Journal of Marine Science, Vol. 1, No. 3

Marine Science Institute

Follow this and additional works at: https://aquila.usm.edu/joms

Recommended Citation

Marine Science Institute, "Journal of Marine Science, Vol. 1, No. 3" (1971). Journal of Marine Science. 4. https://aquila.usm.edu/joms/4

THE GUNTER LIBRARY
GULF COAST RESEARCH LABORATORY OCEAN SPRINGS, MISSISSIPPI
JOURNAL OF

MARINE

SCIENCE

MARINE SCIENCE INSTITUTE Bayou La Batre, Alabama

The MARINE SCIENCE INSTITUTE is sponsored by the University of Alabama and the University of Alabama in Birmingham with the cooperation of other universitites and laboratories.

Papers submitted to the editor for publication in the Journal of Marine S cience should be relevant to the marine milieu of the Gulf of Mexico or adjacent waters but may have wider scope. Subject matter may include, but is not limited to, marine biology, fisheries, marine geology, oceanography, sanitary or marine engineering, fishery technology, and any health-related aspect of marine science. They may be either original research or reviews in English, Spanish, or French. Articles are accepted without limitation as to origin, but must not have been published elsewhere or copyrighted. Opinions expressed by authors do not necessarily reflect those of the Institute.

Exchange of publications is invited.

Dr. Herbert S. Boschung, Director, Alabama Natural History Museum, University of Alabama.
Dr. C. Everett Brett, Interim Director, Marine Science Institute and Department of Geology, University of Alabama.
Mr. Harvey R. Bullis, Jr., Associate Director of Research, U.S. Bureau of Commercial Fisheries, Washington, D.C.

Dr. Philip A. Butler, Research Consultant, U.S. Bureau of Commercial Fisheries Laboratory, Gulf Breeze, Florida.
Dr. E. Edward Evans, Chairman, Department of Microbiology, University of Alabama Birmingham.
Dr. Gordon Gunter, Director, Gulf Coast Research Laboratory, Ocean Springs, Mississippi.
Dr. William F. Hill, Jr., Virologist, Gulf Coast Water Hygiene Laboratory, Environmental Protection Agency, Water Quality Office, Division of Water Hygiene, Dauphin Island, Alabama.
Dr. Daniel C. Holliman, Department of Biology, Birmingham-Southern College.
Dr. E. Carl Sensenig, Chairman, Department of Anatomy and Senior Advisor, Marine Science Institute, University of Alabama Birmingham.
Dr. Robert S. Teague, Chairman, Department of Pharmacology, University of Alabama Birmingham.
Dr. James V. Walters, Department of Civil Engineering, University of Alabama.
Dr. Louis G. Williams, Department of Biology, University of Alabama.
Dr. Robert A. Woodmansee, Department of Biology, University of South Alabama.

EDITOR
Dr. George A. Rounsefell
Marine Science Institute, Box 667, Bayou La Batre, Alabama 36509. Telephone (205) 824-2146.

Mrs. Virginia Hudson, Assistant Editor and Compositor.

POTENTIAL FOOD FROM THE SEA

George A. Rounsefell
Marine Science Institute University of Alabama

ABSTRACT

Estimates are made of the maximum sustainable yield of commercial fishery products that reasonably can be expected to be harvested from the world's marine waters.

A theoretical estimate based on primary productivity, trophic levels of the organisms harvested, estimated energy losses between trophic levels, and composition of the biomass at each level, yielded 94 million metric tons per year but many variables lack adequate measurement.

From existing information on yields of typical areas and the extent of each type of habitat an empirical estimate by summation yielded 93 million metric tons. Although close in total, the two estimates differ widely in species composition. The second method is considered to be more reliable.

The third approach attempted extrapolation of historical yields beyond the 58 million metric tons in 1968. This shows that a general rate of increase of 4.3 percent per year has been maintained only by increased fishing pressure and continuous shifts to new species and areas. Most historically fished species are declining in abundance so there is no reason to expect a continued increase in yield. Optimistic estimates of yield, some from two to five times higher, are wholly unwarranted.

INTRODUCTION

What is the maximum sustained yield of fishery products
that man can expect realistically to harvest from the Sea?
This question needs to be answered as we rapidly approach the limits of a land-based protein food supply amidst a general
J. Mar. Sci. A1abama, $1(3): 1-85$
feeling that the ocean is a practically limitless reserve of food for the catching. Thus the Commission on Marine Science, Engineering and Resources (1969b, p.88) states,
> "If man's fishing activities continue to be confined to the species now utilized, to the locations now regarded as exploitable, and to the equipment now available, it is unlikely that production could be expanded much beyond 150 to 200 million metric tons - three to four times present levels. But if man's activities were not so confined, far greater quantities of useful, marketable products could be harvested to meet the increasingly urgent world demand for protein foods.
> "It is, therefore, more realistic to expect total annual production of marine food products (exclusive of aquaculture) to grow to 400 to 500 million metric tons before expansion costs become excessive. Even this estimate may be too conservative if significant technological breakthroughs are achieved in the ability to detect, concentrate, and harvest fish on the high seas and in the deep oceans".

This brave and optimistic statement is hardly in accord with what is and has been occurring. There have indeed been great advances in fishing technology, but all these advances, coupled with much greater fishing effort, and the exploitation of deeper areas, have only resulted in a decreasing catch per unit of fishing effort. Optimism therefore, is giving place to genuine concern among fishery scientists as one species after another falls drastically in abundance under the onslaught of ever increasing numbers of modern fishing vessels with ever increasing sophistication in gear and techniques.

The average world catches for a 19-year period from 1950 through 1968 are shown in Table 1 and Figure 1. This includes both freshwater and marine species. In 1968 the total was 64 million metric tons of which 56 million tons

Table 1. Average world catches by continents and by certain countries. ${ }^{1}$
(Thousands of metric tons, live weight)

	$1950-53$	$1954-57$	$1958-61$	$1962-65$	1966	1967	1968
North America	3,635	4,063	4,165	4,400	4,440	4,360	4,570
Europe	6,843	7,918	8,093	9,542	11,530	11,910	11,820
Africa	1,503	1,903	2,288	2,865	3,210	3,730	4,220
U.S.S.R.	1,869	2,475	2,920	4,262	5,350	5,780	6,080
Asia	9,390	12,260	16,528	19,210	21,420	22,590	24,250
South America	580	895	3,828	9,175	11,070	12,130	12,880
Oceania	95	103	123	145	190	200	210
\quad World	23,915	29,617	37,945	49,599	56,800	60,498	64,000
Peru	150	300	3,030	7,630	8,790	10,134	10,520
Japan	4,140	4,900	6,080	6,730	7,102	7,850	8,670
Norway	1,680	1,950	1,500	1,650	2,865	3,269	2,804
United States	2,530	2,850	2,830	2,780	2,542	2,431	2,442
China 2	1,450	2,648	5,170	5,800			

${ }^{1}$ Excludes whales but includes freshwater species.
${ }^{\text {Current }}$ statistics unavailable since 1960 .

FIGURE 1. World landings of aquatic products by continents (See Table 1) in millions of metric tons.
was derived from marine waters. It has been suggested that 50 million metric tons is about 15 percent of the world's annual consumption of animal protein. Obviously, if the seas are to play a truly significant role in allaying the world's hunger until population control becomes effective they must furnish much greater landings.

Many estimates have appeared in recent years as to the world's total sustainable yield of fishery products. There are three main methods of making such an estimate -

1. Theoretical estimates from data on primary productivity combined with crude estimates of trophic levels of harvest, estimates of energy losses between trophic levels, and composition of the biomass at each trophic level.
2. Estimates from piecing together the estimates of potential yield of exploited and latent fishery resources.
3. Empirical estimates from extrapolation into the future of total landings in the past.

Several of these estimates are given in Table 2. It will be noted (Figure 1) that the annual increase was rather steady, the largest, 6.9 percent, between the 1958-61 and 1962-65 periods, occurred during the meteoric. rise in the Peruvian fishery for anchovettas (See Figure 2). This was also aided by the tremendous growth in the Russian and Japanese high seas fishing fleets. Despite these great fleets aided by new high seas fleets from Poland, East Germany, West Germany, Spain and other countries the rate of increase in landings has commenced to decline.

How accurate are these estimates of sustained yield?
This is a moot question that we wish to explore further. Five of the reports shown in Table 2 were serious estimates based on available information but with different methodology and interpretation. Thus, Graham and Edwards attempted to extrapolate world catches from known yields of fish per acre on a number of well fished North Atlantic fishing banks, adding a little, with less adequate data, for pelagic fisheries, and estimated a world potential by this method of about 60 million metric tons, with 55 million coming from the continental shelf. Another approach to the solution has been on a largely theoretical basis. We will begin by examining this theoretical approach.

Table 2. Estimates of sustainable yield of world fishery landings. ${ }^{1}$ (millions of metric tons)

${ }^{1}$ Some estimates may include a small fraction of freshwater landings and whales.
${ }_{3}^{2}$ For Atlantic Ocean only.
${ }_{4}$ Bony fishes only, from areas overlying continental shelves.
${ }_{5}^{4}$ Graham and Edwards estimate increased, (Schaefer 1965), by other species.
${ }^{5}$ Schaefer gives 1080 by error in calculation.
${ }^{6}$ plus 3 to 5 for tuna-1ike fishes.
 of 1.45 to allow for earlier errors in 14C produc+ivity determinations (Nielsen, 1964; Goldman, 1968).

FIGURE 2. Landings of aquatic products by leading countries in millions of metric tons (See Table 1).

THE THEORETICAL APPROACH

The estimate of Pike and Spilhaus (1962) is theoretically based on an annual photosynthetic production in marine waters of 19×10^{9} tons of organic carbon. Their final estimate of yield is a crude guess.

The theoretical estimate in the same year by Graham and Edwards (1962) was based on Steeman Nielsen's estimate (Nielsen, 1960) of 12 to 15×10^{9} tons of carbon per year. They converted this to wet weight of plankton by a factor of 37 (Sverdrup et al 1942, p.929). Assuming 20 percent ecological efficiency for herbivores, and 1.0 percent thereafter they arrive at a figure of 1 billion metric tons of secondary carnivores, which they reject as being unreasonably large. They then make a guess at 70 percent of the theoretical energy transfer at each level winding up with only 343 million tons from which they estimate 230 million tons of bony fishes with a 50 percent harvest. They then reject this in favor of their earlier empirical estimate of 60 million tons.

The estimate of Schaefer (1965) is based on the same amount of photosynthetic carbon production as that of Pike and Spilhaus. He attempts refinement by assuming that the ecological efficiency between trophic levels may be 10 , 15 , or 20 percent. He then assumes that all the clupeoid type fishes have an average of only $1 \frac{1}{2}$ trophic levels (consumer levels). Since about 37 percent of the world harvest is of these herring-1ike fishes he assumes half of the total world harvest
is taken at the second trophic level and half at the third trophic level. I consider these assumptions to be unwarranted.

I take exception to the apparently prevalent idea that just because a fish is capable of straining quantities of water through fine gill rakers that it swims about openmouthed eating whatever small plankton happen to be available. Herring stomachs, for instance, will be found crammed with such delicacies as large copepods and pteropods, usually with little or no phytoplankton. I have often watched them feeding, darting about in pursuit of 'individual' zooplankters. Furthermore, in the autumn, when zooplankton are less abundant, I have found samples of herring with stomachs crammed with sand launces (Ammodytes). Launces, themselves, would be at about $2 \frac{1}{2}$ trophic levels. Furthermore, from Table 14 it is evident that 36 percent of the clupeoid fishes come from nonupwelling areas.

Ryther (1969) also, speaks of the short food chain of the clupeoid fishes, especially in the upwelling areas, and says, "There seems little doubt that many of the fishes indigenous to upwelling areas are direct herbivores for at least most of their lives". He lists as being most abundant in upwelling areas, 'sardines, pilchards, anchovies, menhaden, and so on'. The first statement is directly contrary to ine findings of Hand and Berner (1959). In the upwelling area of southern California and Baja California the sardine
(Sardinops caerulea) consumed, by weight of organic matter, 89 percent crustaceans, 4 percent chaetognaths and fish eggs, and only 7 percent phytoplankton. Smaller sizes of sardines ate even less phytoplankton.

The listing by Ryther of menhaden as one of the fishes most abundant in upwelling areas is without foundation. The estuaries and shallows of the Gulf and Atlantic coasts are not "upwelling areas".

The estimate of Ryther (Table 3) is based on about the same total amount of photosynthetic carbon production as that of Schaefer, 20×10^{9}, instead of 19×10^{9} metric tons. However, he attempts even further refinement by dividing the marine waters into three provinces, Oceanic, Coastal and Upwelling.

He correctly points out that the fish of the open ocean outside of upwelling areas have a very high average trophic level because of the very small size of the nannoplankton, which are consumed by microzooplankton, and in turn by larger zooplankton, so that the smaller fishes are already in at least the third trophic level. Thus his estimate of the biomass of available fishes is very much less than Schaefer's, only 240 million tons. His estimate that 40 percent can be harvested annually seems unrealistically high.

The estimate of Cushing (1969) is for the upwelling areas of the oceans. However, one cannot equate his oct.imates with those of Ryther by merely adding Ryther's nun-upwelling areas, since Cushing shows over $14,958,000 \mathrm{~km}^{2}$ of upwelling

Table 3. Estimate of fish production (After Ryther 1969).

| ProvincePercent
 of Ocean | Area in
 km^{2} | Productivity
 $\mathrm{gC} / \mathrm{m}^{2} / \mathrm{yr}$ | Carbon
 $\left(10^{9}\right.$ tons Levels
 per year) | Ecological
 Efficiency | Fish Production
 in tons (net |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| Oceant.) | | | | | |

areas compared to Ryther's $360,000 \mathrm{~km}^{2}$. Cushing also shows vast areas of oceanic upwelling along divergences which, using his figures for $\mathrm{gC} / \mathrm{m}^{2} /$ day and his time period, can be calculated as an additional $26,897,000 \mathrm{~km}^{2}$ in the eastern tropical Pacific.

The large and fundamental differences between their estimates are 1) the large areas that Cushing has defined as upwelling areas 2) absence from Cushing's estimate of the vast productive coastal areas not included in his "upwelling" areas, and 3) Cushing's postulation of very low trophic levels.

Cushing has vastly improved estimates of the carbon production of upwelling zones by careful estimates of the areas involved at each season, the number of days upwelling is occurring, and the number of zooplankton generations.

An example of the difference in areas is Cushing's estimate of $1,004,000 \mathrm{~km}^{2}$ of upwelling off Peru and Chile, compared to Ryther's estimate of $36,000 \mathrm{~km}^{2}$. Cushing states that he placed the outer boundaries of his upwelling areas at the points where the quantity of zooplankton or of phosphate phosphorus is half the maximum from the coast.

Because of the difference in approach between Ryther and Cushing their reports are difficult to reconcile. However, if we look carefully at Cushing's upwelling areas one can see that they take in but a minor portion of the continental shelf, since the great majority of the upwelling
takes place off relatively steep coasts, and over deep water, often at some distance from land. The areas of coastal upwelling given by Cushing thus extend offshore as far as 290 km (California), 400 km (Peru), 300 km (Canary), 300 km (Benguela), 300 km (Soma1i), and 175 km (off southwest Arabia). If we eliminate areas with little or no continental shelf (Table 4) there remains about $4,936,000 \mathrm{~km}^{2}$ that contain any appreciable amount of shelf area. If we allow a full 10 percent of shelf area in this $4,936,000 \mathrm{~km}^{2}$ remaining, we have only $494,000 \mathrm{~km}^{2}$ of continental shelf included in Cushing's estimates, leaving about $30,506,000 \mathrm{~km}^{2}$ of continental shelf not in upwelling zones.

We can now make a rough balance sheet between the areal estimates of Ryther and Cushing as follows (Table 5).

Perhaps the chief difference between earlier estimates of primary productivity, and that of Cushing, for the upwel1ing areas, is that Cushing did not estimate the primary production by a blanket formula. Instead, for each upwelling area he has used rate of vertical upwelling, speed of surface currents, number of days of upwelling, and actual estimates of seasonal primary productivity in grams of carbon per m^{2} per day. He has thus been able to summarize the tons of carbon per year for each of the many upwelling areas in great detail. Using Cushing's estimates for the upwelling areas we have summarized primary productivity in Table 6.

Table 4. Relation of upwelling areas of Cushing to shelf areas. $\left(\mathrm{km}^{2} 10^{3}\right)$
Upwelling areas with very little or no shelf
Costa Rica dome 148
Marquesas 8,760
Guinea (dome) 100
Madagascar Wedge 1,014
E. Tropical Pacific 26,897

36,919
Upwelling areas with small shelf areas
Peru-Chile 1,004
Somali-Arabia 226
Flores and Banda 200
California 505
Benguela 629
Canary 691
Upwelling areas adjacent to large shelf areas
New Guinea 460
Orissa 96
Java 300
Northwest Australia 300
East Arafura 250
Gulf of Thailand 75
Vietnam 200

Table 5. Comparison of marine areas in $\mathrm{km}^{2} \times 10^{3}$.

Ryther Cushing Our estimate
Upwelling Areas

E. Tropical Pacific ${ }^{1}$	$?$	$26,897^{2}$	26,897
Around Antarctica	160	0	160
Coastal	200	494^{3}	494
Non-shelf	0	14,464	14,464
Shelf Areas ${ }^{4}$	31,000	30,506	30,506
Remaining oceanic areas	330,640	289,639	289,479
Total Area	362,000	362,000	362,000

$1_{\text {Ryther }}$ includes oceanic divergences in his Coastal Zone which in this table would be in "remaining oceanic areas".
$2_{\text {Based }}$ on Cushing's tons C / yr and $\mathrm{gC} / \mathrm{m}^{2} / \mathrm{d}$ with 6 months of upwelling.
${ }^{3}$ See text. Ryther includes some shelf area, Cushing's 494 is estimated as shelf area.
${ }^{4}$ Includes non-shelf in seas with sills under 100 fms , excludes upwelling portions of shelves. Graham and Edwards (1962) estimate the continental shelves at 24.3 $\mathrm{x} 10^{6} \mathrm{~km}{ }^{2}$, but specify "potentially productive" shelf.

Table 6. Summary of primary productivity.

Upwelling Areas	$\mathrm{km}^{2} 10^{3}$	Tons C/yr/106
E. Tropical Pacific	26,897	$1,245.55$ from Cushing
Coastal (On Shelf)	494	43.29 froin Cushing
Non-Coastal	14,464	$1,222.40$ from Cushing
Antarctic ${ }^{1}$	160	23.52
Shelf Areas ${ }^{2}$	30,506	$4,423.37$
Other oceanic areas ${ }^{3}$	289,479	$20,987.24$
	362,000	$27,945.37$

[^0]The final estimate for primary productivity of 28×10^{9} metric tons of carbon appears to be exactly the same as Ryther's estimate of 20×10^{9} if Ryther's is corrected for earlier errors in 14 C data, which would give 29×10^{9} metric tons. However, Ryther's estimate includes a larger proportion of what he calls "oceanic", in which the ecological efficiency is doubtless low.

In any theoretical approach to the problem there are several obstacles. We need better information on the efficiency of the energy transfer at each trophic level, better information on the composition of the biomass produced at each trophic level, and better information on the possible harvest from each trophic level.

From the estimate of primary productivity in metric tons of carbon one can estimate the production at the first trophic level of consumers. Cushing did not employ the classical approach of making a guess at the ecological efficiency of this transfer but has carefully analyzed zooplankton volumes from net hauls made through the euphotic zone. Those in the Pacific are summarized by Reid (1962), those in the eastern tropical Pacific by Blackburn (1966), those in the Peru current by Flores (1967), Flores and Elias (1967), and Guillen and Flores (1967). Observations in the Indian Ocean were from Wooster, Schaefer and Robinson (1967). Wherever available we have usea Cushing's estimate for this first consumer trophic level (Table 7).

Table 7. Estimate of first (consumer) trophic level.

| Areas | Primary
 productivity
 (Tons C/yr/106) | Trophic
 efficiency
 (Percent) |
| :---: | :---: | :---: | | Carbon |
| :---: |

Upwelling Areas				
California	30.5	15.82	4.7	83.9
Peru	112.9	11.25	10.5	187.4
Chile	43.6	21.81	7.9	141.0
New Guinea	41.0	3.3	2.4	42.8
Canary	15.7	16.48	2.6	46.4
Benguela	274.6	4.46	12.9	230.3
Somali-Arabia	51.3	7.06	3.7	66.0
Orissa	8.7	16.78	1.5	26.8
Indonesia	64.2	9.90	6.4	114.2
N.W. Australia	18.5	10.07	4.5	80.3
Gulf of Thailand	20.8	10.003	2.1	37.5
Vietnam	44.2	10.003	4.4	78.5
Antarctica	23.5	10.00^{3}	2.4	42.8
Non-Coastal				
Costa Rica dome	16.7	15.76	5.3	94.6
Marquesas	514.5	4.17	21.4	382.0
Guinea domeMadagascar Wedge			1.6	28.6
	8.7	6.00^{3}	0.5	8.9
E. Tropical Pacific	1,245.6	6.46	80.5	1,436.9
Shelf (non-upwelling)	4,423.4	10.00^{3}	442.3	7,895.1
Other oceanic areas	20,987.2	6.00^{3}	1,259.8	22,476.7
	27,946		$\overline{1,876.8}$	33,500.7

${ }^{1}$ Unweighted means when more than one section of coast.
${ }_{3}^{2}$ Carbon times factor of 17.85 (Cushing, 1958).
3 Assumed.

The herbivores at the first trophic level are thus assumed to weigh 33.5×10^{9} tons wet weight. This biomass will vary in composition by area. In the "other oceanic" areas it will probably consist chiefly of microzooplankton and thus not be directly available to fishes, this will apply to a slightly lesser extent to the eastern tropical Pacific and Marquesas. On the non-upwelling portion of the shelf a fraction will be shelled mollusks, and a small portion will be consumed by fishes, but the great bulk will undoubtedly consist of copepods and other small invertebrates. In the coastal and non-coastal upwelling zones a somewhat larger share of the algae will be consumed directly by fishes, but the bulk will still be grazed by zooplankton.

Let us be optimistic and use a 15 percent ecological efficiency rate which may serve to take care of the recycling of organic substance. For the coastal upwelling zone the catch may be derived largely from the second trophic level. For the non-coastal upwelling zone the third level is more appropriate. Perhaps the bulk of the shelf yield may be as low as the third level. In the eastern tropical Pacific the fourth level may be sufficiently low. For the "other oceanic" the trophic level must be higher, averaging at least five levels. (See Table 8).

This theoretical exercise gives us a total yearly production of fish biomass (including squids, larger crustacea and shelled mollusks) of 277 million metric tons.

Table 8. Estimate of fish production (wet weight).

Area	Biomass of first consumer level (tons $/$ yr $/ 10^{6}$)	Trophic level of harvest	Assumed ecological efficiency	Fish production
(tons/yr/10				

Having arrived at this calculation of annual production of "fish" biomass the question naturally arises as to the proportion of this biomass that can be harvested if the yield is to be maintained. The previous authors differ widely in their opinions concerning this proportion. (See Table 9).

Differences in opinion between authors in the percent of the total potential biomass that is harvestable stem largely from differences concerning trophic levels at which they believe the harvest can be taken. Thus Schaefer (1965) assumes that half can be taken at the second and half at the third trophic level, whereas Edwards and Graham assumed the whole harvest to be taken at the third trophic level.

It should be obvious that the trophic level of the harvest will vary considerably amongst the different ecological habitats. Thus Schaefer's use of the second trophic level is very probably the best assumption for the pelagic coastal zones of upwelling. If the anchovettas, for instance, are a little below the second trophic level this will be balanced by the larger predators taken in the same zone. I agree with Graham and Edwards that the shelf area harvest will average closer to the third trophic level. This difference between trophic levels for harvesting in different zones was recognized by Ryther in his paper. Cushing went a step further in his excellent detailed analysis of the world's upwelling areas. However, he seemed to fail to recognize that thermal convection, turbulent mixing, intermittent upwelling, and cabelling are widespread over extensive and

Table 9. Estimates of "fish" biomass available and proportion harvestable.

Annual biomass (metric tons 106)	Percent harvestable	Possible harvest (metric tons 106)	Authors
230^{1}	50.0	115	Graham and Edwards (1962)
343^{2}	50.0	171	Graham and Edwards (1962)
$1045-2420$	$8.3-19.1$	200	Schaefer (1965)
240	41.7	100	Ryther (1969)
}{}	$30.8-50.0$	$40-60$	Cushing (1929)

${ }^{1}$ Bony fishes only.
${ }^{2}$ All fishes, including squids, etc.
3Upwelling areas only.
highly productive areas. He was apparently preoccupied with tropical and subtropical waters.

The percent of the potential biomass harvested on a sustained yield basis will also vary widely amongst the different zones and amongst the different types and species of organisms. As a very general rule the higher the trophic level the greater the danger of overexploitation. Likewise, species, such as shrimp, with a very short life span and high fecundity, show little or no relationship (within most practical limits) between size of spawning stock and numbers of young shrimp in the next generation. Bearing these limitations in mind I would rough1y estimate the potential harvest from our theoretical biomass as shown in Table 10. Actually my estimate of 94×10^{6} metric tons is considerably below the total estimate of Ryther, only 65 percent as large if his estimate is adjusted to 145 metric tons as in Table 2.

If one adds to Cushing's estimate (40-60 $\times 10^{6}$) for the upwelling areas, my estimate of 47×10^{6} for the shelf areas, making 87 to 107 metric tons $\times 10^{6}$, we are in very close agreement for the total.

One important source of nutrients neglected in most theoretical estimates is dissolved and particulate matter contained in the runoff from the land. Ketchum (1969) states,
"The effect of river water carrying nutrients into the sea is important in coastal waters and in semiconfined bodies of water such as the Gulf of Mexico. However, in terms of the total oceanic production,

Table 10. Estimates of potential fish yields.

$$
\begin{array}{cc}
\text { Available biomass } & \text { Percent } \\
\text { (tons/yr/106) } & \text { harvestable }
\end{array}
$$

Upwelling areas
E. Tropical Pacific-
$\begin{array}{llll}\text { Marquesas } & 2.7 & 20 & 0.54\end{array}$
Other upwelling
153.1

30
45.93

Shelf
Other oceanic
117.6

40
47.04
3.4
276.8

15
$\begin{array}{r}0.51 \\ \hline 94.02\end{array}$
$1_{\text {From }}$ Table 8.
river drainage adds only about 1% of the total nutrient requirement each year. Thus, while river drainage is very important locally, its value to the productivity of the sea has been greatly overemphasized by some."

The importance of land drainage is undoubtedly much greater than the above statement would suggest. For instance, it is estimated (Clarke, 1916) that the Mississippi River annually discharges into the Gulf of Mexico 370×10^{6} metric tons of sediment and $2,735 \times 10^{6}$ metric tons of dissolved salts. My estimate for tons/yr of photosynthesized carbon on the world's continental shelves (Table 6) is only $4,467 \times 10^{6}$. From 1964 through 1966 fish yield in the Gulf of Mexico was 68.5 percent as great as the Atlantic coast from Key West to Eastport, yet the bulk was taken from Mobile Bay to Port Arthur, a distance of about 300 miles, around the mouths of the Mississippi.

The effect of the Mississippi River sediments that are carried westward along the Louisiana and Texas coasts on the aggregations of brown shrimp is very striking. Where these sediment-laden waters meet a current flowing northward along the Texas coast they are diverted away from shore onto the continental shelf. Here is where over 50 percent of the Texas catch is made (Lindner and Bailey, 1968).

For the entire world Clarke (1916, p.118) estimates that the runoff from the land carries $2,492 \times 10^{6}$ tons per year of dissolved substances which averages 24 tons per km^{2} of land surface. Fifty years later, Alekin (1966), estimates

23 tons per km^{2}. The two estimates are remarkably close. Clarke's estimate gives an average terrigenous contribution of dissolved substances of 6.9 tons per year per km^{2} of ocean surface. This is nearly equal to the primary productivity of 7.7 tons C/year/ km^{2} (27,946 tons C/year $/ 10^{6}$ (Table 7) $\div 362 \mathrm{~km}^{2} / 10^{6}$).

Since almost all of this dissolved material flows onto the continental shelves it should be noted that this amounts to 44 tons of dissolved material $/ y e a r / \mathrm{km}^{2}$ of shelf area. Thus it. appears that the 144 tons $\mathrm{C} /$ year $/ \mathrm{km}^{2}$ for the continental shelves, compared to a world average of 7.7 tons C/year/ km^{2} is not a mere coincidence.

Concerning the usually very productive Sea of Azov, Izhevskii (1961) states, "The productivity of the northeastern part of the Black Sea responded to the decreased productivity of the Azov Sea during the reservoir-filling years on the Don (1952-53). According to A.P. Kusmorskaya this part of the sea proved less productive even as compared to the southeastern portion." Izhevskii (1964) also states, "The diversion of the Don River in 1952-53 resulted in a sharp decrease in the catches, from 800,000 metric centners in 1951 and 600,000 in 1952 to 35,000 in 1955."

The fisheries adjacent to the Nile delta have dec1ined steadily since 1964 because construction of the Aswan Dam has lowered quantities of incoming nutrients. (Anonymous, 1970a).

One point that must be made is the great gap between total primary productivity and even potential yield. Thus it
should be noted that the upwelling and shelf areas (exclusive of the tropical Pacific) with a combined total of only about 20 percent of the primary productivity account for 98.9 percent of the potential harvestable fishery organisms. A very low order of primary productivity prevails over most of the deep oceans, excluding only areas of upwelling. This includes 78.5 percent of the oceans, plus an additional 7.5 percent slightly better in the eastern tropical Pacific, in all 86 percent. Partially because of the low productivity, and partly because of the higher trophic levels, this enormous area, comprising 61 percent of the entire surface of this planet, has a theoretical potential of only one percent of our fishery harvest!

How well do the theoretical estimates of potential fish yield seem to fit the known facts? Ryther gives two examples which he apparently regards as authenticating his theoretical approach. In his first example he uses the 110,000 square miles of the New England banks between Hudson Canyon and the channel between Georges Bank and the Nova Scotia banks. According to Graham and Edwards (1962) this area contains only 71,875 square miles of continental shelf. He states,
"From the information in Tables 2 and 3, it may be calculated that approximately 1 million tons of fish are produced annually in this region. Commercial landings from the same area were slightly in excess of 1 million tons per year for the 3 -year period 1963 to 1965 before going into a decline."

Using the information Ryther gives in Tables 2 and 3 ($100 \mathrm{~g} \mathrm{carbon} / \mathrm{m}^{2} / \mathrm{yr}$, a 15 percent ecological efficiency,
his 110,000 square miles, and harvest at the third consumer trophic level) the total wet weight biomass of all organisms at the third level is only 960 thousand metric tons. Using his harvesting rate of 41.7 percent results in a yield of only 400 thousand metric tons, far below the 1 million tons actually caught.

For his second example Ryther uses the upwelling area along the Peru-Chile coast. He says the area involved is only 2,400 square miles $\left(6,475 \mathrm{~km}^{2}\right)$. At his figure of 300 g carbon $/ \mathrm{m}^{2} / \mathrm{yr}$, and his 20 percent ecological efficiency the wet weight of the biomass would be 3.9 million tons at the first (herbivore) level and only 0.8 million tons at the second consumer level. Harvested at half at each level as he postulates at a rate of 40 percent harvest we get only 1.9 million tons of yield whereas he says the catch is about $10,000,000$ tons and that the guano birds consume an additional $10,000,000$ tons. This is an astounding difference between theory and actuality.

For the same Peru-Chile upwelling region Cushing (1969) gives an area of $1,004,000 \mathrm{~km}^{2}$ and by Cushing's analysis there results a biomass at the second consumer level of 49.3 million metric tons, which he says would be harvested at that level. The 20 million tons that Ryther (1969) has said could be had by fishermen and guano birds, would be produced in an area only 6 percent as large as that used by Cushing.

Probably the greatest discrepancy between theory and fact is caused by a large underestimation of the fertility of inshore areas, especially those receiving substantial freshwater drainage from fertile lands. Thus the area around the mouths of the Mississippi River between Mobile Bay and Port Arthur has produced for several years about one billion pounds of menhaden and industrial fish. Disregarding all other fish production, this is 453,000 metric tons in a shelf area of not over 30,000 square miles $\left(77,700 \mathrm{~km}^{2}\right)$. To produce this amount of fish at the second consumer level would require 6.6×10^{6} tons $C / y r$ if the total biomass were harvested. Using Ryther's figure of 100 $\mathrm{g} \mathrm{C} / \mathrm{m}^{2} / \mathrm{yr}$ for this area gives 7.8×10^{6} tons carbon. Obviously, primary production in the area has to be, at the very least, between two and three times higher than the general coastal average of $100 \mathrm{~g} \mathrm{C} / \mathrm{m}^{2} / \mathrm{yr}$ suggested by Ryther. I contend that one of the difficulties has been the lack of sufficient sampling in inshore areas to truly reflect the average fertility of the continental shelves.

In a recent review (Parsons et al, 1970) the primary productivity in the Gulf of Georgia was placed at $120 \mathrm{~g} \mathrm{C} / \mathrm{m}^{2}$ per year, but it was also stated that allochthonous organic carbon from land drainage was at least as great as the total annual primary productivity. Stephens et al (1967, cited by Seki et al, 1968) reported these annual sediments as containing organic carbon and nitrogen in the amounts of 200 and of
$27 \mathrm{~g} / \mathrm{m}^{2}$ per year. Seki et al (1968) showed that this organic carbon was utilized by bacteria with an efficiency of about 30 percent. Obviously, then the land drainage in this area is contributing about one-third of the primary food source to the coastal waters.

The importance of these sediments is well illustrated in southeastern Alaska where shrimp are caught on the fine detri. tus along the face of melting glaciers.

The weakness of the relationship between primary, and even secondary, productivity and fishery production is brought out in a statement taken from a report by the SCOR group on monitoring in biological oceanography (Scientific Committee on Oceanic Research, 1970, p.76):
"Monitoring on an gcean-wide scale of such parameters as ch1orophy11-a, C^{14} uptake, and zooplankton biomass have been much overemphasized in their direct application fisheries. A number of examples were discussed to emphasize that application of primary and secondary production data differed very considerably from fishery to fishery.
"During the recent METEOR work in the region of Cabo Blanco, a recently upwelled parcel of water, rich in nutrients, was observed to develop a very strong bloom of a Phaeocystis-like alga. Subsequently, no grazing herbivores developed, probably because few herbivore species are able to utilize these chain-form phytoplankton. In an ocean-wide ch1orophy11-a monitoring system such patches would be difficult to assess without additional observations. Similar experiences have been noted off Peru where the Engraulis fishery does not correspond with regions of strongest upwelling, and off South West Africa where the Spanish distantwater trawler fleet has been observed far from upwelling centers, while in the northern Pacific Ocean it has been found that there was no direct relationship between the north Pacific, spring bloom and the high seas salmon distribution.

Table 11. Estimate of world marine fishery catch in 1958 and 1968. ${ }^{1}$ (thousands of metric tons)

	$\underline{1958}$	1968
FAO grand total	$33,200.0$	$64,000.0$
Freshwater species	$4,420.0$	$6,660.0$
Other freshwater ${ }^{2}$	59.7	48.4
Cultured fishes ${ }^{3}$	52.0	64.4
Miscellaneous non-fish 4	43.0	63.0
Aquatic algae	520.0	890.0
FAO marine fishes	$28,105.3$	$56,274.2$

${ }^{1}$ Exclusive of whales.
${ }_{3}^{2}$ Freshwater fishes included in FAO marine fish tables. ${ }^{3}$ Japan, Taiwan, and Denmark.
${ }^{4}$ Porpoises, turtles, frogs, corals, shells, pearls, sponges

Table 12. Estimate of world marine fishery catch in 1958 and 1968 from FAO tables of catches by countries. 1
Regions19581968
Upwelling Areas
Chile-Peru-Ecuador
California
Angola, Namibia, S. AfricaMorocco, Ifni, Spanish Sahara,Mauritania, Senegal291.5
Metric Tons 10^{3}

$1,218.1$	$11,943.3$
312.0	233.4
933.9	$2,409.3$

$$
447.7
$$

Guinea dome-Ivory Coast, Ghana,Togo, Dahomey, Sao Tome,Nigeria
164.1279.4
Somalia, S. Yemen, Saudi Arabia, Muscat, Oman, Trucial Oman

$157.6 \quad 190.6$India, Ceylon, Maldive Islands1,117.3 1,693.4
Thailand, Cambodia, S. Vietnam
$\frac{496.8}{4,691.3} \quad \frac{1,669.9}{18,867.0}$
Non-upwelling Areas
N. of U.S.-Mexico (except Calif.) 3,439.3 3,738.8
Mexico to S. America, Caribbean 240.4 596.7
E. Coast of S. America 412.3 893.4
Mediterranean-Gibraltar to Seaof Aral (Ex. France and Spain)
949.6 $1,681.3$
Atlantic Europe(incl. Russian Baltic Republics) 7,653.5$12,116.1$
N. Temperate Asia-Japan, Taiwan, S. Korea, Ryukyu $6,154.6$

$$
10,073.1
$$

China (mainland) 4,060.0

$$
\begin{equation*}
5,800.0 \tag{1960}
\end{equation*}
$$

Table 12 (continued)

Regions
1958
1968
Non-upwelling Areas
North Vietnam
North Korea
Philippines, Macao, Hong Kong
Malaysia-Singapore
Pakistan
Persian Gulf-Iran, Iraq,
Kuwait, Qatar
Remainder W. coast of Africa
Remainder E. coast of Africa
New Zealand
U. S. S. R.
(Main Federated Republic only)
Upwelling limited in time or area

Burma	360.0	396.1
Brunei, Indonesia, Portugese Timor	692.8	$1,177.9$
Australia	$\frac{54.3}{1,107.1}$	$\frac{102.7}{1,676.7}$
Inland countries (no marine)	$\frac{236.8}{32,956.2}$	$\frac{415.9}{63,609.0}$
GRAND TOTAL		$55,883.2$

$1_{\text {Exclusive }}$ of whales.

Table 13. Estimate of world marine fish catch in 1958 and 1968 by groups of species from FAO Yearbook. (thousands of metric tons). 1

Table 13 (continued)

Summary	$\underline{1958}$	$\underline{1968}$
Upwelling	3,905	17,606
Non-upwelling	22,992	36,308
Unclassified	1,336	2,447
	28,233	56,361

[^1]Thus from Tables 11 to 13 we have three estimates of world marine fish catches of 1958 and 1968:

Source	1958	$\underline{1968}$
Table 11	28,105	56,274
Table 12	27,862	55,883
Table 13	28,233	56,361
Average	28,000	56,173
Range, -	138	290
Range, +	233	188
Range, Total	371	478

Considering the amounts that had to be estimated for various countries these three approaches give remarkably close estimates for the world catch of marine fishes, which appears to have increased from 28 million to 56 million metric tons over a ten-year period, a rate of 7.15 percent for the whole period.

One of the first facts clearly evident (Table 14) is that the upwelling areas are dependent on a huge catch of clupeoid fishes. This catch of a few schooling species is highly reminiscent of the golden days of the California sardine fishery when the industry rebelled against the few conservation measures imposed by the State of California. The idea that one should place confidence in the annual production of great quantities of animal protein from a single species of fish is gambling with the future. I was in California when the industry used all its influence to allow unlimited exploitation of sardines. Despite the limitations maintained by the State, the sardine fishery collapsed.

Perhaps in thinking of trophic levels one should also consider that the bulk of the great catch of clupeoids, about 78 percent of the 1968 catch in the upwelling areas, is not eaten by humans, but goes through a whole trophic level (into chickens, etc.) and so is much less important than the gross statistics would indicate.

It is interesting to note that 58 percent as many clupeoid fishes were taken from shelf areas as from the "upwelling areas". If we compare the yield per area of the rich "upwelling" areas with the yield of the shelf areas of the world, Table 15, it is indeed surprising to discover that the production per square kilometer is almost identical. What the shelf areas may lack in pelagic species is compensated for by the richness of the demersal fauna.

Table 14. Analysis of 1968 marine catch by types of species (from Table 13 , metric tons $x 10^{3}$.

Upwelling Areas	Non-upwelling Areas	Unclassified Areas

Pelagic Species
Neritic

Clupeoids
Sea breams
Mackerels
Cephalopods

$$
\begin{array}{r}
13,748 \\
62 \\
558 \\
12 \\
\hline 14,380
\end{array}
$$

7,911
304
3,370
$\frac{1,085}{12,670}$

17
67
386
\qquad
Oceanic
Salmons
Tunas

$$
\frac{250}{250}
$$

423
847
1,270

$\frac{85}{85}$

Demersal Species

Flatfishes		776^{1}	1,145
Gadoids		8,693	19
Redfishes	952	10	
Demersal, various		261	18
Sciaenidae		299	219
Sharks, rays		253	22
Shrimps, lobsters	219	639	75
Crabs		316	174
Oysters	1	818	13
Other bivalves	43	893	
Other molluscs	161		258
	1,200	14,527	36

All other fishes and
unsorted fishes $\frac{1,776}{17,606}$
$\frac{7,841}{36,308}$ $\frac{1,302}{2,447}$
$1_{\text {Hakes only }}$

Table 15. Comparison of yields in 1968 from upwelling and shelf areas. ${ }^{1}$ (Metric Tons $x 10^{3}$)

	Upwelling	Non-upwelling
Demersal species	1,200	14,527
Neritic pelagic species	14,380	12,670
Unsorted fishes	$\frac{1,776}{17,356}$	$\frac{7,841}{35,038}$

Upwelling areas ${ }^{2}, \mathrm{~km}^{2} \times 10^{3} \quad 14,958$
Non-upwelling shelf areas ${ }^{3}, \mathrm{~km}^{2} \times 10^{3}$

$$
30,506
$$

Metric tons yield per km^{2} all fishes 1.16 1.15
${ }^{1}$ Excludes the oceanic pelagic tunas and the ocean feeding salmons.
${ }^{2}$ See Table 5, excludes Antarctica and oceanic area of 3 eastern tropical Pacific.
${ }^{3}$ Includes total area of seas with entrance sills less than 100 fms, such as the Mediterranean Sea, Red Sea, Baltic Sea, and Persian Gulf.

We know that the catch of the shelf area is coming from only a fraction of the area available. Thus Graham and Edwards obtained an average of 20 pounds per acre of bony fishes for various productive continental shelves. This amounts to 2.24 metric tons per km^{2}. They excluded all invertebrates and elasmobranchs, which in 1968 were 11 percent of the shelf catch. Adjusting for these omissions would give 2.52 metric tons per km^{2}.

It will be noted that my theoretical estimate of total sustainable yield (Table 10) estimated exactly 50 percent of the yield coming from non-upwelling shelf areas. However, actual yields (Table 15) show that shelf areas yielded over twice as much as upwelling areas and had the same average yield per km^{2}. This means that the estimates of productivity for shelf areas are too low. This underestimate of shelf productivity can have two sources, first, the underestimation of primary productivity caused by failure to adequately sample the shallower portions of the shelf, and second, from failure to fully recognize the role of land-derived nutrients.

This underestimation of the fishery potential of the continental shelves versus the deeper areas can be illustrated by a few examples.

Alverson et al (1964) state that the annual catch of demersal fishes from the shelf areas from southern Oregon to the Arctic was 1,549 million pounds, (estimated from several sources for years up to about 1960). This included large

Japanese and Russian catches in the eastern Bering Sea, but excluded the Asiatic side. They state that at 10 pounds per acre this area should produce 1,600 million pounds of demersal fishes. In 1968 the northeast Pacific demersal catch was $2,538,000$ metric tons over an area (See Table 16) of $1,058,000$ km^{2} or 2.399 metric tons per km^{2}, a great increase in demersal species alone.

Holden (1967) shows total fish landings including invertebrates from the North Sea by 13 countries in 1965 as 2,810 thousand metric tons. For the North Sea with an area of only 575 thousand km^{2} this is a catch of nearly 5 metric tons per km^{2} an astonishingly high figure, however, it includes all fisnes, not just the demersal.

Contrast this with the tuna fishery based in American Samoa (Chapman 1969) in which Japanese, Korean, and Taiwanese vessels fishing an area of 7 million square miles caught 38,000 tons of fish in the peak year of 1967 , or only 0.0021 metric tons per km^{2}.

Without more data any estimate of fishery production is subject to errors that are not necessarily compensating. Furthermore, whether the production reaches or falls far short of an estimate depends largely on whether the fishery resources can be managed by scientific knowledge instead of uncontrolled exploitation. Under the latter regime the fishermen and the consumer are both short changed.

In order to estimate the potential yield of the shelf areas I have made a crude estimate of the areas of shelf involved in each major climatic and geographic region. The modern trawlers fish both the continental shelf proper and the upper slope to a depth of about 600 meters or beyond. In Table 16 we have attempted to estimate both continental shelf and upper slope.

TABLE 16. CONTINENTAL MARGINS (KM ${ }^{2} 10^{3}$).

SHELF ${ }^{1}$ UPPER SLOPE ${ }^{2}$ TOTAL

ARCTIC SEA ${ }^{3}$	4,990 ${ }^{3}$	$\underline{2,500^{3}}$	7,490
HUDSON AND BAFFIN BAYS, CANADIAN STRAITS	1,010 ${ }^{4}$	1505	1,160
XARA SEA 5	883	?	?
LAPTEV AND E. SIBERIAN SEAS ${ }^{5}$	1,000	?	?
CHUKCHI SEA, BEAUFORT SEA, ETC. ${ }^{5}$	2,097	?	?
ATLANTIC, NORTHEAST	2,495	761士	3,256
barents SEA	5504,7		550
SPITZ BERGEN	2404,7		240
NORWEGIAN SEA ${ }^{6}$	130	347	477
ICELAND ${ }^{6}$	96	174	270
FAEROES ${ }^{6}$	26	130	156
EAST GREENLAND SEA ${ }^{5}$	20	110	130
NORTH SEA	5757		575
baitic SEA ${ }^{6}$	$478{ }^{7}$		478
IRISH SEA	3807		380
ATLANTIC, NORTHWEST	1,558	838	2,396
LABRADOR ${ }^{5}$	80	100	180
SOUTHWEST GREENLAND	180^{4}	20^{5}	200
newfoundland	4007,4	40^{5}	440
SOUTHERN GULF OF ST. Lawrence	1005	100^{5}	200
NOVA SCOTIAN BANKS	2605	10^{5}	270
NEW ENGLAND BANKS ${ }^{8}$	267	77	344
MIDDLE AND SOUTH ATLANTIC ${ }^{8}$	271	491	762
SUBTROPICAL ATLANTIC, N.E.	824	645	$\underline{1,469}$
BAY OF BISCAY	80^{4}	10^{5}	90
west iberian	50^{4}	35	53
Mediterranean SEA ${ }^{6}$	515	567	1,082
BLACK SEA ${ }^{6}$	141	65	206
SEA OF AZOV	38	0	38
SUBTROPICAL ATLANTIC, N.W.	689	215	904
Bahamas ${ }^{6}$	127	17	144
PUERTO KICO AND VIRGIN ISLANDS	5^{9}	85	13
N. GULF OF MEXICO	385	155	540
CAMPECHE BANK ${ }^{6}$	172	35	207
TROPICAL ATLANTIC, EAST	580	71	651
N.W. AFRICA ${ }^{5}$	190	16	206
SOUTH To include liberia	190	20	210^{4}
GULF Of GUiNEA	200	35	235^{5}
TROPICAL ATLANTIC, WEST	832	187	1,019
NiCaragua to jamaica ${ }^{6}$	120	52	172
OfF Panama and columbia ${ }^{5}$	80	10	90
Venezuela ${ }^{6}$	93	34	127
TRINIDAD ${ }^{6}$	24	21	45
AMAZON COAST	5156	705	585
SUBTROPICAL ATLANTIC, S.E.	183	229	412
ANGOLA	14^{6}	10^{5}	24
S. W. AFRICA ${ }^{6}$	69	120	189
S. AFRICA, WEST COAST ${ }^{6,4}$	100	99	199
SUBTROPICAL ATLANTIC, S.W.	400	90	490
SOUTHERN BRAZIL	400^{4}	90^{6}	490

TABLE 16 (CONTINUED)

	SHELF ${ }^{1}$	UPPER SLOPE ${ }^{2}$	total
ATLANTIC, S.W.	1,082	488	1,570
ARGENTINA-FALKLAND IS. 6	1,030	345	1,375
BURWOOD BANK	35^{6}	40^{5}	75
SOUTH GEORGIA, SOUTH ORKNEY IS. ${ }^{6}$	17	103	120
PACIFIC, N.E.	915	143	1,058
EASTERN BERING SEA ${ }^{8}$	498	48	546
gulf of alaska ${ }^{8}$	206	52	258
BRITISH COLUMBIA-S.E. ALASKA ${ }^{10}$	71	33	104
OREGON-WASHINGTON ${ }^{8}$	25	10	35
B.C.-ALASKA "INSIDE" WATERS ${ }^{5}$	100	0	100
WASHINGTON "INSIDE" WATERS ${ }^{5}$	15	0	15
PACIFIC, N.W.	1,158	791	1,949
W. BERING SEA-KAMCHATKA ${ }^{6}, 8$	553	86	639
SEA OF OXHOTSK ${ }^{6}$	368	550	918
SEA OF JAPAN ${ }^{6}$	237	155	392
SUBTROPICAL PACIFIC, N.W.	979	137	1,116
Yellow and east china seas ${ }^{6}$	979	137	1,116
SUBTROPICAL PACIFIC, N.E.	164	65	229
CALIFORNIA ${ }^{8}$	79	19	98
GULF OF CALIFORNIA ${ }^{6}$	72	31	103
HAWAII ${ }^{8}$	13	15	28
TROPICAL PACIFIC, EAST	95	15	110
COSTA RICA AND PANAMA ${ }^{5}$	25	10	35
COLUMBIA AND ECUADOR ${ }^{5}$	70	5	75

TROPICAL PACIFIC, WEST	2,909	606	3,515
N. PART SOUTH CHINA SEA ${ }^{5}$	500	100	600
SUNDA SHELF ${ }^{5}$	1,000	127	1,127
GULF OF THAILAND ${ }^{5}$	306	0	306
Java SEA ${ }^{5}$	300	67	367
SULU SEA ${ }^{5}$	100	8	108
FRENCH PACIFIC ISLANDS ${ }^{6}$	100	137	237
BRITISH PACIFIC ISLANDS ${ }^{6}$	58	58	116
N.E. AUSTRALIA AND NEW GUinea ${ }^{5}$	545	109	654
PACIFIC, S. E.	100	24	124
S. CHILE ${ }^{5}$	100	24	124
PACIFIC, S. W.	308	1,245	1,553
NEW ZEALAND ${ }^{6}$	206	1,144	1,350
bass Strait ${ }^{5}$	75	15	90
CHESTERFIELD ISLANDS	27	86	113
INDIAN OCEAN, S. TEMPERATE	739	341	1,080
MOZAMBIQUE ${ }^{6}$	137	34	171
AGULHAS BANK	110^{4}	22	132
KERGUELEN ISLANDS ${ }^{6}$	52	275	327
s. COAST OF AUSTRALIA ${ }^{5}$	440	10	450
INDIAN OCEAN, TROPICAL EAST	1,840	331	2,171
ARAFURA SHELF AND GULF OF CARPENTARIAS	930	0	930
SAhUL AND ROWLEY Shelves ${ }^{6}$	378	189	567
Strait of malacca ${ }^{5}$	155	0	155
andaman Sea	205^{5}	120^{6}	325
bay of bengal	1376	17^{5}	154

	SHELF ${ }^{1}$	PER SLOPE ${ }^{2}$	total
CEYLON ${ }^{5}$	35	5	40
INDIAN OCEAN, TROPICAL, WEST	1,006	457	$\underline{1,463}$
FRENCH ISLANDS ${ }^{6}$	62	148	210
BRITISH ISLANDS ${ }^{6}$	165	69	234
E. ARABIAN SEA	343^{6}	10^{5}	353
Persian gulf ${ }^{6}$	237	0	237
RED SEA	189	196	385
TANZANIA	10^{5}	34^{6}	44
ANTARCTICA ${ }^{6}$	0	3,434	3,434
ARCTIC AND ANTARCTIC	4,990	5,934	10,924
TEMPERATE: NORTH	6,126	2,533	8,659
SOUTH	2,229	2,098	4,327
SUBTROPICAL: NORTH	2,656	1,062	3,718
SOUTH	583	319	902
TROPICAL	7,262	1,667	8,929
	23,846	13,613	37,459
PERCENT	63.7	36.3	
$1_{\text {USUALLY }}$ TO 100 FMS OR 200 METERS.			
${ }^{2}$ USUALLY TO 500 FMS OR 1000 M .			
3^{3} EXCLUDING barents SEA, AND SPITZBERGEN, INCLUDING HUDSON AND BAFFIN BAYS, HESELTON (1969).			
${ }^{4}$ LAEVASTU (1961).			
$5^{\text {APPRROXIMATION. }}$			
${ }^{6}$ HESELTON (1969).			
${ }^{7}$ INCLUDES SOME UPPER SLOPE.			
${ }^{8}$ COMM. ON MAR. SCI. (1969a).			
${ }^{9}$ NAT. COUNCIL ON MARINE RESOURCES (1967).			
${ }^{10}$ ALVERSON ET AL (1964).			

The totals given in Table 16 are a little less than our summation of Heselton (1969) for $\mathrm{km}^{2} 10^{6}$.

	$0-200 \mathrm{~m}$	$200-1000 \mathrm{~m}$	Total
Heselton (1969)	27.1	16.0	43.1
This report	$\frac{23.8}{3.3}$	$\frac{10.2}{5.8^{1}}$	$\frac{34.0}{9.1}$
			Omitting Antarctica

Part of this difference is the absence from our estimate of narrow bands of shoal water along many steep coasts, and the absence of accurate data for Antarctica (Heselton says that much of the area in Antarctica once believed land is actually shelf and that the shelf area may actually be nearly one million square miles).

It is impossible with present data to make a very precise estimate of shelf and slope areas, especially as the depths used by various authors are not the same.

Comparing by oceans (and author's boundaries differ) we seem to be short about the following amounts in $\mathrm{km}^{2} 10^{3}$:

$$
\begin{array}{cc}
0-200 \mathrm{~m} & 200-1000 \mathrm{~m} \\
398 & 1042 \\
2588 & 3125 \\
332 & 2030
\end{array}
$$

Indian Ocean Pacific Ocean
Atlantic Ocean

The discrepancies in upper slope areas might be in reality of little consequence if we knew how much of Antarctic shelf was estimated to be included in each ocean.

The greatest discrepancy is in the Pacific where we were unable to obtain estimates of bank areas amid the thousands of island archipelagos. Fortunately, the areas underestimated lie chiefly in the tropical reef areas, not in the areas of higher yield.

In Table 17 we have classified the fishing banks of Table 16 according to our estimate of their relative potential yield of demersal fishes.

Table 17. Shelf areas according to relative productivity for demersal fishes.
$\left(\mathrm{km}^{2} 103\right)$

Shelf | Upper |
| :--- |
| slope | Total

Highly productive

east Atlantic (except Baltic)	2,017	761	2,778
Northwest Atlantic south to New England	1,287	347	1,634
Northeast Pacific	915	143	1,058
Northwest Pacific (except W. Bering Sea)	605	705	1,310
Subtropical Atlantic, N.W. (except Bahamas)	557	190	747
Sea of Azov	38	0	38
Subtropical Pacific, N.W. and south to Sunda She1f	2,785	364	3,149
Bay of Bengal and Ceylon	172	22	194
Southern Chile	100	24	124

Moderately productive

U.S. Mid and South Atlantic 271491762

Bay of Biscay and West Iberian 13013143
Black Sea $141 \quad 65 \quad 206$
Tropical Atlantic, east $\quad 580 \quad 71 \quad 651$
Tropical Atlantic, west 832187
Subtropical Atlantic, S.E. and S.W. 583319
319
345
1,019
902
1,375
Pacific, S.W. (except Chesterfield Is.) 281 1,159 1,440
W. Bering Sea-Kamchatka

Subtropical Pacific, N.E.
Tropical Pacific, E.
Mozambique and Agulhas Bank
N. and N.W. Australia and Strait
$1,463 \quad 189$
86
639
of Malacca
E. Arabian Sea and Persian Gulf Java and Sulu Seas

Productivity low

Baltic Sea
478
Mediterranean Sea
Bahamas and Puerto Rico
Burwood Bank
N.E. Australia and New Guinea

French, British, Pacific Islands
515
132
545 158

567 1, 082
478
$25 \quad 157$
$40 \quad 75$
109654
195353

Table 17 (continued)

Andaman Sea
S. coast of Australia Red Sea
Tanzania
French, British, Indian Ocean Islands

ShelfUpper slope Total

205120325
$440 \quad 10 \quad 450$
$189 \quad 196 \quad 385$
$10 \quad 34 \quad 44$
$227 \quad 217 \quad 444$
Proauctivity very low
Hudson and Baffin Bays, Canadian Straits 1,010 150 1, 160
$\begin{array}{lll}\text { South Georgia and South Orkneys } & 17 & 103 \\ 120\end{array}$
Chesterfield Islands
$27 \quad 86$
113
Kerguelen Islands
$52 \quad 275$
327

Productivity extremely low

Arctic Sea (except Hudson Bay, etc.) Antarctica

3,980
6,330
0 3,434 3,434

Summary of Productivity by Areas

High
Moderate
Low
Very low
Extremely low

Shelf Upper Total slope

8,476	2,556	11,032
7,350	3,146	10,496
2,929	1,505	4,434
1,106	614	1,720
3,980	5,784	9,764
23,841	13,605	37,446

Utilizing the compilation of Table 17 we have constructed Table 18 to show the estimated total yields of demersal fishes. Note that the upper slope areas were estimated as 50 percent as productive as the continental shelf. The two depths were approximately equal in yield per km^{2} in the northeast Pacific (Alverson et al, 1964) but a sizeable portion of our upper slope extends to as deep as 500 fms or 1000 m , whereas they only considered to 300 fms .

In the following list preceding Table 18 I have shown some estimates of catches in several areas used as a partial basis for estimating yields. In assigning yields I have, if anything, been optimistic.

Some further notion of the accuracy of our assignment of demersal production rates per square kilometer can be gotten by comparing our results for a couple of well fished areas with rather well defined boundaries, with those of other fishery workers.

Thus, for the New England banks our estimate of potential yield of demersal species for the $267 \mathrm{~km}^{2} \times 10^{3}$ of shelf and $77 \mathrm{~km}^{2} \times 10^{3}$ of slope is 917×10^{3} metric tons compared to 910×10^{3} tons by Edwards (1968).

For the northeast Pacific our figure is $2,960 \times 10^{3}$ metric tons compared with $1,113-2,269$ metric tons (Alverson, 1968).

Catch of fishes in metric tons per km^{2} per year.

Area	Period	Demersal	Pelagic	Total
Iceland Banks ${ }^{1}$	1956-58	3.250	0.594	3.844
Eastern Bering Sea ${ }^{2}$ up	to 1960	2.018		
Barents Sea ${ }^{1}$	1956-58	1.760	0.089	1.849
Gulf of Maine ${ }^{1}$	1956-58	1.423	0.527	1.950
Grand Banks ${ }^{1}$	1956-58	1.323	0.022	1.345
Nova Scotia Banks ${ }^{1}$	1956-58	1.211	0.314	1.525
North Sea ${ }^{1}$	1956-58	1.121	1.861	2.982
Middle Atlantic Shelf ${ }^{1}$	1956-58	0.863	6.075	6.938
Oregon-Washington ${ }^{2}$	1956-60	0.504		
Baltic ${ }^{1}$	1956-58	0.460	0.392	0.852
Brıtish Columbia-S.E. Alaska ${ }^{2}$	1956-60	0.336		
Adriatic ${ }^{1}$	1947-53	0.280	0.235	0.515
Northeast Pacific ${ }^{3}$	1968	2.399		
North Sea ${ }^{4}$	1965			4.887
Samoa ${ }^{5}$	1967		0.002	
Guif of Mexico, Mobile to Port Arthur			5.830	
Peru-Chile-Ecuador upwelling area 1968^{6}				11.895

${ }^{1}$ Graham and Edwards, (1962), bony fishes only.
${ }_{3}$ Alverson et al (1964).
${ }^{3}$ Oregon to Bering Sea, $1,058,000 \mathrm{~km}^{2}$, includes non-bony fishes and invertebrates.
${ }_{5}^{4}$ Holden (1967).
${ }_{6}^{5}$ Chapman (1969), tuna 士ıshery.
$6_{1,004,000} \mathrm{~km}^{2}$, (Cushing, 1969).

Table 18. Estimate of potential demersal fish production.

Metric tons Shelf Upper slope Fish 103 Productivity per $\mathrm{km}^{2} \mathrm{~km}^{2} 103$ km ${ }^{2} 103$ Metric tons 103

3	8,476		25,428	High
1.5		2,556	3,834	High
2	7,350		14,700	Moderate
1		3,146	3,146	Moderate
1	2,934		2,934	Low
0.5		1,513	756	Low
0.1	1,106		111	Very Low
0.05		614	31	Very Low
0.01	3,980		40	Extremely Low
0.005		5,784	29	Extremely Low

Areas underestimated in Table 17
Metric tons Shelf Upper slope Fish Productivity per $\mathrm{km}^{2} \mathrm{~km}^{2} 10^{3} \mathrm{~km} 2103$ Metric tons 103

Indian Ocean

2	398	796	Moderate	
1		1,042	1,042	Moderate

Pacific Ocean

| 1 | 2,588 | 2,588 | Low |
| :--- | :--- | :--- | :--- | :--- |
| 0.5 | 3,125 | 1,562 | Low |

Atlantic Ocean
1
332
0.5

$$
2,030 \quad \begin{array}{r}
332 \\
1,015 \\
\hline 58,344
\end{array}
$$

To make a total estimate we must add to the demersal fish catch of 58 million tons, all of the pelagic species, as well as the bivalve mollusks, gastropods, and crabs.

The neritic pelagic species from the upwelling areas in 1968 were 96 percent clupeoids, in fact about 78 percent consisted of Peruvian anchovy, Engraulis ringens. If the 15 percent decrease in the catch of Peruvian anchovy for 1969 reported in preliminary FAO statistics is correct (Beaufort, 1970), the total yield from neritic pelagic species may have reached its zenith. Inasmuch as the 1968 catch in this category was only $14,380 \times 10^{3}$ metric tons, we would place the ultimate potential sustainable yield from this source at a maximum of $15,000 \times 10^{3}$ metric tons.

The potential neritic pelagic catch from non-upwelling areas is more difficult to estimate. In 1968 it was 12,670 x 10^{3} metric tons of which only 62 percent consisted of clupeoid fishes. The Norwegian 1968 catch of $2,804 \times 10^{3}$ metric tons was down to $2,200 \times 10^{3}$ in 1969 owing to a drop in Atlantic herring which they were unable to replace by herring fishing efforts off New England and Nova Scotia.

There are a few as yet untapped sources of clupeoid fishes, such as the great schools of thread herring, Opisthonema, off the west coast of Florida. However, how these will withstand intensive fishing is pure speculation.

Possibly the catch of pelagic cephalopods (squids and cuttlefishes) will increase as they are not consumed
extensively in many countries, although high.ly esteemed in others. Since the 1968 cephalopod catch was but $1,085 \times 10^{3}$ metric tons it will take a large increase indeed to make much of a showing.

Weighing all of these factors it would seem that a potential maximum of $15,000 \times 10^{3}$ metric tons of neritic pelagic species from the non-upwelling areas is a reasonable estimate.

The oceanic pelagic fishes consist primarily of the tunas and billfishes and the salmons, which, although anadromous, make most of their growth on the oceanic feeding grounds. The 1968 tuna (and billfish) catch was only 847 x 10^{3} metric tons despite worldwide fishing by well-equipped fleets. In all oceans the catching rate of tunas is falling. Only the skipjack, Katsuwonus pelamis, holds any promise of more yield. The salmon catch in 1968 of 423×10^{3} metric tons may perhaps be eventually increased because of very intensive management of the nursery areas although this may be negated by uncontrolled high seas fishing, such as that conducted by Denmark on the small remaining stocks of Atlantic salmon. We would consider $2,000 \times 10^{3}$ an optimistic estimate for this category.

The 1968 yield of oysters and other bivalves was $1,711 \mathrm{x}$ 10^{3} metric tons. Considering, only the type of bivalve culture employed in the recent past it is difficult to see much increase.

The output of bivalves has increased only 42 percent in the past 10 years despite great efforts. The natural beds are depleted and attempts at cultivation are nullified by increas ing estuarine pollution. Extensive use of mussels could help the picture, but in many areas the danger of paralytic shellfish poisoning from ingestion by mussels of toxic plankton organisms, especially dinoflagellates, has militated against their use. We estimate $2,000 \times 10^{3}$ metric tons as a reasonable estimate.

Although the 1968 yield of crabs was but 316×10^{3} metric tons we believe this will continue to rise. The handling and processing of fresh crab meat has been greatly improved so that crab fishing will be expanded to more coastal areas. The deep water crabs, such as the Tanner crab, will augment production. We believe 1 million metric tons to be not undul) optimistic.

Our total estimate of potential world fish production by empirical summation is as follows:

Estimate of potential marine fishery yield (metric tons 10^{3})

Demersal fishes	58,344
Neritic pelagic fishes, upwelling areas	15,000
Neritic pelagic fishes, other areas	15,000
Oceanic feeding (salmons, tunas)	2,000
Bivalves (natural beds)	2,000
Crabs, etc.	1,000

It is highly improbable that this suggested potential world yield will be attained for a long time, if ever. The reasons are rather obvious. Species after species has been depleted to scarcely profitable levels, while new species and new areas have been exploited. However, the world is fast shrinking -- new areas and new species are becoming scarce.

A few examples -- the ocean perch, Sebastes marinus (Figure 3) was scarcely used until filleting commenced in the late 1930's. The New England banks' yield fell from over 100 million pounds in 1941 and 1942 to 5 million by 1965. The Nova Scotia banks were next, the ocean perch landings of over 100 million pounds in 1948, 1949, and 1951 fell to 12 million by 1965. Yields in the Gulf of St. Lawrence fell from over 50 million pounds in 1953, 1954, and 1955 to 6 million in 1965. Thus have we managed many of our marine species.

Similar stories can be told for haddock and pollock (Figure 4), and whiting. (Figure 5). In the fertile upwelling area of the California current the story has been more drastic. The sardine, once producing a billion pounds a year (Figure 4) is commercially extinct. The mackerel, likewise, has fallen tremendously in abundance (Figure 5).

FIGURE 3. U. S. landings in millions of pounds of ocean perch from New England banks (A); from Grand Banks and the Gulf of St. Lawrence (B) ; from Nova Scotia banks (C); and landings of Atlantic coast menhaden (D).

FIGURE 4. Biomass of the California sardine (Murphy, 1966) in thousands of short tons (A); U.S. landings of haddock in millions of pounds (B); U.S. landings of pollock in hundred thousands of pounds (C).

FIGURE 5. U. S. landings in millions of pounds of Pacific mackerel (A) and of whiting (B).

The Atlantic menhaden, considered by many early biologists to be inexhaustible has fallen in abundance since the very intense fishing of the late fifties (Fig. 3).

In Alaska (Fig. 6) the salmon landings fell from over 500 million pounds to 200 million, but have shown signs of some recovery. The herring fisheries have fallen from over 200 million pounds to about 20 million pounds.

Why has the world catch continued to rise while the Unites States catch is falling slightly?

There are several factors. Some of the underdeveloped countries have only recently commenced using enough modern fishing gear to fully exploit their fisheries. A good example is the meteoric rise of the Peruvian fishery for anchovies (Fig. 8) which is presently the world's largest fishery from the standpoint of sheer volume. Even this fishery is obviously near or at peak production.

Several nations have built large fleets of high seas fishing vessels, some accompanied by floating factory ships. These scour the seas of the world gradually bringing all formerly latent fishery resources into use.

Inevitably, in this process, some of the less resilient species must suffer a severe decline.

The decline in United States fisheries over the past thirty years has resulted in inability to supply the demands of an expanding population. We now import about two-thirds of all our fishery products.

In the face of falling abundance of practically all of the historically fished species we have bolstered our output by fishing new species and by fishing species inhabiting the deeper waters at the edge of the continental shelf and on the upper continental slope. Thus we developed fisheries for king crab in Alaska and surf clams off the Atlantic coast (Fig. 7). These appear to have reached or passed their peak. Other developing U. S. fisheries include calico scallops off eastern Florida, shrimp in Alaska, Pacific hake, and saury. The laxge populations of thread herring (Opisthonema) off western Florida await exploitation but this is hampered by restrictive local regulations.

FIGURE 6. U. S. landings in millions of pounds of Alaska salmons (A) and of Alaska herring (B).

FIGURE 7. U. S. landings in millions of pounds of Alaska king crab (A) and of Atlantic coast surf clams (B).

FIGURE 8. World marine fishery catch in millions of metric tons showing rates of increase with and without Peruvian anchovies.

The shift from the more accessible species to the less accessible as species after species fell in abundance is portrayed in Table 19. Forty-one percent of the 147 principal species taken in the United States had maximum 3-year landings over 30 years ago. Seventy-five percent of the species from the first four habitat categories fell after the two initial periods. Obviously with such poor management practices, we can never hope to reach the potential sustainable yield.

Another problem in reaching higher levels of production is the waste of fish due to pampered eating habits in some countries. To illustrate, Table 20 shows the landings in the northwest Atlantic (New England to Greenland) and in the northeast Atlantic (Spain to Russia, except Baltic and Mediterranean Seas). You will note that 3.7 percent of the European landings consisted of fishes we largely waste. During World War II when food was at a premium we smoked anglerfish from the Boston trawlers and found it excellent, yet the public won't accept it. Delicious sea mussels abound on the New England coast but go unused. The few sharks actually used are apt to be sold as swordfish.

The intensive advertising campaigns to induce the public to eat more fish usually tout the excellence of products already in short supply -- haddock, halibut, salmon, whitefish, shrimp. This is a waste of public funds.

Table 19. Number of the principal species of fish and invertebrates according to periods in which their maximum United States landings occurred, listed by their habitat. 1

$1_{\text {In }}$ a few cases two or more species have not been separated in the statistics and have had to be grouped as one, e.g. the alewife, Alosa pseudoharengus, and the blueback, A. aestivalis.
${ }^{2}$ The two earlier periods had to be chosen to include years in which complete canvasses of the fisheries were made.
${ }^{3}$ Species spawning in high salinity offshore waters whose young are nurtured in the estuaries.

Table 20. Utilization of less desirable species, 1968 catch. ${ }^{1}$ (Metric tons 103)

Less desirable species
Anglerfishes
Gurnards, sea robins
Picked dogfish
Sharks
Rays and skates
Winkles
Conchs
Musse1s
Squids
Octopus

All species
N.W. Atlantic N.E. Atlantic 0.0
40.0
0.0
12.4
0.0
27.0
0.9
30.7
0.9
52.6
0.1
4.2
1.0
2.4
2.7
243.3
1.7
20.8
$\frac{0.0}{7.3}$
5.2
438.6

Percent of less desirable species
3231
0.2
3.7
1^{1} Species common to both sides of Atlantic, Mediterranean excluded, except the capelin and sand eels which are taken wholly for reduction.

THE EMPIRICAL APPROACH BY EXTRAPOLATION

A third approach is through extrapolation of existing catch statistics. In Figure 8 the world marine catch is plotted from 1952 through 1968. There are three distinct rates of increase; from 1952 through 1958 at slightly over 4 percent per year, from 1959 through 1962 at about 9 percent per year, and from 1963 through 1968 at about 5.8 percent per year.

These changes in rate were engendered chiefly by the rise of the great fishery for the Peruvian anchovy. At the top of Figure 8 is shown the world marine yield over the 10 -year period from 1959 through 1968 excluding the Peruvian anchovy. This 10 -year rate is 4.3 percent. Since the Peruvian anchovy fishery is at its zenith it would appear that the 4.3 rate of increase for the remainder of the marine catch is a reasonable assumption.

Schaefer (1965) gives the rate of increase in the total world marine catch from 1957 through 1962 as 8 percent. Actually 1958 is the year in which the abrupt change occurred from 4.1 percent to 9 percent coinciding with the rise of the Peruvian fishery.

If we assume that the catch (excluding the Peruvian anchovy) will increase by 4.3 percent per year we should reach the theoretical total limit of 94×10^{6} metric tons by 1982 . Is this a valid assumption? Any extrapolation of the world
catch must include one or more of three ASSUMPTIONS:

1. The seas have a certain productivity level that can be attained and this will be attained regardless of man's effect on the abundance of particular species. This logically means that the decimation of one species merely results in its replacement by another.
2. Any decline in particular species can always be more than offset by searching out and exploiting hitherto underfished species.
3. New fishing grounds exist that are practically untouched by fishing so that expansion can continue for a very long time.

Apparently there are those who must believe in the validity of these assumptions. Thus Pariser (1969) cites 2 authors who place the worlds sustainable fishery harvest at 500×10^{3} (sic) metric tons and 2 who place it at $2,000 \times 10^{3}$ (sic) metric tons. Obviously, he means 10^{6} not 10^{3} as he makes the same error for several authors with lesser totals. It may be worthy of note that at the rate of 4.3 percent increase per year the 500×10^{6} metric tons could be achieved in 56 years and the $2,000 \times 10^{6}$ in 912 years:

Pariser (1969) assumes that U. S. continental shelves can produce $5,490,000$ metric tons per year of fish from stocks now unutilized or underutilized. If this is true it would triple the present U. S. catch which has declined over a 30 year period. In making my optimistic suggestion for a
sustainable world catch by empirical summation I already allowed 3 metric tons of demersa. fishes per km^{2} for the continental shelf he has mentioned and 1.5 metric tons of demersal fishes for the upper slope of the selfsame areas. Despite these very optimistic yields I failed to obtain a world figure higher than 93×10^{6} metric tons, far short of the wild estimates that Pariser has cited.

Let us examine closely the three assumptions we mentioned above.

Assumption 1: In certain instances other species do tend to fill the vacuum created by the decimation of a formerly abundant species. Thus Murphy (1966) shows that the anchovy is increasing in abundance in the California upwelling areas onse dominated by the Pacific sardine. On southwestern Georges Bank the haddock, abundant in the late 1920's, declined drastically but was replaced by the yellowtail flounder. When the flounder was fished out it was replaced by red hake. In both cases the resulting product was inferior. Whether or not these changes are reversible is yet to be demonstrated.

In many other instances there is no ready replacement. The anadromous species and those dependent on the estuaries are not readily replaceable. Each species is the product of long periods of evolution. When a species is gone how do you replace it? Perhaps the practical demise of the great Antarctic whale herds is convincing enough.

Assumption 2: This assumption, the continuous availability of new species to exploit, is fast running out. During the years of expansion of the Pacific haljbut fishery the vessels first overfished the Washington and Oregon Banks, then moved in succession to Hecate Strait, Dixon Entrance, Cape Spencer, Yakutat, Cook Inlet, Portlock Bank, Trinity Bank, the Shumagin Islands, and finally the Bering Sea. When they were finished the stocks were depleted over the whole range of the fishery. The ability to shift ever farther westward sprang from the building of larger vessels, the change from dory to longline fishing, the change from gasoline to diesel engines, and the development of efficient hauling gurdies. Now with more efficient navigational instruments, the development of better winches, fish searching equipment and so forth, we are fishing deeper waters on the upper slope below the edge of the continental shelf, but these areas are smaller, less productive, and more expensive to fish.

Assumption 3: This assumption that expansion can continue indefinitely through exploitation of new fishing grounds has several facets. First, we must ask why these hypothetical rich fishing grounds remain unexploited. Are they too distant from ports of landing? Are they too difficult to fish because of ice, stormy weather, or rough bottom? If such grounds exist, can their exploitation cause the world catch to rise while the already exploited banks are yielding smaller and smaller returns in the face of heavier fishing pressure? Will not
the exploitation of new grounds, if many exist, merely end in final decimation of the fish stocks on all banks -- a repetition of the history of the halibut fishery?
in the case of one of the world's great fisheries, the cod fishery, for instance, Idler and Jangaard (1969) state,
"In Table 6 the world catch of Atlantic cod is listed by countries; it is evident that the quantity caught increased dramatically from 1948-1956, which was the peak year. Since then the quantity has fluctuated from 2,560 to 3,010 thousand metric tons per year in spite of greatly increased fishing effort. Several fishing areas are now producing only a fraction of the quantity caught only $10-15$ years ago; it is estimated, for instance, that the cod population of the Barents Sea is only about 10% of what it used to be. The other chief fishing areas have as yet not reached this point, but increased fishing pressure on the stocks are showing in smaller average size of the fish and the increased effort needed to catch the same amount of fish."

There is thus no obvious reason why fishery landings should continue to increase at any particular rate. The landings have not kept pace with the great increase in fishing effort. Furthermore, the FAO statistics are singularily unconvincing. Figures for many countries, e.g. mainland China, North Korea, and North Vietnam, are not current and we do not know by how much their last available figures were wishful thinking. The statistics for many other countries are merely rough estimates which FAO admits were at least ten percent estimates. Furthermore, there is little doubt in the mind of anyone well acquainted with the difficulties of acquiring accurate fishery statistics that a good fraction of the increase in total landings over the past decade is an artifact.

As the collection of statistics has improved the percentage of the landings actually recorded has risen.

The desperate need for more animal protein from the sea in countries with extremely limited arable land is well exemplified by Japan. Despite their huge worldflung fishing fleets they are unable to increase their catches except by increasing their fishing effort to unprofitable levels. They have recently been experimenting with trying to catch in quantity the small shrimplike euphausids, which formed the staple food, the "krill", of the once mighty Antarctic baleen whale herds (Anonymous, 1970b). The problems are tremendous, including a month each way for vessels. So far, experiments to strain these small organisms from the water with fine-meshed nets, necessarily towed at slow speeds, have not been successful.

SUMMARY

The serious estimates of marine fish harvest can be classified as theoretical or empirical. Some of these estimates have stressed the bank areas of the oceans with little regard for upwelling zones while others have done the opposite. A comparison between the 1968 catch and the various estimates is contained in Table 21.

Table 21. Comparison of certain estimates of potential marine landings.

$$
\frac{\text { Shelf and non-upwelling }}{\text { Demersal Pelagic Both }} \frac{\text { Upwelling }}{\text { Pelagic }} \frac{\text { Oceanic }}{\text { Pelagic }}
$$

Theoretical estimates

Graham and Edwards (1962)				115 bony fishes
Graham and Edwards (1962)				171 all forms
Schaefer (1965)				200
Ryther (1969)	50.0	50.0	0.1	100
Cushing (1969)	?	40-60	3.5	43-65
This report	47.0	46.5	0.5	94

Empirical estimates

Graham and Edwards (1962)
$(61.3) \quad \begin{aligned} & 55.0 \\ & 76.3\end{aligned}$
15.0
5.0

60
This report
93.3

1968 World landings

| FAO (1969) (27.2) (13.1) | 40.3 | 14.4 | 1.5 | 56.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Percentage of total

| 1968 World landings | (48.4) | (23.3) | 71.7 | 25.6 | 2.7 | 100.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| This report (empi ica1) | (58.3) | (15.0) | 81.8 | 16.1 | 2.1 | 100.0 |

Examination of the table shows at once that the theoretical estimates based on primary productivity give undue weight to the yield of upwelling areas. It appears that any long continued increase in landings will have to depend on increased catches on the continental shelf and upper slope.

Whether the future marine catch rises, remains static, or falls, depends chiefly upon both national and international observance of sound conservation measures. At the present moment there is little reason for optimism.

REFERENCES

Alekin, 0.A. 1966. Earth that flows into the ocean. Geo-Marine Technology 2(9):11.

Alverson, D.L., A.T. Pruter, and L.L. Ronholt. 1964. A study of demersal fishes and fisheries of the northeastern Pacific Ocean. H.R. MacMillan Lectures in Fisheries, Institute of Fisheries, Univ. British Columbia, Vancouver, 190 p.

Alverson, Dayton L. 1968. Fisheries resources in the northeastern Pacific Ocean. Conf. on Future of U.S. Fishing Industry, Univ. of Washington, March 24-27, 1968.

Anonymous. 1961. The sea fishing industry of the Argentine. In Atlantic Ocean Fisheries, Fishing News (Books), Ltd., London:335, pp. 196-204.

Anonymous. 1970a. Fisheries affected by Aswan Dam. Commercial Fisheries Review 32(4):64.

Anonymous. 1970b. Antarctic krill fishery is considered. Commercial Fisheries Review 32(1):79.

Beaufort, Roger. 1970. World fisheries still expanding. Hydrospace 11 (7) July, p. 18.

Bigelow, Henry B., and Willian C. Schroeder. 1953. Fishes of the Gulf of Maine. U.S. Fish Wildl. Serv., Fish. Bu11. 53 (74):577 p.

Blackburn, M. 1966. Biological oceanography of the eastern tropical Pacific: Summary of existing information. U.S. Fish Wildl. Serv., Spec. Sci. Rept. Fish. 540:18 p.

Borgstrom, Georg. 1961. The Atlantic fisheries of the U.S.S.R. In Atlantic Ocean Fisheries, Fishing News (Books.), L̄t., London:335, pp. 282-315.

Borgstrom, Georg, and Arthur J. Heighway (eds.). 1961. Atlantic Ocean Fisheries. Fishing News (Books), Ltd., London:335 p.

Bullis, Harvey R., Jr., and John R. Thompson. 1968. Harvesting the ocean in the decade ahead. Ocean Industry 3 (6):52-60.

California Department of Fish and Game. 1960. California ocean fisheries resources to the year 1960. Calif. Dept. Fish and Game:79 p.

Chapman, W.M. 1936. The pilchard fishery of the state of Washington in 1936 with notes on the food of the silver and chinook salmon of the Washingtor Coast. Dept. of Fish., Wash. Biol. Rept. 36C:1-30.

Chapman, Wilbert M. 1969. Setting up an overseas fishing industry. Hydrospace 2(1):36-38.

Clarke, Frank Wigglesworth. 1916. The data of geochemistry. U.S. Geol. Surv., Bull. 616 (3rd ed.) 821 p.

Clemens, W.A., and G.V. Wilby. 1961. Fishes of the Pacific coast of Canada. Fish. Res. Bd. Canada, Bull. 68 (2nd ed.) 443 p .

Commission on Marine Science, Engineering and Resources. 1969a. Panel Reports, 3 Vols., Washington.

Commission on Marine Science, Engineering and Resources. 1969b. Our nation and the sea. Report of Comm. on Mar. Sci., Engng. and Resources. Washington, D. C., 305 p.

Cushing, D.H. 1958. Some experiments using the 14C technique. Rapp. P. $-V$. Reun. Cons. perm. int. Explor. Mer. 144:73-5.

Cushing, D.H. 1969. Upwelling and fish production. FAO Fish. Tech. Paper 84:40 p.

Dragovich, Alexander. 1969. Review of studies of tuna food in the Atlantic ocean. U.S. Fish Wildl. Serv., Spec. Sci. Rept.-Fisheries 593:20 p.

Edwards, Robert L. 1968. Fishery resources of the North Atlantic area. Conf. on Future of U.S. Fishing Industry, Univ. of Washington, March 24-27, 1968.

Fairbridge, Rhodes W. 1966. Andaman Sea. In Encyclopedia of Oceanography, Reinhold, New York, pp. 32-35.

Fedosov, M.V. 1962. Investigation of formation conditions of primary productivity in the Northwest Atlantic. In Soviet Fisheries Investigations in the northwest Atlantic, pp. 125-135. Off. Tech. Serv., U. S. Dept. Commerce, IPST Cat. No. 994 (Translation from Russian).

Fisheries Division, FAO. 1953. Improving the fisheries contribution to world food supplies. FAO Fish. Bull. 6 (5) : 159-191.

Flores, L.A. 1967. Informe preliminar del crucero 6611 de 1a primavera de 1966 (Cabo Blanco-Punta Coles). Infme Inst. Mar. Peru 17:16 p.

Flores, L.A., and L.A.P. Elias. 1967. Informe preliminar de1 crucero 6608-9 de invierno 1966 (Manora-I1o). Infme Inst. Mar. Peru 16:24 p.

Food and Agriculture Organization of the United Nations. 1969. Yearbook of Fishery Statistics, Vol. 26, 1968.

Godfrey Harold. 1965. Salmon of the North Pacific OceanPart IX Coho, chinook and masu salmon in offshore waters. 1. Coho salmon in offshore waters. Int. North Pac. Fish. Comm., Bu11. 16:1-39.

Goldman, C.R. 1968. The use of absolute activity for eliminating serious errors in the measurement of primary productivity with ${ }^{14} \mathrm{C}$. J. Cons. perm. int. Explor. Mer. 32(2):172-9.

Graham, H.W., and R.L. Edwards. 1962. The world biomass of marine fishes. In Fish in Nutrition:3-8, Fishing News (Books) Ltd., London.

Guillen, 0., and L.A. Flores. 1967. Informe preliminar del crucero 6702 del verano de 1967 (Cabo Blanco-Arica). Infme Inst. Mar. Peru 18:17 p.

Hanamura, N. 1966. Salmon of the North Pacific OceanPart III A review of the life history of North Pacific salmon. 1. Sockeye salmon in the Far East. Int. North Pac. Fish. Comm., Bu11. 18:1-27.

Hand, Cadet H., and Leo Berner, Jr. 1959. Food of the Pacific sardine (Sardinops caerulea). U. S. Fish Wildi. Serv., Fish. Bull. $60(164): \overline{175-184}$.

Heselton, L.R., Jr. 1969. The continental shelf. Center for Naval Analyses, Doc. AD686 703, Clearinghouse Fed. Sci. Tech. Inf. U. S. Dept. Commerce.

Hildebrand, Samuel F., and William C. Schroeder. 1928. Fishes of Chesapeake Bay. Bull. U.S. Bur. Fish. 43 (Part I), Doc. 1024:366 p.

Holden, M.J. 1967. Fishing: the next ten years. Hydrospace 1(1):54-59.

Idler, D.R., and P.M. Jangaard. 1969. Cod fishery. In Encyclopedia of Marine Resources, Reinhold, New York, pp. 129-135.

Ishida, T. 1960. Salmon of the North Pacific OceanPart III A review of the life history of North Pacific salmon. 2. Pink salmon in the Far East. Int. North Pac. Fish. Comm., Bull. 18:29-39.

Izhevskii, G.K. 1961. Oceanological principles as related to the fishery productivity of the seas. Off.Tech. Serv., IPST Cat. No. 917 (Translated from Russian) 185 p.

Izhevskii, G.I. 1964. Forecasting of oceanological conditions and the reproduction of commercial fish. Translated from Russian 1966. IPST Cat. No. 1854, available U. S. Dept. Commerce, Clearinghouse Fed. Sci. Tech. Info., Springfield, Va.

Ketchum, Bostwick H. 1969. Productivity of marine communities. In Enc. of Marine Resources, Van Nostrand Reinhold:553-9.

Kossinna, Erwin. 1921. Die Tiefen des Weltmeeres. Berlin Univ. Institut f. Meereskunde, Veroff, N.F., A. Geogr.-naturwiss. Reihe, Heft 9, 70 p.

Laevastu, T. 1961. Natural bases of fisheries in the Atlantic Ocean:Their past and present characteristics and possibilities for future expansion. In Atlantic Ocean Fisheries, Fishing News (Books) Ltd., London:335, pp. 18-39.

Lindner, Milton J., and James S. Bailey. 1968. Distribution of brown shrimp (Penaeus aztecus aztecus Ives) as related to turbid water photographed from space. U. S. Fish Wildl. Serv., Fish. Bull. 67(2):289-294.

Manar, Thomas A. 1969. Pacific fisheries. In Enc. of Marine Resources, Van Nostrand Reinhold:477-485.

McLaugh1in, Patsy A., and James F. Hebard. 1961. Stomach contents of the Bering Sea king crab. Int. North Pac. Fish. Comm., Bull. 5:5-8.

Meseck, G. 1962. Importance of fisheries production and utilization in the food economy. In Fish in Nutrition, pp. 23-27, Fishing News (Books) Lt̄., London.

Murphy, G.I. 1965. Preliminary analysis of the population dynamics of the Peruvian anchovy. Report to the Instituto del Mar del Peru (mimeo).

Murphy, Garth I. 1966. Population biology of the Pacific sardine (Sardinops caerulea) Proc. Calif. Acad. Sci. 4th Ser. Vol. $34(1): 1-84$.

National Council on Marine Resources and Engineering Development. 1969. Marine Science Affairs - A year of broadened participation. U. S. Govt. Print. Office:251 p., Washington.

Nielsen, E. S. 1960. Productivity of the oceans. Ann. Rev. Plant Physio. 11:341-362.

Nielsen E. S. 1964. On the determination of the activity in ${ }^{14} \mathrm{C}$ ampoules. ICES C.M. 1964, Plankton Committee Doc. (105):2 p. (mimeo).

Pariser, E.R. 1969. Fish protein concentrate. In Encyclopedia of Oceanography, pp. 265-272, Reinhold, New York.

Parsons, T.R., R.J. LeBrasseur and W.E. Barraclough. 1970. Levels of production in the pelagic environment of the Strait of Georgia, British Columbia: A Review. J. Fish. Res. Bd. Canada 27:1251-1264.

Pike, Sumner T., and Athelstan Spilhaus. 1962. Marine resources. A report to the Committee on Natural Resources of the National Academy of Sciences-National Research Council. NAS/NRC. Pub1. 100-E:1-8.

Reid, J.L., Jr. 1962. On circulation, phosphate-phosphorus content, and zooplankton volumes in the upper part of the Pacific Ocean. Limnol. Oceanogr. 7(3):287-306.

Ryther, John H. 1969. Photosynthesis and fish production in the sea. Science 166(3901):72-76.

Schaefer, Milner B. 1965. The potential harvest of the sea. Trans. Amer. Fish. Soc. 94 (2):123-128.

Schaefer, M.B. 1967. Dynamics of the fishery for the anchoveta, Engraulis ringens, off Peru. Inst. Mar. Peru, Boletin 1(5):189-304.

Scientific Committee on Oceanic Research. 1970. Proceedings of the scientific committee on oceanic research, 6(2):54-93.

Seki, H., J. Skelding, and T.R. Parsons. 1968. Observations on the decomposition of a marine sediment. Limnol. Oceanogr. 13:440-447.

Stephens, K., R.W. Sheldon, and T.R. Parsons. 1967. Seasonal variations in the availability of food for benthos in a coastal environment. Ecology 48:852-855.

Sverdrup, H.U., Martin Johnson, and Richard H. Fleming. 1942. The Oceans. Prentice-Hall, New York, 1087 p.

Thompson, Harold. 1951. Latent fishery resources and means for their development. Proc. U.N. Conf. Cons. and Utilization of Resources 7:28-38.

Travin, V.I., and L.N. Pechenik. 1962. Soviet fishery investigations and fishing in the northwest Atlantic. In Soviet Fishery Investigations in the northwest $\overline{A t} 1$ antic, pp. 4-54. Off. Tech. Serv., U. S. Dept. Commerce, IPST Cat. No. 994 (Translation from Russian).

Wooster, W.S., M.B. Schaefer, and M.K. Robinson. 1967. Atlas of the Arabian Sea for fishery oceanography. Inst. Mar. Resources, U. of Calif. IMR 67-12.

FISH AND INVERTEBRATE CULTURE. By Stephen H. Spotte. Wiley-Interscience, $x i v+245$. 2970. \$8.95.

This book is of value to those desiring to maintain closed aquarium systems for fresh, brackish, or marine organisms. Such closed systems lend themselves to experiments in which the investigator wishes to maintain fairly rigid control of the environment. Closed systems are also of value where limited quantities of water are needed for rearing critical stages of marine forms.

The discussion of biological, mechanical, and chemical filtration, including resin filters, foam fractionation, and use of ozone ard ultraviolet radiation is well written but hardly encouraging to anyone needing large quantities of water. It should be noted here that these difficulties are all magnified in dealing with salt water.

The author does not explain how he achieves controlled temperatures and there is no description of pumps. It seems strange that his references include neither the 590-page compendium "Culture methods for invertebrate animals" by over 180 authors nor the reports of Victor Loosanoff on tidal aquaria, and on facilities for out-of-season spawning.

Only once does he mention adding new water to the system by the bold statement "... the standard 10 per cent change routinely provided for each culture system biweekly." This statement (p.112) seems oddly at variance with the great
precautions he elaborates on for maintaining the quality of the water. Thus, a 60,000-gallon system at the Galveston Laboratory of the National Marine Fisheries Service has been in constant use for over 10 years, with much lower additions of new water.

On p. 98 he states "Brass meters are preferable, since they are corrosion resistant. The minute amount of copper that may leach from a brass meter is insignificant from a toxicity standpoint. Besides, the tap water used to hydrate the mix will have passed through many feet of copper pipe before it reaches the vat. All-brass, plastic, or stainless steel pumps are recommended for pumping brine or sea water." As long ago as 1937, it was stated by Paul S. Galtsoff (In Culture methods for invertebrate animals, Comstock Publ. Co.) that "... ordinary cast iron pumps are preferable to bronze ones. There is but little oxidation of iron when the pump is in operation and consequently water delivered to the laboratory is not toxic. Furthermore, water supplied under similar conditions by bronze pumps proves to be much more harmful to a number of marine forms, such as lamellibranch larvae, that are very sensitive to minute amounts of copper."

In summary, the book should be very useful to anyone desiring to maintain fresh water aquaria or sea water aquaria of small size where either natural sea water is unavailable, or it is desired to use water of known original composition

for experimental purposes. For large marine aquaria, or for large mariculture projects the book is not too helpful.

GEORGE A. ROUNSEFELL

Marine Science Institute
University of Alabama
Bayou La Batre, Alabama, 36509

INFORMATION FOR CONTRIBUTORS

General Policy. Papers are considered for publication on the basis of contribution of original data, ideas, or conciseness, clarity, and scientific accuracy. Our primary purpose is to provide an outlet for sound papers that because of their local orientation or bulk too often cannot be given adequate consideration in the condensed style journal presently in vogue. The Journal will also publish NOTES, which are short papers of narrow scope. These may be a by-product of investigations, descriptions of research techniques, for establishing publication priority, or for useful information from prematurely terminated projects. They are not an outlet for inferior research. NOTES have no abstract, the author is identified at the end, and they must not exceed four printed pages. If there are less than 5 references they should be incorporated in the body of the NOTE.

Abstract. An informative abstract required of full length articles must not exceed 200 words.

References are listed alphabetically by author, without numbers as given in the Style Manual for Biological Journals, 2nd edition, American Institute of Biological Sciences, 2000 P. Street N.W., Washington, D. C. Text citations are by the name-and-year system. Manuscripts, if listed in the references, must be cited in the text with "MS" preceding the year.

Preparation of Copy. For detailed instructions, spelling, and division of words in English follow the Style Manual for Biological Journals.

Manuscripts must be double - spaced. Show only the title, author (s) and sponsoring institutions on front page. Multigraphing on bond paper is acceptable. Submit original and one copy, xerox preferred over carbon.

Tables and illustrations must be self-explanatory and consistent in headings and format Avoid obscure abbreviations. Tables are $8 \frac{1}{2} \times 11$ inches or less without vertical lines.

Make line drawings with black india ink on transparent overlays or white drawing or tracing paper. Do not use coordinate paper with orange, yellow, green, or red grids. All lines, symbols, letters, and numerals must be neat and of appropriate size for reduction. Do not use typewriting. Group drawings wherever possible. Full-page illustrations should conform in ratio of width to height to that of Journal page ($81 / 2 \times 11$ inches) with allowances for captions. Type captions for illustrations on a separate sheet(s) at end of manuscript.

Submit prints of photographs on glossy paper with wide range of tone. Crop and mount prints with rubber cement on white cardboard.

Number all illustrations, prints, and line drawings as a single series of figures using arabic numerals. Submit originals of line drawings. Protect figures with tracing paper or clear plastic. Submit original and two copies of figures to send with the manuscript to referees. Mail flat without staples or clips.

CONTENTS

Articles
Potential Food From The Sea.George A. Rounsefell1
Book Reviews
Fish and Invertebrate Culture (by Stephen H. Spotte) George A. Rounsefell 83

[^0]: ${ }^{1}$ Used same rate as for coastal mean, 8.8 percent.
 ${ }^{2}$ Used $100 \mathrm{gC} / \mathrm{m}^{2} / \mathrm{yr}$ (Ryther, 1969) X'factor of 1.45 to allow for earlier errors in 14C productivity determinations (Nielsen 1964, Goldman, 1968).
 ${ }^{3}$ Used $50 \mathrm{gC} / \mathrm{m}^{2} / \mathrm{yr}$ (Ryther 1969) X factor of 1.45.

[^1]: ${ }^{1}$ Exclusive of whales.
 ${ }^{2}$ Corrected for freshwater fishes included for certain countries.

