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CONJUGACY CLASSES AND FINITE p-GROUPS

EDITH ADAN-BANTE

Abstract. Let G be a finite p-group, where p is a prime number and a ∈ G.
Denote by Cl(a) = {gag−1 | g ∈ G} the conjugacy class of a in G. Assume
that |Cl(a)| = pn. Then Cl(a) Cl(a−1) = {xy | x ∈ Cl(a), y ∈ Cl(a−1)} is the
union of at least n(p − 1) + 1 distinct conjugacy classes of G.

1. Introduction

Let G be a finite group. Denote by Cl(a) = {gag−1 | g ∈ G} the conjugacy class
of a in G, and by |Cl(a)| the size of Cl(a). If the subset X of G is G-invariant, i.e
Xg = {xg | x ∈ X} = X for all g ∈ G, then X is the union of m distinct conjugacy
classes of G, for some integer m. Set η(X) = m.

Given any conjugacy classes Cl(a) and Cl(b), we can check that the product
Cl(a)Cl(b) = {xy | x ∈ Cl(a), y ∈ Cl(b)} is a G-invariant set. In this note, we will
explore the relation between |Cl(a)| and η(Cl(a)Cl(a−1)). Those results are the
equivalent in conjugacy classes as some of the ones in irreducible characters in [1]
and [2].

In Theorem A of [2], it is proved that if G is a p-group, χ is an irreducible
character with degree pn, then the product χχ of χ with its complex conjugate χ
is the sum of at least 2n(p− 1)+ 1 distinct irreducible characters. The following is
the equivalent for conjugacy classes

Theorem A. Let G be a finite p-group and a ∈ G. Assume that |Cl(a)| = pn.
Then the product Cl(a)Cl(a−1) of the conjugacy class of a in G and the conjugacy
class of the inverse of a in G, is the union of at least n(p−1)+1 distinct conjugacy
classes of G, i.e. η(Cl(a)Cl(a−1)) ≥ n(p− 1) + 1.

In Proposition 5.3, it is shown that for every prime p and every integer n ≥ 0,
there exist a p-group G and a conjugacy class Cl(a) of G such that |Cl(a)| = pn

and η(Cl(a)Cl(a−1)) = n(p− 1) + 1. Thus the bound in Theorem A is optimal.
An application of Theorem A is the following

Theorem B. Let n be a positive integer. Then there exists a finite set Sn of
positive integers such that for any nilpotent group G and any conjugacy class Cl(a)
of G with η(Cl(a)Cl(a−1)) ≤ n, we have that

|Cl(a)| ∈ Sn.

In Proposition 5.5, we prove that given any prime p, there exist a supersolvable
group and a conjugacy class Cl(a) of G with |Cl(a)| = p and η(Cl(a)Cl(a−1)) = 2.
Thus the previous result does not remain true assuming the weaker hypothesis that
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2 EDITH ADAN-BANTE

the groups are supersovable. Theorem A is the equivalent in conjugacy classes of
Theorem B of [1].

Theorem C. Let p be a prime number. Let G be a finite p-group and Cl(a) be a
conjugacy class of G. Then one of the following holds:

i) |Cl(a)| = 1 and η(Cl(a)Cl(a−1)) = 1.
ii) |Cl(a)| = p and η(Cl(a)Cl(a−1)) = p.
iii) |Cl(a)| ≥ p2 and η(Cl(a)Cl(a−1)) ≥ 2p− 1.

Given a fix prime p > 2, observe that Theorem C implies that there are “gaps”
among the possible values that η(Cl(a)Cl(a−1)) can take for any finite p-group and
any conjugacy class Cl(a) in G. The previous result is the equivalent in conjugacy
classes of Theorem B of [2].

Acknowledgment. I would like to thank Manoj Kumar for bringing to my
attention products of conjugacy classes. I also want to thank Professor Everett C.
Dade for useful advise and corrections.

2. Proof of Theorem A

Notation. Let G be a finite p-group and N be a normal subgroup of G. Denote
by a the element in G/N that contains a. Thus Cl(a) is the conjugacy class of a in
G/N .

Lemma 2.1. Let G be a finite p-group and N be a normal subgroup of G. Let a
and b be elements of G. Then

i) Cl(a)Cl(b) is a G-invariant set. If Cl(a) ∩ Cl(b) = ∅ then Cl(a) ∩ Cl(b) = ∅.
Thus η(Cl(a)Cl(b)) ≤ η(Cl(a)Cl(b)).

ii) If, in addition, |N | = p, then either |Cl(a)| = |Cl(a)| or |Cl(a)| = |Cl(a)|
p

.

Furthermore, if |Cl(a)| = |Cl(a)|
p

, then η(Cl(a)Cl(a−1)) ≥ η(Cl(a)Cl(a−1))+(p−1).

Proof. i) Clearly if a = gbg−1, then a = gb(g)−1. Thus if Cl(a) ∩ Cl(b) = ∅ then

Cl(a) ∩Cl(b) = ∅. Therefore η(Cl(a)Cl(b)) ≤ η(Cl(a)Cl(b)).
ii) Since N is normal, |N | = p and G is a p-group, then N is contained in the

center Z(G) of G. Thus given any n ∈ N , Cl(n) = {n}.
Suppose that |Cl(a)| 6= |Cl(a)|. Since |N | = p, we have that |Cl(a)| ≤ p|Cl(a)|.

Therefore |Cl(a)|
p

≤ |Cl(a)| ≤ |Cl(a)|. Thus |Cl(a)| = |Cl(a)|
p

since G is a p-group

and |Cl(a)| divides |G/N |.

If |Cl(a)| = |Cl(a)|
p

, then given any x ∈ Cl(a) and any n ∈ N , we have that

nx ∈ Cl(a). Thus n = nx(x−1) ∈ Cl(a)Cl(a−1) for any n ∈ N . Therefore N ≤
Cl(a)Cl(a−1) and ii) follows. �

Proof of Theorem A. We are going to use induction on the order of G. Let N be a
normal subgroup of G of order p. Observe such group exists since G is a p-group.
Let |Cl(a)| = pm. Since |G/N | < |G|, by induction we have that η(Cl(a)Cl(a−1)) ≥
m(p− 1)+ 1. If |Cl(a)| = |Cl(a)|, i.e if m = n, then by Lemma 2.1 i) we have that

η(Cl(a)Cl(a−1)) ≥ η(Cl(a)Cl(a−1)) ≥ m(p− 1) + 1 = n(p− 1) + 1.

We may assume then that |Cl(a)| 6= |Cl(a)|. By Lemma 2.1 ii), we have that
m = n− 1 and

η(Cl(a)Cl(a−1)) ≥ η(Cl(a)Cl(a−1)) + (p− 1)

= (n− 1)(p− 1) + 1 + (p− 1) = n(p− 1) + 1.
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3. Proof of Theorem B

Proof of Theorem B. Let

Sn = {Π(pi)
ti | pi is a prime number for all i, ti ≥ 0 and ti(pi − 1) + 1 ≤ n}.

Observe that the set Sn is a finite set of positive integers since 0 ≤ ti ≤ n and if
ti > 0 then pi ≤ n.

Let {p1, . . . , pr} be the set of distinct prime divisors of |G|. For i = 1, . . . , r, let
Pi be the Sylow pi-subgroup of G. Observe that a = Πr

i=1ai, for some ai ∈ Pi for
i = 1, . . . , r. Since G is nilpotent, we have that Cl(a) = Πr

i=1 Cl(ai), where Cl(ai)
is the conjugacy class of ai in Pi, for i = 1, . . . , r. Let mi = η(Cl(ai)Cl(a

−1
i )).

Observe that mi ≤ n and

|Cl(a)| = Πr
i=1|Cl(ai)|.

We can check that

η(Cl(a)Cl(a−1)) = Πr
i=1η(Cl(ai)Cl(a

−1
i )).

For each i, let |Cl(ai)| = ptii . Since Cl(ai) is the conjugacy class of ai in the pi-

group Pi, by Theorem A we have that mi = η(Cl(ai)Cl(a
−1
i )) ≥ ti(pi − 1) + 1.

Thus n ≥ ti(pi − 1) + 1. Therefore |Cl(a)| = Πr
i=1|Cl(ai)| = Πr

i=1p
ti
i ∈ Sn. �

4. Proof of Theorem C

Lemma 4.1. Let G be a finite p-group and Cl(a) be a conjugacy class of G with
|Cl(a)| = p. Then one of the following holds:

i) Cl(a) = {az|z ∈ Z} for some subgroup Z of the center Z(G) of G. Therefore
Cl(a)Cl(a−1) = Z and η(Cl(a)Cl(a−1)) = p.

ii) Cl(a)Cl(a−1) is the union of p − 1 distinct conjugacy classes of size p and
the class Cl(e) = {e}. Therefore η(Cl(a)Cl(a−1)) = p.

Proof. Observe that if z ∈ Cl(a)Cl(a−1) and |Cl(z)| = 1, then z is in the center
Z(G) of G. Since z = aga−1 for some g ∈ G and z ∈ Z(G), zi ∈ Cl(a)Cl(a−1) and

ag
i

= azi for all integer i. Thus < z >≤ Cl(a)Cl(a−1). Set Z =< z >.

i) If z 6= e, it follows that |Z| ≥ p. Since |Cl(a)| = p and ag
i

= azi for all integer
i, we have that Cl(a) = {az|z ∈ Z} and |Z| = p. Since Z is contained in Z(G),
then Cl(a)Cl(a−1) = Z and η(Cl(a)Cl(a−1)) = p.

ii) We may assume now that if z ∈ Cl(a)Cl(a−1) and Cl(z) = 1, then z = e.
Thus all the conjugacy classes different from Cl(e) are of size p. Observe that
ag(a−1)g = e for all g ∈ G. Thus |Cl(a)Cl(a−1)| ≤ p2 − p + 1 = (p − 1)p + 1.
Therefore by Theorem A it follows that Cl(a)Cl(a−1) is the union of p− 1 distinct
conjugacy classes of size p and Cl(e). �

Remark. Let p be a prime number.
a) Let G be an extra special group of order p3 and exponent p. We can check

that given any a ∈ G, where a is not in the center of G, then Cl(a)Cl(a−1) = Z(G)
and thus Lemma 4.1 i) occurs.
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b) Let G be the wreath product of a cyclic group Cp2 of order p2 by a cyclic
group Cp of order p. Thus |G| = p2p+1. Let a = (c, e, . . . , e) in G, where c ∈ Cp2

has order p2. Observe that a−1 6= a. Observe also that

Cl(a) = {(c, e, . . . , e), (e, c, . . . , e), . . . , (e, e, . . . , e, c)}.

Thus |Cl(a)| = p. Let bi = (c, e, . . . , c−1, e, . . . , e), where c−1 is in the i-position
for i = 0, . . . , p − 1, i.e b0 = (cc−1, . . . , e) = (e, e, . . . , e), b1 = (c, c−1, e, . . . , e) and
so for. Observe that Cl(b0) = Cl((e, e, . . . , e)) has class size 1. We can check that
Cl(bi) has size p for i = 1, . . . , p − 1. Since c 6= c−1, then Cl(bi) ∩ Cl(bj) = ∅ if

i 6= j and i, j = 0, . . . , p − 1. Observe that Cl(a)Cl(a−1) = ∪p−1
i=0 Cl(bi). Thus

Cl(a)Cl(a−1) is the union of a conjugacy class of size 1, namely Cl(b0) and p − 1
distinct conjugacy classes of size p, namely Cl(bi) for i = 1, . . . p− 1. We conclude
that given any prime p, there exist some group G and some conjugacy class Cl(a)
of G satisfying the condition in case ii) of Lemma 4.1.

Proof of Theorem C. If |Cl(a)| = {a}, then Cl(a)Cl(a−1) = {e} and so i) holds.
Lemma 4.1 implies ii) and iii) follows from Theorem A. �

5. Examples

Lemma 5.1. Let G0 be a p-group and Cl(g0) be the conjugacy class containing
g0 ∈ G0. Assume that Cl(g0) 6= Cl(g−1

0 ). Let N = G0 ×G0 × · · · ×G0 be the direct
product of p-copies of G0. Let C =< c > be a cyclic group of order p. Observe that
C acts on N by

(5.2) c : (n0, n1, . . . , np−1) 7→ (np−1, n0, . . . , np−2)

for any (n0, n1, . . . , np−1) ∈ N .
Let G be the semidirect product of N and C, i.e G is the wreath product of G0

and C. Set a = (g0, e, . . . , e) in N , where e is the identity of G0. Then |Cl(a)| =
p|Cl(g0)|, Cl(a) 6= Cl(a−1) and η(Cl(a)Cl(a−1)) = η(Cl(g0)Cl(g0

−1)) + (p− 1).

Proof. Observe that Cl(a) 6= Cl(a−1) since Cl(g0) 6= Cl(g−1
0 ).

Let Cl(g0)Cl(g0
−1) = C1 ∪ C2 · · · ∪ Cm, where C1, . . . , Cm are distinct conju-

gacy classes of G0. Thus m = η(Cl(g0)Cl(g
−1
0 )). We can check that the distinct

conjugacy classes of Cl(a)Cl(a−1) are of the following two types:
i) {(x, e, . . . , e)c | x ∈ Ci, c ∈ C} for i = 1, . . . ,m.
ii){(x, y, . . . , e, e)c | x ∈ Cl(g0), y ∈ Cl(g0

−1), c ∈ C}, {(x, e, y, . . . , e)c | x ∈
Cl(g0), y ∈ Cl(g0

−1), c ∈ C} and {(x, e, . . . , e, y)c | x ∈ Cl(g0), y ∈ Cl(g0
−1), c ∈ C}.

Observe that there are η(Cl(g0)Cl(g0
−1)) distinct conjugacy classes of type i)

and exactly p − 1 distinct conjugacy classes of type ii). Thus η(Cl(a)Cl(a−1)) =
η(Cl(g0)Cl(g0

−1)) + (p− 1). �

Proposition 5.3. Given any prime p, and any integer n ≥ 0, there exist a finite
p-group G and a conjugacy class Cl(a) of G with |Cl(a)| = pn, Cl(a) 6= Cl(a−1)
and η(Cl(a)Cl(a−1)) = n(p− 1) + 1.

Proof. Observe that if G is an abelian group and a ∈ G has order p2, then |Cl(a)| =
1, Cl(a) 6= Cl(a−1) and η(Cl(a)Cl(a−1)) = 1 = 0(p− 1)+ 1. Thus the statement is
true for n = 0. Assume by induction that the statement is true for n− 1, i.e. there
exist a finite p-group G0 and a conjugacy class Cl(g0) of G0 with |Cl(g0)| = pn−1,
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Cl(g0) 6= Cl(g−1
0 ) and η(Cl(g0)Cl(g0

−1)) = (n− 1)(p − 1) + 1. Using the notation
of Lemma 5.1, we have that

η(Cl(a)Cl(a−1)) = η(Cl(g0)Cl(g0
−1)) + (p− 1)

= (n− 1)(p− 1) + 1 + (p− 1) = n(p− 1) + 1.

Since |Cl(a)| = p|Cl(g0)| = p× pn−1 = pn, the proof is complete. �

Hypothesis 5.4. Fix a prime p and let F = {0, 1, . . . , p−1} be the finite field with
p elements. Observe that F is also a vector space of dimension 1 over itself. Let
A = Aff(F ) be the affine group of F . Observe that the group A is a cyclic by cyclic
group and thus it is supersolvable.

Let C be a cyclic group of order p. Set X = F and K = CX = {f : X → C}.
Observe that K is a group via pointwise multiplication, and clearly A acts on this
group (via its action on X).

Let G be the wreath product of C and A relative to X, i.e. G = K ⋊A. We can
check that G is a supersolvable group.

Proposition 5.5. Assume Hypotheses 5.4. Set a = (c, e, e, . . . , , e) in K. Then a ∈
G, the conjugacy class Cl(a) of G has size p and Cl(a)Cl(a−1) = Cl((e, e, . . . , e))∪
Cl((c, c−1, e, . . . , e)). Thus η(Cl(a)Cl(a−1)) = 2.

Therefore, given any prime p, there exist a supersolvable group G and a conjugacy
class Cl(a) of G with |Cl(a)| = p and η(Cl(a)Cl(a−1)) = 2.

Proof. Observe that Cl(a) = {(c, e, . . . , e), (e, c, e, . . . , e), . . . , (e, e, . . . , e, c)}. Thus
Cl(a) has p-elements. Observe that

{(c, c−1, . . . , e)y | y ∈ F\{0}} = {(c, c−1, e, . . . , e), (c, e, c−1, . . . , e), . . . , (c, e, . . . , e, c−1)}.

Observe also that

{(c, c−1, e, . . . , e)x | x ∈ F} = {(c, c−1, e, . . . , e), . . . , (e, e, . . . , c, c−1), (c−1, e, . . . , e, c)}.

Thus

Cl((c, c−1, e, . . . , e)) ={(c, c−1, e, . . . , e)x, (c, e, c−1, . . . , e)x, . . . ,

(c, e, . . . , c−1, e), (c, e, . . . , e, c−1)x | x ∈ F}

has (p− 1)p = p2 − p elements. Since ag(a−1)g = (e, . . . , e), then Cl(a)Cl(a−1) has
at most p2 − p+ 1 elements. We conclude that

Cl(a)Cl(a−1) = Cl((e, e, . . . , e)) ∪ Cl((c, c−1, e, . . . , e)).

�
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