolding.

Increasing the polar nature of the solvent everywhere in a
uniform manner as mean-field assumes would encourage the
extended random coil state to extend further because of the
effect of solute molecules pulling on the protein conformation
outwards. The entropy of mixing is not part of the considera-
tions within the implicit model. Conversely, the explicit model
of solute molecules shows that this pulling cannot be uniform
simultaneously across the protein surface. Rather, a protein
conformation would experience intermittent tugs that would
tend to open up the protein structure like the implicit solvent
model does, but the conformation is rapidly repaired because
of intramolecular interactions with the protein. At some
point when the interaction is sufficiently strong (attractive to
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electrostatic residues), the protein conformations open up
enough for the solute particles to reach favorable target sites
on the protein, which as indicated above, crosslink the protein,
and cause it to become compact. This compaction is seen in
the implicit model at high interaction strength as well.

In order to quantify the structural response of the protein
to solvent interaction, we analyze the structure factor,

S (q) = 〈
1
N
|

N∑
j=1

e−i~q ·−→rj |2〉
|
−→
q |

,

where rj is the position of each residue and |q| = 2π/λ is the
wave vector of wavelength, λ, which informs on the spatial
spread of residues in the protein’s conformation. Assuming
the structure factor exhibits a common power-law scaling as
a function q, i.e., S(q) ∝ q�1/γ, then the spatial distribution
of residues can be estimated. For example, the scaling of the
radius of gyration (Rg) of the protein with the number (N)
of residues is described by Rg ∝ Nγ, i.e., N ∝ Rg

1/γ which
implies that the effective dimension of the protein D ≈ 1/γ.
Figure 7 shows the variation of the structure factor with the
wave vector q for different interaction strengths (f = 3.1–3.4)

over the narrow range where the radius of gyration exhibits
the maximum response. Moreover, the variation of S(q) as a
function of q changes systematically as the interaction strength
is increased. Note that q ∼ 0.3-0.4 is probing spatial scales that
of the radius of gyration of the protein having Rg ∼ 20. The
effective dimension of D ∼ 1.3 found when the polar solute-
residue interaction is weak (f = 3.1) implies that the protein
and surrounding solute structure is linear (i.e., fibrous with less
loops) than the random-coil configurations (D ∼ 1.75) with
f = 3.2 (Figure 7). At a higher interaction strength (f = 3.4),
the scaling of the structure factor leads to D ∼ 3, a measure of
a well-packed compact globular structure.

Also of interest is the nature of the protein structure, or
its ensemble of conformations. Below the transition, there is
no well-defined structure and the protein is essentially in an
unfolded state. However, at the onset of the transition, oscil-
lation in the variation of S(q) with q indicates the presence of
short range segmental correlations. Strong oscillations indi-
cate that the relative positions of the solute molecules are
quenched, an opposite effect from random diffusion as a sta-
ble structure forms. As solute molecules come into position,
conformation fluctuations are suppressed and the structure no

FIG. 7. The structure factor S(q) is shown for the H3.1 protein with wave vector q in aqueous solvent with a 0.01-0.03 volume fraction for the solute molecules
and with varying polar solute interaction strengths, i.e., f = 3.1–3.4 ((a)-(d)) at temperatures T = 0.030. Slopes of the fitted data (covering the spread of the
radius of gyration, see Figure 7) are included to guide the eye. All simulations are performed on a 643 lattice for 5 × 106 time steps with MJ interaction using
50 independent samples.
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longer undergoes large conformational changes on long time
scales (its folded). This can be seen by the fine scale oscilla-
tions that persist even at large q, corresponding to short dis-
tances. Furthermore, these correlations become pronounced as
solute concentration increases, causing mobility to be further
suppressed.

IV. CONCLUSIONS

The structure and dynamics of the histone H3.1 protein are
examined using an implicit water solvent model that models
solute molecules explicitly. The results of this model are com-
pared with previous results using an effective medium.32 In
particular, the structural response to the polar solute-residue
interaction strength (i.e., solvent quality) for various solute
concentrations is investigated using a coarse-grained repre-
sentation to describe the protein chain and also for the solute
molecules when modeled explicitly. While varying molar con-
centration of solute through volume fraction, and varying the
polar solute interaction strength (f ), both local (solvation and
mobility profiles) and global (radius of gyration and structure
factors) quantities are analyzed.

We find that the structural response of the H3.1 protein
to solvent quality in the presence of explicit solvent substan-
tially differs from that found in simulations using an effective
medium. This demonstration clearly points to the important
role that spatial fluctuation of solute-protein interactions plays
in regards to preferential binding. Visual inspections together
with the solvation profile indicate that preferential binding of
polar solute molecules occurs at electrostatic residues. Specifi-
cally, the segments of the protein with the highest propensity to
bind with the polar solute include 35G–45G, 50R–60E, 70R–75I,
77Q–86Q, 129R–135R. The solvation profile with a higher solute
concentration remains similar to that with low solute concen-
tration (Figure 3). However, it is easier to identify segments
of preferential binding due to accentuated profiles at a higher
polar solute concentration even in cases of lower interaction
strength.

Mobility profiles of the H3.1 protein calculated from
an effective medium32 versus explicitly modeling the polar
solute molecules also differ. In the former case, the saturated
value for the radius of gyration, Rg, has a non-monotonic
behavior as the attractive polar solute interaction strength-
ens. Using an effective medium, Rg initially increases when
the attractive polar solute interaction is weak, although still
stronger than water. Conversely, Rg is unmodified when mod-
eling solute explicitly. The differences in response from the
two models suggest that spatial fluctuations of explicitly mod-
eled solute molecules remove the artificial coherency in the
collective affect from solute molecules that is created by an
effective medium. As the attractive polar solute interaction
further strengthens, Rg decreases in both solvent models. How-
ever, the spatial fluctuations from explicitly positioned solute
molecules open up specific pathways for solute to penetrate the
random coil conformation. The solute molecules reach residue
binding-partners rather quickly during this process, exhibiting
preferential binding to specific residues.

Variations in the structure factor S(q) of the protein
with wave vector (q) are different from an effective solvent

medium32 compared to modeling solute molecules explicitly.
Unlike in effective medium, the structure factor becomes oscil-
latory in the presence of explicit solute molecules. We observe
fast passage of solute molecules to targeted residues followed
by a critical slowing down due to pinning and cross-linking as
the main reasons for the oscillatory patterns in S(q). Oscilla-
tion in S(q) as a function of q is a sign of segmental correlations
which diminishes as solute concentration decreases. The rele-
vant length scale is comparable to Rg of the protein. The scaling
of the structure factor with wave vector, q, reveals fibrous
(D ∼ 1.3), random-coil (D ∼ 1.75), and globular (D ∼ 3) con-
formational ensembles as the polar solute interaction strength
is increased. Thus, solute properties are critical in orchestrat-
ing the structural response of a protein, which is sensitive to
the type and manner in which the solute molecule interacts
with the protein.

Interestingly, attractive polar solute interactions promote
structurally stable clusters of residues due to cross-linking
by solute molecules. This cross-linking zips up the random
coil, creating a sharp transition from an extended random
coil to a compact unfolded globular structure as a function
of interaction strength. The effect of an external agent sta-
bilizes an IDP which is common46 and indeed essential for
the biological function of histone in its compaction of DNA
within the cellular environment. While our simulation results
are consistent with the known properties of histone proteins,
much more detailed simulation results from all-atom molecu-
lar dynamics on the intrinsically disordered tails in the histone
family have been previously reported to quantify conforma-
tional ensemble characteristics regarding frequency of occur-
ring secondary structure elements and the degree of disorder,40

and, therein, differences between explicit and implicit mod-
els were also noted. We do not attempt to use the hybrid
model introduced here to predict free energy landscapes that
have already been calculated more accurately with extensive
all atom MD simulation. We also defer making any claim
about the kinetic mechanism that leads to the stable compact
structures, because the model oversimplified in its parame-
terization, and it is not the focus of this work. Rather, the
parameterization used here provides a minimalist model to
address the question of suitability of an effective medium
approximation when cosolute molecules penetrate partially the
unfolded structure within a protein. When studying preferen-
tial binding or the effect of formulation on protein stability, the
cosolvent should be modeled explicitly to account for spatial
fluctuations. A caveat is when a protein undergoes small con-
formational fluctuations around a native state. This case was
not considered here because histone in water is intrinsically
disordered and we performed simulations at high tempera-
ture. The remarkable finding is at sufficiently high concen-
tration of cosolvent, protein-cosolvent binding forms ordered
conformations.

These results indicate that the application of implicit sol-
vent models to biomolecular systems should account for spatial
fluctuations in solute molecules within an aqueous solution.
Furthermore, methods that suppress conformational flexibil-
ity in proteins, such as regarding a protein as a fixed rigid
body, will suppress the effect of spatial fluctuations of solute
molecules. While thermodynamic and statistical mechanics
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models of preferential binding are useful for understanding
protein stability, the bottleneck in applying these theories
relies on methods that generate conformational ensembles. As
such, the models/methods employed should retain the essential
effects of spatial fluctuations of solute molecules that comprise
aqueous solution and other crowding agents. The bond fluc-
tuation model at a coarse grained description offers an alter-
native method to those that integrate equations of motion for
the pragmatic simulation of large-scale biological systems on
long-time scales. Future work along these lines is to consider
a variety of solute molecule properties individually, as well
as investigate multicomponent liquid formulations intended to
stabilize proteins.

1P. H. Yancey, Am. Zool. 41, 699–709 (2001).
2G. Wei, W. Xi, R. Nussinov, and B. Ma, Chem. Rev. 116, 6516�6551 (2016).
3J. L. England and G. Haran, Annu. Rev. Phys. Chem. 62, 257–277 (2011).
4G. Caliskan et al., J. Chem. Phys. 121, 1978–1983 (2004).
5D. R. Canchi and A. E. Garcia, Annu. Rev. Phys. Chem. 64, 273–293 (2013).
6S. N. Timasheff, Proc. Natl. Acad. Sci. U. S. A. 91, 9721–9726 (2002).
7S. Shimizu, J. Chem. Phys. 120, 4989–4990 (2004).
8J. Rosgen, B. M. Pettitt, and D. W. Bolen, Biophys J. 89, 2988–2997 (2005).
9J. Skinner et al., Proc. Natl. Acad. Sci. U. S. A. 111, 15975–15980 (2014).

10R. O. Dror et al., Annu. Rev. Biophys. 41, 429–452 (2012).
11S. Piana, J. L. Klepeis, and D. E. Shaw, Cur. Opin. Struct. Biol. 24, 98–105

(2014).
12S. J. Marrink and D. P. Tieleman, Chem. Soc. Rev. 42, 6801–6822 (2013).
13T. Lazaridis and M. Karplus, Proteins 35, 133 (1999).
14R. B. Pandey and B. L. Farmer, J. Chem. Phys. 132, 125101 (2010).
15J. Chocholousova and M. Feig, J. Phys. Chem. B 110, 17240 (2006).
16J. Chen and C. L. Brooks III, Phys. Chem. Chem. Phys. 10, 471 (2008).
17L. Li, K. Dill, and C. J. Fennell, J. Comput.-Aided Mol. Des. 28, 259 (2014).
18J. Kleinjung and F. Fraternali, Cur. Opin. Struct. Biol. 25, 126–134 (2014).

19F. Ding, D. Tsao, H. Nie, and N. V. Dokholyan, Structure 16, 1010–1018
(2008).

20S. Pronk et al., Bioinformatics 29, 845–854 (2013).
21S. Chaudhury et al., J. Chem. Theory Comput. 8, 677–687 (2012).
22L. L. Duan, G. Q. Feng, and Q. G. Zhang, Sci. Rep. 6, 31488 (2016).
23J. Zavadlav et al., J. Chem. Theory Comput. 10, 2591�2598 (2014).
24R. Harada, Y. Takano, T. Babad, and Y. Shigeta, Chem. Phys. Chem. Phys.

17, 6155–6173 (2015).
25E. P. O’Brien et al., Proc. Natl. Acad. Sci. U. S. A. 105, 13403–13408

(2008).
26G. Cazzolli et al., Proc. Natl. Acad. Sci. U. S. A. 111, 15414–15419 (2014).
27S. Kimura et al., Proteins 82, 633–639 (2014).
28R. Anandkrishna, A. Drozdetski, R. C. Walker, and A. V. Onufriev, Biophys.

J. 108, 1153 (2015).
29C. Arnarez et al., J. Chem. Theory Comput. 11, 260�275 (2015).
30K. Binder, Monte Carlo and Molecular Dynamics Simulations in Polymer

Science (Oxford University Press, New York, 1995).
31R. B. Pandey and B. L. Farmer, PLoS One 7, e49352 (2012).
32R. B. Pandey and B. L. Farmer, PLoS One 8, e76069 (2013).
33N. V. Prabhu, M. Panda, Q. Yang, and K. A. Sharp, J. Comput. Chem. 29,

1113–1130 (2008).
34S. B. Kim, C. J. Dsilva, I. G. Kevrekidis, and P. G. Debenedetti, J. Chem.

Phys. 142, 085101 (2015).
35E. D. Nelson and N. V. Grishin, Phys. Rev. E 91, 060701(R) (2015).
36R. J. Ellis and R. U. Hart, Cur. Opin. Struct. Biol. 9, 102–110 (1999).
37K. E. S. Tang and V. A. Bloomfield, Biophys. J. 82, 2876–2891 (2002).
38T. Frege and V. N. Uversky, Biochem. Biophys. Rep. 1, 33 (2015).
39V. N. Uversky, J. Biol. Chem. 291, 6681 (2016).
40D. A. Potoyan and G. A. Papoian, J. Am. Chem. Soc. 133, 7405 (2011).
41Q. Qiao, G. R. Bowman, and X. Huang, J. Am. Chem. Soc. 135, 16092

(2013).
42P. Mirau, B. L. Farmer, and R. B. Pandey, AIP Adv. 5, 092504 (2015).
43E. Paquet and H. L. Viktor, BioMed. Res. Int. 2015, 183918.
44S. Miyazawa and R. L. Jernigan, Macromolecules 18, 534 (1985).
45M. R. Betancourt and D. Thirumalai, Protein Sci 2, 361 (1999).
46L. Mollica et al., Front. Mol. Biosci. 3, 52 (2016).

http://dx.doi.org/10.1093/icb/41.4.699
http://dx.doi.org/10.1021/acs.chemrev.5b00562
http://dx.doi.org/10.1146/annurev-physchem-032210-103531
http://dx.doi.org/10.1063/1.1764491
http://dx.doi.org/10.1146/annurev-physchem-040412-110156
http://dx.doi.org/10.1073/pnas.122225399
http://dx.doi.org/10.1063/1.1646373
http://dx.doi.org/10.1529/biophysj.105.067330
http://dx.doi.org/10.1073/pnas.1404213111
http://dx.doi.org/10.1146/annurev-biophys-042910-155245
http://dx.doi.org/10.1016/j.sbi.2013.12.006
http://dx.doi.org/10.1039/c3cs60093a
http://dx.doi.org/10.1002/(sici)1097-0134(19990501)35:2<133::aid-prot1>3.0.co;2-n
http://dx.doi.org/10.1063/1.3358340
http://dx.doi.org/10.1021/jp0627675
http://dx.doi.org/10.1039/b714141f
http://dx.doi.org/10.1007/s10822-014-9712-8
http://dx.doi.org/10.1016/j.sbi.2014.04.003
http://dx.doi.org/10.1016/j.str.2008.03.013
http://dx.doi.org/10.1093/bioinformatics/btt055
http://dx.doi.org/10.1021/ct200529b
http://dx.doi.org/10.1038/srep31488
http://dx.doi.org/10.1021/ct5001523
http://dx.doi.org/10.1039/c4cp05262e
http://dx.doi.org/10.1073/pnas.0802113105
http://dx.doi.org/10.1073/pnas.1407528111
http://dx.doi.org/10.1002/prot.24440
http://dx.doi.org/10.1016/j.bpj.2014.12.047
http://dx.doi.org/10.1016/j.bpj.2014.12.047
http://dx.doi.org/10.1021/ct500477k
http://dx.doi.org/10.1371/journal.pone.0049352
http://dx.doi.org/10.1371/journal.pone.0076069
http://dx.doi.org/10.1002/jcc.20874
http://dx.doi.org/10.1063/1.4913322
http://dx.doi.org/10.1063/1.4913322
http://dx.doi.org/10.1103/physreve.91.060701
http://dx.doi.org/10.1016/s0959-440x(99)80013-x
http://dx.doi.org/10.1016/s0006-3495(02)75629-4
http://dx.doi.org/10.1016/j.bbrep.2015.03.003
http://dx.doi.org/10.1074/jbc.r115.685859
http://dx.doi.org/10.1021/ja1111964
http://dx.doi.org/10.1021/ja403147m
http://dx.doi.org/10.1063/1.4927544
http://dx.doi.org/10.1155/2015/183918
http://dx.doi.org/10.1021/ma00145a039
http://dx.doi.org/10.1110/ps.8.2.361
http://dx.doi.org/10.3389/fmolb.2016.00052

	Preferential Binding Effects On Protein Structure and Dynamics Revealed by Coarse-Grained Monte Carlo Simulation
	Recommended Citation

	Preferential binding effects on protein structure and dynamics revealed by coarse-grained Monte Carlo simulation

